
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 1

Introduction of Fibre-Reinforced Polymers − Polymers
and Composites: Concepts, Properties and Processes

Martin Alberto Masuelli

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/54629

1. Introduction

Fibre-reinforced polymer(FRP), also Fibre-reinforced plastic, is a composite material made of a
polymer matrix reinforced with fibres. The fibres are usually glass, carbon, or aramid, al‐
though other fibres such as paper or wood or asbestos have been sometimes used. The poly‐
mer is usually an epoxy, vinylester or polyester thermosetting plastic, and phenol
formaldehyde resins are still in use. FRPs are commonly used in the aerospace, automotive,
marine, and construction industries.

Composite  materials  are  engineered or  naturally  occurring materials  made from two or
more  constituent  materials  with  significantly  different  physical  or  chemical  properties
which remain separate and distinct  within the finished structure.  Most composites have
strong, stiff  fibres in a matrix which is weaker and less stiff.  The objective is usually to
make a component which is strong and stiff,  often with a low density. Commercial ma‐
terial commonly has glass or carbon fibres in matrices based on thermosetting polymers,
such as epoxy or polyester resins. Sometimes, thermoplastic polymers may be preferred,
since they are moldable after initial production. There are further classes of composite in
which the matrix is a metal or a ceramic. For the most part, these are still in a develop‐
mental  stage,  with  problems  of  high  manufacturing  costs  yet  to  be  overcome  [1].  Fur‐
thermore,  in  these  composites  the  reasons  for  adding  the  fibres  (or,  in  some  cases,
particles)  are often rather complex;  for example,  improvements may be sought in creep,
wear, fracture toughness, thermal stability, etc [2].

Fibre reinforced polymer (FRP) are composites used in almost every type of advanced engi‐
neering structure, with their usage ranging from aircraft, helicopters and spacecraft through
to boats, ships and offshore platforms and to automobiles, sports goods, chemical process‐
ing equipment and civil infrastructure such as bridges and buildings. The usage of FRP
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composites continues to grow at an impressive rate as these materials are used more in their
existing markets and become established in relatively new markets such as biomedical devi‐
ces and civil structures. A key factor driving the increased applications of composites over
the recent years is the development of new advanced forms of FRP materials. This includes
developments in high performance resin systems and new styles of reinforcement, such as
carbon nanotubes and nanoparticles. This book provides an up-to-date account of the fabri‐
cation, mechanical properties, delamination resistance, impact tolerance and applications of
3D FRP composites [3].

The fibre reinforced polymer composites  (FRPs)  are  increasingly being considered as  an
enhancement to and/or substitute for infrastructure components or systems that are con‐
structed  of  traditional  civil  engineering  materials,  namely  concrete  and steel.  FRP com‐
posites are lightweight,  no-corrosive,  exhibit  high specific  strength and specific  stiffness,
are  easily  constructed,  and can be  tailored to  satisfy  performance requirements.  Due to
these advantageous characteristics, FRP composites have been included in new construc‐
tion and rehabilitation of structures through its  use as reinforcement in concrete,  bridge
decks,  modular  structures,  formwork,  and external  reinforcement  for  strengthening  and
seismic upgrade [4].

The applicability of Fiber Reinforced Polymer (FRP) reinforcements to concrete structures as
a substitute for steel bars or prestressing tendons has been actively studied in numerous re‐
search laboratories and professional organizations around the world. FRP reinforcements of‐
fer a number of advantages such as corrosion resistance, non-magnetic properties, high
tensile strength, lightweight and ease of handling. However, they generally have a linear
elastic response in tension up to failure (described as a brittle failure) and a relatively poor
transverse or shear resistance. They also have poor resistance to fire and when exposed to
high temperatures. They loose significant strength upon bending, and they are sensitive to
stress-rupture effects. Moreover, their cost, whether considered per unit weight or on the ba‐
sis of force carrying capacity, is high in comparison to conventional steel reinforcing bars or
prestressing tendons. From a structural engineering viewpoint, the most serious problems
with FRP reinforcements are the lack of plastic behavior and the very low shear strength in
the transverse direction. Such characteristics may lead to premature tendon rupture, partic‐
ularly when combined effects are present, such as at shear-cracking planes in reinforced
concrete beams where dowel action exists. The dowel action reduces residual tensile and
shear resistance in the tendon. Solutions and limitations of use have been offered and con‐
tinuous improvements are expected in the future. The unit cost of FRP reinforcements is ex‐
pected to decrease significantly with increased market share and demand. However, even
today, there are applications where FRP reinforcements are cost effective and justifiable.
Such cases include the use of bonded FRP sheets or plates in repair and strengthening of
concrete structures, and the use of FRP meshes or textiles or fabrics in thin cement products.
The cost of repair and rehabilitation of a structure is always, in relative terms, substantially
higher than the cost of the initial structure. Repair generally requires a relatively small vol‐
ume of repair materials but a relatively high commitment in labor. Moreover the cost of la‐
bor in developed countries is so high that the cost of material becomes secondary. Thus the
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highest the performance and durability of the repair material is, the more cost-effective is
the repair. This implies that material cost is not really an issue in repair and that the fact that
FRP repair materials are costly is not a constraining drawback [5].

When considering only energy and material resources it appears, on the surface, the argu‐
ment for FRP composites in a sustainable built environment is questionable. However, such
a conclusion needs to be evaluated in terms of potential advantages present in use of FRP
composites related to considerations such as:

• Higher strength

• Lighter weight

• Higher performance

• Longer lasting

• Rehabilitating existing structures and extending their life

• Seismic upgrades

• Defense systems

• Space systems

• Ocean environments

In the case of FRP composites,  environmental concerns appear to be a barrier to its fea‐
sibility  as  a  sustainable  material  especially  when  considering  fossil  fuel  depletion,  air
pollution,  smog, and acidification associated with its  production.  In addition,  the ability
to recycle FRP composites is limited and, unlike steel and timber, structural components
cannot  be  reused to  perform a  similar  function in  another  structure.  However,  evaluat‐
ing  the  environmental  impact  of  FRP  composites  in  infrastructure  applications,  specifi‐
cally  through  life  cycle  analysis,  may  reveal  direct  and  indirect  benefits  that  are  more
competitive than conventional materials.

Composite materials have developed greatly since they were first introduced. However, be‐
fore composite materials can be used as an alternative to conventional materials as part of a
sustainable environment a number of needs remain.

• Availability of standardized durability characterization data for FRP composite materials.

• Integration of durability data and methods for service life prediction of structural mem‐
bers utilizing FRP composites.

• Development of methods and techniques for materials selection based on life cycle assess‐
ments of structural components and systems.

Ultimately, in order for composites to truly be considered a viable alternative, they must be
structurally and economically feasible. Numerous studies regarding the structural feasibility
of composite materials are widely available in literature [6]. However, limited studies are
available on the economic and environmental feasibility of these materials from the perspec‐
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tive of a life cycle approach, since short term data is available or only economic costs are
considered in the comparison. Additionally, the long term affects of using composite materi‐
als needs to be determined. The byproducts of the production, the sustainability of the con‐
stituent materials, and the potential to recycle composite materials needs to be assessed in
order to determine of composite materials can be part of a sustainable environment. There‐
fore in this chapter describe the physicochemical properties of polymers and composites
more used in Civil Engineering. The theme will be addressed in a simple and basic for better
understanding.

2. Manufactured process and basic concepts

The synthetic polymers are generally manufactured by polycondensation, polymerization or
polyaddition. The polymers combined with various agents to enhance or in any way alter
the material properties of polymers the result is referred to as a plastic. The Composite plas‐
tics can be of homogeneous or heterogeneous mix. Composite plastics refer to those types of
plastics that result from bonding two or more homogeneous materials with different materi‐
al properties to derive a final product with certain desired material and mechanical proper‐
ties. The Fibre reinforced plastics (or fiber reinforced polymers) are a category of composite
plastics that specifically use fibre materials (not mix with polymer) to mechanically enhance
the strength and elasticity of plastics. The original plastic material without fibre reinforce‐
ment is known as the matrix. The matrix is a tough but relatively weak plastic that is rein‐
forced by stronger stiffer reinforcing filaments or fibres. The extent that strength and
elasticity are enhanced in a fibre reinforced plastic depends on the mechanical properties of
the fibre and matrix, their volume relative to one another, and the fibre length and orienta‐
tion within the matrix. Reinforcement of the matrix occurs by definition when the FRP mate‐
rial exhibits increased strength or elasticity relative to the strength and elasticity of the
matrix alone.

Polymers are different from other construction materials like ceramics and metals, because
of their macromolecular nature. The covalently bonded, long chain structure makes them
macromolecules and determines, via the weight averaged molecular weight, Mw, their proc‐
essability, like spin-, blow-, deep draw-, generally melt-formability. The number averaged
molecular weight, Mn, determines the mechanical strength, and high molecular weights are
beneficial for properties like strain-to-break, impact resistance, wear, etc. Thus, natural lim‐
its are met, since too high molecular weights yield too high shear and elongational viscosi‐
ties that make polymers inprocessable. Prime examples are the very useful poly-tetra-fluor-
ethylenes, PTFE’s, and ultrahigh-molecular-weight-poly-ethylenes, UHMWPE’s, and not
only garbage bags are made of polyethylene, PE, but also high-performance fibers that are
even used for bullet proof vests (alternatively made from, also inprocessable in the melt, rig‐
id aromatic polyamides). The resulting mechanical properties of these high performance fi‐
bers, with moduli of 150 GPa and strengths of up to 4 GPa, represent the optimal use of
what the potential of the molecular structure of polymers yields, combined with their low
density. Thinking about polymers, it becomes clear why living nature used the polymeric
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concept to build its structures, and not only in high strength applications like wood, silk or
spider-webs [7].

2.1. Polymers

The linking of small molecules (monomers) to make larger molecules is a polymer. Poly‐
merization requires  that  each small  molecule  have at  least  two reaction points  or  func‐
tional  groups.  There  are  two  distinct  major  types  of  polymerization  processes,
condensation polymerization,  in  which the chain growth is  accompanied by elimination
of  small  molecules  such as  H2O or  CH3OH, and addition polymerization,  in  which the
polymer is formed without the loss of other materials. There are many variants and sub‐
classes of polymerization reactions.

The polymer chains can be classified in linear polymer chain, branched polymer chain, and
cross-linked polymer chain. The structure of the repeating unit is the difunctional monomer‐
ic unit, or “mer.” In the presence of catalysts or initiators, the monomer yields a polymer by
the joining together of n-mers. If n is a small number, 2–10, the products are dimers, trimers,
tetramers, or oligomers, and the materials are usually gases, liquids, oils, or brittle solids. In
most solid polymers, n has values ranging from a few score to several hundred thousand,
and the corresponding molecular weights range from a few thousand to several million. The
end groups of this example of addition polymers are shown to be fragments of the initiator.
If only one monomer is polymerized, the product is called a homopolymer. The polymeriza‐
tion of a mixture of two monomers of suitable reactivity leads to the formation of a copoly‐
mer, a polymer in which the two types of mer units have entered the chain in a more or less
random fashion. If chains of one homopolymer are chemically joined to chains of another,
the product is called a block or graft copolymer.

Isotactic and syndiotactic (stereoregular) polymers are formed in the presence of complex
catalysts, or by changing polymerization conditions, for example, by lowering the tempera‐
ture. The groups attached to the chain in a stereoregular polymer are in a spatially ordered
arrangement. The regular structures of the isotactic and syndiotactic forms make them often
capable of crystallization. The crystalline melting points of isotactic polymers are often sub‐
stantially higher than the softening points of the atactic product.

The spatially oriented polymers can be classified in atactic (random; dlldl or lddld, and so
on), syndiotactic (alternating; dldl, and so on), and isotactic (right- or left-handed; dddd, or
llll, and so on). For illustration, the heavily marked bonds are assumed to project up from
the paper, and the dotted bonds down. Thus in a fully syndiotactic polymer, asymmetric
carbons alternate in their left- or right-handedness (alternating d, l configurations), while in
an isotactic polymer, successive carbons have the same steric configuration (d or l). Among
the several kinds of polymerization catalysis, free-radical initiation has been most thorough‐
ly studied and is most widely employed. Atactic polymers are readily formed by free-radi‐
cal polymerization, at moderate temperatures, of vinyl and diene monomers and some of
their derivatives. Some polymerizations can be initiated by materials, often called ionic cata‐
lysts, which contain highly polar reactive sites or complexes. The term heterogeneous cata‐
lyst is often applicable to these materials because many of the catalyst systems are insoluble
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in monomers and other solvents. These polymerizations are usually carried out in solution
from which the polymer can be obtained by evaporation of the solvent or by precipitation
on the addition of a nonsolvent. A distinguishing feature of complex catalysts is the ability
of some representatives of each type to initiate stereoregular polymerization at ordinary
temperatures or to cause the formation of polymers which can be crystallized [1, 6].

2.1.1. Polymerization

Polymerization, emulsion polymerization any process in which relatively small molecules,
called monomers, combine chemically to produce a very large chainlike or network mole‐
cule, called a polymer. The monomer molecules may be all alike, or they may represent two,
three, or more different compounds. Usually at least 100 monomer molecules must be com‐
bined to make a product that has certain unique physical properties-such as elasticity, high
tensile strength, or the ability to form fibres-that differentiate polymers from substances
composed of smaller and simpler molecules; often, many thousands of monomer units are
incorporated in a single molecule of a polymer. The formation of stable covalent chemical
bonds between the monomers sets polymerization apart from other processes, such as crys‐
tallization, in which large numbers of molecules aggregate under the influence of weak in‐
termolecular forces.

Two classes of polymerization usually are distinguished. In condensation polymerization,
each step of the process is accompanied by formation of a molecule of some simple com‐
pound, often water. In addition polymerization, monomers react to form a polymer without
the formation of by-products. Addition polymerizations usually are carried out in the pres‐
ence of catalysts, which in certain cases exert control over structural details that have impor‐
tant effects on the properties of the polymer [8].

Linear polymers, which are composed of chainlike molecules,  may be viscous liquids or
solids  with  varying degrees  of  crystallinity;  a  number  of  them can be  dissolved in  cer‐
tain liquids,  and they soften or melt  upon heating.  Cross-linked polymers,  in which the
molecular  structure is  a  network,  are  thermosetting resins (i.e.,  they form under the in‐
fluence of heat but, once formed, do not melt or soften upon reheating) that do not dis‐
solve in solvents.  Both linear and cross-linked polymers can be made by either addition
or condensation polymerization.

2.1.2. Polycondensation

The polycondensation a process for the production of polymers from bifunctional and poly‐
functional compounds (monomers), accompanied by the elimination of low-molecular
weight by-products (for example, water, alcohols, and hydrogen halides). A typical example
of polycondensation is the synthesis of complex polyester.

The process is called homopolycondensation if the minimum possible number of monomer
types for a given case participates, and this number is usually two. If at least one monomer
more than the number required for the given reaction participates in polycondensation, the
process is called copolycondensation. Polycondensation in which only bifunctional com‐
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pounds participate leads to the formation of linear macromolecules and is called linear poly‐
condensation. If molecules with three or more functional groups participate in
polycondensation, three-dimensional structures are formed and the process is called three-
dimensional polycondensation. In cases where the degree of completion of polycondensa‐
tion and the mean length of the macromolecules are limited by the equilibrium
concentration of the reagents and reaction products, the process is called equilibrium (rever‐
sible) polycondensation. If the limiting factors are kinetic rather than thermodynamic, the
process is called nonequilibrium (irreversible) polycondensation.

Polycondensation is often complicated by side reactions, in which both the original mono‐
mers and the polycondensation products (oligomers and polymers) may participate. Such
reactions include the reaction of monomer or oligomer with a mono-functional compound
(which may be present as an impurity), intramolecular cyclization (ring closure), and degra‐
dation of the macromolecules of the resultant polymer. The rate competition of polyconden‐
sation and the side reactions determines the molecular weight, yield, and molecular weight
distribution of the polycondensation polymer.

Polycondensation is characterized by disappearance of the monomer in the early stages of
the process and a sharp increase in molecular weight, in spite of a slight change in the extent
of conversion in the region of greater than 95-percent conversion.

A necessary condition for the formation of macro-molecular polymers in linear polyconden‐
sation is the equivalence of the initial functional groups that react with one another.

Polycondensation is accomplished by one of three methods:

1. in a melt, when a mixture of the initial compounds is heated for a long period to
10°-20°C above the melting (softening) point of the resultant polymer;

2. in solution, when the monomers are present in the same phase in the solute state;

3. on the phase boundary between two immiscible liquids, in which one of the initial com‐
pounds is found in each of the liquid phases (interphase polycondensation).

Polycondensation processes play an important role in nature and technology. Polycondensa‐
tion or similar reactions are the basis for the biosynthesis of the most important biopoly‐
mers-proteins, nucleic acids, and cellulose. Polycondensation is widely used in industry for
the production of polyesters (polyethylene terephthalate, polycarbonates, and alkyd resins),
polyamides, phenol-formaldehyde resins, urea-formaldehyde resins, and certain silicones
[9]. In the period 1965-70, polycondensation acquired great importance in connection with
the development of industrial production of a series of new polymers, including heat-resist‐
ant polymers (polyarylates, aromatic polyimides, polyphe-nylene oxides, and polysulfones).

2.1.3. Polyaddition

The polyaddition reactions are similar to polycondensation reactions because they are also
step reactions, however without splitting off low molecular weight by-products. The reac‐
tion is exothermic rather than endothermic and therefore cannot be stopped at will. Typical
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for polyaddition reaction is that individual atoms, usually H-atoms, wander from one mon‐
omer to another as the two monomers combine through a covalent bond. The monomers, as
in polycondensation reactions, have to be added in stoichiometric amounts. These reactions
do not start spontaneously and they are slow.

Polyaddition does not play a significant role in the production of thermoplastics. It is com‐
monly encountered with cross-linked polymers. Polyurethane, which can be either a ther‐
moplastic or thermosets, is synthesized by the reaction of multi-functional isocyanates with
multifunctional amines or alcohol. Thermosetting epoxy resins are formed by polyaddition
of epoxides with curing agents, such as amines and acid anhydrides.

In comparing chain reaction polymerization with the other two types of polymerization the
following principal differences should be noted: Chain reaction polymerization, or simply
called polymerization, is a chain reaction as the name implies. Only individual monomer
molecules add to a reactive growing chain end, except for recombination of two radical
chain ends or reactions of a reactive chain end with an added modifier molecule. The activa‐
tion energy for chain initiation is much grater than for the subsequent growth reaction and
growth, therefore, occurs very rapidly.

2.2. Composites

Composite is any material made of more than one component. There are a lot of composites
around you. Concrete is a composite. It's made of cement, gravel, and sand, and often has
steel rods inside to reinforce it. Those shiny balloons you get in the hospital when you're
sick are made of a composite, which consists of a polyester sheet and an aluminum foil
sheet, made into a sandwich. The polymer composites made from polymers, or from poly‐
mers along with other kinds of materials [7]. But specifically the fiber-reinforced composites
are materials in which a fiber made of one material is embedded in another material.

2.2.1. Polymer composites

The polymer composites are any of the combinations or compositions that comprise two or
more materials as separate phases, at least one of which is a polymer. By combining a poly‐
mer with another material, such as glass, carbon, or another polymer, it is often possible to
obtain unique combinations or levels of properties. Typical examples of synthetic polymeric
composites include glass-, carbon-, or polymer-fiber-reinforced, thermoplastic or thermoset‐
ting resins, carbon-reinforced rubber, polymer blends, silica- or mica-reinforced resins, and
polymer-bonded or -impregnated concrete or wood. It is also often useful to consider as
composites such materials as coatings (pigment-binder combinations) and crystalline poly‐
mers (crystallites in a polymer matrix). Typical naturally occurring composites include
wood (cellulosic fibers bonded with lignin) and bone (minerals bonded with collagen). On
the other hand, polymeric compositions compounded with a plasticizer or very low propor‐
tions of pigments or processing aids are not ordinarily considered as composites.

Typically, the goal is to improve strength, stiffness, or toughness, or dimensional stability by
embedding particles or fibers in a matrix or binding phase. A second goal is to use inexpen‐
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sive, readily available fillers to extend a more expensive or scarce resin; this goal is increas‐
ingly important as petroleum supplies become costlier and less reliable. Still other
applications include the use of some filler such as glass spheres to improve processability,
the incorporation of dry-lubricant particles such as molybdenum sulfide to make a self-lu‐
bricating bearing, and the use of fillers to reduce permeability.

The most common fiber-reinforced polymer composites are based on glass fibers, cloth, mat,
or roving embedded in a matrix of an epoxy or polyester resin. Reinforced thermosetting
resins containing boron, polyaramids, and especially carbon fibers confer especially high
levels of strength and stiffness. Carbon-fiber composites have a relative stiffness five times
that of steel. Because of these excellent properties, many applications are uniquely suited for
epoxy and polyester composites, such as components in new jet aircraft, parts for automo‐
biles, boat hulls, rocket motor cases, and chemical reaction vessels.

Although the most dramatic properties are found with reinforced thermosetting resins such
as epoxy and polyester resins, significant improvements can be obtained with many rein‐
forced thermoplastic resins as well. Polycarbonates, polyethylene, and polyesters are among
the resins available as glass-reinforced composition. The combination of inexpensive, one-
step fabrication by injection molding, with improved properties has made it possible for re‐
inforced thermoplastics to replace metals in many applications in appliances, instruments,
automobiles, and tools.

In the development of other composite systems, various matrices are possible; for example,
polyimide resins are excellent matrices for glass fibers, and give a high- performance com‐
posite. Different fibers are of potential interest, including polymers [such as poly(vinyl alco‐
hol)], single-crystal ceramic whiskers (such as sapphire), and various metallic fibers.

Long ago, people living in South and Central America had used natural rubber latex, polyi‐
soprene, to make things like gloves and boots, as well as rubber balls which they used to
play games that were a lot like modern basketball. He took two layers of cotton fabric and
embedded them in natural rubber, also known as polyisoprene, making a three-layered
sandwich like the one you see on your right (Remember, cotton is made up of a natural pol‐
ymer called cellulose). This made for good raincoats because, while the rubber made it wa‐
terproof, the cotton layers made it comfortable to wear, to make a material that has the
properties of both its components. In this case, we combine the water-resistance of polyiso‐
prene and the comfort of cotton.

Modern composites are usually made of two components, a fiber and matrix. The fiber is
most often glass, but sometimes Kevlar, carbon fiber, or polyethylene. The matrix is usually
a thermoset like an epoxy resin, polydicyclopentadiene, or a polyimide. The fiber is embed‐
ded in the matrix in order to make the matrix stronger. Fiber-reinforced composites have
two things going for them. They are strong and light. They are often stronger than steel, but
weigh much less. This means that composites can be used to make automobiles lighter, and
thus much more fuel efficient.
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A common fiber-reinforced composite is FiberglasTM. Its matrix is made by reacting polyest‐
er with carbon-carbon double bonds in its backbone, and styrene. We pour a mix of the styr‐
ene and polyester over a mass of glass fibers.

The styrene and the double bonds in the polyester react by free radical vinyl polymerization
to form a crosslinked resin. The glass fibers are trapped inside, where they act as a reinforce‐
ment. In FiberglasTM the fibers are not lined up in any particular direction. They are just a
tangled mass, like you see on the right. But we can make the composite stronger by lining
up all the fibers in the same direction. Oriented fibers do some weird things to the compo‐
site. When you pull on the composite in the direction of the fibers, the composite is very
strong. But if you pull on it at right angles to the fiber direction, it is not very strong at all
[8-9]. This is not always bad, because sometimes we only need the composite to be strong in
one direction. Sometimes the item you are making will only be under stress in one direction.
But sometimes we need strength in more than one direction. So we simply point the fibers in
more than one direction. We often do this by using a woven fabric of the fibers to reinforce
the composite. The woven fibers give a composite good strength in many directions.

The polymeric matrix holds the fibers together. A loose bundle of fibers would not be of
much use. Also, though fibers are strong, they can be brittle. The matrix can absorb energy
by deforming under stress. This is to say, the matrix adds toughness to the composite. And
finally, while fibers have good tensile strength (that is, they are strong when you pull on
them), they usually have awful compressional strength. That is, they buckle when you
squash them. The matrix gives compressional strength to the composite.

Not all fibers are the same. Now it may seem strange that glass is used as reinforcement, as
glass is really easy to break. But for some reason, when glass is spun into really tiny fibers, it
acts very different. Glass fibers are strong, and flexible.

Still, there are stronger fibers out there. This is a good thing, because sometimes glass just
isn't strong and tough enough. For some things, like airplane parts, that undergo a lot of
stress, you need to break out the fancy fibers. When cost is no object, you can use stronger,
but more expensive fibers, like KevlarTM, carbon fiber. Carbon fiber (SpectraTM) is usually
stronger than KevlarTM, that is, it can withstand more force without breaking. But KevlarTM

tends to be tougher. This means it can absorb more energy without breaking. It can stretch a
little to keep from breaking, more so than carbon fiber can. But SpectraTM, which is a kind of
polyethylene, is stronger and tougher than both carbon fiber and KevlarTM.

Different jobs call for different matrices. The unsaturated polyester/styrene systems at are
one example. They are fine for everyday applications. Chevrolet Corvette bodies are made
from composites using unsaturated polyester matrices and glass fibers. But they have some
drawbacks. They shrink a good deal when they're cured, they can absorb water very easily,
and their impact strength is low.

2.2.2. Biocomposites

For many decades, the residential construction field has used timber as its main source of
building material for the frames of modern American homes. The American timber industry
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produced a record 49.5 billion board feet of lumber in 1999, and another 48.0 billion board
feet in 2002. At the same time that lumber production is peaking, the home ownership rate
reached a record high of 69.2%, with over 977,000 homes being sold in 2002. Because resi‐
dential construction accounts for one-third of the total softwood lumber use in the United
States, there is an increasing demand for alternate materials. Use of sawdust not only pro‐
vides an alternative but also increases the use of the by product efficiently. Wood plastic
composites (WPC) is a relatively new category of materials that covers a broad range of
composite materials utilizing an organic resin binder (matrix) and fillers composed of cellu‐
lose materials. The new and rapidly developing biocomposite materials are high technology
products, which have one unique advantage – the wood filler can include sawdust and
scrap wood products. Consequently, no additional wood resources are needed to manufac‐
ture biocomposites. Waste products that would traditraditionally cost money for proper dis‐
posal, now become a beneficial resource, allowing recycling to be both profitable and
environmentally conscious. The use of biocomposites and WPC has increased rapidly all
over the world, with the end users for these composites in the construction, motor vehicle,
and furniture industries. One of the primary problems related to the use of biocomposites is
the flammability of the two main components (binder and filler). If a flame retardant were
added, this would require the adhesion of the fiber and the matrix not to be disturbed by the
retardant. The challenge is to develop a composite that will not burn and will maintain its
level of mechanical performance. In lieu of organic matrix compounds, inorganic matrices
can be utilized to improve the fire resistance. Inorganic-based wood composites are those
that consist of a mineral mix as the binder system. Such inorganic binder systems include
gypsum and Portland cement, both of which are highly resistant to fire and insects. The
main disadvantage with these systems is the maximum amount of sawdust or fibers than
can be incorporated is low. One relatively new type of inorganic matrix is potassium alumi‐
nosilicate, an environmentally friendly compound made from naturally occurring materials.
The Federal Aviation Administration has investigated the feasibility of using this matrix in
commercial aircraft due to its ability to resist temperatures of up to 1000 ºC without generat‐
ing smoke, and its ability to enable carbon composites to withstand temperatures of 800 ºC
and maintain 63% of its original flexural strength. Potassium aluminosilicate matrices are
compatible with many common building material including clay brick, masonry, concrete,
steel, titanium, balsa, oak, pine, and particleboard [10].

2.3. Fiberglass

Fiberglass refers to a group of products made from individual glass fibers combined into a
variety of forms. Glass fibers can be divided into two major groups according to their geom‐
etry: continuous fibers used in yarns and textiles, and the discontinuous (short) fibers used
as batts, blankets, or boards for insulation and filtration. Fiberglass can be formed into yarn
much like wool or cotton, and woven into fabric which is sometimes used for draperies. Fi‐
berglass textiles are commonly used as a reinforcement material for molded and laminated
plastics. Fiberglass wool, a thick, fluffy material made from discontinuous fibers, is used for
thermal insulation and sound absorption. It is commonly found in ship and submarine bulk‐
heads and hulls; automobile engine compartments and body panel liners; in furnaces and
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air conditioning units; acoustical wall and ceiling panels; and architectural partitions. Fiber‐
glass can be tailored for specific applications such as Type E (electrical), used as electrical
insulation tape, textiles and reinforcement; Type C (chemical), which has superior acid re‐
sistance, and Type T, for thermal insulation [11].

Though commercial  use  of  glass  fiber  is  relatively  recent,  artisans  created glass  strands
for  decorating  goblets  and  vases  during  the  Renaissance.  A  French  physicist,  Rene-An‐
toine Ferchault de Reaumur, produced textiles decorated with fine glass strands in 1713.
Glass  wool,  a  fluffy mass of  discontinuous fiber  in  random lengths,  was first  produced
in Europe in 1900,  using a  process  that  involved drawing fibers  from rods horizontally
to a revolving drum [12].

The basic raw materials for fiberglass products are a variety of natural minerals and manu‐
factured chemicals. The major ingredients are silica sand, limestone, and soda ash. Other in‐
gredients may include calcined alumina, borax, feldspar, nepheline syenite, magnesite, and
kaolin clay, among others. Silica sand is used as the glass former, and soda ash and lime‐
stone help primarily to lower the melting temperature. Other ingredients are used to im‐
prove certain properties, such as borax for chemical resistance. Waste glass, also called
cullet, is also used as a raw material. The raw materials must be carefully weighed in exact
quantities and thoroughly mixed together (called batching) before being melted into glass.

2.3.1. The manufacturing process

2.3.1.1. Melting

Once the batch is prepared, it is fed into a furnace for melting. The furnace may be heated by
electricity, fossil fuel, or a combination of the two. Temperature must be precisely controlled
to maintain a smooth, steady flow of glass. The molten glass must be kept at a higher tem‐
perature (about 1371 °C) than other types of glass in order to be formed into fiber. Once the
glass becomes molten, it is transferred to the forming equipment via a channel (forehearth)
located at the end of the furnace [13].

2.3.1.2. Forming into fibers

Several different processes are used to form fibers, depending on the type of fiber. Textile
fibers may be formed from molten glass directly from the furnace, or the molten glass may
be fed first to a machine that forms glass marbles of about 0.62 inch (1.6 cm) in diameter.
These marbles allow the glass to be inspected visually for impurities. In both the direct melt
and marble melt process, the glass or glass marbles are fed through electrically heated bush‐
ings (also called spinnerets). The bushing is made of platinum or metal alloy, with anywhere
from 200 to 3,000 very fine orifices. The molten glass passes through the orifices and comes
out as fine filaments [13].
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2.3.1.3. Continuous-filament process

A long, continuous fiber can be produced through the continuous-filament process. After
the glass flows through the holes in the bushing, multiple strands are caught up on a high-
speed winder. The winder revolves at about 3 km a minute, much faster than the rate of
flow from the bushings. The tension pulls out the filaments while still molten, forming
strands a fraction of the diameter of the openings in the bushing. A chemical binder is ap‐
plied, which helps keep the fiber from breaking during later processing. The filament is then
wound onto tubes. It can now be twisted and plied into yarn [14].

2.3.1.4. Staple-fiber process

An alternative method is the staplefiber process. As the molten glass flows through the
bushings, jets of air rapidly cool the filaments. The turbulent bursts of air also break the fila‐
ments into lengths of 20-38 cm. These filaments fall through a spray of lubricant onto a re‐
volving drum, where they form a thin web. The web is drawn from the drum and pulled
into a continuous strand of loosely assembled fibers [15]. This strand can be processed into
yarn by the same processes used for wool and cotton.

2.3.1.5. Chopped fiber

Instead of being formed into yarn, the continuous or long-staple strand may be chopped in‐
to short lengths. The strand is mounted on a set of bobbins, called a creel, and pulled
through a machine which chops it into short pieces. The chopped fiber is formed into mats
to which a binder is added. After curing in an oven, the mat is rolled up. Various weights
and thicknesses give products for shingles, built-up roofing, or decorative mats [16].

2.3.1.6. Glass wool

The rotary or spinner process is used to make glass wool. In this process, molten glass from
the furnace flows into a cylindrical container having small holes. As the container spins rap‐
idly, horizontal streams of glass flow out of the holes. The molten glass streams are convert‐
ed into fibers by a downward blast of air, hot gas, or both. The fibers fall onto a conveyor
belt, where they interlace with each other in a fleecy mass. This can be used for insulation, or
the wool can be sprayed with a binder, compressed into the desired thickness, and cured in
an oven. The heat sets the binder, and the resulting product may be a rigid or semi-rigid
board, or a flexible bat [15-16].

2.3.1.7. Protective coatings

In addition to binders, other coatings are required for fiberglass products. Lubricants are
used to reduce fiber abrasion and are either directly sprayed on the fiber or added into the
binder. An anti-static composition is also sometimes sprayed onto the surface of fiberglass
insulation mats during the cooling step. Cooling air drawn through the mat causes the anti-
static agent to penetrate the entire thickness of the mat. The anti-static agent consists of two
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ingredients a material that minimizes the generation of static electricity, and a material that
serves as a corrosion inhibitor and stabilizer.

Sizing is any coating applied to textile fibers in the forming operation, and may contain
one  or  more  components  (lubricants,  binders,  or  coupling  agents).  Coupling  agents  are
used on strands that will  be used for reinforcing plastics,  to strengthen the bond to the
reinforced  material.  Sometimes  a  finishing  operation  is  required  to  remove  these  coat‐
ings, or to add another coating. For plastic reinforcements, sizings may be removed with
heat  or  chemicals  and  a  coupling  agent  applied.  For  decorative  applications,  fabrics
must be heat treated to remove sizings and to set the weave. Dye base coatings are then
applied before dying or printing [15-16].

2.3.1.8. Forming into shapes

Fiberglass products come in a wide variety of shapes, made using several processes. For
example, fiberglass pipe insulation is wound onto rod-like forms called mandrels direct‐
ly from the forming units,  prior to curing. The mold forms, in lengths of 91 cm or less,
are then cured in an oven. The cured lengths are then de-molded lengthwise, and sawn
into specified dimensions.  Facings are  applied if  required,  and the product  is  packaged
for shipment [17].

2.4. Carbon fibre

Carbon-fiber-reinforced polymer or carbon-fiber-reinforced plastic (CFRP or CRP or often
simply carbon fiber), is a very strong and light fiber-reinforced polymer which contains car‐
bon fibers. Carbon fibres are created when polyacrylonitrile fibres (PAN), Pitch resins, or
Rayon are carbonized (through oxidation and thermal pyrolysis) at high temperatures.
Through further processes of graphitizing or stretching the fibres strength or elasticity can
be enhanced respectively. Carbon fibres are manufactured in diameters analogous to glass
fibres with diameters ranging from 9 to 17 μm. These fibres wound into larger threads for
transportation and further production processes. Further production processes include
weaving or braiding into carbon fabrics, cloths and mats analogous to those described for
glass that can then be used in actual reinforcement processes. Carbon fibers are a new breed
of high-strength materials. Carbon fiber has been described as a fiber containing at least 90%
carbon obtained by the controlled pyrolysis of appropriate fibers. The existence of carbon fi‐
ber came into being in 1879 when Edison took out a patent for the manufacture of carbon
filaments suitable for use in electric lamps [18].

2.4.1. Classification and types

Based on modulus, strength, and final heat treatment temperature, carbon fibers can be clas‐
sified into the following categories:

1. Based on carbon fiber properties, carbon fibers can be grouped into:

• Ultra-high-modulus, type UHM (modulus >450Gpa)
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• High-modulus, type HM (modulus between 350-450Gpa)

• Intermediate-modulus, type IM (modulus between 200-350Gpa)

• Low modulus and high-tensile, type HT (modulus < 100Gpa, tensile strength > 3.0Gpa)

• Super high-tensile, type SHT (tensile strength > 4.5Gpa)

2. Based on precursor fiber materials, carbon fibers are classified into;

• PAN-based carbon fibers

• Pitch-based carbon fibers

• Mesophase pitch-based carbon fibers

• Isotropic pitch-based carbon fibers

• Rayon-based carbon fibers

• Gas-phase-grown carbon fibers

3. Based on final heat treatment temperature, carbon fibers are classified into:

• Type-I, high-heat-treatment carbon fibers (HTT), where final heat treatment temperature
should be above 2000°C and can be associated with high-modulus type fiber.

• Type-II, intermediate-heat-treatment carbon fibers (IHT), where final heat treatment tem‐
perature should be around or above 1500 °C and can be associated with high-strength
type fiber.

• Type-III, low-heat-treatment carbon fibers, where final heat treatment temperatures not
greater than 1000 °C. These are low modulus and low strength materials [19].

2.4.2. Manufacture

In  Textile  Terms and Definitions,  carbon fiber  has  been described as  a  fiber  containing
at least 90% carbon obtained by the controlled pyrolysis of appropriate fibers.  The term
"graphite fiber" is used to describe fibers that have carbon in excess of 99%. Large vari‐
eties of fibers called precursors are used to produce carbon fibers of different morpholo‐
gies  and  different  specific  characteristics.  The  most  prevalent  precursors  are
polyacrylonitrile  (PAN),  cellulosic  fibers  (viscose  rayon,  cotton),  petroleum  or  coal  tar
pitch and certain phenolic fibers.

Carbon fibers are manufactured by the controlled pyrolysis of organic precursors in fibrous
form. It is a heat treatment of the precursor that removes the oxygen, nitrogen and hydrogen
to form carbon fibers. It is well established in carbon fiber literature that the mechanical
properties of the carbon fibers are improved by increasing the crystallinity and orientation,
and by reducing defects in the fiber. The best way to achieve this is to start with a highly
oriented precursor and then maintain the initial high orientation during the process of stabi‐
lization and carbonization through tension [18-19].
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2.4.2.1. Carbon fibers from polyacrylonitrile (PAN)

There are three successive stages in the conversion of PAN precursor into high-performance
carbon fibers. Oxidative stabilization: The polyacrylonitrile precursor is first stretched and
simultaneously oxidized in a temperature range of 200-300 °C. This treatment converts ther‐
moplastic PAN to a non-plastic cyclic or ladder compound. Carbonization: After oxidation,
the fibers are carbonized at about 1000 °C without tension in an inert atmosphere (normally
nitrogen) for a few hours. During this process the non-carbon elements are removed as vola‐
tiles to give carbon fibers with a yield of about 50% of the mass of the original PAN. Graphi‐
tization: Depending on the type of fiber required, the fibers are treated at temperatures
between 1500-3000 °C, which improves the ordering, and orientation of the crystallites in the
direction of the fiber axis.

2.4.2.2. Carbon fibers from rayon

a- The conversion of rayon fibers into carbon fibers is three phase process

Stabilization: Stabilization is an oxidative process that occurs through steps. In the first step,
between 25-150 °C, there is physical desorption of water. The next step is a dehydration of
the cellulosic unit between 150-240 °C. Finally, thermal cleavage of the cyclosidic linkage
and scission of ether bonds and some C-C bonds via free radical reaction (240-400 °C) and,
thereafter, aromatization takes place.

Carbonization: Between 400 and 700 °C, the carbonaceous residue is converted into a graph‐
ite-like layer.

Graphitization: Graphitization is carried out under strain at 700-2700 °C to obtain high mod‐
ulus fiber through longitudinal orientation of the planes.

b- The carbon fiber fabrication from pitch generally consists of the following four steps:

Pitch preparation: It is an adjustment in the molecular weight, viscosity, and crystal orienta‐
tion for spinning and further heating.

Spinning and drawing: In this stage, pitch is converted into filaments, with some alignment
in the crystallites to achieve the directional characteristics.

Stabilization: In this step, some kind of thermosetting to maintain the filament shape during
pyrolysis. The stabilization temperature is between 250 and 400 °C.

Carbonization: The carbonization temperature is between 1000-1500 °C.

2.4.2.3. Carbon fibers in meltblown nonwovens

Carbon fibers made from the spinning of molten pitches are of interest because of the high
carbon yield from the precursors and the relatively low cost of the starting materials. Stabili‐
zation in air and carbonization in nitrogen can follow the formation of melt-blown pitch
webs. Processes have been developed with isotropic pitches and with anisotropic meso‐
phase pitches. The mesophase pitch based and melt blown discontinuous carbon fibers have
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a peculiar structure. These fibers are characterized in that a large number of small domains,
each domain having an average equivalent diameter from 0.03 mm to 1mm and a nearly
unidirectional orientation of folded carbon layers, assemble to form a mosaic structure on
the cross-section of the carbon fibers. The folded carbon layers of each domain are oriented
at an angle to the direction of the folded carbon layers of the neighboring domains on the
boundary [20].

2.4.2.4. Carbon fibers from isotropic pitch

The isotropic pitch or pitch-like material,  i.e.,  molten polyvinyl chloride, is melt spun at
high strain rates to align the molecules parallel to the fiber axis.  The thermoplastic fiber
is then rapidly cooled and carefully oxidized at a low temperature (<100 °C). The oxida‐
tion process is  rather slow, to ensure stabilization of  the fiber by cross-linking and ren‐
dering it infusible. However, upon carbonization, relaxation of the molecules takes place,
producing fibers with no significant preferred orientation. This process is not industrial‐
ly  attractive due to  the lengthy oxidation step,  and only low-quality  carbon fibers  with
no  graphitization  are  produced.  These  are  used  as  fillers  with  various  plastics  as  ther‐
mal insulation materials [20].

2.4.2.5. Carbon fibers from anisotropic mesophase pitch

High molecular weight aromatic pitches, mainly anisotropic in nature, are referred to as
mesophase pitches. The pitch precursor is thermally treated above 350°C to convert it to
mesophase pitch, which contains both isotropic and anisotropic phases. Due to the shear
stress occurring during spinning, the mesophase molecules orient parallel to the fiber axis.
After spinning, the isotropic part of the pitch is made infusible by thermosetting in air at a
temperature below it's softening point. The fiber is then carbonized at temperatures up to
1000 °C. The main advantage of this process is that no tension is required during the stabili‐
zation or the graphitization, unlike the case of rayon or PANs precursors [21].

2.4.2.6. Structure

The characterization of carbon fiber microstructure has been mainly been performed by x-
ray scattering and electron microscopy techniques. In contrast to graphite, the structure of
carbon fiber lacks any three dimensional order. In PAN-based fibers, the linear chain struc‐
ture is transformed to a planar structure during oxidative stabilization and subsequent car‐
bonization. Basal planes oriented along the fiber axis are formed during the carbonization
stage. Wide-angle x-ray data suggests an increase in stack height and orientation of basal
planes with an increase in heat treatment temperature. A difference in structure between the
sheath and the core was noticed in a fully stabilized fiber. The skin has a high axial prefer‐
red orientation and thick crystallite stacking. However, the core shows a lower preferred
orientation and a lower crystallite height [22].
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2.4.2.7. Properties

In general, it is seen that the higher the tensile strength of the precursor the higher is the
tenacity of the carbon fiber. Tensile strength and modulus are significantly improved by car‐
bonization under strain when moderate stabilization is used. X-ray and electron diffraction
studies have shown that in high modulus type fibers, the crystallites are arranged around
the longitudinal axis of the fiber with layer planes highly oriented parallel to the axis. Over‐
all, the strength of a carbon fiber depends on the type of precursor, the processing condi‐
tions, heat treatment temperature and the presence of flaws and defects. With PAN based
carbon fibers, the strength increases up to a maximum of 1300 ºC and then gradually de‐
creases. The modulus has been shown to increase with increasing temperature. PAN based
fibers typically buckle on compression and form kink bands at the innermost surface of the
fiber. However, similar high modulus type pitch-based fibers deform by a shear mechanism
with kink bands formed at 45° to the fiber axis. Carbon fibers are very brittle. The layers in
the fibers are formed by strong covalent bonds. The sheet-like aggregations allow easy crack
propagation. On bending, the fiber fails at very low strain [23].

2.4.2.8. Applications

The two main applications of carbon fibers are in specialized technology, which includes
aerospace and nuclear engineering, and in general engineering and transportation, which
includes engineering components such as bearings, gears, cams, fan blades and automobile
bodies. Recently, some new applications of carbon fibers have been found. Others include:
decoration in automotive, marine, general aviation interiors, general entertainment and mu‐
sical instruments and after-market transportation products. Conductivity in electronics tech‐
nology provides additional new application [24].

The production of highly effective fibrous carbon adsorbents with low diameter, excluding
or minimizing external and intra-diffusion resistance to mass transfer, and therefore, exhib‐
iting high sorption rates is a challenging task. These carbon adsorbents can be converted in‐
to a wide variety of textile forms and nonwoven materials. Cheaper and newer versions of
carbon fibers are being produced from new raw materials. Newer applications are also be‐
ing developed for protective clothing (used in various chemical industries for work in ex‐
tremely hostile environments), electromagnetic shielding and various other novel
applications. The use of carbon fibers in Nonwovens is in a new possible application for
high temperature fire-retardant insulation (eg: furnace material) [25].

2.5. Aramid-definition

Aliphatic polyamides are macromolecules whose structural units are characteristically inter‐
linked by the amide linkage -NH-CO-. The nature of the structural unit constitutes a basis
for classification. Aliphatic polyamides with structural units derived predominantly from
aliphatic monomers are members of the generic class of nylons, whereas aromatic polya‐
mides in which at least 85% of the amide linkages are directly adjacent to aromatic struc‐
tures have been designated aramids. The U.S. Federal Trade Commission defines nylon
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fibers as ‘‘a manufactured fiber in which the fiber forming substance is a long chain synthet‐
ic polyamide in which less than 85% of the amide linkages (-CO-NH-) are attached directly
to two aliphatic groups.’’ Polyamides that contain recurring amide groups as integral parts
of the polymer backbone have been classified as condensation polymers regardless of the
principal mechanisms entailed in the polymerization process. Though many reactions suita‐
ble for polyamide formation are known, commercially important nylons are obtained by
processes related to either of two basic approaches: one entails the polycondensation of di‐
functional monomers utilizing either amino acids or stoichiometric pairs of dicarboxylic
acids and diamines, and the other entails the ring-opening polymerization of lactams. The
polyamides formed from diacids and diamines are generally described to be of the AABB
format, whereas those derived from either amino acids or lactams are of the AB format.

The structure of polyamide fibers is defined by both chemical and physical parameters. The
chemical parameters are related mainly to the constitution of the polyamide molecule and
are concerned primarily with its monomeric units, end-groups, and molecular weight. The
physical parameters are related essentially to chain conformation, orientation of both poly‐
mer molecule segments and aggregates, and to crystallinity [26]. This characteristic for sin‐
gle-chain aliphatic polyamides is determined by the structure of the monomeric units and
the nature of end groups of the polymer molecules. The most important structural parame‐
ter of the noncrystalline (amorphous) phase is the glass transition temperature (Tg) since it
has a considerable effect on both processing and properties of the polyamide fibers. It relates
to a type of a glass–rubber transition and is defined as the temperature, or temperature
range, at which mobility of chain segments or structural units commences. Thus it is a func‐
tion of the chemical structure; in case of the linear aliphatic polyamides, it is a function of
the number of CH2 units (mean spacing) between the amide groups. As the number of CH2

unit’s increases, Tg decreases. Although Tg is further affected by the nature of the crystalline
phase, orientation, and molecular weight, it is associated only with what may be considered
the amorphous phase.

Any process affecting this phase exerts a corresponding effect on the glass transition tem‐
perature. This is particularly evident in its response to the concentration of water absorbed
in polyamides. An increase in water content results in a steady decrease of Tg toward a limit‐
ing value. This phenomenon may be explained by a mechanism that entails successive re‐
placement of intercatenary hydrogen bonds in the amorphous phase with water. It may
involve a sorption mechanism, according to which 3 mol of water interact with two neigh‐
boring amide groups [27].

The properties of aromatic polyamides differ significantly from those of their aliphatic coun‐
terparts. This led the U.S. Federal Trade Commission to adopt the term ‘‘aramid’’ to desig‐
nate fibers of the aromatic polyamide type in which at least 85% of the amide linkages are
attached directly to two aromatic rings.

The search for materials with very good thermal properties was the original reason for re‐
search into aromatic polyamides. Bond dissociation energies of C-C and C-N bonds in aro‐
matic polyamides are ~20% higher than those in aliphatic polyamides. This is the reason
why the decomposition temperature of poly(m-phenylene isophthalamide) MPDI exceeds
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450 ºC. Conjugation between the amide group and the aromatic ring in poly(p-phenylene
terephthalamide) “PPTA” increases chain rigidity as well as the decomposition temperature,
which exceeds 550 ºC.

Obviously, hydrogen bonding and chain rigidity of these polymers translates to very high
glass transition temperatures. Using low-molecular-weight polymers, Aharoni [19] meas‐
ured glass transition temperatures of 272 ºC for MPDI and over 295 ºC for PPTA (which in
this case had low crystallinity). Others have reported values as high as 4928 ºC. In most cas‐
es the measurement of Tg is difficult because PPTA is essentially 100% crystalline. As one
would expect, these values are not strongly dependent on the molecular weight of the poly‐
mer above a DP of ~10 [22].

The same structural characteristics that are responsible for the excellent thermal properties
of these materials are responsible for their limited solubility as well as good chemical resist‐
ance. PPTA is soluble only in strong acids like H2SO4, HF, and methanesulfonic acid. Prepa‐
ration of this polymer via solution polymerization in amide solvents is accompanied by
polymer precipitation. As expected, based on its structure, MPDI is easier to solubilize then
PPTA. It is soluble in neat amide solvents like N-methyl-2-pyrrolidone (NMP) and dimethy‐
lacetamide (DMAc), but adding salts like CaCl2 or LiCl significantly enhances its solubility.
The significant rigidity of the PPTA chain (as discussed above) leads to the formation of ani‐
sotropic solutions when the solvent is good enough to reach critical minimum solids concen‐
tration. The implications of this are discussed in greater detail later in this chapter. It is well
known that chemical properties differ significantly between crystalline and noncrystalline
materials of the same composition. In general, aramids have very good chemical resistance.
Obviously, the amide bond is subject to a hydrolytic attack by acids and bases. Exposure to
very strong oxidizing agents results in a significant strength loss of these fibers. In addition
to crystallinity, structure consolidation affects the rate of degradation of these materials. The
hydrophilicity of the amide group leads to a significant absorption of water by all aramids.
While the chemistry is the driving factor, fiber structure also plays a very important role; for
example, Kevlar 29 absorbs ~7% water, Kevlar 49~4%, and Kevlar 149 only 1%. Fukuda ex‐
plored the relationship between fiber crystallinity and equilibrium moisture in great detail.
Because of their aromatic character, aramids absorb UV light, which results in an oxidative
color change. Substantial exposure can lead to the loss of yarn tensile properties. UV absorp‐
tion by p-aramids is more pronounced than with m-aramids. In this case a self-screening
phenomenon is observed, which makes thin structures more susceptible to degradation than
thick ones. Very frequently p-aramids are covered with another material in the final applica‐
tion to protect them. The high degree of aromaticity of these materials also provides signifi‐
cant flame resistance. All commercial aramids have a limited oxygen index in the range of
28-32%, which compares with ~20% for aliphatic polyamides.

Typical properties of commercial aramid fibers are while yarns of m-aramids have tensile
properties that are no greater than those of aliphatic polyamides, they do retain useful me‐
chanical properties at significantly higher temperatures. The high glass transition tempera‐
ture leads to low (less than 1%) shrinkage at temperatures below 250 ºC. In general,
mechanical properties of m-aramid fibers are developed on drawing. This process produces
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fibers with a high degree of morphological homogeneity, which leads to very good fatigue
properties. The mechanical properties of p-aramid fibers have been the subject of much
study. This is because these fibers were the first examples of organic materials with a very
high level of both strength and stiffness. These materials are practical confirmation that
nearly perfect orientation and full chain extension are required to achieve mechanical prop‐
erties approaching those predicted for chemical bonds. In general, the mechanical properties
reflect a significant anisotropy of these fibers-covalent bonds in the direction of the fiber axis
with hydrogen bonding and van der Waals forces in the lateral direction [26].

Aramid-based reinforcement has been viewed as a more specialty product for applications
requiring high modulus and where the potential for electrical conductivity would preclude
the use of carbon; for example, aramid sheet is used for all tunnel repairs. Product forms in‐
clude dry fabrics or unidirectional sheets as well as pre-cured strips or bars. Fabrics or
sheets are applied to a concrete surface that has been smoothed (by grinding or blasting)
and wetted with a resin (usually epoxy). The composite materials used for concrete infra‐
structure repair that was initiated in the mid 1980s. After air pockets are removed using roll‐
ers or flat, flexible squeegees, a second resin coat might be applied. Reinforcement of
concrete structures is important in earthquake prone areas, although steel plate is the pri‐
mary material used to reinforce and repair concrete structures, higher priced fiber-based
sheet structures offer advantages for small sites where ease of handling and corrosion resist‐
ance are important. The high strength, modulus, and damage tolerance of aramid-reinforced
sheets makes the fiber especially suitable for protecting structures prone to seismic activity.
The use of aramid sheet also simplifies the application process. Sheets are light in weight
and can be easily handled without heavy machinery and can be applied in confined work‐
ing spaces. Sheets are also flexible, so surface smoothing and corner rounding of columns
are less critical than for carbon fiber sheets [28].

3. All process description

FRP involves two distinct processes, the first is the process whereby the fibrous material is
manufactured and formed, and the second is the process whereby fibrous materials are
bonded with the matrix during the molding process.

3.1. Fibre process

3.1.1. The manufacture of fibre fabric

Reinforcing Fibre is manufactured in both two dimensional and three dimensional orienta‐
tions

1. Two Dimensional Fibre Reinforced Polymer are characterized by a laminated structure
in which the fibres are only aligned along the plane in x-direction and y-direction of the
material. This means that no fibres are aligned in the through thickness or the z-direc‐
tion, this lack of alignment in the through thickness can create a disadvantage in cost
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and processing. Costs and labour increase because conventional processing techniques
used to fabricate composites, such as wet hand lay-up, autoclave and resin transfer
molding, require a high amount of skilled labour to cut, stack and consolidate into a
preformed component.

2. Three-dimensional Fibre Reinforced Polymer composites are materials with three di‐
mensional fibre structures that incorporate fibres in the x-direction, y-direction and z-
direction. The development of three-dimensional orientations arose from industry's
need to reduce fabrication costs, to increase through-thickness mechanical properties,
and to improve impact damage tolerance; all were problems associated with two di‐
mensional fibre reinforced polymers [28].

3.1.2. The manufacture of fibre preforms

Fibre preforms are how the fibres are manufactured before being bonded to the matrix. Fi‐
bre preforms are often manufactured in sheets, continuous mats, or as continuous filaments
for spray applications. The four major ways to manufacture the fibre preform is though the
textile processing techniques of Weaving, knitting, braiding and stitching.

1. Weaving can be done in a conventional manner to produce two-dimensional fibres as
well in a multilayer weaving that can create three-dimensional fibres. However, multi‐
layer weaving is required to have multiple layers of warp yarns to create fibres in the z-
direction creating a few disadvantages in manufacturing, namely the time to set up all
the warp yarns on the loom. Therefore most multilayer weaving is currently used to
produce relatively narrow width products or high value products where the cost of the
preform production is acceptable. Another Fibre-reinforced plastic 3D one of the main
problems facing the use of multilayer woven fabrics is the difficulty in producing a fab‐
ric that contains fibres oriented with angles other than 0º and 90º to each other respec‐
tively.

2. The second major way of manufacturing fibre preforms is braiding. Braiding is suited to
the manufacture of narrow width flat or tubular fabric and is not as capable as weaving
in the production of large volumes of wide fabrics. Braiding is done over top of man‐
drels that vary in cross-sectional shape or dimension along their length. Braiding is lim‐
ited to objects about a brick in size. Unlike the standard weaving process, braiding can
produce fabric that contains fibres at 45 degrees angles to one another. Braiding three-
dimensional fibres can be done using four steps, two-step or Multilayer Interlock Braid‐
ing. Four step or row and column braiding utilizes a flat bed containing rows and
columns of yarn carriers that form the shape of the desired preform. Additional carriers
are added to the outside of the array, the precise location and quantity of which de‐
pends upon the exact preform shape and structure required. There are four separate se‐
quences of row and column motion, which act to interlock the yarns and produce the
braided preform. The yarns are mechanically forced into the structure between each
step to consolidate the structure in a similar process to the use of a reed in weav‐
ing.Two-step braiding is unlike the four step process because the two-step includes a
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large number of yarns fixed in the axial direction and a fewer number of braiding yarns.
The process consists of two steps in which the braiding carriers move completely
through the structure between the axial carriers. This relatively simple sequence of mo‐
tions is capable of forming performs of essentially any shape, including circular and
hollow shapes. Unlike the four steps process the two steps process does not require me‐
chanical compaction the motions involved in the process allows the braid to be pulled
tight by yarn tension alone. The last type of braiding is multi-layer interlocking braid‐
ing that consists of a number of standard circular braiders being joined together to form
a cylindrical braiding frame. This frame has a number of parallel braiding tracks
around the circumference of the cylinder but the mechanism allows the transfer of yarn
carriers between adjacent tracks forming a multilayer braided fabric with yarns inter‐
locking to adjacent layers.

The multilayer interlock braid differs from both the four step and two-step braids in that the
interlocking yarns are primarily in the plane of the structure and thus do not significantly
reduce the in-plane properties of the perform. The four step and two step processes produce
a greater degree of interlinking as the braiding yarns travel through the thickness of the pre‐
form, but therefore contribute less to the in-plane performance of the preform. A disadvant‐
age of the multilayer interlock equipment is that due to the conventional sinusoidal
movement of the yarn carriers to form the preform, the equipment is not able to have the
density of yarn carriers that is possible with the two step and four step machines.

3. Knitting fibre preforms can be done with the traditional methods of Warp and [Weft]
Knitting, and the fabric produced is often regarded by many as two-dimensional fabric,
but machines with two or more needle beds are capable of producing multilayer fabrics
with yams that traverse between the layers. Developments in electronic controls for
needle selection and knit loop transfer and in the sophisticated mechanisms that allow
specific areas of the fabric to be held and their movement controlled. This has allowed
the fabric to form itself into the required three-dimensional perform shape with a mini‐
mum of material wastage.

4. Stitching is arguably the simplest of the four main textile manufacturing techniques and
one that can be performed with the smallest investment in specialized machinery. Basi‐
cally the stitching process consists of inserting a needle, carrying the stitch thread,
through a stack of fabric layers to form a 3D structure. The advantages of stitching are
that it is possible to stitch both dry and prepreg fabric, although the tackiness of pre‐
pare makes the process difficult and generally creates more damage within the prepreg
material than in the dry fabric. Stitching also utilizes the standard two-dimensional fab‐
rics that are commonly in use within the composite industry therefore there is a sense of
familiarity concerning the material systems. The use of standard fabric also allows a
greater degree of flexibility in the fabric lay-up of the component than is possible with
the other textile processes, which have restrictions on the fibre orientations that can be
produced.
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3.1.3. Molding processes

There are two distinct categories of molding processes using FRP plastics; this includes com‐
posite molding and wet molding. Composite molding uses Prepreg FRP, meaning the plas‐
tics are fibre reinforced before being put through further molding processes. Sheets of
Prepreg FRP are heated or compressed in different ways to create geometric shapes. Wet
molding combines fibre reinforcement and the matrix or resist during the molding process.
The different forms of composite and wet molding, are listed below.

3.2. Composite molding

3.2.1. Bladder molding

Individual sheets of prepreg material are laid -up and placed in a female-style mould along
with a balloon-like bladder. The mould is closed and placed in a heated press. Finally, the
bladder is pressurized forcing the layers of material against the mould walls. The part is
cured and removed from the hot mould. Bladder molding is a closed molding process with
a relatively short cure cycle between 15 and 60 minutes making it ideal for making complex
hollow geometric shapes at competitive costs.

3.2.2. Compression molding

A "preform" or "charge", of SMC, BMC or sometimes prepreg fabric, is placed into mould
cavity. The mould is closed and the material is compacted & cured inside by pressure and
heat. Compression molding offers excellent detailing for geometric shapes ranging from pat‐
tern and relief detailing to complex curves and creative forms, to precision engineering all
within a maximum curing time of 20 minutes.

3.2.3. Autoclave − Vacuum bag

Individual sheets of prepreg material are laid-up and placed in an open mold. The material
is covered with release film, bleeder/breather material and a vacuum bag. A vacuum is
pulled on part and the entire mould is placed into an autoclave (heated pressure vessel). The
part is cured with a continuous vacuum to extract entrapped gasses from laminate. This is a
very common process in the aerospace industry because it affords precise control over the
molding process due to a long slow cure cycle that is anywhere from one to two hours. This
precise control creates the exact laminate geometric forms needed to ensure strength and
safety in the aerospace industry, but it is also slow and lab our intensive, meaning costs of‐
ten confine it to the aerospace industry.

3.2.4. Mandrel wrapping

Sheets of prepreg material are wrapped around a steel or aluminum mandrel. The prepreg
material is compacted by nylon or polypropylene cello tape. Parts are typically batch cured
by hanging in an oven. After cure the cello and mandrel are removed leaving a hollow car‐
bon tube. This process creates strong and robust hollow carbon tubes.
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3.2.5. Wet layup

Fibre reinforcing fabric is placed in an open mould and then saturated with a wet (resin) by
pouring it over the fabric and working it into the fabric and mould. The mould is then left so
that the resin will cure, usually at room temperature, though heat is sometimes used to en‐
sure a proper curing process. Glass fibres are most commonly used for this process, the re‐
sults are widely known as fibreglass, and are used to make common products like skis,
canoes, kayaks and surf boards.

3.2.6. Chopper gun

Continuous strand of fibreglass are pushed through a hand-held gun that both chops the
strands and combines them with a catalyzed resin such as polyester. The impregnated chop‐
ped glass is shot onto the mould surface in whatever thickness the design and human opera‐
tor think is appropriate. This process is good for large production runs at economical cost,
but produces geometric shapes with less strength than other molding processes and has
poor dimensional tolerance.

3.2.7. Filament winding

Machines  pull  fibre  bundles  through  a  wet  bath  of  resin  and  wound  over  a  rotating
steel  mandrel in specific orientations Parts are cured either room temperature or elevat‐
ed temperatures. Mandrel is extracted, leaving a final geometric shape but can be left in
some cases.

3.2.8. Pultrusion

Fibre bundles and slit fabrics are pulled through a wet bath of resin and formed into the
rough part shape. Saturated material is extruded from a heated closed die curing while be‐
ing continuously pulled through die. Some of the end products of the pultrusion process are
structural shapes, i.e. beam, angle, channel and flat sheet. These materials can be used to cre‐
ate all sorts of fibreglass structures such as ladders, platforms, handrail systems tank, pipe,
and pump supports.

3.3. Resin infusion

Fabrics are placed into a mould which wet resin is then injected into. Resin is typically pres‐
surized and forced into a cavity which is under vacuum in the RTM (Resin Transfer Mold‐
ing) process. Resin is entirely pulled into cavity under vacuum in the VARTM (Vacuum
Assisted Resin Transfer Molding) process. This molding process allows precise tolerances
and detailed shaping but can sometimes fail to fully saturate the fabric leading to weak
spots in the final shape.
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3.3.1. Advantages and limitations

FRP  allows  the  alignment  of  the  glass  fibres  of  thermoplastics  to  suit  specific  design
programs.  Specifying  the  orientation  of  reinforcing  fibres  can  increase  the  strength  and
resistance  to  deformation  of  the  polymer.  Glass  reinforced  polymers  are  strongest  and
most resistive to deforming forces when the polymers fibres are parallel to the force be‐
ing  exerted,  and  are  weakest  when  the  fibres  are  perpendicular.  Thus  this  ability  is  at
once  both an advantage  and a  limitation depending on the  context  of  use.  Weak spots
of  perpendicular  fibres  can  be  used  for  natural  hinges  and  connections,  but  can  also
lead to material failure when production processes fail  to properly orient the fibres par‐
allel  to  expected forces.  When forces  are  exerted  perpendicular  to  the  orientation  of  fi‐
bres the strength and elasticity of the polymer is less than the matrix alone. In cast resin
components made of glass reinforced polymers such as UP and EP, the orientation of fi‐
bres can be oriented in two-dimensional and three-dimensional weaves. This means that
when  forces  are  possibly  perpendicular  to  one  orientation,  they  are  parallel  to  another
orientation; this eliminates the potential for weak spots in the polymer.

3.3.2. Failure modes

Structural failure can occur in FRP materials when:

• Tensile forces stretch the matrix more than the fibres, causing the material to shear at the
interface between matrix and fibres.

• Tensile forces near the end of the fibres exceed the tolerances of the matrix, separating the
fibres from the matrix.

• Tensile forces can also exceed the tolerances of the fibres causing the fibres themselves to
fracture leading to material failure [29].

3.3.3. Material requirements

The matrix must also meet certain requirements in order to first be suitable for the FRP proc‐
ess and ensure a successful reinforcement of it. The matrix must be able to properly saturate,
and bond with the fibres within a suitable curing period. The matrix should preferably bond
chemically with the fibre reinforcement for maximum adhesion. The matrix must also com‐
pletely envelope the fibres to protect them from cuts and notches that would reduce their
strength, and to transfer forces to the fibres. The fibres must also be kept separate from each
other so that if failure occurs it is localized as much as possible, and if failure occurs the ma‐
trix must also debond from the fibre for similar reasons. Finally the matrix should be of a
plastic that remains chemically and physically stable during and after reinforcement and
molding processes. To be suitable for reinforcement material fibre additives must increase
the tensile strength and modulus of elasticity of the matrix and meet the following condi‐
tions; fibres must exceed critical fibre content; the strength and rigidity of fibres itself must
exceed the strength and rigidity of the matrix alone; and there must be optimum bonding
between fibres and matrix.
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3.4. Glass fibre material

FRPs use textile glass fibres; textile fibres are different from other forms of glass fibres used
for insulating applications. Textile glass fibres begin as varying combinations of SiO2, Al2O3,
B2O3, CaO, or MgO in powder form. These mixtures are then heated through a direct melt
process to temperatures around 1300 degrees Celsius, after which dies are used to extrude
filaments of glass fibre in diameter ranging from 9 to 17 μm. These filaments are then
wound into larger threads and spun onto bobbins for transportation and further processing.
Glass fibre is by far the most popular means to reinforce plastic and thus enjoys a wealth of
production processes, some of which are applicable to aramid and carbon fibres as well ow‐
ing to their shared fibrous qualities. Roving is a process where filaments are spun into larger
diameter threads. These threads are then commonly used for woven reinforcing glass fabrics
and mats, and in spray applications. Fibre fabrics are web-form fabric reinforcing material
that has both warped and weft directions. Fibre mats are web-form non-woven mats of glass
fibres. Mats are manufactured in cut dimensions with chopped fibres, or in continuous mats
using continuous fibres. Chopped fibre glass is used in processes where lengths of glass
threads are cut between 3 and 26 mm, threads are then used in plastics most commonly in‐
tended for moulding processes. Glass fibre short strands are short 0.2–0.3 mm strands of
glass fibres that are used to reinforce thermoplastics most commonly for injection moulding.

3.5. Aramid fibre material process

Aramid fibres are most commonly known Kevlar, Nomex and Technora. Aramids are gener‐
ally prepared by the reaction between an amine group and a carboxylic acid halide group
(aramid); commonly this occurs when an aromatic polyamide is spun from a liquid concen‐
tration of sulfuric acid into a crystallized fibre. Fibres are then spun into larger threads in
order to weave into large ropes or woven fabrics (Aramid) [29]. Aramid fibres are manufac‐
tured with varying grades to base on varying qualities for strength and rigidity, so that the
material can be somewhat tailored to specific design needs concerns, such as cutting the
tough material during manufacture.

3.6. FRP, applications

Fibre-reinforced plastics are best suited for any design program that demands weight sav‐
ings, precision engineering, finite tolerances, and the simplification of parts in both produc‐
tion and operation. A molded polymer artifact is cheaper, faster, and easier to manufacture
than cast aluminum or steel artifact, and maintains similar and sometimes better tolerances
and material strengths. The Mitsubishi Lancer Evolution IV also used FRP for its spoiler ma‐
terial [30-32].

3.6.1. Carbon fibre reinforced polymers

Rudder of commercial airplane

• Advantages over a traditional rudder made from sheet aluminum are:
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• 25% reduction in weight

• 95% reduction in components by combining parts and forms into simpler molded parts.

• Overall reduction in production and operational costs, economy of parts results in lower
production costs and the weight savings create fuel savings that lower the operational
costs of flying the airplane.

3.6.2. Structural applications of FRP

FRP can be applied to strengthen the beams, columns and slabs in buildings. It is possible to
increase strength of these structural members even after these have been severely damaged
due to loading conditions. For strengthening beams, two techniques are adopted. First one is
to paste FRP plates to the bottom (generally the tension face) of a beam. This increases the
strength of beam, deflection capacity of beam and stiffness (load required to make unit de‐
flection). Alternatively, FRP strips can be pasted in 'U' shape around the sides and bottom of
a beam, resulting in higher shear resistance. Columns in building can be wrapped with FRP
for achieving higher strength. This is called wrapping of columns. The technique works by
restraining the lateral expansion of the column. Slabs may be strengthened by pasting FRP
strips at their bottom (tension face). This will result in better performance, since the tensile
resistance of slabs is supplemented by the tensile strength of FRP. In the case of beams and
slabs, the effectiveness of FRP strengthening depends on the performance of the resin chos‐
en for bonding [32].

3.6.3. Glass fibre reinforced polymers

Engine intake manifolds are made from glass fibre reinforced PA 66.

• Advantages this has over cast aluminum manifolds are:

• Up to a 60% reduction in weight

• Improved surface quality and aerodynamics

• Reduction in components by combining parts and forms into simpler molded shapes. Au‐
tomotive gas and clutch pedals made from glass fibre reinforced PA 66 (DWP 12-13)

• Advantages over stamped aluminum are:

• Pedals can be molded as single units combining both pedals and mechanical linkages
simplifying the production and operation of the design.

• Fibres can be oriented to reinforce against specific stresses, increasing the durability and
safety.

3.6.4. Design considerations

FRP is used in designs that require a measure of strength or modulus of elasticity those non-
reinforced plastics and other material choices are either ill suited for mechanically or eco‐
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nomically. This means that the primary design consideration for using FRP is to ensure that
the material is used economically and in a manner that takes advantage of its structural en‐
hancements specifically. This is however not always the case, the orientation of fibres also
creates a material weakness perpendicular to the fibres. Thus the use of fibre reinforcement
and their orientation affects the strength, rigidity, and elasticity of a final form and hence the
operation of the final product itself. Orienting the direction of fibres either, unidirectional, 2-
dimensionally, or 3-dimensionally during production affects the degree of strength, flexibili‐
ty, and elasticity of the final product. Fibres oriented in the direction of forces display
greater resistance to distortion from these forces and vice versa, thus areas of a product that
must withstand forces will be reinforced with fibres in the same direction, and areas that re‐
quire flexibility, such as natural hinges, will use fibres in a perpendicular direction to forces.
Using more dimensions avoids this either or scenario and creates objects that seek to avoid
any specific weak points due to the unidirectional orientation of fibres. The properties of
strength, flexibility and elasticity can also be magnified or diminished through the geomet‐
ric shape and design of the final product. These include such design consideration such as
ensuring proper wall thickness and creating multifunctional geometric shapes that can be
molding as single pieces, creating shapes that have more material and structural integrity by
reducing joints, connections, and hardware [30].

3.6.5. Disposal and recycling concerns

As a subset of plastic FR plastics are liable to a number of the issues and concerns in plastic
waste disposal and recycling. Plastics pose a particular challenge in recycling processes be‐
cause they are derived from polymers and monomers that often cannot be separated and re‐
turned to their virgin states, for this reason not all plastics can be recycled for re-use, in fact
some estimates claim only 20% to 30% of plastics can be material recycled at all. Fibre rein‐
forced plastics and their matrices share these disposal and environmental concerns. In addi‐
tion to these concerns, the fact that the fibres themselves are difficult to remove from the
matrix and preserve for re-use means FRP amplify these challenges. FRP are inherently diffi‐
cult to separate into base a material that is into fibre and matrix, and the Fibre-reinforced
plastic matrix into separate usable plastic, polymers, and monomers. These are all concerns
for environmentally informed design today, but plastics often offer savings in energy and
economic savings in comparison to other materials, also with the advent of new more envi‐
ronmentally friendly matrices such as bioplastics and UV-degradable plastics, FRP will simi‐
larly gain environmental sensitivity [29].

4. Mechanical properties measurements

4.1. Strength

Strength is a mechanical property that you should be able to relate to, but you might not
know exactly what we mean by the word "strong" when are talking about polymers. First,
there is more than one kind of strength. There is tensile strength. A polymer has tensile
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strength if it is strong when one pulls on it. Tensile strength is important for a material that
is going to be stretched or under tension. Fibers need good tensile strength.

Then there is compressional strength. A polymer sample has compressional strength if it is
strong when one tries to compress it. Concrete is an example of a material with good com‐
pressional strength. Anything that has to support weight from underneath has to have good
compressional strength [32]. There is also flexural strength. A polymer sample has flexural
strength if it is strong when one tries to bend it.

There are other kinds of strength we could talk about. A sample torsional strength if it is
strong when one tries to twist it. Then there is impact strength. A sample has impact
strength if it is strong when one hits it sharply and suddenly, as with a hammer.

To measure the tensile strength of a polymer sample, we take the sample and we try to
stretch. We usually stretch it with a machine for these studies. This machine simply has
clamps on each end of the sample, then, when you turn it on it stretches the sample. While it
is stretching the sample, it measures the amount of force (F) that it is exerting. When we
know the force being exerted on the sample, we then divide that number by the cross-sec‐
tional area (A) of our sample. The answer is the stress that our sample is experiencing. Then,
using our machine, we continue to increase the amount of force, and stress naturally, on the
sample until it breaks. The stress needed to break the sample is the tensile strength of the
material. Likewise, one can imagine similar tests for compressional or flexural strength. In
all cases, the strength is the stress needed to break the sample. Since tensile stress is the force
placed on the sample divided by the cross-sectional area of the sample, tensile stress, and
tensile strength as well, are both measured in units of force divided by units of area, usually
N/cm2. Stress and strength can also be measured in megapascals (MPa) or gigapascals
(GPa). It is easy to convert between the different units, because 1 MPa = 100 N/cm2, 1 GPa =
100,000 N/cm2, and of course 1 GPa = 1,000 MPa. Other times, stress and strength are meas‐
ured in the old English units of pounds per square inch, or psi. If you ever have to convert
psi to N/cm2, the conversion factor is 1 N/cm2 = 1.45 psi.

4.2. Elongation

But there is more to understanding a polymer's mechanical properties than merely knowing
how strong it is. All strength tells us is how much stress is needed to break something. It
doesn't tell us anything about what happens to our sample while we're trying to break it.
That's where it pays to study the elongation behavior of a polymer sample. Elongation is a
type of deformation. Deformation is simply a change in shape that anything undergoes un‐
der stress. When we're talking about tensile stress, the sample deforms by stretching, be‐
coming longer. We call this elongation, of course. Usually we talk about percent elongation,
which is just the length the polymer sample is after it is stretched (L), divided by the original
length of the sample (L0), and then multiplied by 100.

There are a number of things we measure related to elongation. Which is most important
depends on the type of material one is studying. Two important things we measure are ulti‐
mate elongation and elastic elongation. Ultimate elongation is important for any kind of ma‐
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terial. It is nothing more than the amount you can stretch the sample before it breaks. Elastic
elongation is the percent elongation you can reach without permanently deforming your
sample. That is, how much can you stretch it, and still have the sample snap back to its orig‐
inal length once you release the stress on it. This is important if your material is an elasto‐
mer. Elastomers have to be able to stretch a long distance and still bounce back. Most of
them can stretch from 500 to 1000 % elongation and return to their original lengths without
any trouble [32].

4.3. Modulus

In the elastomers are need show the high elastic elongation. But for some other types of
materials,  like  plastics,  it  usually  they  not  stretch  or  deform  so  easily.  If  we  want  to
know how well  a  material  resists  deformation,  we  measure  something  called  modulus.
To measure tensile  modulus,  we do the same thing as we did to measure strength and
ultimate elongation. This time we measure the stress we're exerting on the material,  just
like  we  did  when  we  were  measuring  tensile  strength.  First,  is  slowly  increasing  the
amount  of  stress,  and  then  we  measure  the  elongation  the  sample  undergoes  at  each
stress  level.  We  keep  doing  this  until  the  sample  breaks.  This  plot  is  called  a  stress-
strain curve.  (Strain is  any kind of  deformation,  including elongation.  Elongation is  the
word  we  use  if  we're  talking  specifically  about  tensile  strain.)  The  height  of  the  curve
when the sample breaks is the tensile strength, of course, and the tensile modulus is the
slope  of  this  plot.  If  the  slope  is  steep,  the  sample  has  a  high  tensile  modulus,  which
means  it  resists  deformation.  If  the  slope  is  gentle,  then  the  sample  has  a  low  tensile
modulus,  which  means  it  is  easily  deformed.  There  are  times  when  the  stress-strain
curve is  not  nice  and straight,  like  we saw above.  The slope isn't  constant  as  stress  in‐
creases.  The  slope,  that  is  the  modulus,  is  changing  with  stress.  In  a  case  like  this  we
usually, the initial slope change as the modulus change [32].

In general, fibers have the highest tensile moduli, and elastomers have the lowest, and plas‐
tics have tensile moduli somewhere in between fibers and elastomers.

Modulus is measured by calculating stress and dividing by elongation, and would be meas‐
ured in units of stress divided by units of elongation. But since elongation is dimensionless,
it has no units by which we can divide. So modulus is expressed in the same units as
strength, such as N/cm2.

Intrinsic  deformation  is  defined  as  the  materials’  true  stress-strain  response  during  ho‐
mogeneous deformation.  Since generally strain localization phenomena occur (like neck‐
ing,  shear  banding,  crazing  and  cracking),  the  measurement  of  the  intrinsic  materials’
response  requires  a  special  experimental  set-up,  such  as  a  video-controlled  tensile  or  a
uniaxial  compression test.  Although details  of  the  intrinsic  response differ  per  material,
a general representation of the intrinsic deformation of polymers can be recognized [33],
see Figure 1.
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Figure 1. Schematic representation of the intrinsic deformation behavior of a polymer material [33].

4.4. Toughness

That plot of stress versus strain can give us another very valuable piece of information. If
one measures the area underneath the stress-strain curve (figure 2), colored red in the graph
below, the number you get is something we call toughness.

Figure 2. Plot of stress in function of strain.

Toughness is really a measure of the energy a sample can absorb before it breaks. Think
about it, if the height of the triangle in the plot is strength, and the base of the triangle is
strain, then the area is proportional to strength strain. Since strength is proportional to the
force needed to break the sample, and strain is measured in units of distance (the distance
the sample is stretched), then strength strain is proportional is force times distance, and as
we remember from physics, force times distance is energy.
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From a physics point of view the strength, is that strength tells how much force is needed to
break a sample, and toughness tells how much energy is needed to break a sample. But that
does not really tell you what the practical differences are. What is important knows that just
because a material is strong, it isn't necessarily going to be tough as well [34-35].

Figure 3. Plot of stress in function of strain, strong and tough concepts.

The gray plot is the stress-strain curve for a sample that is strong, but not tough (figure 3).
As you can see, it takes a lot of force to break this sample. Likewise, this sample ca not
stretch very much before it breaks. A material like this which is strong, but can not deform
very much before it breaks is called brittle [36].

The gray plot is a stress-strain curve for a sample that is both strong and tough. This materi‐
al is not as strong as the sample in the gray plot, but the area underneath its curve is a lot
larger than the area under the gray sample's curve. So it can absorb a lot more energy than
the gray-black sample plot.

The gray-black sample elongates a lot more before breaking than the gray sample does. You
see, deformation allows a sample to dissipate energy. If a sample can't deform, the energy
won't be dissipated, and will cause the sample to break [37].

In real life,  we usually want materials to be tough and strong. Ideally, it  would be nice
to  have a  material  that  would not  bend or  break,  but  this  is  the  real  world.  The gray-
black sample has a much higher modulus than the red sample. While it is good for ma‐
terials  in  a  lot  of  applications  to  have  high  moduli  and  resist  deformation,  in  the  real
world it  is  a  lot  better  for  a  material  to  bend than to  break,  and if  bending,  stretching
or deforming in some other way prevents  the material  from breaking,  all  the better.  So
when  we  design  new  polymers,  or  new  composites,  we  often  sacrifice  a  little  bit  of
strength in order to make the material tougher.
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4.5. Mechanical properties
of real polymers

The rigid plastics such as polystyrene, poly(methyl methacrylate or polycarbonate can with‐
stand a good deal of stress, but they won't withstand much elongation before breaking.
There is not much area under the stress-strain curve at all. So we say that materials like this
are strong, but not very tough. Also, the slope of the plot is very steep, which means that it
takes a lot of force to deform a rigid plastic. So it is easy to see that rigid plastics have high
moduli. In short, rigid plastics tend to be strong, at resist deformation, but they tend not to
be very tough, that is, they are brittle.

Flexible plastics like polyethylene and polypropylene are different from rigid plastics in that
they don not resist deformation as well, but they tend not to break. The ability to deform is
what keeps them from breaking. Initial modulus is high, that is it will resist deformation for
awhile, but if enough stress is put on a flexible plastic, it will eventually deform. If you try to
stretch it a plastic bag, it will be very hard at first, but once you have stretched it far enough
it will give way and stretch easily. The bottom line is that flexible plastics may not be as
strong as rigid ones, but they are a lot tougher.

It is possible to alter the stress-strain behavior of a plastic with additives called plasticizers.
A plasticizer is a small molecule that makes plastics more flexible. For example, without
plasticizers, poly(vinyl chloride), or PVC for short, is a rigid plastic. Rigid unplasticized
PVC is used for water pipes. But with plasticizers, PVC can be made flexible enough to use
to make things like hoses.

Fibers like KevlarTM, carbon fiber and nylon tend to have stress-strain curves like the aqua-
colored plot in the graph above. Like the rigid plastics, they are more strong than tough, and
do not deform very much under tensile stress. But when strength is what you need, fibers
have plenty of it. They are much stronger than plastics, even the rigid ones, and some poly‐
meric fibers, like KevlarTM, carbon fiber and ultra-high molecular weight polyethylene have
better tensile strength than steel.

Elastomers like polyisoprene, polybutadiene and polyisobutylene have completely different
mechanical behavior from the other types of materials. Take a look at the pink plot in the
graph above. Elastomers have very low moduli. You can see this from the very gentle slope
of the pink plot, but you probably knew this already. You already knew that it is easy to
stretch or bend a piece of rubber [34]. If elastomers did not have low moduli, they would not
be very good elastomers.

But it takes more than just low modulus to make a polymer an elastomer. Being easily
stretched is not much use unless the material can bounce back to its original size and shape
once the stress is released. Rubber bands would be useless if they just stretched and did not
bounce back. Of course, elastomers do bounce back, and that is what makes them so amaz‐
ing. They have not just high elongation, but high reversible elongation.

Fiber Reinforced Polymers - The Technology Applied for Concrete Repair36



4.6. Tensile properties

The discussion of which types of polymers have which mechanical properties has focused
mostly on tensile properties. When we look at other properties, like compressional proper‐
ties or flexural properties things can be completely different. For example, fibers have very
high tensile strength and good flexural strength as well, but they usually have terrible com‐
pressional strength. They also only have good tensile strength in the direction of the fibers.

Some polymers are tough, while others are strong, and how one often has to make trade-offs
when designing new materials; the design may have to sacrifice strength for toughness, but
sometimes we can combine two polymers with different properties to get a new material
with some of the properties of both. There are three main ways of doing this, and they are
copolymerization, blending, and making composite materials.

The copolymer that combines the properties of two materials is spandex. It is a copolymer
containing blocks of elastomeric polyoxyethylene and blocks of a rigid fiber-forming polyur‐
ethane. The result is a fiber that stretches. Spandex is used to make stretchy clothing like bi‐
cycle pants.

High-impact polystyrene, or HIPS for short, is an immiscible blend that combines the prop‐
erties of two polymers, styrene and polybutadiene. Polystyrene is a rigid plastic. When
mixed with polybutadiene, an elastomer, it forms a phase-separated mixture which has the
strength of polystyrene along with toughness supplied by the polybutadiene. For this rea‐
son, HIPS is far less brittle than regular polystyrene [38].

In the case of a composite material, we are usually using a fiber to reinforce a thermoset.
Thermosets are crosslinked materials whose stress-strain behavior is often similar to plas‐
tics. The fiber increases the tensile strength of the composite, while the thermoset gives it
compressional strength and toughness.

5. Conclusions

This brief review of FRP has summarized the very broad range of unusual functionalities
that these products bring (Polymers, Aramids, Composites, Carbon FRP, and Glass-FRP).
While the chemistry plays an important role in defining the scope of applications for which
these materials are suited, it is equally important that the final parts are designed to maxi‐
mize the value of the inherent properties of these materials. Clearly exemplify the constant
trade-off between functionality and processability that is an ongoing challenge with these
advanced materials. The functionality that allows these materials to perform under extreme
conditions has to be balanced against processability that allows them to be economically
shaped into useful forms. The ability of a polymer material to deform is determined by the
mobility of its molecules, characterized by specific molecular motions and relaxation mecha‐
nisms, which are accelerated by temperature and stress. Since these relaxation mechanisms
are material specific and depend on the molecular structure, they are used here to establish
the desired link with the intrinsic deformation behavior.
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