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1. Introduction

The electric power transmission grid has been progressively developed for over a century,
from initial design of local dc networks in low-voltage levels to three-phase high voltage ac
networks, and finally to modern bulk interconnected networks with various voltage levels
and multiple complex electrical components. The development of human society and eco‐
nomic needs is the major driving force the revolution of transmission grids stage-by-stage
with the aid of innovative technologies. The current power industry is being modernized
and tends to deal with the challenges more proactively by using the state-of-the-art technol‐
ogies in the areas of sensing, communications, control, computing, and information technol‐
ogy. The shift in the development of transmission grids to be more intelligent has been
summarized as “smart grid” [see Fig.1].

In a smart transmission network, flexible and reliable transmission capabilities can be facili‐
tated by the advanced Flexible AC Transmission Systems (FACTS), high-voltage dc (HVDC)
devices, and other power electronics-based devices. The FACTS devices are optimally
placed in the transmission network to provide a flexible control of the transmission network
and increase power transfer levels without new transmission lines. These devices also im‐
prove the dynamic performance and stability of the transmission network. Through the uti‐
lization of FACTS technologies, advanced power flow control, etc., the future smart
transmission grids should be able to maximally relieve transmission congestions, and fully
support deregulation and enable competitive power markets. In addition, with the increas‐
ing penetration of large-scale renewable/alternative energy resources, the future smart
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transmission grids would be able to enable full integration of these renewable energy re‐
sources(Wira et al., 2010, Sauter & Lobashov 2011, Varaiya et al., 2011).

Smart substations would provide advanced power electronics and control interfaces for re‐
newable energy and demand response resources so that they can be integrated into the pow‐
er grid on a large scale at the distribution level. By incorporating micro-grids, the substation
can deliver quality power to customers in a manner that the power supply degrades grace‐
fully after a major commercial outage, as opposed to a catastrophic loss of power, allowing
more of the installations to continue operations. Smart substations should have the capabili‐
ty to operate in the islanding mode taking into account the transmission capability, load de‐
mand, and stability limit, and provide mechanisms for seamlessly transitioning to islanding
operation. Coordinated and self-healing are the two key characteristics of the next genera‐
tion control functions. These applications require precise tracking of the utility’s phase-angle
information, for high performance local or remote control, sensing and fault diagnosis pur‐
poses(Froehlich et al., 2011, Han et al., 2009).

Figure 1. The vision of the future smart grid (SG) infrastructure

On the other hand, the proliferation of nonlinear loads causes significant power quality con‐
tamination for the electric distribution systems. For instance, high voltage direct transmis‐
sion (HVDC), electric arc furnaces (EAFs), variable speed ac drives which adopts six-pulse
power converters as the first power conversion stage, these devices cause a large amount of
characteristic harmonics and a low power factor, which deteriorate power quality of the
electrical distribution systems. The increasing restrictive regulations on power quality prob‐
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lems have stimulated the fast development of power quality mitigation devices, which are
connected to the grid to improve the energy transmission efficiency of the transmission lines
and the quality of the voltage waveforms at the common coupling points (PCCs) for the cus‐
tomers. These devices are known as flexible AC transmission systems (FACTS) (Fig.2),
which are based on the grid-connected converters and real-time digital signal processing
techniques. Much work has been conducted in the past decades on the FACTS technologies
and many FACTS devices have been practically implemented for the high voltage transmis‐
sion grid, such as static synchronous compensators (STATCOMs), thyristor controlled series
compensators (TCSCs) and unified power flow controllers (UPFCs) (Fig.3), etc(Cirrincione
et al., 2008, Jarventausta et al, 2010).

Figure 2. The circuit diagram of the FACTS and HVDC link

The stable and smooth operation of the FACTS equipments is highly dependent on how
these power converters are synchronized with the grid. The need for improvements in the
existing grid synchronization approaches also stems from rapid proliferation of distributed
generation (DG) units in electric networks. A converter-interfaced DG unit, e.g., a photovol‐
taic (PV) unit (Fig.4), a wind generator unit (Fig.5) and a micro-turbine-generator unit, un‐
der both grid-connected and micro-grid (islanding) scenarios requires accurate converter
synchronization under polluted and/or variable-frequency environment to guarantee stable
operation of these grid-connected converters(Jarventausta et al., 2010).
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Figure 3. The circuit diagram of the unified power flow controller (UPFC)

Figure 4. The configuration of PV arrays with the electric network
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Figure 5. The configurations of the wind generators with the network

Besides, an active power filter (APF) (Fig.6) or dynamic voltage restorer (DVR) (Fig.7) rectifi‐
er also requires a reference signal which is properly synchronized to the grid. Interfacing
power electronic converters to the utility grid, particularly at the medium and high voltages,
necessitates proper synchronization for the purpose of operation and control of the grid-
connected converters. However, the controller signals used for synchronization are often
corrupted by harmonics, voltage sags or swells, commutation notches, noise, phase-angle
jump and frequency deviations(Abdeslam et al., 2007, Cirrincione et al., 2008).

Figure 6. The circuit diagram of the shunt active power filter
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Figure 7. The circuit diagram of the dynamic voltage restorer (DVR)

Figure 8. The diagram of the adaptive linear neural network (ADALINE)
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Therefore, a desired synchronization method must detect the phase angle of the fundamen‐
tal component of utility voltages as fast as possible while adequately eliminating the im‐
pacts of corrupting sources on the signal. Besides, the synchronization process should be
updated not only at the signal zero-crossing, but continuously over the fundamental period
of the signal(Chang et al., 2009, Chang et al., 2010). This chapter aims to present the harmon‐
ic estimation and grid-synchronization method using the adaptive linear neural network
(ADALINE) (Figs.8 and 9). The mathematical derivation of these algorithms, the parameter
design guidelines, and digital simulation results would be provided. Besides, their practical
application for the grid-connected converters in smart grid would also be presented in this
chapter.

Figure 9. The grid-synchronization algorithm using the ADALINE-identifier

2. Mathematical model of the adaptive linear neural network (ADALINE)

The adaptive linear neural network (ADALINE) was used to estimate the time-varying mag‐
nitudes and phases of the fundamental and harmonics from a distorted waveform. The
mathematical formulation of ADALINE is briefly reviewed. Consider an arbitrary signalY(t)
with Fourier series expansion as (Simon, 2002):
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where An and φn are correspondingly the amplitude and phase angle of the nth order har‐
monic component, and ε(t)represents higher order components and random noise. In order
to formulate the harmonic estimation problem by using ADALINE, we firstly define the pat‐
tern vectorXk and weight vector Wk as:

[1,sin ,cos , ,sin ,cos ]Tk k k k kX t t N t N tw w w w= × × × (2)

0 1 1 2 2[ , , , , ,..., , ]k k k k k k k T
k N NW b a b a b a b= (3)

The square error on the pattern Xk is expressed as:

2 2 21 1 1( ) ( 2 )
2 2 2

T T T T
k k k k k k k k k k k k kd X W e d d X W W X X We = - = = - + (4)

where dk is the desired scalar output. The mean-square error (MSE) ε can be obtained by cal‐
culating the expectation of both sides of Eq. (4), as:

21 1[ ] [ ] [ ] [ ]
2 2

T T T
k k k k k k k k kE E d E d X W W E X X We e= = - + (5)

where the weights are assumed to be fixed at Wk while computing the expectation. The ob‐
jective of the adaptive linear neural network (ADALINE) is to find the optimal weight vec‐
tor Ŵ k  that minimizes the MSE of Eq. (4). For convenience of expression, Eq. (5) is rewritten
as (Abdeslam et. al, 2007, Simon 2002):

21 1[ ] [ ]
2 2

T T
k k k k kE E d P W W We e= = - + R (6)

where PT and R are defined as:

[ ] [( , sin , cos , , sin , cos )]T T
k k k k k k k k k k kP E d X E d d t d t d N t d N tw w w w= = × × × (7)
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Notably, matrix R is real and symmetric, and ε is a quadratic function of weights. The gradi‐
ent function ∇ε corresponding to the MSE function of Eq. (4) is obtained by straightforward
differentiation:

0 1 1

( , , , ..., , )T
kk k k k k

N N

P W
b a b a b
e e e e ee ¶ ¶ ¶ ¶ ¶

Ñ = = - +
¶ ¶ ¶ ¶ ¶

R (9)

which is a linear function of weights. The optimal set of weights, Ŵ k , can be obtained by
setting ∇ε =0, which yields:

ˆ 0kP W- + =R (10)

The solution of the Eq. (10) is called Weiner solution or the Weiner filter:

1ˆ
kW P-= R (11)

The Weiner solution corresponds to the point in weight space that represents the minimum
mean-square error εmin. To compute the optimal filter one must first compute R-1 and P.
However, it would be difficult to compute R-1 and P accurately when the input data com‐
prises a random stream of patterns (drawn from a stationary distribution). Thus, by direct
calculating gradients of the square error at the kth iteration:

0 1 1 0 1 1

( , , , ..., , ) ( , , , ..., , )Tk k k k k k k k k k
k k k kk k k k k k k k k k

N N N N

e e e e e
e e X
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e
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

Ñ = = = -
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

% (12)

whereek=(dk-sk), and sk = X k
T W k  since we are dealing with linear neurons. Therefore, the re‐

cursive weights updating equation can be expressed as:

1 ( ) ( )k k k k k k k k k kW W W e X W d s Xm e m m+ = + -Ñ = + = + -% (13)

where the learning rate μ is used to adjust the convergence speed and the stability of
weights updating process. Taking the expectation of Eq. (12), the following equation is de‐
rived:
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E ∇̃εk = −E ek X k = −E dk X k −X k X k
T W k =RW k −P =∇ε. (14)

From Eq. (14), it  can be found that the long-term average of ∇̃εk  approaches ∇ε  hence
∇̃εk  can be used as unbiased estimate of ∇ε.If the input data set is finite (deterministic),
then the gradient ∇ε  can be computed accurately by collecting the different ∇̃εk  gradi‐
ents over all training patterns Xk for the same set of weights. The steepest descent search
is guaranteed to search the Weiner solution provided the learning rate condition Eq. (15)
is satisfied (Simon 2002):

max

20 m
l

< < (15)

where λmax represents the largest eigenvalue of R. As for learning rate μ, increasing it results
in a faster convergence at the trade-off of losing accuracy and increasing overshoots in tran‐
sient response. Theoretically, a dynamical learning rate has better convergence characteris‐
tic, however, the implementation will be more demanding, and requires more expensive
hardware setup. By a trial-and-error approach, a constant learning rate μ within the range of
0.025 and 0.04 is found sufficient for adequate stable convergence, which is consistent with
Widrow-Hoff delta rule (Chang 2009, Chang 2010, Wira et al., 2010).

When mean-square error ε is minimized, the weight vector Ŵ  after convergence would be:

0 1 1 2 2
ˆ [ , , , , ,..., , ] .T

N NW b a b a b a b= (16)

Thus the fundamental component of the measured signal Y1(tk)is:

1 1 1( ) sin cos .k k kY t a t b tw w= + (17)

Obviously, the dimension of the weight vector Wk to be updated depends on the order N of
the harmonics to be estimated. In case of highly distorted load, lower order structure of neu‐
ral network is not accurate enough when high convergence speed is required, so using high‐
er order ANN structure is inevitable.

3. Synchronization for grid-connected converters using ADALINE
technique

This Section formulates the generalized methodology for the phase-locked loop (PLL) de‐
sign and synthesis by using adaptive linear neural network (ADALINE) technique. The
mathematical derivation, the stability analysis and the detailed description of the proposed
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ADALINE-PLL are outlined consecutively herein. In subsection 3.1, the optimal control pa‐
rameters selection of the proposed ADALINE-PLL is discussed in terms of the continuous
domain and the discrete domain analysis. Furthermore, the time-domain simulation results
of the proposed ADALINE-PLL under different control parameters are also presented for
verification.

3.1. Mathematical formulation of the ADALINE-PLL

This section presents the grid synchronization technique using the ADALINE algorithm.
Firstly, the formulation of the ADALINE problem by using single-phase representation is
outlined as follows. An arbitrary grid voltage can be represented as:

1 0 1 0
2

( ) sin( ) sin( )
N

sa n n
n

v t V t V n tw j w j
=

= + + +å (18)

where φ1 and φn are the initial phase angle of the fundamental and nth order harmonic com‐
ponent, respectively. Here the dc offset is neglected for the sake of brevity. The phase angle
of the fundamental component voltage can be expressed as:

1 1 1j q q= D + (19)

where θ1 and Δθ1 represent the estimated phase angle of the fundamental grid voltage and
the estimation error, respectively, obtained from the ADALINE-PLL. Therefore, the phase
angle of the nth order harmonic component can be expressed as:

0 0 1 1 0 1 1 1( ) ( ) ( )n n nn t n t n n t n nw j w q j q w q q j j+ = + + - = + + D + - (20)

where φn is the initial phase angle of the nth order harmonic component. Substituting Eq.
(20) back into Eq. (19), rearranging terms, we get:

1 1 0 1 1 1 0 1

1 1 0 1

2 1 1 0 1

( ) cos( )sin( ) sin( )cos( )
{ cos( ( ))sin[ ( )]

sin( ( ))cos[ ( )]}

sa
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n n
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V n n n t
V n n n t

q w q q w q
q j j w q
q j j w q=

= D + + D +

D + - +
+

+ D + - +å
(21)

From Eq. (21), it can be deduced that the original signal denoted by Eq. (18) can be regener‐
ated by adjusting the coefficients Vncos(nΔθ1 + (φn −nφ1)), Vnsin(nΔθ1 + (φn −nφ1)) (n=1, …,
N), even though the phase angle of the original signal is unknown. The objective of the pro‐
posed ADALINE-PLL is to reconstruct the phase information of the fundamental grid volt‐
age φ1 using least-mean-square (LMS) algorithm. Therefore, the grid voltage denoted by Eq.
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(18) can be expressed by the inner product of two vectors, namely, the vector of trigonomet‐
ric functions and the vector of weights in the LMS-based weights updating algorithm. The
weight vector W is denoted by the coefficients of the corresponding trigonometric functions.
Followed by this idea, Eq. (21) can be expressed as:

ˆ TY W X= (22)

where Ŷ  is the estimated output of the grid voltage vsa(t) by using the LMS-based linear op‐
timal filter methodology. The vector W and X corresponding to the weight vector and the
input vector, respectively, are represented as:

1 1 1 1 1 1 1 1[ cos( ), sin( ),..., cos( ( )), sin( ( ))]Tn n n nW V V V n n V n nq q q j j q j j= D D D + - D + - (23)

0 1 0 1 0 1 0 1[sin( ), cos( ),...,sin[ ( )], cos[ ( )]]TX t t n t n tw q w q w q w q= + + + + (24)

Equation (23) can be rewritten as:

1 1[ , ,..., , ]Ta b aN bNW w w w w= (25)

Notably,  the  salient  difference  between  the  ADALINE  algorithm  and  the  ADALINE-
PLL algorithm is  that,  the  frequency and phase  angle  signals  utilized in  the  ADALINE
weights  updating process  were assumed to  be  constant.  However,  in  case  of  the  ADA‐
LINE-PLL,  the  frequency  and  phase  angle  of  fundamental  component  grid  voltage  is
recursively  updated  by  the  loop  filter  (LF)  and  voltage  controlled  oscillator  (VCO)  of
the  PLL.  In  other  words,  the  weights  updating  procedure  of  the  ADALINE  is  utilized
as  the  phase  detector  (PD)  for  the  PLL,  which  generate  the  error  signal  to  drive  the
loop  filter  (LF)  and  voltage  controlled  oscillator  (VCO),  according  to  the  initial  defini‐
tion  of  PLL  The  graphical  interpretation  of  the  proposed  ADALINE-PLL  is  illustrated
in  Fig.9.  In  order  to  better  illustrate  the  working  principle  of  the  proposed ADALINE-
PLL,  the  weights  updating  law  and  stability  conditions  are  discussed  in  detail  as  fol‐
lows.

In the discrete domain, the weight vector of the ADALINE should be changed in a mini‐
mum manner, subject to the constraint imposed on the updated filter output. Let Ŵ k  denote
the old weight vector of the ADALINE filter at the kth iteration and Ŵ k +1 denote its updated
weight vector at the (k+1)th iteration. Therefore, given the input vector X k  and the desired
output Y k , the weight vector Ŵ k +1 can be written as:
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1 1
ˆ ˆ ˆ

k k kW W Wd + += - (26)

For each (Xk, Yk) pair, there exist at least one Ŵ k +1, such that the following equation is satis‐
fied:

1
ˆ H

k k kW X Y+ = (27)

Hence the weights adaption process is achieved by solving the optimization problem, as in‐
dicated by Eqs. (26)-(27). The cost function at the kth iteration can be formulated by using
the method of Lagrange multipliers (Wira et al., 2010, Yin et al., 2010), as:

2
1 1

ˆ ˆ|| || ( )H
k k k k kJ W Y W Xd l+ += + × - (28)

where λ denotes the real-valued Lagrange multiplier. The term | |δŴ k +1 ||2  denotes the
squared Euclidean norm of the weight change δŴ k +1.The cost function is a quadratic func‐
tion of the weight vector Ŵ k +1, as shown by expanding Eq. (28) into:

1 1 1
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )H H

k k k k k k k kJ W W W W Y W Xl+ + += - × - + × - (29)

The optimum weight vector can be found by minimizing the cost function Jk . Differentiate
the cost function Jk  with respect to Ŵ k +1, we get:

1
1

ˆ ˆ2( )ˆ
k

k k k
k

J
W W X

W
l+

+

¶
= - -

¶
(30)

By setting Eq.(30) equal to zero, the optimum value for Ŵ k +1, corresponding to the station‐
ary point of the cost function Jk , can be derived as:

1
1ˆ ˆ
2k k kW W Xl+ = + (31)

Hence, the output of the ADALINE as denoted by Eq. (22) can be rewritten as:

2
1

1 1ˆ ˆ ˆ( ) || ||
2 2

H H H
k k k k k k k k kY W X W X X W X Xl l+= = + = + (32)
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Then, the Lagrange multiplier λ can be obtained as:

2
2

|| ||
k

k

e
X

l = (33)

where ek =Y k −Ŵ H
k
X k  represents the estimation error of the ADALINE. From Eq. (31) and

Eq. (32), the following equation can be derived:

1 1 2
1ˆ ˆ ˆ

|| ||k k k k k
k

W W W X e
X

d + += - = (34)

In order to ensure stable operation of the weight vector updating process, a positive real scaling
factor μ (learning rate) is introduced to the step size. Hence Eq. (34) can be redefined as:

1 1 2
ˆ ˆ ˆ

|| ||k k k k k
k

W W W X e
X
md + += - = (35)

Equivalently,

1 2
ˆ ˆ

|| ||k k k k
k

W W X e
X
m

+ = + (36)

The aforementioned weights updating scheme, in essence, belongs to the well-known least
mean square (LMS) algorithm, which may introduce convergence problem in case of small
input vector X k  since the squared norm | | X k ||2  appears in the denominator, as indicated
by Eq. (36). To solve this problem, Eq. (36) can be modified as (Chang 2009):

1 2
ˆ ˆ

|| ||k k k k
k

W W X e
X
m

d+ = +
+

(37)

where δis a sufficiently small real number and δ >0. The weight adaptation law represented
in Eq.(37) is adopted and practically implemented herein.

3.2. Stability analysis of the ADALINE

The selection of the step-size parameter μ is a compromise between the estimation accuracy
and the convergence speed of the weights updating process. Generally speaking, a higher
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step-size would result in faster dynamic response and wider bandwidth of the ADALINE-
PLL. On the other hand, if the step-size is selected too small, the corresponding ADALINE
would be slow in transient response and results in a narrow bandwidth in frequency do‐
main. Assuming that the physical mechanism responsible for generating the desired re‐
sponse Yk is controlled by the multiple regression model:

1
ˆ H H

k k k k kY W X W X d+= = + (38)

where W represents the model’s unknown parameter vector and dk  represents unknown dis‐
turbances that accounts for various system impairments, such as random noise, modeling
errors or other unknown sources. The weight vector Ŵ k  computed by the ADALINE algo‐
rithm is an estimate of the actual weight vector W, hence the estimation error can be present‐
ed by:

ˆ
k kW We = - (39)

From Eqs.(37)-(39), the incremental in the estimation error can be derived as:

1 2|| ||k k k k
k

X e
X
me e

d+ = -
+

(40)

As stated above, the underlying idea of the ADALINE design is to minimize the incremental
change in the weight vector Ŵ k +1 from the kth and (k+1)th iteration, subject to a constraint
imposed on the updated weight vector Ŵ k +1. Based on this idea, the stability of the ADA‐
LINE algorithm can be investigated by defining the mean-square deviation of the weight
vector estimation error, hence we get:

2[|| || ]n kEr e= (41)

Taking the squared Euclidean norms of both sides of Eq. (41), rearranging terms, and then
taking the expectations on both sides of equation, we get:

2 2
2

1 2 2 2
|| || | |
[ ] 2 [ ]
( || || ) || ||

k k k k
n n

k k

X e e
E E

X X
x

r r m m
d d+

×
= + -

+ +
(42)

where ξk  denotes the undisturbed error signal defined by
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ˆ( )H H
k k k k kW W X Xx e= - = (43)

From Eq.(43), it shows that the mean-square deviation ρn decrease exponentially with the in‐
crease of iterations, hence the ADALINE is therefore stable in the mean-square error sense
(i.e., the convergence process is monotonic), provided ρn+1 <ρn is satisfied, which corre‐
sponding to the following condition:

2

2 2 2 2
[ / ( || || )]

0 2
{|| || | | /[( || || ) ]}

k k k

k k k

E e X
E X e X

x d
m

d

+
< <

× +
(44)

Considering the limited rate of variation in parameters for the practical grid-connected con‐
verter applications, if faster adaptation for the weight vector Ŵ k +1than the parameter varia‐
tion of the input signal is ensured, it can be shown that this inequality can always be
satisfied. It should be noted that the selection of the step-size parameter μ has a significant
effect on the frequency characteristics of the ADALINE-PLL, which would be discussed in
the forthcoming subsection. Here we first describe the proposed ADALINE-PLL and its im‐
plementation in Matlab/Simulink1.

3.3. Description of the proposed ADALINE-PLL

Figs.10-11 show the single-phase and three-phase version of the proposed ADALINE-PLL.
The following discussion is mainly focused on the single-phase version of the ADALINE-
PLL, but the similar analysis can be easily extended to the three-phase version. For the sake
of brevity, only the fundamental component, fifth and seventh order harmonics are consid‐
ered in the grid voltages, hence the estimation blocks corresponding to these three compo‐
nents are considered in the single-phase ADALINE-PLL. One may extend the order of the
ADALINE-PLL by incorporating higher order harmonic blocks in the algorithm according
to the particular applications. Fig.10(a) shows the top layer representation of the single-
phase ADALINE-PLL, it can be observed that the estimation error, phase angle of the funda‐
mental component in grid voltage, the learning rate are utilized as the input signals to the
subsystems, namely, the fundamental frequency block, the fifth order harmonic block and
the seventh order harmonic block.

Figs.10(b)-(d) shows the three subsystems for individual harmonic component estimation,
namely, the fundamental component, the fifth and the seventh order harmonic components.
Once again, the weights of the fundamental frequency component are denoted as ωa1 and
ωb1, hence the phase estimation error denoted by Δθ1 can be regulated to zero by using a
properly designed closed-loop control system, which resembles that of the existing grid syn‐
chronization schemes. As shown in Fig.10(b), the per unit representation of the weight ωb1 is

1 www.mathworks.com
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utilized as the input signal for the loop filter (LF) of the PLL, which can be simply derived

as:

 

(a) 

(b) 

(c) 

(d) 

Figure 10. The Matlab/Simulink diagram for the single-phase ADALINE-PLL
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The derived signal ωb1
pu, is then used as input for the phase tracking algorithm. However, by

incorporating the adaptive linear optimal filter methodology, the proposed ADALINE-PLL
exhibits noticeable advantages compared to the existing grid synchronization algorithms in
terms of response speed, accuracy and robustness.

Figure 11. The Matlab/Simulink diagram for the three-phase ADALINE-PLL

Fig. 11 shows the corresponding three-phase version of the proposed ADALINE-PLL, which
has a similar architecture with that of the single-phase version. One of the salient features of
the three-phase ADALINE-PLL algorithm is that the Clark’s transformation and Park’s
transformation are utilized consecutively to derive the q-axis component of the grid voltag‐
es, similar to the procedure adopted in the conventional three-phase PLL (CPLL) and the
virtual PLL (VPLL). However, the adaptive linear optimal filter (ADALINE) is used as the
phase detector (PD) section, which generate the dc component for the voltage controlled os‐
cillator (PI regulator). It should be noted that there is one fundamental frequency shift when
the electric quantities are transformed from the stationary α-β reference frame to the syn‐
chronous rotating reference frame (d-q frame). Besides, it is well known that the typical bal‐
anced nonlinear load produce characteristic harmonics of the orders: -5, +7, -11, +13… 6n+1
(n is integer), corresponding to the 6nth order harmonic components in synchronous rotat‐
ing reference frame. Therefore, the 2nd order harmonic in Fig.11 corresponds to the funda‐
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mental frequency negative sequence component, while the 6th order harmonic corresponds
to the 5th order harmonic (negative sequence) and the 7th order harmonic (positive sequence)
in stationary phase a-b-c frame. Generally speaking, the harmonic components considered
in the proposed ADALINE-PLL are selected according to the particular applications and the
available computational resources.

3.4. Parameter selection of the ADALINE-PLL

In this section, the parameter design of the single-phase version ADALINE-PLL is discussed
by using continuous domain (s-domain) analysis, discrete domain (z-domain) analysis and
time-domain simulation. It is found that the proposed ADALINE-PLL has the characteristic
of band-pass filter around the fundamental frequency and a notch filter at harmonic fre‐
quencies.

3.4.1. Continuous-domain (s-domain) analysis

Assuming the phase angle of the fundamental grid voltage detected by the closed-loop
ADALINE-PLL is denoted by θ̂, which is an integral of the estimated angular frequency ω̂0.
In the steady state, the estimated angular frequency ω̂0 can be considered to be constant,
hence the phase angle can be approximated as θ̂ = ω̂0t . Therefore, the block diagram of the
ADALINE-PLL indicated by Fig.10 can be simplified as Fig.12, provided that the estimated
angular frequency ω̂0 is within its neighborhood, i.e., ω̂0

' ≤ ω̂0≤ ω̂0
'' (ω̂0

'  and ω̂0
'' represent the

lower and upper boundaries which defines the lock range of the PLL). Referring to the fun‐
damental frequency block in Fig.12, the estimated fundamental component in time domain
can be represented as:

{ } { }1 0 1 0 0 1 0ˆ ˆ ˆ ˆ( ) [ ( ) cos( )] ( ) cos( ) [ ( ) sin( )] ( ) sin( )sav t e t t h t t e t t h t tw w w w= × * × + × * × (46)

Figure 12. Frequency domain diagram for quasi-steady state analysis of the ADALINE-PLL
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where e(t)represents the estimation error of the ADALINE, vsa1(t)represents the estimated
fundamental component of grid voltage, h 1(t)represents the operator of integration and as‐
terisk denotes convolution. Applying Laplace transform to Eq. (46), rearranging terms, we
get:

1 1 0 1 0
1 ˆ ˆ( ) [ ( ) ( )] ( )
2saV s H s j H s j E sw w= + + - × (47)

where V sa1(s), H1(s),E (s) corresponds to the Laplace transform of vsa1(t), h 1(t) and e(t), re‐
spectively. In Eq. (47), H1(s) is represented as:

1
1( )

k
H s

s
= (48)

where k1 is integration gain, corresponding to the learning rate (μ) of the weights updating
process (μ=k1T). Combining Eq.(47) and Eq.(48), we get

1 1
1 2 2

0

( )
( )

( ) ˆ
saV s k s

G s
E s s w

= =
+

(49)

Similarly, for the nth order harmonic block in Fig.12, the generalized transfer function from
estimation error E (s) to the individual harmonic component output V san(s), can be derived
as:

2 2
0

( )
( )

( ) ˆ( )
san n

n
V s k s

G s
E s s nw

= =
+

(50)

For the present case, the fundamental component, fifth and seventh order harmonics are
considered, hence the error transfer function from the input V sa(s) to E (s), can be represent‐
ed as:

1 5 7

( ) 1( )
( ) 1 ( ) ( ) ( )error

sa

E sG s
V s G s G s G s

= =
+ + + (51)

Similarly, the transfer function from the input V sa(s) to the estimated fundamental compo‐
nent V sa1(s), is:
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Fig. 13 shows the bode-plot of the ADALINE when only the fundamental frequency block is
considered. The frequency response of the ADALINE under the variations of the center fre‐
quency ω̂0 and the integration gain are shown in Fig.13(a) and Fig.13(b), respectively. Fig.
13(a) shows the open-loop frequency response of the ADALINE with the variation of center
frequency, it is interesting to notice that this characteristic provides the flexible frequency
tracking capability, compared to the adaptive linear neural network (ADALINE) algorithm
since the frequency response of ADALINE cannot adapt to the frequency variation in the in‐
put signal. It can be observed from Fig.13(b) that the integration gain, i.e., the learning rate
(μ), has a significant effect on the frequency characteristics of the ADALINE. Small learning
rate results in a sharp amplitude-frequency curve and steep phase-frequency curve. Besides,
small learning rate implies a narrow bandwidth and slow transient response of the weights
updating process. Higher learning rate, on the other hand, implies a flat amplitude-frequen‐
cy curve, which would improve the dynamic response, increase the bandwidth of the ADA‐
LINE.

 

(a) (b) 

Figure 13. Bode plot of the ADALINE when only the fundamental frequency block is considered. (a) Open-loop fre‐
quency response of ADALINE with the variation of the center frequency, (b) Closed-loop frequency response of ADA‐
LINE with the variation of gain.

Fig.14 shows the frequency response of the ADALINE when the fundamental component,
fifth and seventh harmonic components are considered. Fig.14(a) shows the bode-plot from
the input signal Vsa(s) to the estimation error E(s). It can be observed that it exhibits as a typi‐
cal notch filter, and significant attenuation is observed in the amplitude-frequency curve at
the harmonic components under consideration. The attenuation at particular harmonic fre‐
quency is controlled by the selection of the learning rate of ADALINE, higher learning rate
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implies higher attenuation. Fig.14(b) shows the bode-plot from the input signal Vsa(s) to the
estimated fundamental component Vsa1(s). It can be observed that it exhibits a band-pass fil‐
ter around the fundamental frequency, and a notch filter at the considered harmonic fre‐
quencies. In case of large frequency variation in grid voltages, the learning rates of the
ADALINE should be sufficiently high to ensure a wide bandwidth. Besides, it should be
noted that the number of harmonics considered in the ADALINE-PLL can be easily extend‐
ed to higher order harmonic components according to the particular applications.

 

(a) (b) 

Figure 14. Bode plot of the ADALINE when the fundamental frequency block, the fifth and seventh harmonic blocks
are considered.

It should be noted that the frequency domain analysis is based on the quasi-steady state
model of the ADALINE, which serves the purpose of phase detection (PD) for the PLL. The
estimated phase error signal is then utilized as the input for the loop filter (LF), which is se‐
lected as the standard proportional-integral (PI) regulator for the present case. Here the line‐
arized model for the phase estimation can be described as Fig.15(a). It is interesting to
observe that the derived linearized model for the phase estimation resembles that of the ex‐
isting PLL algorithms. The closed-loop transfer function of the linearized model indicated
by Fig.15(a) can be represented as:

ˆ ( )( )( )
( ) ( )

q
q

= =
+

f
c

f

K ssH s
s s K s (53)

where θ̂(s), θ(s) denote the Laplace transform of the estimated phase angle θ̂ and the actual
phase angle θ respectively. To achieve a good trade-off between the filter performance and
system stability, the proportional-integral (PI) type filter is utilized for the loop filter (LF),
which can be given as:
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where kp and τ denote the proportional gain and time constant of the PI regulator, and the
integrator gain ki=kp/τ. Equation (54) can be rewritten in the generalized second order system
as:
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The open loop transfer function of Fig.15 (a) can be derived as:

2

1 1(1 ) ( )( ) t t
+ +

= = =
p pf

open

k k sK s sG
s s s

(57)

The root locus for the PLL modeled in the s-domain is shown in Fig.15(b). There are two
open loop poles at the origin of the s-plane and one open loop zero at s=-1/τ. However, it is
interesting to notice from Fig.15(b) that the s-domain model never predicts an unstable
mode for any combination of PI parameters. Therefore, the discrete domain (z-domain)
would be necessary to study the stability characteristic of the proposed ADALINE-PLL, as
discussed in subsequent section.

3.4.2. Discrete-domain (z-domain) analysis

In the discrete domain, Eq. (50) can be rewritten as:

2
( ) ( cos )

( )
( ) 2 cos 1

san n n
n

n

V z k z z
G z

E z z z
- W

= =
- W +

(58)

where Ωn =nω̂0T , and T is the sampling frequency specified according to the particular ap‐
plications, for the present case, T=100μs is selected which is the typical sampling frequency
for the low voltage power converters. Hence, the discrete domain transfer function from
V sa(z) to E (z) can be represented as:
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(a) 

(b) 

Figure 15. Small signal analysis of the proposed ADALINE-PLL in s-domain: (a) The approximated second order linear‐
ized model for phase estimation and (b) Root locus in s-domain of the linearized model.

Assuming that G(z)=G1(z) + G5(z) + G7(z), ω̂0 =2×π ×50, T=100μs, and the integration gain kn

of individual harmonic component are assumed to be identical for the sake of simplicity
(kn=K), then the following representation can be derived:

5 4 3 2

6 5 4 3 2
0.0002988 0.001479 0.002944 0.002944 0.001479 0.0002988( )

5.926 14.71 19.56 14.71 5.926 1
z z z z zG z K

z z z z z z
- + - + -

=
- + - + - +

(60)

The root locus for the ADALINE modeled in the z-domain is shown in Fig.16. There are two
open loop zeros at z=1, a pair of conjugate zeros and three pair of conjugate poles distribut‐
ing in the z-plane. It can be observed from Fig.16 that the stability margin increases with the
increase of integration gain K when 80<K<554 (0.008<μ<0.055) and decreases with the in‐
crease of K when 554<K<6833 (0.055<μ<0.68). Moreover, it can be observed from the root lo‐
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cus diagram that when 80<K<6833 (0.008<μ<0.68), the ADALINE system is stable, otherwise
it is unstable.

 

(a) 

(b) 

Figure 16. Small signal analysis of the proposed ADALINE-PLL in z-domain: (a) The approximated second order linear‐
ized model for phase estimation and (b) Root locus in z-domain of the linearized model.

The ADALINE subsystem is assumed to be stable in the following discrete domain analysis,
which implies that the phase detection is achieved. The z-domain analysis will be performed
on a discrete-time PLL system with a second-order loop filter. As shown in Fig.17(a), and
the block Kd(z) is the z-transform of the loop filter and voltage-controlled oscillator (VCO),
hence the closed-loop transfer function can be represented as:

ˆ ( )( )( )
( ) 1 ( )

d
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+

(61)

For the second order loop using the PI type filter, Kd(z) can be obtained as
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where α =1−T / τ and T denotes the sampling period of the discrete system. The transfer
function of the closed loop system in the discrete-time domain can be derived by substitut‐
ing Eq. (61) into Eq. (60) as
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Figure 17. Root locus of discrete-time ADALINE system

The root locus for the PLL modeled in the z-domain is shown in Fig.17(b). It can be observed
that there are two open loop poles at z=1 and two open loop zeros at z=0 and z=α. It is inter‐
esting to note that, since the open-loop zero location (α) is a function of the time constant τ,
the z-domain model can predict unstable loop performance for the condition of T >2τ in
which case an open-loop zero α is located on the negative real axis outside the unit circle.
For T < <τ, the quantity α is close to unity, in this case, the z-domain and s-domain model
predict similar characteristics for jitter2 frequencies within the loop’s bandwidth. Moreover,
the selection of parameter kp is a tradeoff between loop’s bandwidth and dynamic response.
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3.5. Time-domain simulation results of the ADALINE-PLL

Figs.18-19 show the time-domain simulation results of the single phase version of the pro‐
posed ADALINE-PLL under different control parameters. The grid voltage is assumed to
contain 0.1 p.u. 5th order harmonic and 0.1 p.u. 7th order harmonic components and a transi‐
ent voltage sag occurs at t=0.05s to test the dynamic response of the ADALINE-PLL. Fig.18
shows the performance of the single-phase ADALINE-PLL with the variation of learning
rate (μ) when the loop regulator gains are selected as:kp=300, ki=10000. It can be observed
that if the learning rate is selected too small, the estimation error of the ADALINE-PLL
would be remarkable and there would be significant oscillation in the estimated frequency
and the phase estimation error (see the dash line and the dash dot line in Fig.18). The solid
line in Fig.18 shows the performance of the ADALINE-PLL corresponding to the optimal
learning rate μ=0.035.

Figure 18. The performance of single-phase ADALINE-PLL with the variation of learning rate (μ) when kp=300,
ki=10000. (Solid line: μ=0.035; dash line: μ=0.015; dash dot line: μ=0.025.)

2 Jitter—The time variation of a characteristic of a periodic signal in electronics and telecommunications, often in rela‐
tion to a reference clock source.
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Figure 19. The performance of single-phase ADALINE-PLL with variation of kp, kiwhen μ=0.035. (Solid line:kp=300,
ki=10000; dash line: kp=250, ki=30000; dash dot line: kp=500, ki=6000.)

Fig.19 shows the performance of the ADALINE-PLL with the variation of regulator gains
when the learning rate is predefined. It can be observed that the dynamic response of the
ADALINE-PLL is mainly determined by the proportional gain kp, if kp is selected too small,
the ADALINE-PLL becomes sluggish and the estimated frequency and phase error decays
slowly (dash line in Fig.19). On the other hand, if the gain is selected too high, there would
be large overshoot in the estimated frequency and the phase estimation error (the dash dot
line in Fig.19). It should be noted that the performance of the ADALINE-PLL is less sensitive
to the integration gain ki. The solid line in Fig.19 shows the performance of ADALINE-PLL
corresponding to the optimal regulator parameters.

4. Performance comparison with the existing PLL algorithms

This section presents the performance comparison among the existing PLL algorithms and
the proposed ADALINE-PLL. Firstly, a brief introduction of the enhanced PLL (EPLL) and
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the park-PLL is presented. Then, the simulation results of these algorithms are compared
with those of the ADALINE-PLL under grid voltage disturbances, such as grid voltage sag,
harmonics and random noise contamination scenarios.

4.1.The enhanced phase-locked loop (EPLL)

In recent literature, the enhanced PLL (EPLL) system was proposed (Karimi-Ghartemani et
al, 2004). The major improvement introduced by the EPLL is in the PD mechanism, which is
replaced by a new strategy allowing more flexibility and provides more information such as
amplitude and phase angle. The mechanism of this EPLL is based on estimating in-phase
and quadrature-phase amplitudes of the desired signal, hence, has potential application in
communication systems which employ quadrature modulation techniques.

The Matlab/Simulink diagram of this EPLL is shown in Fig.20. It can be observed that there are
three gains, denoted as kg, kp and ki, which are selected to control the convergence speed for the
amplitude, phase and frequency of the fundamental component of the input signal. The guide‐
line for the selection of these gains, however, is not that trivial. The control loop interaction exists
since the amplitude, phase and frequency estimation are competing with each other, if any of
these gains is varied, it would affect the performance and stability of the closed-loop algorithm.
Generally, the gain for the frequency estimation (ki) should be very small to ensure stability.
However, it would result in slow dynamic performance under frequency deviation in the grid
voltage. If the frequency estimation is disabled by setting kito be zero, steady state error may ap‐
pear or the algorithm may even diverge under large deviations in the input. Therefore, this EPLL
scheme is difficult to be practically implemented, especially for the grid-connected converters
which has demanding requirements for tracking accuracy, stability and reliability of the syn‐
chronization algorithm (Karimi-Ghartemani et al, 2004).

Figure 20. The Matlab/Simulink diagram for the enhanced PLL (EPLL).

On Using ADALINE Algorithm for Harmonic Estimation and Phase-Synchronization for the Grid-Connected...
http://dx.doi.org/10.5772/52547

51



4.2. The Park phase-locked loop (Park-PLL)

The park-PLL was another single-phase version of the three-phase synchronous reference
frame (SRF) PLL (Filho, R. M. S., et al., 2008). As shown in Fig.21, the circuit diagram of the
park-PLL consists of two matrix transformations, namely, the Park’s transformation and the
inverse Park’s transformation. The component vβ of the stationary frame is obtained by in‐
verse Park’s transformation of the filtered synchronous components vd

'  and vq
' in order to

emulate a three-phase balanced electric system. The time constants τd and τq of the two first-
order low pass filters (FOLPFs) determines the dynamic characteristics of the phase detec‐
tion (PD) section.

Figure 21. The Matlab/Simulink diagram of the park-PLL

It was reported that the PD is always asymptotically stable around the equilibrium condi‐
tion ω̂≅ω. As for the selection of time constants, ifτd(orτq) is made too small, a pair of real
poles will take place and results in a slow dynamic response. On the other hand, ifτd(orτq) is
made too high, a pair of complex conjugate poles with small real part will take place, which
makes the park-PLL slow and oscillatory. It was suggested that the filter cutoff frequency
should be equal to about two times line frequency to ensure a fast dynamic response (Filho,
R. M. S., et al., 2008).

After the cutoff frequency of the low pass filters is selected, the compensator gains, namely,
kp and ki, can be set in order to meet dynamic response and line disturbance rejection specifi‐
cations. However, it should be noted that each harmonic component of order h and ampli‐
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tude Vhin input grid voltage will produce two components of orders h±1 and amplitude of
Vh/2 in the PD output. Besides, a dc component in input voltage will also lead to a funda‐
mental frequency oscillation in the dq components. Therefore, a tradeoff between speed of
dynamic response and harmonic rejection capabilities should be achieved to optimize the
performance of the park-PLL.

4.3. The performance evalution among the EPLL, the Park-PLL, and the ADALINE-PLL

Fig.22  shows  the  simulation  results  corresponding  to  the  estimated  frequency  in  grid
voltage and the phase estimation error when the grid is  subjected to 0.7  per unit  (p.u.)
voltage  sag.  Here  the  existing  grid  synchronization  schemes,  namely,  the  enhance  PLL
(EPLL)  and  the  park-PLL  are  also  simulated  for  the  sake  of  comparison.  It  can  be  ob‐
served that  the park-PLL and the EPLL have similar  dynamic response in the estimated
frequency, with an overshoot of 5Hz when voltage sag occurs.  It  is  interesting to notice
that the response time of park-PLL and the EPLL is longer when the grid voltage recov‐
ers to normal condition. The proposed ADALINE-PLL shows the lowest frequency over‐
shoot compared with other grid synchronization schemes. As far as the phase estimation
error is concerned, the phase estimation error of the park-PLL and EPLL has high transi‐
ent overshoot with noticeable oscillations.  Whereas,  the proposed ADALINE-PLL shows
the best dynamic response with smallest phase estimation error with overshoot of about
2  degrees.  It  can  be  concluded from the  estimated  frequency  and the  phase  estimation
error  that  the ADALINE-PLL provides a  more robust  performance when subject  to  sig‐
nificant sag in the grid voltage.

Fig.23  shows  the  simulation  results  corresponding  to  the  estimated  frequency  in  grid
voltage and the phase estimation error when the grid is contaminated by harmonics. The
0.3 per unit (p.u.) 5th order harmonic and 0.3 per unit (p.u.) 7th order harmonic compo‐
nents  are  added to  the  grid  voltage  at  t=0.05s  with  a  duration  of  0.15s  to  test  the  im‐
munity  of  the  various  grid synchronization schemes.  The park-PLL and the  EPLL show
noticeable  oscillations in  the estimated frequency when the harmonics  are  added to  the
grid voltage. Besides, the park-PLL shows longer settling time when the grid voltage re‐
covers to the normal condition. The EPLL shows the highest estimation error in grid fre‐
quency with amplitude of about 20 Hz, and the park-PLL shows the estimation error of
about  10Hz  when  the  harmonics  are  imposed.  However,  the  proposed  ADALINE-PLL
shows the lowest frequency overshoot (0.5Hz) and highest estimation accuracy in the es‐
timated  frequency  compared  to  the  other  grid  synchronization  schemes.  Furthermore,
the  phase  estimation  error  of  the  park-PLL  and  the  EPLL  is  remarkable  during  transi‐
ents,  and the park-PLL is  found to have a  large settling time when the grid voltage re‐
covers.  Besides,  it  shows  that  the  EPLL  has  significant  ripples  in  the  phase  estimation
error.  However,  the  proposed  ADALINE-PLL  shows  negligible  estimation  error  com‐
pared  to  the  other  algorithms,  which  implies  that  the  proposed  ADALINE-PLL  shows
better robustness under harmonic contamination in grid voltages.

On Using ADALINE Algorithm for Harmonic Estimation and Phase-Synchronization for the Grid-Connected...
http://dx.doi.org/10.5772/52547

53



Figure 22. Performance comparison among the EPLL, the park-PLL and the proposed ALOF-PLL algorithm under 0.7
p.u. voltage sag in grid voltages (note: the ADALINE-PLL is abbreviated by ALOF-PLL )
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Figure 23. Performance comparison among the park-PLL, the EPLL and the proposed ADALINE-PLL algorithm under
0.3 p.u. 5th order harmonic (negative sequence) and 0.3 p.u. 7th order harmonic (positive sequence) components in
grid voltages
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Figure 24. Performance comparison among the park-PLL, the EPLL and the ADALINE-PLL algorithm when random
noise (power=5e-6) is suddenly applied in grid voltages
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Fig.24 shows the simulation results corresponding to the estimated frequency in grid volt‐
age  and  the  phase  estimation  error  when  the  grid  voltage  is  contaminated  by  random
noise. The random noise of power density 10e-5 per unit (p.u.) is added to the grid volt‐
age at t=0.05s with a duration of 0.15s to test the immunity of the various grid synchroni‐
zation schemes.  Similar  to  the  case  of  a  sudden applying harmonics,  the  park-PLL and
EPLL show noticeable oscillations in the estimated frequency when the noise is added to
the grid voltage. Besides, the park-PLL shows longer settling time when the grid voltage
recovers  to  the  normal  condition.  The EPLL shows the  highest  estimation error  in  grid
frequency with amplitude of about 5 Hz, and the park-PLL shows the estimation error of
about 2Hz when the noise is imposed. However, the proposed ADALINE-PLL shows the
lowest frequency oscillation (0.2Hz) and highest estimation accuracy in the estimated fre‐
quency compared to the other grid synchronization schemes. Moreover, the phase estima‐
tion error of the park-PLL and the EPLL is remarkable during transients,  and the park-
PLL  is  found  to  have  a  large  settling  time  when  the  grid  voltage  recovers.  Besides,  it
shows that  the  park-PLL has  the  maximum phase  estimation  error  of  about  3  degrees,
and the  phase  estimation error  of  EPLL is  less  than 2  degrees.  However,  the  proposed
ADALINE-PLL shows negligible estimation error compared to the other algorithms, with
amplitude of less than 0.5 degree. The estimated frequency and the phase estimation er‐
ror  in  Fig.24  indicate  that  the  proposed  ADALINE-PLL  shows  better  robustness  when
grid voltage is contaminated by random noise.

5. Conclusions

The electrical power systems are under a transition to the smart grid owing to the advance‐
ment of modern control, communication technologies and the requirement of real-time mar‐
keting. In the smart grid, the power converters are indispensable components which connect
the renewable energy resources and the FACTS devices, power quality conditioning devices
to the grid. Hence the accurate grid-synchronization of these power converters to the grid is
crucial to ensure their stable operation. This book chapter aims to provide a systematic ap‐
proach for the adaptive linear neural network (ADALINE) algorithm for the real-time har‐
monic estimation and phase synchronization for the grid-connected converters, which are
the fundamental building blocks for the smart grid infrastructure.

The mathematical derivation of the ADALINE algorithm and the ADALINE-PLL scheme is
presented, followed by the stability analysis, the continuous domain and the discrete do‐
main models, and the guidelines for parameter selection of the ADALINE-PLL algorithm.
The performance of the ADALINE-PLL is further validated by performance comparison
with the existing park-PLL and EPLL algorithms. It can be expected that the presented
ADALINE-based algorithms can find wide application in the grid-connected converters for
smart grid applications.
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