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1. Introduction 

The theory of the abiogenic deep origin of hydrocarbons recognizes that the petroleum is a 

primordial material of deep origin [Kutcherov, Krayushkin 2010]. This theory explains that 

hydrocarbon compounds generate in the asthenosphere of the Earth and migrate through 

the deep faults into the crust of the Earth. There they form oil and gas deposits in any kind 

of rock in any kind of the structural position (Fig. 1). Thus the accumulation of oil and gas is  

 

Figure 1. A scheme of genesys of hydrocarbons and petroleum deposits formation. 
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considered as a part of the natural process of the Earth’s outgrassing, which was in turn 

responsible for creation of its hydrosphere, atmosphere and biosphere. Until recently the 

obstacles to accept the theory of the abyssal abiogenic origin of hydrocarbons was the lack of 

the reliable and reproducible experimental results confirming the possibility of the synthesis 

of complex hydrocarbon systems under the conditions of the asthenosphere of the Earth. 

2. Milestones of the theory of abiogenic deep origin of hydrocarbons 

According to the theory of the abyssal abiogenic origin of hydrocarbons the following 

conditions are necessary for the synthesis of hydrocarbons:  

 adequately high pressure and temperature;  

 donors/sources of carbon and hydrogen;  

 a thermodynamically favorable reaction environment.  

Theoretical calculations based on methods of modern statistical thermodynamics have 

established that: 

 polymerization of hydrocarbons takes place in the temperature range 600-1500 degrees 

C and at pressures range of 20-70 kbar [Kenney et al., 2002];  

 these conditions prevail deep in the Earth at depths of 70-250 km [Carlson et al. 2005]. 

Thermobaric conditions 

The asthenosphere is the layer of the Earth between 80-200 km below the surface. In the 

asthenosphere the temperature is still relatively high but the pressure is greatly reduced 

comparably with the low mantle. This creates a situation where the mantle is partially 

melted. The asthenosphere is a plastic solid in that it flows over time. If hydrocarbon fluids 

could be generated in the mantle they could be generated in the asthenosphere zone only. In 

the paper [Green et al. 2010] published in Nature the modern considerations about 

thermobaric conditions on the depth down to 200 km are shown (Fig. 2).  

Composition 

Donors of carbon 

Mao et al., 2011 demonstrate that the addition of minor amounts of iron can stabilize 

dolomite carbonate in a series of polymorphs that are stable in the pressure and temperature 

conditions of subducting slabs, thereby providing a mechanism to carry carbonate into the 

deep mantle. In [Hazen et al., 2012] authors suggest that deep interior may contain more than 

90% of Earth's carbon. Possible sources of the carbon in the crust are shown on the Fig. 3. 

Donors of hydrogen 

Experimental data published in Nature recently [Green et al. 2010] shows that water-storage 

capacity in the uppermost mantle “is dominated by pargasite and has a maximum of about 

0.6 wt% H2O (30% pargasite) at about 1.5 GPa, decreasing to about 0.2 wt% H2O (10% 

pargasite) at 2.5 GPa”. Another possible source of hydrogen is hydroxyl group in some 

minerals (biotite, muscovite). 
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Figure 2. Thermobaric conditions in the depth [Green et al. 2010]. 

 

Figure 3. Sources of the carbon in the crust (adapted from images by R. Coggon and K. Nakamura). 
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The conclusion from the presented data is the following.  

On the depth of 100 km temperature is about 1250 K and pressure is 3 GPa. On the depth of 

150 km temperature is about 1500-1700 K and pressure is 5 GPa.  

Both donors of carbon (carbon itself, carbonates, CO2) and hydrogen (water, hydroxyl group 

of minerals) are present in the asphenosphere in sufficient amounts. Thermodynamically 

favorable reaction environment (reducing conditions) could be created by a presence of FeO. 

The presence of several present of FeO in basic and ultra-basic rocks of asthenosphere is 

documented.  

Thus, abiogenic synthesis of hydrocarbons can take place in the basic and ultra-basic rocks 

of the asthenosphere in the presence of FeO, donors/sources of carbon and hydrogen. The 

possible reaction of synthesis in this case could be presented as follows:  

 reduced mantle substance + mantle gases → oxidized mantle substance + hydrocarbons or  

 combination of chemical radicals (methylene (CH2), methyl (CH3). Different 

combinations of these radicals define all scale of oil-and-gas hydrocarbons, and also 

cause close properties and genetic similarity of oils from different deposits of the world. 

Major element composition of various mantle materials is presented in Table 1 [Carlson et al., 

2005]. 

  Fertile Oceanic Massif Off-Craton Low-T Craton High-T Craton 

SiO2 45.40 44.66 44.98 44.47 44.18 44.51 

TiO2 0.22 0.01 0.08 0.09 0.02 0.11 

Al2O3 4.49 0.98 2.72 2.50 1.04 0.84 

FeO 8.10 8.28 8.02 8.19 6.72 8.08 

MgO 36.77 45.13 41.15 41.63 46.12 44.76 

CaO 3.65 0.65 2.53 2.44 0.54 1.08 

Table 1. Major element composition of various mantle materials 

3. Experimental results 

One of the first reliable and reproducible experimental results confirming the possibility of 

hydrocarbons synthesis under upper mantle conditions were published by [Kutcherov et al., 

2002]. The authors used a CONAC high-pressure chamber. The stainless-steel and platinum 

capsules with the volume of 0.6 cm3 were used for the experiments. The filled capsule was 

placed into the high-pressure chamber, pressurized and then heated to certain pressure and 

temperature. The treatment in the chamber for the necessary time was followed by 

quenching to room temperature at a rate of the order of 500 K/s, whereupon the pressure 

was decreased to normal pressure. The composition of the reaction products was studied by 

mass spectroscopy, gas chromatography, and X-ray. The initial reactants in the synthesis 

were chemically pure FeO (wustite), chemically pure CaCO3 (calcite), and double distilled 

water. Tentative experiments showed that the synthesis is described by the reaction: 
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 3 2 2 3 4 2 2(9 3) (2 1) ( ) (3 1) n nnCaCO n FeO n H O nCa OH n Fe O C H           (1) 

where n≤11. 

[Scott et al., 2004] used the diamond anvil cell method with laser and resistive heating to 

investigate in-situ the behaviour of the system CaCO3-FeO-H2O at a pressure of 5-11 GPa 

and for a temperature range of 800 – 1500 K. Raman spectrometry and X-ray synchrotron 

diffraction methods were used for the analysis. In general, the reaction scheme proposed by 

[Kutcherov et al., 2002] was confirmed by Scott et al.’s experimental results: 

 3 2 3 4 412 4CaCO FeO H O CaO Fe O CH      (2) 

A comparison of [Kutcherov et al., 2002] and [Scott et al., 2004] experimental results, where 

the same initial reactants and thermobaric conditions were used, shows us the following. In 

the case of Raman spectrometry in the diamond anvil cell [Scott et al., 2004] only methane 

was found. In [Kutcherov et al., 2002] the mixture of hydrocarbons up to hexane was 

detected. The difference may be explained by different reasons. Quantities of saturated 

hydrocarbons heavier than methane, on an analogy with [Kutcherov et al., 2002] should 

decrease dramatically with an increase in molecular weight of hydrocarbons. The sensitivity 

of the Raman spectrometry method in the DAC is not enough to detect the saturated 

hydrocarbons in comparison with relatively large volume experiments in the CONAC 

chamber with gas chromatography. Also fluorescence from iron-containing materials in the 

cell could be the obstacle to analyze these saturated hydrocarbons dispersed in the diamond 

anvil cell. 

To check the above-mentioned explanation the behaviour of pure methane at pressure range 

1-14 GPa at the temperature interval 900-2500 K was studied [Kolesnikov et al., 2009]. The 

experiments have shown that methane is stable at temperature below 900 K in the above-

mentioned pressure range. In the temperature interval 900-1500 K at 2-5 GPa the formation 

of heavier alkanes (ethane, propane, and butane) from methane was observed: 

 4 2 6 3 8 4 10 2CH C H C H C H H       (3) 

At temperature higher that 1500 K methane dissociates to carbon (graphite) and molecular 

hydrogen: 

 4 2CH C H     (4) 

In [Kolesnikov et al., 2009] the the redox conditions of the mantle were also modeled by 

introducing into a system of magnetite (Fe3O4), which was partially transformed to iron (0) 

forming a redox buffer. 

The introduction of Fe3O4 did not affect the thermobaric conditions of methane 

transformation. Pure iron and water were detected in the reaction products. This gives us 

the possibility to suggest the following pathway of reactions: 

 4 3 4 2 6 2CH Fe O C H Fe H O       (5) 
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 4 3 4 2CH Fe O C Fe H O     (6) 

The experimental results confirming the possibility of synthesis of natural gas from 

inorganic compounds under the upper mantle conditions were published in [Kutcherov et al., 

2010]. The experimental results received in CONAC high-pressure chamber and in a split-

sphere high-pressure device [6] are shown in Table 2. The gas chromatography and X-ray 

technique were used to analyze the reaction products.  

If the carbon donor was CaCO3 (experiments 1 and 2), the methane concentration in the 

produced mixture was as that in “fat” (rich in heavy hydrocarbons) natural gas (as at the 

Vuktilskoe gas field). If the carbon donor was individual carbon (experiments 3 and 4), the 

hydrocarbon composition corresponded to “dry” (methane-rich) natural gas (as at the 

Severo - Stavropolskoe gas field). Rapid cooling (quenching) fixes CH4 and C2H6/C2H4 in the 

reaction products. After cooling for 4 h (experiment 4), the amount of CH4 and C2H6/C2H4 in 

the reaction products increases by a factor of tens, and heavier hydrocarbons up to 

C4H10/C4H8 emerge. Thus, the time of cooling of the fluid forming at high pressure (e.g., in 

the course of its jet migration to the surface) has a significant effect on the final composition 

of the fluid. A decrease in the rate of cooling of the initial fluid results in synthesis of heavier 

saturated hydrocarbons in the mixture. Then, at the first stage, in case of quenching 

(experiment 3), the reaction is the following:  

 2 2Fe H O FeO H     (7) 

and in case of slow cooling (experiment 4), the reaction is  

 2 3 4 23 4 4Fe H O Fe O H            (8) 

At the second stage, in both cases, hydrocarbons can be assumed to form from carbon and 

hydrogen by the reactions 

 2 2 2( 1) n nnC n H C H      (9) 

 2 2n nnC nH C H   (10) 

Cooling shifts the equilibrium of the reaction between Fe(0) and water toward the formation 

of hydrogen and stronger iron oxidation. The fact that reaction (8) involves more hydrogen 

than reaction (7) does results in an increase in the amounts of hydrocarbons in reactions (9) 

and (10). However, although the influence of the quenching time is obvious, the full 

explanation of this effect requires further investigation.  

4. Formation of oil and gas deposits in the light of the abiogenic deep 

origin of hydrocarbons 

The theory of the abiogenic deep origin of hydrocarbons denies the lateral migration of oil 

and gas in their reservours unless a hydrodynamic (hydraulic) fluid movement exists.  
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Experiment, 

reagents (mg), 

cooling rate 

Concentration, mol.% 
CH4, 

μmol 
СО2 N2 СО СН4 

С2Н4 

С2Н6 

С3Н6 

С3Н8

С4Н8 

С4Н10

С5Н10 

С5Н12 

 Toroidal high-pressure apparatus (CONAC) 

experiment A quenching          

CaCO3(104.5)+Fe(174.6)+ 

H2O(45.3) 
0.0 tr. 0,0 71.4 25.8 2.5 0.25 0 6.28 

          

experiment B quenching          

CaCO3(104.7)+Fe(174.6)+ 

D2O(42.6) 
0.0 tr. 0.0 71.1 25.3 3.2 tr. tr. 4.83 

          

 Split-sphere high-pressure device (BARS) 

experiment C quenching          

C(24.5)+Fe(60.2)+H2O(10.1) 0 0 0 96.1 3.84 0 0 0 0.23 

          

experiment D 4 h. cooling          

C(21.3)+Fe(98.6)+H2O(15.1) 0 0 0 93.2 6.21 0.42 0.16 0 5.4 

          

Severo-Stavropolskoe gas 

field
0.23 - - 98.9 0.29 0.16 0.05 -  

Vuctyl’skoe gas field 0.1 - - 73.80 8.70 3.9 1.8 6.40  

Table 2. The experimental results received in CONAC high-pressure chamber and in a split-sphere 

high-pressure device 

Capillary forces which are related to the pore radius and to the surface tension across the 

oil-water (or gas-water) interface (the process is decribed by Laplace’s Equation) are, 

generally, 12-16 thousand times stronger than the buoyancy forces of oil and gas (according 

to NavierStockes Equation) in the natural porous, permeable media of subsurface. 

According to the theory of the abiogenic deep origin of hydrocarbons oil and gas 

accumulations are born as follows. Rising from sub-crust zones through the deep faults and 

their feather joints or fissures the deep petroliferous fluid is injected under high pressure 

into any rock and distributed there. The hydrocarbon composition of oil and gas 

accumulations formed this way depends on cooling rate of the fluids during their injection 

into the rocks of the Earth’s Crust. When and where the further supply of injected 

hydrocarbons from the depth stops, the fluids do not move further into any forms of the 

Earth Crust (anticline, syncline, horizontal and tilted beds) without the re-start of the 

injection of the abyssal petroliferous fluids. The most convincing evidence of the above-

mentioned mechanism of oil and gas deposit formations is the existence of such giant gas 
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fields as Deep Basin (Figure 3), Milk River and San Juan (the Alberta Province of Canada 

and the Colorado State, U.S.A.) The formation of these giant gas fields questions the 

existence of any lateral migration of oil and gas during the oil and gas accumulation process. 

Those giant gas fields occur in synclines where gas must be generated but not be 

accumulated, according to the hypothesis of biotic petroleum origin and hydrodynamically 

controlled migration. The giant gas volumes (12.51012 cu m in Deep Basin, 935109-cu m in 

San Juan, 255109 cu m in Milk River) are concentrated in the very fine-grained, tight, 

impermeable argillites, clays, shales and in tight sandstones and siltstones [Masters, 1979]. 

These rocks are usually accepted as source rocks cap rocks/seals rocks in petroleum geology 

but by no means of universally recognized reservoir rocks of oil and natural gas. All the gas-

saturated tight rocks here are graded updip into coarse-grained, highly-porous and highly-

permeable aquifers with no visible tectonic, lithological and stratigraphic barriers to prevent 

updip gas migration. Therefore, the tremendous gas volumes of above-mentioned gas fields 

have the tremendous buoyancy but it never overcomes capillary resistance in pores of the 

water-saturated reservoir rocks. Gas is concentrated in the tight impermeable sand which is 

transformed progressively and continuously updip into the coarse-grained, high-porous 

and high-permeable sand saturated by water. 

5. Natural gas and oil in the recent sea-floor spreading centers 

Petroleum of abyssal abiogenic origin and their implacement into the crust of the Earth can 

take place in the recent sea-floor spreading centres in the oceans. Igneous rocks occupy 99 % 

of the total length (55000 km) of them while the thickness of sedimentary cover over the 

spreading centres does not exceed 450-500 m [Rona, 1988]. Additionally sub-bottom 

convectional hydrothermal systems discharge hot (170-430 degrees C) water through the sea 

bottom’s black and white “smokers”. Up to now more than 100 hydrothermal systems of 

this kind have been identified and studied by in scientific expeditions using submarines 

such as «ALWIN», «Mir», «Nautile», and «Nautilus» in the Atlantic, Pacific and Indian 

oceans respectively. Their observations pertaining to the deep abiogenic origin of petroleum 

are as follows: 

 the bottom “smokers” of deepwater rift valleys vent hot water, methane, some other 

gases and petroleum fluids. Active “plumes” with the heights of 800-1000 m venting 

methane have been discovered in every 20-40 km between 12oN and 37oN along the 

Mid-Atlantic Ridge (MAR) over a distance of 1200 km. MAR’s sites – TAG (26oN), 

Snake Pit (23oN), Logatchev (14o45'N), Broken Spur (29oN), Rainbow (37o17'N), and 

Menez Gwen (37o50'N) are the most interesting.  

 At the Rainbow site, where the bottom outcrops are represented by ultramafic rocks of 

mantle origin the presence of the following substances were demonstrated (by 

chromatography/mass-spectrometry): CH4; C2H6; C3H8; CO; CO2; H2; H2S, N2 as well as 

petroleum consisted of n-C16−n-C29 alkanes together with branched alkanes, diaromatics 

[Charlou et al., 1993, 2002]. Contemporary science does not yet know any microbe which 

really generates n-C11 – n-C22 alkanes, phytan, pristan, and aromatic hydrocarbons. 
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 At the TAG site no bottom sediments, sedimentary rocks [Simoneit, 1988; Thompson et 

al., 1988], buried organic matter or any source rocks. The hydrothermal fluid is very hot 

(290/321 degree C) for any microbes. There are the Beggiatoa mats there but they were 

only found at some distances from “smokers”.  

 Active submarine hydrothermal systems produce the sulfide-metal ore deposits along the 

whole length of the East Pacific Rise (EPR). At 13oN the axis of EPR is free of any sediment 

but here aliphatic hydrocarbons are present in hot hydrothermal fluids of black 

“smokers”. In the sulfide-metal ores here the methane and alkanes higher than n-C25 with 

prevalence of the odd number of carbon atoms have been identified [Simoneit, 1988].  

 Oil accumulations have been studied by the «ALVIN» submarine and by the deep 

marine drilling in the Gulf of California (the Guaymas Basin) and in the Escanaba 

Trough, Gorda Ridge [Gieskes et al., 1988; Koski et al., 1988; Kvenvolden et al., 1987; 

Lonsdale, 1985; Peter et al., 1988; Simoneit, 1988; Simoneit et al., 1982; Thompson et al., 1988] 

of the Pacific Ocean. These sites are covered by sediments. However, petroleum fluids 

identified there are of hydrothermаl origin according to Simoneit, Lonsdale [1982] and no 

source rocks were yet identified there.  

 As for other sites over the Globe, scientific investigations with the submarines have 

established that the methane “plumes” occur over the sea bottom “smokers” or other 

hydrothermal systems in Red Sea, near Galapagos Isles, in Mariana and Tonga deepwater 

trenches, Gulf of California, etc. [Baker et al., 1987; Blanc et al., 1990; Craig et al.1987; Evans et 

al., 1988; Horibe et al., 1986; Ramboz et al., 1988]. Non-biogenic methane (105-106 cu m/year) 

released from a submarine rift off Jamaica [Brooks, 1979] has been also known. 

 

 

Figure 4. Cross section of Alberta showing gas-saturated sands of Deep Basin [Masters 1979]. 
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A recent investigation along the Mid-Atlantic Ridge 2,300 miles east of Florida confirms that 

the hydrogen-rich fluids venting at the bottom of the Atlantic Ocean in the Lost City 

Hydrothermal Field were produced by an abiotic synthesis of hydrocarbons in the Mantle of 

the Earth (Fig. 3) [Proskurowski et al., 2008]. Quantitatively speaking the sea-floor spreading 

centres may vent 1.3109 cu m of hydrogen and 16107 cu m methane annually [Welhan et al., 

1979].  

Data discussed below confirm the following: 

1. Source rocks accounting for the volume of the petroleum venting described are not 

available; 

2. The natural gas and petroleum fluids in the recent sea-floor spreading centres can be 

explained as a result of the vertical migration of the Mantle fluids. 

6. Bitumen and hydrocarbons in native diamonds 

A presence of bitumen and hydrocarbons in native diamonds, carbonado and kimberlites 

could be taking into a consideration as the evidence confirming the abyssal petroleum 

origin. Studying the native diamonds, carbonado and kimberlites under the microscope 

many scientists from several countries have found the numerous primary fluid inclusions 

which have been opened due to the specific methods. Fluid contents of primary fluid 

inclusions have been recovered without any contamination and studied by mass-

spectrometry/gas-chromatography. Results of such investigations carried-out on the 

samples from Africa, Asia, Europe, North and South America can be summarized as 

follows. 

The well-known diamond-producing mines such as the Dan Carl, Finsh, Kimberley, and 

Roberts Victor are located in the kimberlite pipes of the South Africa. There the African 

shield is characterized by the remarkable disjunctive dislocations and non-orogenic 

magmatism which has produced a great number of the carbonatite and kimberlite intrusions 

and explosion pipes in the area around Lake Tanganyika, Lake Malawi and Lake Victoria 

between 70 Ma and 3000 Ma ago [Irvine, 1989]. These lakes are in the Great East-African Rift 

Valley. The Valley’s margins and disjunctive edges consist of the African shield crystalline 

rocks. 258 samples of diamonds from this area have been investigated under the microscope 

[Deines et al., 1989]. The investigation has shown the presence of primary fluid inclusions in 

all samples investigated. These samples have been disintegrated into the small particles in 

vacuum of about 1.310-6 Pa and 200 degrees C. The gas mixture from each sample was 

received. Mass-spectrometric/gas-chromatographic studies of the mixtures are shown in 

Table 3.  

The same hydrocarbons and gases mixtures were detected in natural diamonds from 

Congo, Brazil [Melton et al., 1974] and Zaire [Giardini et al., 1982] (Table 3). 

The composition of the primary fluid inclusions composition has been studied by mass-

spectrometer in seven native Arkansas diamonds. The result of investigation has confirmed 
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the presence of the different kinds of hydrocarbon in all samples (Table 3) [Melton et al., 

1974].  

In a Brazil carbonado primary fluid inclusions comprise a set of heavy hydrocarbons (Table 

3). Pyrope (Mg3Al2(SiO4)3) and olivine which were recovered from diamond crystals and 

kimberlites of the Mir, Ruslovoye, and Udatchnoye Eastern diamond-bearing pipes, East 

Siberia, Russia contain a number of different hydrocarbons (Table 3) [Kulakova et al., 1982; 

Kaminski et al., 1985]. According to Makeev et al. [2004] 9-to-27 forms of metallic films were 

found and studied upon the crystal faces of diamonds from Brazil and from the Middle 

Timan, Ural and Vishera diamonds in the European part of Russia. These films consist of 

aluminum, cadmium, calcium, chrome, cerium, copper, gold, iron, lanthanum, lead, 

magnesium, neodymium, nickel, palladium, silver, tin, titanium, ytterbium, yttrium, zinc, 

zirconium and of precious metals including even Au2Pd3. The thickness of these films is 

from fractions of micrometer to several micrometers. These films are the evidences for the 

growth of diamonds from carbon dissolved in the melt of gold and palladium [Makeev, 

Ivanukh, 2004]. The coarseness of the diamond crystals in kimberlite and lamprophyre pipes 

depends on the sizes of precious metal droplets in the respective zone – in the Earth’s upper, 

transitional, and lower Mantle. 

 

Region Gas mixture concentration, vol. % 

Africa 

Diamonds 

CH4, C2H4, C3H6, solid hydrocarbons, C2H5OH, Ar, CO, CO2, H2, 

O2, H2O, and N2 

Congo, Brazil, Zaire 

Diamonds 

5.8 of CH4; 0.4 of C2H4; 2.0 of C3H6; traces of C4H8; C4H10 and solid 

hydrocarbons 

Arkansas, U.S.A. 

diamonds 

0.9-5.8 of CH4; 0.0-5.2 of CH3OH; 0.0-3.2 of C2H5OH; 1.2-9.4 of 

CO; 5.3-29.6 of CO2; 1.5-38.9 of H2; 2.9-76.9 of H2O; 0.0-87.1 of N2; 

0.0-0.2 of Ar 

Brazil carbonado the homologies of naphthalene (C10H8), phenanthrene (C14H10), 

and pyrene (C16H10). Total concentration varies from 20 to 

38.75 g/t 

East Siberia, Russia 

diamonds and 

kumberlites 

C6H6; C12H10; C20H12; C16H10, and other polynuclear aromatic 

hydrocarbons. Total concentration is about 0.136 g/t 

Table 3. Results of Investigation of Gas Mixtures from Native Diamonds, Carbonado and Kumberlites 

Investigation primary fluid inclusions in diamonds have shown a presence of bitumen in 

diamonds. The primary inclusions preserved in natural diamonds are bitumen inclusions 

and contain mantle hydrocarbons. This evidences that the source materials for the abyssal, 

natural synthesis of diamonds were the hydrocarbon fluids which have saturated the 

outgassing mantle and enabled mantle silicates to be reduced to native metals. The Brazil 

natural diamonds were sampled from the Juine kimberlite pipe field of the Mato Grosso 

State, Brazil. The Juine Later Cretaceous kimberlites contain five mineral associations related 

to the different facies and depths which are reflected in Table 4. One of the Juine diamonds 
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sampled near Sao Luis Creek was the lower Mantle diamond and comprised the primary 

fluid inclusions with the lower Mantle bitumens [Makeev et al., 2004]. 

13C for 213 diamonds from the different pipes was analyzed. 13C is ranged from -1.88 to -

16 ‰ [Deines et al., 1989]. The chemical and isotope peculiarities of natural diamonds reflect 

the different Mantle media and environments. Diamonds with 13C from -15 to -16 ‰ come 

from the region at a lower depth than the natural diamonds with 13C from -5 to -6 ‰.  

Conclusions: 

1. No doubt, that diamonds, carbonado and kimberlites are formed at great depths. 

2. Presence of the inhibited primary hydrocarbon inclusions in diamonds, carbonado and 

kimberlites testifies that hydrocarbon Mantle fluids were a material for synthesis of 

these minerals in the Mantle.  

3. Presence of abiotic hydrocarbon fluids in the Mantle of the Earth is scientifically proved 

evidence. 

7. Petroleum in meteor impact craters 

Petroleum reserves in meteor impact craters posses a great potential. At the present moment 

there are about 170 meteor impact craters identified in all continents and in the world ocean 

bottom. Impact fracturing can occur to depths of 35-40 km and penetrate into the Earth’s 

mantle. The impact fractures are the result of impacts of asteroids, bolides, comets on the 

Earth. When a massive cosmic object impacts the Earth surface with the velocity in the range 

from 15 to 70 km/s it accompanies the explosion. According to experiments devoted to 

mechanisms and models of cratering in the Earth media, the hyper fast impact creates 

temperature of 3000 degrees C and pressure of 600-900 kbar in the rocks of different 

compositions and generates their disintegration, pulverization, vaporization/exhalation, 

oxidation and hydrothermal transformation. As the result of the above-mentioned events 

and processes the meteorite (comet) impact transforms any non-reservoir rock into a porous 

and permeable reservoir rock [Curran et al., 1977; Masaitis et al., 1980; Donofrio, 1981]. 

Petroleum reserves were found in onshore and offshore meteor impact craters carbonate, 

sandstone and granite rocks over the world [Donofrio, 1998; India, 2006] (Table 4). Granites 

compose the crystalline basement of meteor impact craters whereas the carbonates and 

sandstones compose the sedimentary infill of the crater. Their producing depth is 

determined from 61 to 5185 m; the total production is from 4.8 to 333,879 m3/d of oil and 

from 7363 m3/d to 39.6106 m3/d of gas; the total proven reserves are from 15,899 m3 to 

4770106 m3 of oil, 48106 m3 of condensate and from 56.6106 to 424.8109 m3 of gas [Donofrio, 

1998].  

The richest petroleum meteor impact crater Cantarell is in Mexico. Its cumulative 

production exceeds 1.1109 m3 of oil and 83109 m3 of gas. The current remnant recoverable 

reserves are equal to 1.6109 m3 of oil and 146109 m3 of gas in three productive zones. They 

produce currently 206,687 m3/d of oil, and 70 % of it is recovered from carbonate breccia 

only. Its porosity is 8-12 % and the permeability is 3000-5000 millidarcies. Occurring at the  
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Impact crater Country Age, Ma Diameter, km 

Akreman (onshore) Australia 600 100 

Ames (onshore) oil&gas deposits in 

carbonates and granites 

U.S.A. 470±30 15 

Avak (onshore) gas deposits in sandstones U.S.A. 3-95 12 

Can-Am (onshore) Canada and 

U.S.A. 

500 100 

Calvin (onshore) oil deposits in carbonates U.S.A. 450±10 8.5 

Chicxulub (offshore) oil&gas deposits in 

carbonates 

Mexico 65 240 

Kara (onshore) Russia 60 65 

Marquez (onshore) oil&gas deposits in 

carbonates and sandstones 

U.S.A. 58±2 12.7 

Newporte (onshore) oil&gas deposits in 

carbonates and sandstones 

U.S.A. <500 3.2 

Popigai (onshore) Russia 39 100 

Red Wing Creek (onshore) oil&gas 

deposits in carbonates  

U.S.A. 200±25 9 

Sierra Madera (onshore) gas deposits in 

carbonates  

U.S.A. <100 13 

Shiva (offshore) India 15 500 

South Caribbean crater (offshore) Colombia 65 300 

South Cuban crater (offshore) Cuba 65 225 

Steen River (onshore) oil deposits in 

carbonates and granites  

Canada 91±7 25 

Viewfield (onshore) oil&gas deposits in 

carbonates  

Canada 190±20 2.5 

Wredefort (onshore) South Africa 1970 140 

Table 4. Parameters of the biggest and petroleum productive impact craters 

Tertiary Cretaceous boundary this breccia is genetically related to Chicxulub impact crater 

the diameter of which is now measured to be 240 km [Grajales-Nishimura et al., 2000]. 

Calculating with an average porosity, permeability and water saturation of the over crater 

breccia and fracturity of the undercrater crystalline Earth Crust together with the rocks 

which arround the crater the petroleum potential of the single meteor impact crater having 

the diameter of 20 km can exceed the total proven oil-and-gas reserves of the Middle East 

[Donofrio, 1981]. Donofrio [1981] also estimates that during the last 3000 Ma the meteorite-

comet bombardment of the Earth must have created 3060 onshore meteor impact craters of 

similar diameters. Krayushkin [2000] calculates with 7140 submarine meteor impact craters 

can be equal to about 121014 m3 of oil and 7.41014 m3 of gas. 
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The oil and gas in the meteor impact craters cannot be biogenic according since: 

1. Any intercrater source rocks are destroyed, disintegrated, melted and pulverized 

together with all the other rocks at the site of the meteorite impact [Masaitis et al.,  

1980];  

2. After the impact any lateral petroleum migration from the non-crater zones into the 

crater through the concentric ring uplifts of 100-300 m high and concentric ring trenches 

of 100-300 m deep which surround the central uplift of the crater is not enabled.  

8. Oil and gas deposits in the Precambrian crystalline basement 

Crystalline crust of the Earth is the basement of 60 sedimentary basins with commercial oil 

and gas deposits in 29 countries of the world. Additionally, there are 496 oil and gas fields in 

which commercial reserves occur partly or entirely in the crystalline rocks of that basement. 

55 of them are classified as giant fields (>500 Mbbls) with 16 non-associated gas, 9 gas-oil 

and 30 undersaturated oil fields among them (Table 5). 

 

Deposit Country Proven reserves 

Achak (gas field) Turkmenistan 155109 cu m 

Gugurtli (gas field) Turkmenistan 86109 cu m 

Brown-Bassett (gas field) UK 73109 cu m 

Bunsville (gas field) U.S.A. 85109 cu m 

Gomez (gas field) U.S.A. 283109 cu m 

Lockridge (gas field) U.S.A. 103109 cu m 

Chayandinskoye (gas field) Russia 1,240109 cu m 

Luginetskoye (gas field) Russia 86109 cu m 

Myldzhinskoye (gas field) Russia 99109 cu m 

Durian Mabok (gas field) Indonesia 68.5109 cu m 

Suban (gas field) Indonesia 71109 cu m 

Gidgealpa (gas field) Australia 153109 cu m 

Moomba (gas field) Australia 153109 cu m 

Hateiba (gas field) Libya 411109 cu m 

Bach Ho (oil and gas field) Vietnam 
600106 t of oil and 37109 cu m of 

gas 

Bombay High (oil and gas field) India 
1640106 t of oil and 177109 cu m of 

gas 

Bovanenkovskoye (oil and gas) Russia 
55106 t of oil and 2400109 cu m of 

gas 

Tokhomskoye (oil and gas field) Russia 
1200106 t of oil and 100109 cu m of 

gas 

Coyanosa (oil and gas field) U.S.A. 6106 t of oil and 37109 cu m of gas 
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Deposit Country Proven reserves 

Hugoton-Panhandle (oil and gas) U.S.A. 
223106 t of oil and 2000109 cu m of 

gas 

Peace River (oil and gas field) U.S.A. 
19000106 t of oil and 147109 cu m 

of gas 

Puckett (oil and gas field) U.S.A. 
87.5106 t of oil and 93109 cu m of 

gas 

La Vela (oil and gas field) Venezuela 
54106 t of oil and 42109109 cu m of 

gas 

Amal (oil field) Libya 583106 t 

Augila-Nafoora (oil field) Libya 178106 

Bu Attifel (oil field) Libya 90106 

Dahra (oil field) Libya 97106 

Defa (oil field) Libya 85106 

Gialo (oil field) Libya 569106 

Intisar “A” (oil field) Libya 227106 

Intisar “D” (oil field) Libya 182106 

Nasser (oil field) Libya 575106 

Raguba (oil field) Libya 144106 

Sarir (oil field) Libya 1150106 

Waha (oil field) Libya 128106 

Claire (oil field) UK 635106 

Dai Hung (oil field) Vietnam 60-80106 

Su Tu Den (oil field) Vietnam 65106 

Elk Basin (oil field) U.S.A. 70106 

Kern River (oil field) U.S.A. 200.6106 

Long Beach (oil field) U.S.A. 121106 

Wilmington (oil field) U.S.A. 326106 

Karmopolis (oil field) Brazil 159106 

La Brea-Pariñas-Talara (oil field) Peru 137106 

La  Paz  (oil field) Venezuela 224106 

Mara (oil field) Venezuela 104.5106 

Mangala (oil field) India 137106 

Renqu-Huabei (oil field) China 160106 

Shengli (oil field) China 3230106 

Severo-Varieganskoye (oil field) Russia 70106 

Sovietsko-Sosninsko-

Medvedovskoye (oil field) 
Russia 228106 

 

Table 5. Giant and Supergiant Petroleum Deposits in the Precambrian Crystalline Basement 
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They contain 9432109 m3 of natural gas and 32,837106 tons of crude oil, i.e., 18 % of the total 

world proven reserves of oil and about 5.4 % of the total world proven reserves of natural 

gas. 

In the crystalline basement the depths of the productive intervals varies of 900-5985 m. The 

flow rates of the wells is between 1-2 m3/d to 2,400 m3/d of oil and 1000-2000 m3/d to 

2.3106 m3/d of gas. The pay thickness in a crystalline basement is highly variable. It is 320 m 

in the Gomez and Puckett fields, the U.S.A.; 680 m in Xinglontai, China; 760 m in the DDB’s 

northern flank. The petroleum saturated intervals are not necessarity right on the top of the 

crystalline basement. Thus, oil was discovered at distance of 18-20 m below the top of 

crystalline basement in La Paz and Mara fields (Western Venezuela), 140 m below the 

basement’s top in the Kazakhstan’s Oimasha oil field. In the Baltic Shield, Sweden the 1 

Gravberg well produced 15 m3 of oil from the Precambrian igneous rocks of the Siljan Ring 

impact crater at the depth of 6800 m. In the Kola segment of the Baltic Shield several oil-

saturated layers of the Precambrian igneous rocks were penetrated by the Kola ultra-deep 

well at the depth range of 7004-8004 m. 

One of the most success stories of the practical application of the theory of the abyssal 

abiogenic origin of petroleum in the exploration is the exploration in the Dnieper-Donetsk 

Basin (DDB), Ukraine [Krayushkin et al. 2002]. It is a cratonic rift basin running in a NW-SE 

direction between 30.6oE-40.5oE. Its northern and southern borders are traced from 50.0оN-

51.8oN and 47.8oN-50.0oN, respectively. In the DDB’s northern, monoclinal flank the 

sedimentary sequence does not contain any salt-bearing beds, salt domes, nor 

stratovolcanoes and no sourse rocks. Also this flank is characterized by a dense network of 

the numerous syn-thethic and anti-thethic faults. These faults create the mosaic fault-block 

structure of crystalline basement and its sedimentary cover, a large number of the fault traps 

(the faulted anticlines) for oil and natural gas, an alternation uplifts (horsts) and troughs 

(grabens). The structure of the DDB’s northern flank excludes any lateral petroleum 

migration across it from either the Donets Foldbelt or the DDB’s Dnieper Graben. 

Consequently, the DDB’s northern flank earlier was qualified as not perspective for 

petroleum production due to the absence of any “source rock of petroleum” and to the 

presence of an active, highly dynamic artesian aquifer. However, after a while the 

perspectivity of this area was re-interpreted, re-examined in compliance with the theory of 

the abyssal abiogenic origin of petroleum starting with the detailed analysis of the tectonic 

history and geological structure of the crystalline basement in the DDB’s northern 

monoclinal flank. Subsequently respective geophysical and geochemical procpecting 

programmes were accepted primarily for exploring deep-seated petroleum. 

Late 1980’s-early 1990’s 61 wells were drilled in the DDB’s northern flank. 37 of them 

proved commercially productive (the exploration success rate is as high as 57 %) 

discovering commercial oil and gas strikes in the Khukhra, Chernetchina, Yuliyevka, and 

other areas. A total of 12 oil and gas fields discovered worth $ 4.38 billion in the prices of 

1991 and $ 26.3 billion in the prices of 2008. For the discovery of these new oil and gas 

accumulations I.I.Chebanenko, V.A.Krayushkin, V.P.Klochko, E.S. Dvoryanin, V.V.Krot, 
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P.T.Pavlenko, M.I.Ponomarenko, and G.D.Zabello, were awarded the State Prize of Ukraine in 

the Field of Science and Technology in 1992 [Chebanenko et al., 2002]. 

Today there are 50 commercial gas and oil fields known in the DDB’s northern flank. Data 

obtained from drilling in many of these areas shows that the crystalline basement of 

northern flank consists of amphibolites, charnockites, diorites, gneisses, granites, gra-

nodiorites, granito-gneisses, migmatites, peridotites, and schists. 32 of commercial fields 

have oil and/or gas accumulations in sandstones of the Middle and Lower Carboniferous 

age. 16 other fields contain reservoirs in the same sandstones but separately from them - in 

amphibolites, granites and granodiorites of crystalline basement as well. Two fields contain 

oil pools in the crystalline basement only.  

An exploration drilling in the DDB’s northern flank has discovered five petroleum 

reservoirs in the Precambrian crystalline basement rock complex at the depths ranging from 

several meters to 336 meters below the top of crystalline basement. Gas- and oil-shows have 

been found in the Precambrian crystalline basement rocks as deep as 760 m below the top of 

crystalline basement. The seal rock for the reservoirs in the Carboniferous period sand-

stones are shallower shale formations. This is typical for petroleum pools in sedimentary 

beds. The cap rock for the reservoirs in the Precambrian crystalline basement is the 

impervious, non-fractured, essentially horizontal, layer-like zones of crystalline rock which 

alternate with the fractured, un-compacted, bed-like zones of granite, amphibolite and the 

other crystalline rocks mentioned above [Krayushkin et al., 2001]. 

The exploration drilling in the DDB’s northern flank is still in progress and continues to yield 

success in the 100x600 km petroliferous strip of the DDB’s northern flank. Its proven 

petroleum reserves are already equal to 289106 tons ($230 billion at 50 USD/bbl oil prices). The 

DDB’s northern flank is even more attractive with its total perspective “in place” petroleum 

resources which amounts to about 13,000106 tons (~80,000 bbls) of oil equivalent in an area of 

48,000 sq km. The petroleum potential of the DDB’s southern flank should not be neglected 

either with a total “in place” prognostic petroleum resources of about 6000106 tons of oil 

equivalent in an area of 22,000 sq km. Here several promising leads with oil-shows can be 

found in the crystalline basement and its sedimentary cover [Chebanenko et al., 1996]. 

Abyssal abiogenic petroleum has been discovered in China as well: the giant Xinjiang gas 

field contains about 4001012 m3 of abiogenic natural gas [Zhang, 1990]. Chinese petroleum 

geologists estimated this quantity in volcanic island arcs, trans-arc zones of mud volcanism, 

trans-arc rift basins, trans-arc epicontinental basins, deep fault zones and continental rift 

basins. 

Conclusions: 

1. According to the traditional biotic petroleum origin hypothesis the DDB’s northern 

flank was qualified as possessing no potential for petroleum production.  

2. Based on the theory of the abyssal abiogenic origin of petroleum 50 commercial gas and 

oil deposits were discovered in this area. This is the best best evidence confirming the 

theory.  
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9. Deep and ultra-deep petroleum reservoirs 

In this part of the chapter we discuss how far the distribution, location and reservoir 

conditions in the deep and ultra-deep petroleum deposits can be explained by the 

traditional biotic petroleum origin. The key points are as follows:  

 deep and ultra-deep petroleum fields are below “the main zone of petroleum 

formation” determined by the traditional biotic petroleum origin hypothesis i.e the 

depth of 2-4 km and in exceptional cases – on the depth down to maximum 8 km. 

 reservoir temperature of these fields is much higher than the optimal temperature range 

of the traditional biotic hypothesis of petroleum formation;  

 the biotic hypothesis suggests that with growing depth and temperature hydrocarbons 

are destructed, reservoir rock porosity drops, thus petroleum reserves should be 

significantly reduced. A presence of more than 1000 petroleum deposits at the depth 5-

10 km all over the world contradicts to these points –a seen below:  

There are more than 1000 commercial petroleum fields producing oil and/or natural gas 

from sedimentary rocks at the depths of 4500-10,685 m. These fields were discovered in 50 

sedimentary basins over the world. 

Russia. A number of oil-and-gas fields have been discovered in the depth of 4000-4600 m in 

Russia. The cumulative production of these fields is equal to 421106 t of oil, 45.5109 m3 of 

the associated oil gas and 641106 m3 of natural gas. Although these fields are not 

“ultradeep” reservoirs, but they are interesting from our points of view: they are associated 

with deep faults intersecting the whole sedimentary rock sequence. The “roots” of these 

deep faults extend underneath the basement part of lithosphere. The roots form vertical 

columns-(“pipes”) of high permeability/petroleum saturation and chains of oil and gas 

accumulations are connected to them. It was established that the traces of petroleum 

migration are entirely absent outside of anticline crests [Istratov, 2004]. 

Ukraine. 17 giant and supergiant gas fields were discovered in the Lower Carboniferous age 

sandstones of the Dnieper-Donets Basin at the depth range of 4500-6287 m. At these depths, 

the total proven reserves of natural gas is 142.6109 cu m. The total recoverable reserves of 

condensate is 2.3106 t [Gozhik et al., 2006]. 

U.S.A. In the U.S.A. more than 7000 boreholes with TD deeper than 4575 m were drilled 

between 1963-1979. In the Mesozoic-Cenozoic rift system of the Gulf of Mexico a regional of 

the deep-to-ultra-deep (the Upper Cretaceous) sands have been observed. With a width of 

32-48 km and a length of 520 km this trend extends along the Gulf of Mexico from New 

Orleans to the borderline between Louisiana and Texas. Many oil and gas fields were found 

in this formation over the area indicated at the depths of 4500-6100 m. Most of them have 

anomalously high reservoir temperature (Freeland field: 232 degrees C) what is much higher 

than the optimal temperature of petroleum formation from ancient organic materials. The 

total proven reserves of natural gas in the Tsucaloosa trend are equal to 170109 m3 but there 

is an opinion that only the central portion of  it contains potential resources as much as 
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850109 m3 of natural gas and 240106 m3 of condensate. [King, 1979; Matheny, 1979; Pankonien, 

1979; Sumpter, 1979]. 

 In 2009 BP has discovered the Tiber crude oil deposit in the Mexican Gulf. The well, 

located in Keathley Canyon block 102, approximately 400 kilometres south east of 

Houston, is in 1,259 metres of water. The Tiber well was drilled to a total depth of 

10,685 metres. The Tiber deposit holds between 4 billion and 6 billion barrels of oil 

equivalent, which includes natural gas (the third biggest find in the US) 

(http://www.bp.com/genericarticle.do?categoryId=2012968&contentId=7055818). 

10. Supergiant oil and gas accumulations 

One of the main problems of the traditional biotic petroleum origin hypothesis is the 

identification of biotic sources and material balance of the hydrocarbon generation for most 

of supergiant oil and gas fields.  

Middle East. In the Middle East proven recoverable reserves are equal to 101109 t of oil and 

75.81012 m3 of gas respectively as of the end 2010 [BP, 2011]. Saudi Arabia’s proven reserves 

are 36109 t of oil and 81012 m3 of natural gas [BP, 2011]. Most of these reserves are located in 

ten supergiant gas and oilfields (Table 6) [International, 1976; Alhajji, 2001, The List, 2006]. 

These giant oil fields give oil production from the Jurassic-Cretaceous granular carbonates. 

All these crude oils have very similar composition referring to a common source. Such 

source is the Jurassic-Cretaceous thermally mature, thin-bedded organic rich carbonate 

sequence (3-5 mass %). Organic material is concentrated in dark, 0.5-3.0 mm thin beds 

alternating with the lightly colored, similarly thin beds poor in organics. Let’s make a 

calculation of the oil might have been generated inside the basins of Saudi Arabia with an 

estimated “original-oil-in-place” of 127109 m3 [BP, 2011]. Areas within the sedimentary 

basins where the kerogen is mature (i.e. H/C ratio is 0.8-1.3), were mapped [Ayres et al., 1982] 

and multiplied by the thickness of the source zones. This simple calculation gives a volume 

of petroleum source rocks as high as 5000 cubic km. If we accept that 

 the volume of kerogen is equal to 10 % of the petroleum source rocks volume,  

 the coefficient of transformation of kerogen into bitumen is equal to 15 %, 

 that 10 % of this bitumen can migrate out of the petroleum source rocks, 

we come to the conclusion, that only 7.5109 m3 of oil could migrate out of the petroleum 

source rocks. This is less than 6 % of Saudi Arabia’s estimated “in place” oil reserves. Note, 

that if the kerogen transformation parameters are twice as high as taken here (i.e. 20%, 30% 

and again 20% respectively), the OOIP is still 60·109m3 i.e. half of the booked value. 

Where did 94 % of Saudi Arabia’s recoverable oil come from? This question is not a 

rhetorical one because any other source of beds of petroleum is absent in the subsurface of 

Saudi Arabia as well as of all countries mentioned above, according to Ayres et al. [1982], and 

Baker et al. [1984]. Bahrain, Iran, Iraq, Kuwait, Oman, Qatar, Saudi Arabia, Syria, United 

Arab Emirates and Yemen occur in the same sedimentary basin – the Arabian-Iranian Basin, 
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where Dunnington [1958; 1967] established the genetic relationship, i.e. the single common 

source of all crude oils. 

Canada. The West Canadian sedimentary basin attracts a great attention also. There is the 

unique oil/bitumen belt extended as the arc-like strip of 960 km length from Peace River 

through Athabasca (Alberta Province) to Lloydminster (Saskatchewan Province). This belt 

includes such supergiant petroleum fields as Athabasca (125 km width, 250 km length), 

Cold Lake (50 km, 125 km), Peace River (145 km, 180 km) and Wabaska (60 km, 125 km). 

Here the heavy (946.5-1.029 kg/m3)  and  viscous  (several hundred-several million cP) oil 

saturates the Lower 

 

Deposit Estimated reserves 

Ghawar 
10.2109-11.3109 t of oil 

1.51012 m3 of gas 

Safaniyah 4.1109 t of oil 

Shaybah 2.0109 t of oil 

Abqaiq 1.6109 t of oil 

Berri 1.6109 t of oil 

Manifa 1.5109 t of oil 

Marjan 1.4109 t of oil 

Qatif 1.3109 t of oil 

Abu Safah 0.9109 t of oil 

Dammam 0.7109 t of oil 

Table 6. Supergiant Oil and Gas Deposits in Saudi Arabia 

Cretaceous sands and sandstones. These fields contain the “in place” oil reserves equal to 

92109-187109 m3 in Athabasca, 32109-75109 m3 in Cold Lake, 15109-19109 m3 in Peace River, 

4.5109-50109 m3 in Wabaska, and 2109-5109 m3 of oil/bitumen in Lloydminster, totally 

170109-388109 m3 [Vigrass, 1968; Wennekers, 1981; Seifert et al., 1985; Sincrude, 1992; Warters et 

al., 1995].  

The conventional understanding is, that the oil of Athabasca, Cold Lake, Lloydminster, 

Peace River and Wabasca generated from dispersed organic matter buried in the 

argillaceous shales of the Lower Cretaceous Mannville Group only. It is underlain by the 

Pre-Cretaceous regional unconformity and its thickness varies from 100 to 300 m. Its total 

volume is about 190103 cubic km with a 65 % shale content. Having the data of  the total 

organic carbon concentration (TOC), the hydrocarbon index (HI), constant of transformation 

(K), and all other values from the accepted geochemical model of the oil generation from the 

buried organic matter dispersed in clays-argillites, it was concluded that the Mannville 

Group could only give 71.5109 m3 of oil. It is in several times less than the quantity of oil 

(see above) which was totally estimated before 1985 in Athabasca, Cold Lake, Lloydminster, 

Peace River and Wabasca oil sand deposits [Moshier et al., 1985].  
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If  we accept other estimations of the volume of oil/bitumen “in place” in Athabasca, 

Wabasca, Cold Lake and Peace River area (~ 122,800 sq km) conducted by Alberta Energy 

Utilities Board (AEUB) and the National Energy Board (NEB), Canada the gap between the 

booked and organically generated quantities is even wider  (Table 12). AEUB estimated 

270109 m3 of bitumen “in place”, while NEB – 397109 m3 [Canadian, 1996].  

In the above-mentioned area there additionally are 200109-215109 m3 of heavy (986-

1030 kg/cu m) and viscous (106 cP under 16 degrees C) oil at the depth range of 75-400 m in 

the Upper Devonian carbonates (Grosmont Formation). They occur in the area of 70103 km2 

beneath the Athabasca/Cold Lake/Lloydminster/Peace River/Wabasca oil sand deposits 

[Wennekers, 1981; Seifert et al., 1985; Hoffmann et al., 1986].  

The total estimated reserves of bitumen “in place” in the above-mentioned area are between 

370109 and 603109 m3. If besides the Mannville clays and shales which could give 

71.5109 m3 of oil only there is no any other petroleum source rock, where is a biotic source 

for the rest of 82-88% of oil in this area?  

Venezuela. Something similar can be observed in the Bolivar Coastal oil field in Venezuela. 

According to Bockmeulen et al. [1983] the source rock of petroleum here is the La Luna 

limestone of the Cretaceous age. The estimated oil reserves are equal to 4.8109 m3 [The List, 

2006] with an oil density of 820-1000 kg/m3. The same kind of calculations that were done 

for Saudi Arabia above gives us the following result. One m3 of the oil-generating rock 

contains 2.510-2 m3 of kerogen which can generate 2.510-3 m3 bitumen giving 1.2510-4 m3 of 

oil within the accepted geochemical model of biotic petroleum origin. Having  this oil-

generating potential and the 4.8109 m3  of estimated oil reserves of the Bolivar Coastal field 

as a starting point, the necessary volume of oil source rock would be equal to 3.841013 m3. 

This is consistent with the oil-generating basin area of 110 km across if the oil source rock is 

1,000 m thick. The average thickness of La Luna limestone is measured with only 91 m 

[Bockmeulen et al., 1983). The diameter of the oil-generating basin would be therefore equal to 

370 km and area of this basin is equal approximately 50% of the territory of Venezuela what 

is geologically highly un-probable. 

11. Gas hydrates: the greatest source of abiogenic hydrocarbons 

Gas hydrates are clathrates. Looking as ice they consist of gas and water where the 

molecules of hydrate-forming gas (e.g., Ar, CH4, C2H6, C3H8, i-C4H10, Cl, CO, CO2, He, H2S, 

N2, etc.) are squeezed under the pressure of 25 MPa and more into the interstices of the 

water (ice) crystalline cage without any chemical bonding between molecules of water and 

gas. As a result thawing 1 m3 of gas hydrate at the sea level produces 150-200 m3 of gaseous 

methane and 0.87 m3 of fresh water. Naturally, the formation of gas hydrates takes place 

under the great velocity of fluid movement and under the certain combination of pressure 

and temperature. For example, methane hydrate arises under conditions of -236 degrees C 

and 210-5MPa; 57 degrees C and 1,146 MPa (Klimenko, 1989; Makogon, 1997; Lowrie et al., 

1999; Makogon et al., 2005). There are also the data that the formation of gas hydrate from the 
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CH4/C3H8/CO2/H2O/H2S-mixture proceeds under such the high temperature increasing/such 

the high pressure decreasing that the gas hydrate of composition, above, arises and exists 

really in sea-bottom sediments where the depth of sea is only 50 m, e.g., in Caspian Sea 

[Lowrie et al., 1999].  

Visually the gas hydrates (“combustible ice”) are the aggregate growths of transparent and 

semitransparent, white, gray or yellow crystals. They can partially or entirely saturate the 

natural porous media, adding the mechanical strength and acoustic hardness to sediments 

and sedimentary rocks. Boreholes  and seismic surveys have established that methane 

hydrates occur in the polar regions of Asia, Europe, North America (fig. 10), where the 

“combustible ice” always  is underlain with natural gas [Trofimuk et al., 1975; Panaev, 1987; 

Collett, 1993; Dillon et al., 1993; Kvenvolden, 1993; Modiris et al., 2008]. 

The gas hydrates represent a huge unconventional resource base: it may amount from 

1.51016 m3 [Makogon et al., 2007] to 31018 m3 [Trofimuk et al., 1975] of methane. Thus, natural 

gas reserves which could be obtained from “combustible ice” are enough for energy support 

for our civilization for the next several thousand years.  

Top of the supergiant gas hydrate/free natural gas accumulations occur at a depth of 0.4-

2.2 m below the sea bottom in the Recent sediments of the world ocean. The bottom of these 

accumulations is sub-parallel to the sea-bottom surface and intersects beds with anticlinal, 

synclinal, and tilted forms. This geometry,  the geographical distribution of hydrates in the 

world ocean, their Recent to Pleistocene age and fresh water nature of “combustible ice” 

could not be explained by terms (source rocks, diagenesis and katagenesis/metagenesis of 

any buried, dispersed organic matter, lateral migration of natural gas) used in the traditional 

biotic petroleum origin hypothesis. 

According to the theory of the abyssal abiogenic origin of petroleum all gas hydrate/free 

natural gas accumulations were formed due to the “one worldwide act” i.e. an upward 

vertical migration of abyssal abiogenic  mantle fluid through all the faults, fractures, and 

pores of rocks and sea-bottom sediments. In that time, not more than 200 thousand years 

ago those faults, fractures, and pores were transformed by a supercritical geo-fluid (mixture 

of supercritical water and methane) into a conducting/accumulating/intercommunicating 

media. Acting as the natural “hydrofracturing” the abyssal geo-fluid has opened up the 

cavities of cleavage and interstices of bedding in the rocks and sediments as well. According 

to Dillon et al. [1993] the vertical migration of natural gas still takes place today on the 

Atlantic continental margin of the United States. Along many faults there the natural gas 

continues to migrate upwards through the “combustible ice” as through “sieve” that is 

distinctly seen as the torch-shape vertical strips in the blanking of seismographic records.  

On April 10, 2012 Japan Oil, Gas and Metals National Corporation and ConocoPhillips have 

announced a successful test of technology dealing with safely extract of natural gas from 

methane hydrates. A mixture of CO2 and nitrogen was injected into the formation on the 

North Slope of Alaska. The test demonstrated that this mixture could promote the 

production of natural gas. This was the first field trial of a methane hydrate production 
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methodology whereby CO2 was exchanged in situ with the methane molecules within a 

methane hydrate structure.  

12. Conclusions 

1. Geological data presented in this chapter do not respond to the main questions related 

to the hypothesis of biotic petroleum origin. Only the theory of the abiogenic deep 

origin of hydrocarbons gives convincing explanation for all above-mentioned data.  

2. The experimental results discussed in the chapter confirm that the CaCO3-FeO-H2O 

system spontaneously generates the suite of hydrocarbons in characteristic of natural 

petroleum. Modern scientific considerations about genesis of hydrocarbons confirmed 

by the results of experiments and practical results of geological investigations provide 

the understanding that a part of the hydrocarbon compounds could be generated at the 

mantle conditions and migrated through the deep faults into the Earth’s crust where 

they are formed oil and gas deposits in any kind of rocks and in any kind of their 

structural position.  

3. The experimental results presented place the theory of the abiogenic deep origin of 

hydrocarbons in the mainstream of modern physics and chemistry and open a great 

practical application. The theory of the abiogenic deep origin of hydrocarbons confirms 

the presence of enormous, inexhaustible resources of hydrocarbons in our planet, allows 

us to develop a new approach to methods for petroleum exploration and to reexamine 

the structure, size and location of the world’s hydrocarbons reserves (www.jogmec.go.jp).  

 

Figure 5. Inferred (63), recovered (23), and potential (5) hydrate locations in the world [Kvenvolden and 

Rogers, 2005]. 
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