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1. Introduction 

The discovery of leptin in 1994 provoked the interest in the adipose tissue which was no 

longer considered as an inert tissue storing energy in the form of triglycerides but as the 

greatest endocrine organ in human body [1, 2]. As a growing number of people suffer from 

obesity and metabolic syndrome, understanding the mechanisms by which various 

hormones and neurotransmitters have influence on energy balance, weight control and 

insulin resistance has been a subject of intensive research.  

The regulation of appetite and feeding is a homeostatic mechanism. A powerful and 

complex physiological system exists to balance energy intake and expenditure, in order that 

sufficient energy is available and body weight remains stable [2, 3]. This system is composed 

of both afferent signals and efferent effectors. A large number of factors originating 

throughout the body send afferent signals to a smaller number of functional centers in the 

central nervous system (CNS), that then mediate interactions with efferent pathways to 

regulate energy expenditure and energy intake [4]. Thus, central circuits in the brain rely on 

peripheral signals indicating satiety levels and energy stores, as well as higher cortical 

factors such as emotional and reward pathways [5].  

There are numerous peptides involved in the regulation of energy homeostasis, some of 

which are produced centrally and others peripherally in the gastrointestinal tract (GI), with 

some produced at both locations. These peptides are known as members of the ‘gut-brain 

axis’ [6]. Since the discovery of secretin, which was confirmed to stimulate pancreatic 

exocrine secretion, more than 40 other GI tract hormones have been discovered. 

Anticipation of a meal and the presence of food in the stomach and the small intestine 

stimulate secretion of many of these hormones from the gut through mechanical and 

chemical stimuli. These signals are involved in the initiation of food intake as well as 

termination of meals [7]. However, many of the same hormones are also expressed in the 
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CNS, acting to translate metabolic information between the GI tract and the brain [8]. In 

normal subjects, body weight is tightly regulated despite day-to-day variations in food 

intake and energy expenditure. Obesity is due to a state in which energy intake exceeds 

energy expenditure over a prolonged period of time. In humans it is also of note that 

psychological and emotional factors can drive food intake in excess of actual need [7]. 

In summary, signals relaying information such as the nutritional and energy status of the 

body converge within the CNS. Thus, CNS mediates energy balance in the body, the 

hypothalamus playing a main role in this process. The arcuate nucleus (ARC) is a key 

hypothalamic nucleus in the regulation of appetite and is involved in integrating peripheral 

satiety and adiposity signals via orexigenic and anorexigenic neuropeptide transmission to 

other hypothalamic and extrahypothalamic brain regions [9]. Proximity of ARC to the 

median eminence and the fact that it is not fully insulated from the circulation by the blood 

brain barrier makes it strategically positioned to integrate the great number of peripheral 

signals controlling food intake [5]. There are two major neuronal populations in the ARC 

implicated in the regulation of feeding. One population co-expresses Neuropeptide Y (NPY) 

and agouti-related protein (AgRP) and increases food intake. The second population of 

neurons co-expresses cocaine- and amphetamine-related transcript (CART) and pro-

opiomelanocortin (POMC), the precursor to the melanocortin receptor agonist, α-

melanocyte-stimulating hormone (-MSH), and inhibits food intake. Neuronal projections 

from these two populations then communicate with other hypothalamic areas involved in 

appetite regulation such as the paraventricular nucleus (PVN), ventromedial nucleus 

(VMN), dorsomedial nucleus (DMN) and lateral hypothalamic area (LHA) [10].  

Receptors for leptin and insulin are expressed on both of these types of neurons, suggesting 

that they are responsive to circulating levels of these hormonal signals, acting as effectors for 

altering food intake in response to variations in energy balance as indicated by body 

adiposity [11]. Leptin is secreted by adipocytes and circulates at concentrations proportional 

to fat mass. Restriction of food intake for a relatively longer period, results in a supression of 

leptin levels, which can be reversed by refeeding or administration of insulin. Insulin is a 

major metabolic hormone. Like leptin, levels of plasma insulin vary directly with changes in 

adiposity being influenced to a great extent by peripheral insulin sensitivity. The latter is 

related to total body fat stores and fat distribution, with visceral fat being the key 

determinant [12]. Plasma insulin increases at times of positive energy balance and decreases 

at times of negative energy balance. However, unlike leptin, insulin secretion increases 

rapidly after a meal, whereas leptin levels are relatively insensitive to meal ingestion. Both 

leptin and insulin cross the blood-brain barrier, stimulate anorexigenic α-MSH/CART 

neurons and inhibit orexigenic NPY/AgRP neurons, thus activating the catabolic pathways 

and inhibiting the anabolic pathways (Figure 1). When energy stores are low, production of 

leptin from adipose tissue, and thus circulating leptin concentrations fall, leading to 

increased production of hypothalamic neurotransmitters that strongly increase food intake, 

such as NPY, galanin, and AgRP and decreased levels of α-MSH, CART, and neurotensin 

that reduce food intake and increase energy expenditure [8, 13]. 
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CRH, corticotrophin-releasing hormone; MCH, melanin-concentrating hormone, 5-HT, 5-hydroxytryptamine; NE, 

norepinephrine; (- - ) inhibition; ( ) stimulation. 

Figure 1. Schematic action of leptin and insulin on the hypothalamus. 

In addition to leptin and insulin, receptors for ghrelin are also located on arcuate AgRP/NPY 

neurons, which are activated by central ghrelin administration. Furthermore, peripheral 

ghrelin administration activates neurons in the ARC and AgRP and NPY have been 

demonstrated to be requisite mediators of the hyperphagia induced by systemic ghrelin [11]. 

So, meal-generated satiety signals from the GI tract do interact with longer-term adiposity 

signals, such as insulin and leptin in energy balance [8]. 

NPY is one of the most abundant peptides of the hypothalamus and one of the most potent 

orexigenic factors. The majority of neurons expressing NPY in the hypothalamus are found 

within the ARC and most co-express AgRP [14]. Synthesis and release of NPY are both 

regulated by leptin binding to its hypothalamic receptor. NPY links afferents reflecting the 

nutritional status of the organism from endocrine, gastrointestinal, and central and 

peripheral nervous systems to effectors of energy intake and expenditure [15]. NPY 

stimulates appetite inducing hyperphagia, increase of fat depots, decrease of thermogenesis, 

and suppression of sympathetic activity. NPY is known to be involved in other 

physiological functions, such as cardiovascular regulation, affective disorder, memory 

retention, neuroendocrine control. When leptin levels increase after food intake, the latter 

binds to its receptors in the hypothalamus which leads to discontinuation of NPY secretion 

[5, 16]. The decrease of NPY concentration in obesity probably plays a role of a counter-

regulatory factor intended to prevent further weight gain. Thus, NPY becomes one of the 

main regulators of food intake, body weight and energy expenditure. 

Ghrelin is a fast-acting hormone, seemingly playing a role in meal initiation. Secreted 

predominantly from the stomach, ghrelin is the natural ligand for the growth hormone 

secretagogue-receptor (GHS-R) in the pituitary gland, thus fulfilling the criteria of a brain–
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gut peptide [5, 6]. Although the majority of ghrelin is produced peripherally, there are 

ghrelin immunoreactive neurons within the hypothalamus that have terminals on 

hypothalamic NPY/AgRP, POMC and corticotropin releasing hormone (CRH) neurons [17], 

as well as orexin fibres in the LHA [18]. It was found that ghrelin acts to promote appetite in 

two ways—directly, by depolarizing the orexigenic NPY/AgRP neurons, and indirectly, by 

increasing the tonic inhibition exerted by the NPY/AgRP neurons over the anorexigenic 

POMC/CART neurons. Both of these ultimately enhance appetite [4, 17, 18]. The ability of 

ghrelin to increase food intake and body weight is mediated through the stimulation of NPY 

production in the hypothalamic ARC, where it antagonizes the inhibitory effect on NPY 

secretion displayed by leptin and insulin [19]. 

The purpose of this chapter is to provide background information on the relationship 

between the main appetite regulatory peptides NPY and ghrelin, and insulin resistance. The 

role of NPY and ghrelin in food intake and body weight control in humans, and their 

mechanism of action are discussed, focusing on association with glucose metabolism and 

insulin resistance.  

2. Neuropeptide Y (NPY) 

NPY is one of the most abundant peptides of the hypothalamus and one of the most potent 

orexigenic (appetite-increasing) factors [20]. It is a 36-amino acid peptide that was first 

isolated from porcine brain in 1982 [21] (Fugure 2). It is a member of the PP-fold family of 

peptides which consists of NPY, peptide YY (PYY), pancreatic polypeptide (PP) and peptide 

Y (PY) [22]. 

 

Figure 2. Structure of NPY. 

NPY is synthesized by cell bodies in the ARC and transported axonally to the PVN where 

the highest concentrations are found [23]. NPY-expressing neurons are prominent also in the 

DMN and the VMN [24]. All these regions of the brain influence feeding behavior and 

energy balance.  

NPY is also found in circulating blood, where it comes mainly from the adrenal medulla and 

sympathetic nerves, but this peripheral hormone does not cross the blood-brain barrier [25, 



 
Appetite Regulatory Peptides and Insulin Resistance 93 

26]. NPY is present in the pancreas, in both the islet cells and in sympathetic nerve terminals 

[27, 28].  

Regulation of NPY synthesis and release 

The levels of hypothalamic NPY mRNA and NPY release increase with fasting and decrease 

after refeeding [29-31]. When fed with a high-carbohydrate diet; diabetic rats exhibit 

increased gene expression of the NPY in the hypothalamic ARC, and high-fat diet 

suppressed NPY expression [32]. Thus, NPY synthesis as well as its receptorial expression 

are sensitive to changes in the metabolic status and food availability. While starvation and 

food deprivation increase NPY release [30], in obese subjects the activity of NPY neurones is 

down-regulated in the attempt to restrain overeating of palatable food [33]. These facts 

support the existence of a long loop control system in energy metabolism between the brain 

and adipose tissue. Several peripheral factors are involved in the modulation of this system. 

Among them insulin and leptin display an inhibitory effect; glucocorticoids and ghrelin act 

as stimulatory afferent signals [34]. 

It has been reported that leptin is a major inhibitory regulator of the activation by ghrelin of 

the orexigenic network of NPY [35]. Circulating leptin crosses the blood brain barrier and 

binds to the long form of the leptin receptor, Ob-Rb, in the hypothalamus [36]. The Ob-Rb is 

expressed widely within the hypothalamus but particularly in the ARC, VMN, DMN and 

LHA. Several experimental studies demonstrate that systemic administration of leptin 

inhibits NPY gene overexpression through a specific action in the ARC. Cells within the 

ARC express both NPY and leptin receptors, and leptin directly activates anorectic POMC 

neurons and inhibits orexigenic AgRP/NPY neurons [37]. All available data can be 

summarized as follows: when leptin levels increase after food intake, the latter binds to its 

receptors in the hypothalamus which leads to discontinuation of NPY secretion. When 

production of leptin from adipose tissue is reduced, the circulating leptin concentrations fall, 

and this lead to enhanced production of NPY that strongly increase food intake.  

Receptors for ghrelin are also located on arcuate AgRP/NPY neurons, which are activated by 

central ghrelin administration. Ghrelin acts by depolarizing the orexigenic NPY/AgRP 

neurons, and by increasing the tonic inhibition exerted by the NPY/AgRP neurons over the 

anorexigenic POMC/CART neurons [11]. c-Fos expression increases within NPY-

synthesizing neurons in the ARC after peripheral administration of ghrelin [38], and ghrelin 

fails to increase food intake following ablation of the ARC [39]. Studies of knockout mice 

demonstrate that both NPY and AgRP signalling mediate the effect of ghrelin, although 

neither neuropeptide is obligatory [40]. 

Insulin is a major metabolic hormone produced by the pancreas and the first adiposity signal 

to be described. Little or no insulin is produced in the brain itself [41, 42]. Insulin levels are 

dependent on peripheral insulin sensitivity that is related to total body fat stores and fat 

distribution, with visceral fat being a key determinant of insulin sensitivity [12]. Once insulin 

enters the brain, it acts as an anorexigenic signal, decreasing food intake and subsequently 

body weight. It was found that both the NPY and melanocortin systems are important 

downstream targets for the effects of insulin on food intake and body weight. Insulin 
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penetrates the blood–brain barrier via a saturable, receptor-mediated process, at levels which 

are proportional to the circulating insulin [43]. Insulin receptors are widely distributed in the 

brain, with highest concentrations found in the olfactory bulbs and the hypothalamus [44]. 

Within the hypothalamus, there is particularly high expression of insulin receptors in the ARC; 

they are also present in the DMH, PVN, and suprachiasmatic and periventricular regions [45]. 

Hypothalamic NPY is a potential mediator of the regulatory effects of insulin. The increase of 

NPY levels in the PVN and prepro-NPY mRNA in the ARC during fasting are inhibited by 

intracerebroventricular (icv) administration of insulin. Fasting, therefore, increases NPY 

biosynthesis along an ARC-PVN pathway in the hypothalamus via a mechanism dependent 

on low insulin levels [46]. NPY expression is increased in insulin-deficient, streptozocin-

induced diabetic rats and this effect is reversed with insulin therapy [47, 48]. Insulin receptors 

have been found also on POMC neurons in the ARC [49]. Administration of insulin into the 

third ventricle of fasted rats increases POMC mRNA expression and the reduction of food 

intake caused by icv injection of insulin is blocked by a POMC antagonist [49]. Furthermore, 

POMC mRNA is reduced by 80% in rats with untreated diabetes, and this can be attenuated 

by peripheral insulin treatment which partially reduces the hyperglycaemia [50].  

Glucocorticoid hormones play a critical role in energy balance and also appear to mediate at 

least some of their actions through the central NPY axis. They may regulate NPY-induced 

insulin release and NPY signaling within the VMH of the hypothalamus. Glucocorticoid-

receptor immunoreactivity is found within the rat CNS, including the ARC, VMH, and PVN 

[51]. Many of these receptors are expressed at the nucleus of NPY-containing, endocrine-

related neurons and coexist in regions containing high NPY receptor density [52]. In rats, 

excessive corticosterone promotes body fat gain and hyperinsulinemia [53] and also 

increases NPY synthesis and Y1-receptor mRNA expression, at least within the ARC ([54, 

55]. Conversely, removal of glucocorticoids by adrenalectomy reduces hyperphagia and 

body weight of obese (fa/fa) rats [56], abolishes obesity induced by VMH lesions [57], and 

prevents obesity induced by chronic central NPY infusion in normal rats [58]. However, it 

has been reported that adrenalectomy does not alter NPY-1 (Y1)-receptor mRNA expression 

in the ARC [54]. Chronic icv infusion of NPY induces hyperphagia, hyperinsulinemia, and 

insulin resistance in rats, and these effects are blocked by previous adrenalectomy [59]. 

Wisialowski et al. [60] have demonstrated that adrenalectomy also abolishes the insulin 

release caused by an acute icv injection of NPY and this is associated with significant 

reduction in Y1- and Y5-receptor mRNA expression specifically within the VMH. These 

experiments imply that glucocorticoids are necessary for icv NPY to stimulate insulin 

release and suggest that the latter manifest this regulatory role through alterations in Y1- 

and Y5-receptor expression in the VMH [60]. Taken together, all these observations indicate 

that glucocorticoids have a regulatory role in long-term central NPY signaling. 

As concerns plasma NPY, its concentrations rise in response to muscular exercise [61] and in 

disorders such as pheochromocytoma and renal failure [62]. 

Mechanisms of action of NPY – NPY receptors 

PP-fold family of peptides bind to seven transmembrane-domain G-protein-coupled 

receptors [63]. Heterogeneity among NPY (and PYY) receptors was first proposed on the 
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basis of studies on sympathetic neuroeffector junctions, where NPY (and PYY) can exert 

three types of action: 1) a direct (e.g., vasoconstrictor) response; 2) a postjunctional 

potentiating effect on norepinephrine (NE)-evoked vasoconstriction; and 3) a prejunctional 

suppression of stimulated NE release. The two latter phenomena are probably reciprocal, 

since NE affect NPY mechanisms similarly [64]. Six different NPY receptors have been 

identified ([65], of which five have been cloned and characterized. Y1–Y5 receptors have 

been demonstrated in rat brain, but Y6, identified in mice, is absent in rats and inactive in 

primates [66]. The Y1, Y2, Y4 and Y5 receptors, cloned in the hypothalamus, have all been 

postulated to mediate the orexigenic effects of NPY. Biological redundancies are likely to 

exist between Y1 and Y5 receptor signaling [67].  

NPY initiates appetite drive directly through its receptors, particularly the Y1-5 (NPY5-R), 

and by the simultaneous inhibition of anorexigenic melanocortin signalling in the ARC [68]. 

NPY5-R is thought to be the main receptor involved in NPY-induced food intake since a 

reduction in food intake after an icv injection of antisense oligonucleotides directed against 

NPY5-R is demonstrated in rats [69].  

Although the large number of Y receptors has made it difficult to delineate their individual 

contributions, recent studies analyzing  NPY and Y receptor-overexpressing, knockout, and 

conditional-knockout mouse models have started to unravel some of the complexity.  To 

elucidate the role of NPY1-R in food intake, energy expenditure, and other possible 

functions, Kushi et al. [70] have generated  NPY1-R-deficient mice (Y1-R-/-) by gene 

targeting. Contrary to their hypothesis that the lack of NPY signaling via Y1-R would result 

in impaired feeding and weight loss, Y1-R-/- mice showed a moderate obesity and mild 

hyperinsulinemia without hyperphagia. The authors suggest either that the Y1-R in the 

hypothalamus is not a key molecule in the leptin/NPY pathway, which controls feeding 

behavior, or that its deficiency is compensated by other receptors, such as NPY5-R. Probably 

the mild obesity found in Y1-R-/- mice was caused by the impaired control of insulin 

secretion and/or low energy expenditure [70]. This model could be useful for studying the 

mechanism of mild obesity and abnormal insulin metabolism in noninsulin-dependent 

diabetes mellitus. 

In order to investigate the role of different Y receptors in the NPY-induced obesity 

syndrome, Lin et al. [71] used recombinant adeno-associated viral vector to overexpress 

NPY in mice deficient of selective single or multiple Y receptors (including Y1, Y2, and Y4). 

Results from this study demonstrated that long-term hypothalamic overexpression of NPY 

lead to marked hyperphagia, hypogonadism, body weight gain, enhanced adipose tissue 

accumulation, hyperinsulinemia, and other hormonal changes characteristic of an obesity 

syndrome. NPY-induced hyperphagia, hypogonadism, and obesity syndrome persisted in 

all genotypes studied (Y1−/−, Y2−/−, Y2Y4−/−, and Y1Y2Y4−/− mice). However, triple deletion of 

Y1, Y2, and Y4 receptors prevented NPY-induced hyperinsulinemia. These findings suggest 

that Y1, Y2, and Y4 receptors under this condition are not crucially involved in NPY’s 

hyperphagic, hypogonadal, and obesogenic effects, but they are responsible for the central 

regulation of circulating insulin levels by NPY [71].  
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A lot of investigators’ data point that NPY5-R mediates the feeding response to exogenous 

and endogenous NPY. It may be involved in energy balance and is, therefore, a 

susceptibility candidate gene for obesity and related disorders such as the metabolic 

syndrome and type 2 diabetes mellitus. It is hypothesized that the feeding effect of NPY 

may indeed be mediated by a combination of receptors rather than a single one. Also, 

increasing evidence points to the existence of other as yet unidentified Y receptors, which 

may mediate NPY’s orexigenic actions, and it remains possible that, under certain 

physiological conditions, NPY may bind and activate receptors for which it normally has no 

or only low affinities. 

Analogs of NPY with high selectivity for the Y1 and Y5 receptor subtypes strongly stimulate 

food intake in rodents, and icv administration of specific Y5 receptor agonists increases food 

intake and body weight in mice [72]. A clinical study examining a therapeutic intervention 

based on the NPY system has been performed by Erundu et al. [73]. The authors tested the 

hypothesis that blockade of the NPY5-R will lead to weight loss in humans using MK-0557, 

a potent, highly selective, orally active NPY5-R antagonist. MK-0557 has no significant 

binding to the human NPY1-R, NPY2-R, NPY4-R, or mouse NPY6-R at concentrations of 10 

μM. These data indicate a >7500-fold selectivity for the NPY5-R relative to the other NPY 

receptor subtypes. MK-0557 was administered to 547 obese subjects, who showed 

statistically significant weight loss at 12 weeks compared to subjects treated with placebo 

[73]. These observations clearly indicate that antagonizing the NPY5-R induces weight loss 

in humans. After that a long-term trial over 52 weeks was performed in 1661 subjects (832 

completed). There was a a mean weight loss of 3.4 kg in those who completed the trial, 

which was significantly greater than the weight loss seen in the placebo-treated group. 

Significantly more subjects lost ≥5% and ≥10% of initial body weight with the NPY5-R 

antagonist than did so on placebo. The authors conclude, however, that the magnitude of 

the weight loss observed was not clinically significant, and this conclusion is supported by 

the observation that there were no significant improvements in secondary endpoints such as 

glucose and lipid levels and blood pressure measurements [73]. While several potential new 

obesity therapies that act through the CNS pathways or peripheral adiposity signals are in 

early-phase clinical trials, the above study serves to point out that manipulation of the 

homeostatic mechanisms involving hypothalamic/brainstem pathways for a clinically 

significant outcome in obese patients remains a major challenge [74]. 

Link between NPY, obesity and insulin resistance 

NPY is a powerful stimulant of food intake. Numerous studies in rodent models have 

demonstrated that administration of NPY into the PVN stimulates feeding [75, 76] and that 

repeated injections of NPY result in persistent feeding and the development of obesity by 

promoting fat accumulation [77, 78]. Central administration of NPY was found to reduce 

energy expenditure, resulting in reduced brown fat thermogenesis [79], suppression of 

sympathetic nerve activity [80] and inhibition of the thyroid axis [81]. There are some data 

that NPY activates hypothalamic-pituitary-adrenal axis (HPA) [82], that is implicated in the 

regulation of metabolism and energy balance. An acute injection of NPY into the PVN 

produces increases in circulating ACTH and corticosterone in both conscious and 
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anesthetized rats [83]. ARC NPY neurons project to the ipsilateral PVN [84], and repeated 

icv injection of NPY into the PVN in normal rats causes hyperphagia, an increase in basal 

plasma insulin level and morning cortisol level, independent of increased food intake, 

increased metabolic activity of white adipose tissue and muscle insulin resistance, and 

results in obesity [85, 86]. Several of these metabolic effects are still present when increased 

food intake is prevented by food restriction [85]. It was shown that Y5 receptor subtype is 

involved in the activation of HPA axis mediated by NPY [82].  

Interestingly, injection of NPY directly into the VMH significantly increases food intake [75], 

and NPY-induced feeding is enhanced in VMH-lesioned rats [87]. Lesions of the VMH in 

rodents also cause multiple changes in metabolic status, including hyperphagia, 

hyperglycemia, and hyperinsulinaemia [88]. Enhanced NPY expression in the VMH is 

associated with obesity [89]. Furthermore, NPY has been shown to directly inhibit over one 

fifth of spontaneously active rat VMH neurons, and this inhibition is potentiated by 

overfeeding [90]. Therefore, the mechanism by which acute icv NPY stimulates insulin 

release in the absence of feeding may be by inhibiting the spontaneous activity of the VMH 

through Y1 and Y5 receptors. A reduction of these receptors with adrenalectomy would 

then reduce the ability of NPY to inhibit VMH neurons. These data suggest the VMH may 

also be a site of action for NPY in the development of obesity; however, the mechanisms by 

which NPY is involved in each aspect of central energy regulation remain to be defined.  

Some investigators found that acute icv NPY administration had no affect on plasma 

glucose levels, indicating that NPY-induced insulin release is not simply a secondary 

response to changes in peripheral glucose [60, 91]. The decreased basal insulin levels and 

lack of insulin release in response to NPY injection in adrenalectomized rats with 

downregulation of Y1-and Y5-receptor mRNA in the VMH, demonstrated in the study of 

Wisialowski et al. [60], highlights the role for Y1-and Y5-receptors in the etiology of NPY-

induced hyperinsulinemia, insulin resistance, and obesity.  

Van den Hoek et al. [92] found that icv administration of NPY in the third ventricule in rats 

acutely hampers the capacity of insulin to suppress endogenous glucose production via 

activation of sympathetic nerves innervating the liver The authors discusssed a possible 

explanation for the role of NPY in sympathetic overdrive and hepatic insulin resistance that 

are typical for obese subjects with the metabolic syndrome [92]. In a study of Singhal et al. 

[93] the ability of resistin to increase hepatic insulin resistance and modulate the levels of 

various mediators in the liver was abolished in mice lacking NPY as well as in mice 

pretreated with icv NPY Y1 receptor antagonist. The authors established a crucial link 

between NPY and resistin’s ability to regulate hepatic insulin resistance possibly via 

induction of SOCS3 (suppressor of cytokine signaling-3), tumor necrosis factor (TNF)-α and 

interleukin 6 (IL6). Additionally, NPY is critical to mediating the decrease in STAT3 (signal 

transducer-activated transcript-3) phosphorylation by central resistin [93]. 

It was found that the obesity syndrome, induced by injection of NPY into the CNS of rats, 

closely resembles the phenotype of either leptin deficient ob/ob mice, or leptin resistant db/db 

mice [58, 85]. In these animals, genetic alterations of the satiety effect of leptin within the 
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hypothalamus result in an overexpression of NPY leading to a complex syndrome including 

hyperphagia, increased fat storage and obesity. The experimental studies in ob/ob mice 

demonstrate that systemic administration of leptin inhibits NPY gene overexpression 

through a specific action in the ARC and exerts a hypoglycemic action that is partly 

independent of its weight-reducing effects. It must be pointed that both effects occur before 

reversal of the obesity syndrome. Defective leptin signaling due to either leptin deficiency 

(in ob/ob mice) or leptin resistance (in db/db mice) therefore leads directly to hyperglycemia 

and the overexpression of hypothalamic NPY, that is implicated in the pathogenesis of the 

obesity syndrome [94]. Moreover, the obesity syndrome produced by icv administration of 

NPY is characterised by increased expression of the ob gene in adipose tissue [58]. On the 

other hand leptin, the ob gene product, has been shown to inhibit NPY synthesis and release 

from hypothalamic nuclei in ob/ob mice. Correction of the obese state induced by genetic 

leptin deficiency reduces elevated levels of both blood glucose and hypothalamic NPY 

mRNA [95].  

Although NPY seems to be an important orexigenic signal, NPY-null mice have normal 

body weight and adiposity [96, 97]. This absence of an obese phenotype may be due to the 

presence of compensatory mechanisms or alternative orexigenic pathways, such as those 

which signal via AgRP [98]. It is possible that there is evolutionary redundancy in orexigenic 

signalling in order to avert starvation. This redundancy may also contribute to the difficulty 

elucidating the receptor subtype that mediates NPY-induced feeding [99].  

In searching the role of NPY in human obesity and metabolic disorders, polymorphisms in 

the NPY5-R gene have been studied by other authors in several populations. Thus, NPY5-R 

gene was sequenced by Jenkinson et al. [100], and several single nucleotide polymorphisms 

(SNPs) were genotyped in the Pima Indians with three novel SNPs being identified, which 

were described as polymorphism 1, 2, and 3 (P1, P2, and P3). All three SNPs are in non-

coding regions. There were genotype differences in lean and obese Pima Indians for P2 and 

for a 3 SNP haplotype [100]. A silent single nucleotide polymorphism within the NPY5-R 

coding sequence showed no evidence of association with BMI in children and adolescents 

[101]. In contrast, a novel polymorphism in the intervening segment between exons of the 

genes encoding NPY1-R and NPY5-R was associated with reduced serum triglyceride (TG) 

levels and HDL-cholesterol in a severely obese cohort [102] that should be considered as a 

protective lipid profile. Roche et al. [103] investigated the potential implication of NPY, 

NPY-Y1 and -Y5 subtype receptors [rNPY-Y1/-Y5] in the development of human obesity. 

Two complementary genetic approaches were used: 1) linkage analyses between obesity and 

polymorphic markers located nearby NPY and rNPY-Y1/-Y5 genes in 93 French Caucasian 

morbidly obese families; 2) single strand conformation polymorphism (SSCP) scanning of 

the coding region of the NPY and rNPYY1 genes performed in 50 unrelated obese patients 

ascertained. No evidence of linkage between morbid obesity or obesityrelated quantitative 

traits and NPY and rNPY-Y1/Y5 regions was found in this population. Moreover, SSCP 

scanning revealed no mutation in the coding region of NPY and rNPY-Y1 genes among 

obese subjects. The authors suggest that NPY and NPY-Y1/ Y5 receptors are unlikely to be 

implicated in the development of human morbid obesity, at least in the French Caucasian 

population [103]. 
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In addition to the above data, genetic association of NPY receptor Y5 (NPY5R) SNPs with 

metabolic syndrome was studied in 439 Mexican American individuals by Coletta et al. 

[104]. Minor alleles for five of nine genetic variants (rs11100493, rs12501691, P1, rs11100494, 

rs12512687) of the NPY5-R SNPs were found to be significantly associated with both 

increased plasma TG levels and decreased high-density lipoprotein (HDL) concentrations 

[104]. In addition, the minor allele for SNP P2 was significantly associated with a decreased 

homeostasis model assessment of -cell function (HOMA-%). Linkage disequilibrium 

between SNPs pairs indicated one haplotype block of five SNPs (rs11100493), and low HDL-

cholesterol are highly associated with insulin resistance states, such as type 2 diabetes 

mellitus, obesity, and the metabolic syndrome. So, these results provide evidence for 

association of SNPs in the NPY5R gene with atherogenic dyslipidemia in insulin resistance. 

In the course of identification of genes implicated in the development of human obesity, 

further genome-wide searches could be successful for identifying multiple predisposing 

loci. 

It has become apparent, that upon vigorous electrical stimulation or intense stressors motor 

neurons on the sympathetic nerve system (SNS) may secrete NPY as well as NE [105]. 

Acting through NPY receptors on vascular and adipose tissue, secreted NPY may play an 

important role in the pathophysiology of obesity and metabolic syndrome. Thus, Kuo et al. 

[105] demonstrated that stress exaggerated diet-induced obesity through a peripheral 

mechanism in the abdominal white adipose tissue that is mediated by NPY. The authors 

found that stressors such as exposure to cold or aggression lead to NPY release from SNS, 

which in turn upregulates NPY and its Y2 receptors (NPY2-R) in a glucocorticoid-dependent 

manner in the abdominal fat. This positive feedback response by NPY lead to abdominal fat 

enhancement. Release of NPY and activation of NPY2-R stimulated fat angiogenesis, 

macrophage infiltration, and the proliferation and differentiation of new adipocytes, 

resulting in abdominal obesity and a metabolic syndrome-like condition. NPY, like stress, 

stimulated fat growth, whereas pharmacological inhibition or fat-targeted knockdown of 

NPY2R is anti-angiogenic and anti-adipogenic. Thus, manipulations of NPY2-R activity 

within fat tissue offer new ways to remodel fat and treat obesity and metabolic syndrome 

[105]. 

NPY may be an important intra-islet paracrine hormone [38]. When produced by pancreatic 

islets, its expression is dependent on the prevailing endocrine environment. Islet NPY 

appears to constrain insulin release under a variety of conditions. Whether peripheral NPY 

has a hormone-like action and directly influences glucose metabolism and/or insulin 

secretion in vivo is under investigation. It this context NPY, at high concentrations, may 

contribute to the modulation of insulin secretion in vitro. NPY nerve fibers occur in the 

mouse pancreas and that most of these NPY nerve fibers are nonadrenergic. Furthermore, in 

the mouse, NPY enhances basal plasma insulin levels at high dose levels under in vivo 

conditions. At lower dose levels it inhibits glucose-induced, but not cholinergically induced 

insulin secretion [106]. It has also been reported that NPY may reduce plasma glucose 

concentrations during exercise by inhibiting glycogen breakdown in the splanchnic 

compartment [107, 108]. Moreover, the potential relation between circulating NPY and the 

pathophysiological consequences of obesity need further investigation.  
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Vettor et al. [109] found that peripheral NPY infusion in normal rats increased the overall 

rate of glucose disposal by increasing insulin responsiveness in skeletal muscle. Plasma 

leptin was significantly increased by hyperinsulinaemia, but was not affected by NPY 

infusion. Both the early and late phase of the insulin response to hyperglycaemia were 

significantly reduced by NPY. Based on their data for an increased glycolytic flux combined 

with a blunted increase in lactate, the authors suggested that NPY may raise insulin 

mediated glucose disposal by increasing its utilisation through the oxidative pathways. 

Intravenous NPY did not influence glucose metabolism in adipose tissue and leptin release 

[109].  

The above data indicate that NPY has different effects on insulin secretion when 

administered acutely via intracerebroventricular or intravenous routes. Thus, peripheral 

NPY plays a clear inhibitory role in glucose-induced insulin secretion. It is also possible that 

the duration of treatment, and not just the route of administration, may be a relevant factor. 

Several appetite-regulating genes (MCH, CRH, NPY, cholecystokinin, etc.) as well as their 

corresponding receptors, are expressed in the adipose tissue. The coexistance of locally 

produced NPY and NPYR-2 suggests a NPY autocrine/paracrine system of regulation of 

adipocyte function. Kos et al. reported that NPY is not only expressed but also secreted by 

human adipose tissue and insulin increases NPY secretion [110]. Direct effects of NPY on 

adipocyte function are also described. Thus, NPY was as potent as insulin in increasing both 

leptin and resistin secretion from pre-adipocytes from visceral fat in vitro [105]. Treatment 

of human subcutaneous adipocytes with recombinant human NPY downregulates leptin 

receptor [110], exerts an anti-lipopytic effect probably mediated by adenylate cyclase 

inhibition [111], and promotes the proliferation of pre-adipocytes [105, 112]. Probably, the 

enhanced local expression of NPY within visceral adipose tissue may contribute to the 

molecular mechanisms underlying increased visceral adiposity. The anti-lipolytic action on 

NPY can promote an increase in adipocyte size in hyperinsulinaemic conditions, such as 

abdominal obesity and metabolic syndrome.  

As compared to the numerous experimental and genetic studies, the clinical studies on 

circulatory NPY in obesity are not so many. It is interesting that significant alteration of NPY 

circulatory levels is not found in adults after weight reduction [113] as well as in adolescents 

[114] besides the progressive decrease of leptin levels. Probably, the leptin control on 

hypothalamic production of NPY cannot be estimated by the levels of the latter in 

peripheral circulation. 

In one of our recent studies on different morphological types of obesity [115], NPY levels in 

obese women were lower than those of the normal weight controls, the differences being 

significant when comparing the obese group as a whole and the subgroup with android 

obesity only (Table 1). There was a reverse correlation between NPY and body weight, and 

percentage body fat. In analogy with the comparisons regarding NPY, leptin levels did not 

differ significantly between the two groups of obese women. Our data are in accordance 

with the data of Zahorska-Markiewicz et al. in obese women and in women with normal 

weight [113]. Notwithstanding the absence of statistically significant differences in leptin 
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and NPY levels between our obese patients, we observed that at relatively highest leptin 

levels NPY had relatively lowest levels, and vice versa. This was supported by the 

ascertained negative correlation between the two hormones. In the control group, 

significantly lower leptin levels were associated with significantly higher NPY levels as 

compared to the obese group. We can suggest that the decrease of NPY concentration in 

obesity may play a role of a counter-regulatory factor intended to prevent further weight 

gain. In this and previous study of ours [116] we did not find significant differences in 

circulatory levels of resistin and TNF between lean women and women with both gynoid 

and android obesity. The latter were insulin-resistant with significantly higher basal 

insulinaemia and HOMA-index, respectively (Table 1).  

 

Hormones 
Leptin

(ng/ml) 

Resistin

(ng/ml) 

TNFα
(pg/ml) 

NPY

(ng/ml) 

Insulin

(μIU/ml) 

HOMA 

index 

Android obesity

(n=32) 
21.28±11.14* 2.350.59 15.756.79 4.591.13* 20.138.17*# 4.341.68*# 

Gynoid obesity

(n=27) 
17.149.05 2.240.76 18.186.07 5.211.19 10.475.24 2.181.34 

Controls 

(n=24) 
10.025.98 2.091.19 19.179.08 5.991.18 8.033.22 1.690.98 

(All data are expressed as meanSD.* - significant difference as compared to the control group; # - significant difference 

as compared to the group with gynoid obesity) 

Table 1. Hormonal parameters and HOMA-index in the women with obesity and normal weight 

women [115].  

The NPY levels were found similar in a group of patients with gestational diabetes mellitus 

and in pregnant women with normal glucose tolerance in a study of Ilhan et al [117]. 

Notably, the NPY concentration correlated positively with insulin levels in patients with 

type 2 diabetes mellitus [117]. These data suggest a potential involvement of circulating 

NPY in diabetes pathology that needs further purposeful studies.  

NPY and reproductive function 

Having in mind the fact, that NPY secretion is increased in response to metabolic challenges 

that inhibit luteinizing hormone releasing hormone (LHRH) secretion (e.g., fasting) and 

decreased by treatments that restore the metabolic deficit and reinstate reproductive 

function (e.g., re-feeding) [20], several studies have focused on the role of NPY in 

reproductive processes.  

A modulating action of NPY on the gonadotropic and somatotropic systems in experimental 

animals has been reported. NPY affects luteinizing hormone (LH) and follicle-stimulating 

hormone (FSH) release from anterior pituitary cells in vitro and enhances LHRH-induced 

LH secretion [118]. In female rats NPY decreased LH release in pituitary cell culture in vitro 

[119]. Barb et al. [120] conducted 2 experiments in ovariectomized prepubertal gilts to test 

the hypothesis that NPY stimulates appetite and modulates LH and growth hormone (GH) 
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secretion, and that leptin modifies such acute effects of NPY on feeding behavior and LH 

and GH secretion. In the first one, gilts received icv injections of NPY. In the second one gilts 

received icv injections of leptin, NPY or NPY + leptin, and feed intake was measured. The 

authors found that NPY suppressed LH secretion and the 100 μg dose stimulated GH 

secretion. NPY reversed the inhibitory effect of leptin on feed intake and suppressed LH 

secretion, but serum GH concentrations were unaffected [120]. In another experiment in 

prepubertal gilts, Barb et al. [121] demonstrated that NPY did not alter basal LH secretion 

nor 10(-8) M LHRH-induced increase in LH secretion but 10(-9) M LHRH-stimulated LH 

secretion was reduced by NPY and was not different from control or LHRH alone. At the 

same time NPY increased basal GH secretion and enhanced the GH response to growth 

hormone releasing factor (GRF) at the level of the pituitary gland [121]. These data support 

the modulating role of NPY on GH and LH secretion. Experimental evidence in rodents and 

monkeys suggests that NPY preferentially exerts inhibitory effects on LHRH-LH secretion 

when estrogen levels are low [122, 123]. In primates, the role of NPY as a regulator of 

gonadotropin secretion is complicated by the observation that age may influence the effects 

of NPY (inhibitory or stimulatory), as does the site of exogenous NPY administration [124, 

125]. An important physiological role for NPY as a modulator of neuroendocrine activity 

which culminates in the preovulatory surge of LH is discussed [118] 

All above mentioned and many similar results support the hypothesis that NPY modulates 

feed intake, and LH and GH secretion and may serve as a neural link between metabolic 

state and the reproductive, as well as the growth axis. 

Clinical evidence suggests that NPY exerts primarily an inhibitory effect on the 

hypothalamic-pituitary-ovarian (HPO) axis in humans. Thus, a role for NPY in 

hypothalamic amenorrhea is inferred from the observation that NPY levels in the 

cerebrospinal fluid and serum are elevated in underweight amenorrheic women, and are 

returned to normal after long-term weight restoration in women who resumed normal 

menstrual cycling [126-128]. Starvation-induced alterations of neuropeptide activity 

probably contribute to neuroendocrine dysfunctions in anorexia nervosa. Kaye et al. [126] 

made the conclusion, that in girls with anorexia nervosa a disturbance of CNS corticotropin 

releasing hormone (CRH) activity is likely to be responsible for hypercortisolemia, while a 

disturbance of CNS NPY may contribute to amenorrhea [126]. In addition, disturbances of 

these neuropeptides could contribute to other symptoms such as increased physical activity, 

hypotension, reduced sexual interest, depression, and pathological feeding behavior [129]. 

Similarly, a role for NPY in the initiation of puberty is suggested by the observation that 

concentrations of NPY in girls with delayed puberty are higher than in girls matched for 

weight and body composition who exhibited normal pubertal development [130].  Higher 

concentrations of NPY in girls with constitutional delay of puberty (CDP) may be 

responsible for the disorder and reduced levels of IGF-I. Correlation of NPY with % body fat 

suggests an involvement of this neuropeptide in the process of fat accumulation associated 

with CDP [130]. 
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Of great interest is to focus on the role of NPY in one of the most common endocrine-

metabolic diseases, affecting up to 10% of women of reproductive age, the polycystic ovary 

syndrome (PCOS) [131, 132]. It is widely accepted that PCOS is a prototype of a sex specific 

metabolic syndrome [132-134]. Obesity is present in 30–70% of affected women depending 

on the setting of the study and the ethnical background of the subjects, and it is 

characterized by central distribution of fat [133, 135, 136]. In women with PCOS, 

hyperinsulinemia, dyslipidemia, and/or hypertension are highly dependent on obesity, 

which worsens all of the clinical manifestations of PCOS [133, 136-138]. At present there is 

an increasing body of evidence of high levels of atherogenic adipocytokines and low levels 

of adiponectin in women with PCOS that change according to variations of fat mass [139]. 

Endocrine function of the adipocytes is regulated mainly by nutritional status, and both 

these factors are complexly interweaved in the energy storing mechanism in the adipose 

tissue [140]. It is still not fully elucidated if there are consistent differences in the levels or in 

the effects of appetite-regulating hormones as is NPY in PCOS.  

Manneras et al. [141] demonstrated an enhanced mesenteric (visceral) adipose tissue 

expression of NPY in a rat model of PCOS in comparison with normal rats. Exercise reduced 

adiposity and adipose NPY expression and additionally normalized ovarian cyclicity [141]. 

Women with PCOS may exhibit altered leptin sensitivity of the hypothalamic NPY neurons 

to leptin inhibition, and higher plasma NPY levels have been observed in women with 

PCOS compared to nonPCOS controls; this may perturb LHRH secretion [142]. Thus, 

Baranowska et al. [143] found elevated NPY levels in both lean and overweight women with 

anovulatory PCOS. The increase in NPY in their study was independent of the increase in 

BMI. In obese women with PCOS, plasma leptin was increased compared to lean women 

[143]. Bidzińńska-Speichert et al. [144] also found higher leptin and NPY levels and lower 

galanin levels in PCOS women as compared to healthy controls [144]. These data are in 

conformity with observations from our recent on-going study where we found significantly 

higher NPY and leptin levels in obese insulin-resistant PCOS women as compared to 

nonPCOS weight matched women [Orbetzova, unpublished data]. It can be suggested that 

the feedback system in the interaction between leptin and NPY is disturbed in PCOS.  

In contrast, Romualdi et al. [145] demonstrated that in basal conditions, obese PCOS women 

exhibited lower NPY levels than obese controls. Ghrelin injection markedly increased NPY 

in controls, whereas PCOS women showed a deeply blunted NPY response to the stimulus. 

Metformin treatment induced a significant decrease in insulin levels and the concomitant 

recovery of NPY secretory capacity in response to ghrelin in PCOS women. Leptin levels, 

which were similar in the two groups, were not modified by ghrelin injection; metformin 

did not affect this pattern. The authors conclude that hyperinsulinaemia seems to play a 

pivotal role in the alteration of NPY response to ghrelin in obese PCOS women. This 

derangement could be implicated in the pathophysiology of obesity in these patients [145]. 

The limitations of this very interesting study on the ghrelin–NPY relationship in PCOS is the 

small number of patients (seven obese, hyperinsulinaemic subjects with PCOS and seven 

obese control women) and the data need further purposeful investigation. 
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Interventions that influence reproductive and metabolic function in PCOS may also affect 

levels of the adipose tissue hormones and regulators of appetite, such as NPY. It has been 

postulated that some of the effects of insulin-sensitizing agents in PCOS may be mediated 

through changes in adipocytokines levels. Some authors demonstrated that treatment of 

women with PCOS with insulin-sensitising agents induces a reduction in serum leptin levels 

[146-149]. In this context our recent data from a study comprising of 2 groups of overweight 

insulin-resistant PCOS women [150] showed that a 3-month treatment with metformin 

(Group 1) and rosiglitazone (Group 2), added to an oral hormone contraceptive (OHC) (a 

standard combination of ethynil oestradiol 35 g plus cyproterone acetate 2 mg) resulted in 

decrease of atherogenic adipocytokines (leptin, resistin, and TNFα) (Table 2) that may have 

beneficial effects in the future prevention of atherosclerosis and cardiovascular diseases in 

this risk cohort of young women. But the serum concentrations of NPY also decreased that 

is in support of some our previous [151] and other authors [143, 144] data for impaired NPY-

leptin link in PCOS. The change of NPY and adipocytokines was associated with weight loss 

only in the metformin group that is an expected effect of the drug and in conformity with 

other studies [150].  

 

Groups 

 

Parameters 

Group 1 (n=32) 

Metformin + OHC 

Group 2 (n= 34) 

Rosiglitazone +OHC 

0 months 3 months 0 months 3 months 

Leptin (ng/ml) 13.173.42 6.401.40** 15.544.49 7.171.59** 

Resistin (ng/ml) 2.190.67 1.630.45** 2.610.79 1.680.41** 

TNF (pg/ml) 12.525.78 8.473.09*** 13.454.30 9.604.16**** 

NPY (ng/ml) 4.511.18 3.640.46* 4.541.47 3.211.25**** 

Weight (kg) 78.2420.14 75.5018.66** 82.4116.17 82.2315.80 

BMI (kg/m2) 28.454.38 27.453.73** 29.274.24 29.224.27 

Waist (cm) 88.697.72 86.635.92* 88.978.05 88.247.63 

Fats (%) 35.5610.10 33.988.77 35.5512.40 34.7213.09 

Fats (kg) 29.7715.20 27.2313.39* 32.3017.86 31.3317.94 

* - p<0.05 – vs basal; ** - p<0.01 – vs basal; *** - p=0.001 – vs basal; ****- p<0.001 – vs basal 

Table 2. NPY, adipose tissue hormones, and some clinical characteristics of the groups before and after 

treatment [150] 

Having in mind that the decrease in NPY and adipocytokines was not in parallel with 

changes in body weight and composition in the rosiglitazone group and was associated with 

only slignt and non significant influence on hyperinsulinaemia, resp. insulin resistance, 

additional direct adipose tissue and/or disease specific effects of the treatment may come 

into consideration that needs further elucidation. 

3. Ghrelin  

Ghrelin was discovered by Kojima et al. [152] in rat stomach extracts in 1999. This peptide 

has been identified in many species, including mammals, avians, amphibians, reptiles, and 
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fish [153-159] and the sequence of first seven amino acids of the N-terminal region of ghrelin 

are highly conserved between species [160]. 

Ghrelin is an orexigenic factor released primarily from the oxyntic cells of the stomach, but 

also from duodenum, ileum, caecum and colon [161, 162]. Gastric ghrelin cells had been 

classified as X/A-like cells by their round, compact, electron-dense secretory granules that 

distinguish them electron-microscopically from other previously characterized gastric 

endocrine cell types before the discovery of ghrelin [161, 163]. Ghrelin has also been 

detected in many other organs, such as the bowel, pancreas, kidney, placenta, lymphatic 

tissue, gonads, thyroid, adrenal, lung, pituitary and hypothalamus, and in different human 

neoplastic tissues and related cancer cell lines, such as gastric and intestinal carcinoids, 

lymphomas and thyroid, breast, liver, lung and prostate carcinomas. Levels of ghrelin 

expression in these normal and tumoral tissues or cell lines are lower than in the 

stomach, and although the potential physiological role of ghrelin as an autocrine/paracrine 

factor in these tissues is still under investigation [164].  

In mice, rats and humans, ghrelin is an acyl-peptide consisting of 28 amino acids, sharing a 

36% structural resemblance to motilin [165]. A hydroxyl group of serine at position 3 of the 

ghrelin molecule is esterified with an octanoic acid. The esterification increases the 

hydrophobicity of the ghrelin molecule, and is essential for most of its biological activities 

[152,166-168]. An enzyme that catalyses the acyl-modification of ghrelin was discovered in 

2008 by Yang et al. [169], was renamed ghrelin O-acyltransferase (GOAT). In vivo studies 

showed that GOAT gene disruption in mouse models completely abolished ghrelin 

acylation [170, 171]. GOAT inhibition leading to weight reduction and beneficial metabolic 

effects [172] is therefore a useful target for future development of therapeutic compounds 

for obesity and metabolic syndrome. 

Ghrelin receptor 

Ghrelin was discovered via its growth hormone releasing effect as an endogenous agonist of 

the GHS-R, that is still the only receptor so far described [152, 173, 174]. The GHS-R was first 

identified in 1996 as a seven transmembrane domain peptide totaling 366 amino acids. It is a 

G protein-coupled receptor (GPCR) that is linked to both Gq and Gs signaling pathways. It 

generates intracellular signaling through its Gα11 subunit, although the specific intracellular 

pathways elicited by this receptor are dependent on the tissue type in which it is expressed 

[175].  

There are two splice variants - GHS-R type 1a that is the receptor to which ghrelin binds and 

through which it exerts its stimulatory effects on growth hormone release [152, 161, 176, 

177], and GHS-R type 1b, which is a COOH-terminal truncated form of the type 1a receptor, 

and is physiologically inactive [178]. Ghrelin administration does not increase food intake in 

mice lacking GHS-R type 1a, suggesting that the orexigenic effects may be mediated by the 

above receptor; however, these mice have normal appetite and body composition [173, 179]. 

Ghrelin exists as two different molecular forms in both gastric ghrelin-producing cells and 

circulation: 1) acylated ghrelin (with the n-octanoic acid at the serine-3 position), which is 
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essential for activation of GHS-R1a and modulation of neuroendocrine and orexigenic 

effects; and 2) nonacylated ghrelin (des-acyl ghrelin), which is the most abundant form in 

the stomach and circulation but is unable to activate GHS-R1a, and to exhibit further GH-

releasing activity [180] (Figure 3). Nonetheless, food intake is induced by des-acyl ghrelin, 

administered by icv injection, to the same extent as ghrelin [181]. Nonacylated ghrelin exerts 

some cardiovascular and antiproliferative actions. Because the genome database does not 

contain another GPCR that resembles GHS-R, probably des-acyl ghrelin acts by binding 

different GHS-R subtypes or as yet unidentified receptor families  [178, 182]. 

 

Figure 3. Structure of nonacylated and acylated ghrelin 

GHS-R1a is widely distributed in the body with high expression levels in the hypothalamus 

and in all three components of the dorsal vagal complex, including the area postrema, the 

nucleus of the solitary tract (NTS), the dorsal motor nucleus of the vagus and 

parasympathetic preganglionic neurons [183]. Low expression is detected in other brain 

areas and in numerous other tissues including the myocardium, stomach, small intestine, 

pancreas, colon, adipose tissue, liver, kidney, lung, placenta and peripheral T-cells [152, 161, 

182, 184-187].  

The ghrelin receptor is well conserved across all vertebrate species examined, including a 

number of mammals, bird and fish. This strict conservation suggests that ghrelin and its 

receptor serve essential physiological functions [188]. Some studies have also described 

ghrelin analogues which show dissociation between the feeding effects and stimulation of 

GH, suggesting that GHS-R type 1a may not be the only receptor mediating the effects of 

ghrelin on food intake [189]. 

The gene encoding ghrelin also encodes another peptide, called obestatin. The administration 

of obestatin reduces food intake and weight gain in rats via activation of GPR3, an orphan 

G-protein coupled receptor [190, 191]. Therefore, one gene produces two products with 

opposing metabolic effects, which are exercised through different receptors [192]. 
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Ghrelin as a member of the ‘gut-brain axis’ 

The human body is endowed with a complex physiological system that maintains relatively 

constant body weight and fat stores despite the wide variations in daily energy intake and 

energy expenditure. With weight loss, compensatory physiological adaptations result in 

increased hunger and decreased energy expenditure, while opposite responses are triggered 

when body weight increases. This regulatory system is formed by multiple interactions 

between the gastrointestinal tract (GIT), adipose tissue, and the CNS and is influenced by 

behavioural, sensorial, autonomic, nutritional, and endocrine mechanisms [2, 3]. 

The hypothalamus (particularly the ARC) and the brain (particularly the NTS) are the main 

sites of convergence and integration of the central and peripheral signals that regulate food 

intake and energy expenditure [193, 194]. There are mechanisms of short-term regulation 

(satiety signals) which determine the beginning and the end of a meal (hunger and satiation) 

and the interval between meals (satiety) [195], and long-term regulatory factors (signals of 

adiposity) which help the body to regulate energy depots. Thus, meal-generated satiety 

signals from the GIT do interact with longer-term adiposity signals, such as insulin and 

leptin in maintaining energy balance. Satiety signals from the GIT are transmitted primarily 

through vagal and spinal nerves to the NTS. There is, however, a large integration and 

convergence of these signals by neural connections between the ARC nucleus, NTS, and 

vagal afferent fibres. The nervous system, in turn, influences gastric and pancreatic exocrine 

secretion, gastrointestinal motility, blood supply, and secretion of gut hormones [191].  

The GIT contributes with several peptides that have incretin-, hunger-, and satiety-

stimulating actions, such as ghrelin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY), 

oxyntomodulin (OXM), and cholecystokinin (CCK) and that are considered as members of 

the ‘gut-brain axis’. Many of the GIT hormones that affect food intake are also synthesized 

in the brain, such as CCK, GLP-1, apolipoprotein A-IV, gastrin-releasing peptide, PYY, and 

ghrelin. Generally, peptides that reduce (or increase) food intake when administered 

systemically usually have the same action when administered centrally. This has been 

demonstrated for CCK, GLP-1, apolipoprotein A-IV, gastrin-releasing peptide, neuromedin 

B, and ghrelin [5, 6, 191]. 

Ghrelin is expressed in a group of neurons adjacent to the third ventricle, between the 

DMN, VMN, PVN and ARC. These neurons terminate on NPY/AgRP, POMC and 

corticotrophin-releasing hormone neurons, and are able to stimulate the activity of ARC 

NPY neurons, forming a central circuit which could mediate energy homeostasis [17]. The 

central ghrelin neurons also terminate on orexin-containing neurons within the LHA [18], 

and icv administration of ghrelin stimulates orexin-expressing neurons [18, 196]. The 

feeding response to centrally administered ghrelin is attenuated after administration of anti-

orexin antibody and in orexin-null mice [18].  

Ghrelin reaches the hypothalamus through the circulation, and the brain stem through vagal 

innervation. The integrity of the vagus nerve is crucial for ghrelin effects since vagotomy 

prevents its orexigenic effect in animal models and humans. Ghrelin is thought to exert its 

orexigenic action via the ARC in a pattern representing a functional antagonism to leptin. c-
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Fos expression increases within ARC NPY-synthesizing neurons after peripheral 

administration of ghrelin [197], and ghrelin fails to increase food intake following ablation 

of the ARC [198]. Studies of knockout mice demonstrate that both NPY and AgRP signalling 

mediate the effect of ghrelin, although neither neuropeptide is obligatory [179]. GHS-R are 

also found on the vagus nerve [185], and administration of ghrelin leads to c-Fos expression 

in the area postrema and NTS [196, 199], suggesting that the brainstem may also participate 

in ghrelin signalling. The orexigenic action of ghrelin occurs independently of its 

stimulatory effects on GH secretion [176, 198, 200]. It is more likely that the physiological 

role of ghrelin is to prepare the body for an influx of metabolic energy [201-203]. 

Administration of ghrelin, either centrally or peripherally, increases food intake and body 

weight and decreases fat utilization in rodents [176, 204]. Furthermore, central infusion of 

anti-ghrelin antibodies in rodents inhibits the normal feeding response after a period of 

fasting, suggesting that ghrelin is an endogenous regulator of food intake [199]. Human 

subjects who receive ghrelin intravenously demonstrate a potent increase in food intake of 

28% [205], and rising pre-prandial levels correlate with hunger scores in humans initiating 

meals spontaneously [202]. Chronic administration increases body weight, not only by 

stimulating food intake, but also by decreasing energy expenditure and fat catabolism [165, 

176, 199]. 

In summary, the orexigenic effect of hypothalamic ghrelin is regulated through a neuronal 

network involving food intake. Fasting results in increased release of ghrelin from the 

stomach (the exact mechanism of this remains obscure) leading to increased plasma ghrelin 

levels, which reach the hypothalamus either via the blood stream directly in areas with no 

blood–brain barrier, or by crossing the blood–brain barrier via a saturable transport system 

or via the vagus nerve and the NTS [206]. Ghrelin's effect on appetite is mediated by an 

effect both on the hypothalamus and the NTS.To stimulate the release of the orexigenic 

peptides, ghrelin-containing neurons send efferent fibers onto NPY/AgRP-expressing 

neurons. On the other hand, to suppress the release of the anorexigenic peptide, ghrelin-

containing neurons send efferent fibers onto POMC neurons [17]. Leptin directly inhibits 

appetite-stimulating effects of NPY and AgRP, whereas hypothalamic ghrelin augments 

NPY gene expression and blocked leptin-induced feeding reduction. Thus, ghrelin and 

leptin have a competitive interaction in feeding regulation [188].  

Regulation of ghrelin secretion 

Serum ghrelin concentrations vary widely throughout the day. The most known factor for 

the regulation of ghrelin secretion is feeding [201] - ghrelin decreases after food intake, and 

increases when fasting with higher values during the night sleep [180, 201, 207]. In people 

on a fixed feeding schedule, circulating ghrelin levels are thought to be regulated by both 

calorie intake and circulating nutritional signals [162, 176]. Thus, blood glucose levels may 

play an important role in the regulation of ghrelin secretion: oral or intravenous 

administration of glucose decreases plasma ghrelin concentration [208].  Ghrelin levels fall 

in response to the ingestion of food, but not following gastric distension by water intake 

suggesting that mechanical distension of the stomach alone clearly does not induce ghrelin 
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release [176, 209, 210]. In healthy subjects, a longer fasting period during the day (i.e. 

irregular meal pattern typical for several eating disorders) increases ghrelin concentration, 

but does not affect postprandial ghrelin response to a mixed meal [211]. The described 

pattern of secretion raised the concept of ghrelin as a hunger hormone, responsible for meal 

initiation. However, one study has failed to show a correlation between the ghrelin level and 

the spontaneous initiation of a meal in humans [212], and an alteration of feeding schedule 

in sheep has been shown to modify the timing of ghrelin peaks [213]. Recently Schüssler et 

al. showed that ghrelin levels increased significantly during a 30-min. interval following a 

presentation of pictures with food in healthy volunteers and suggested that in addition the 

sight of food can elevate ghrelin levels [214]. 

The most remarkable inhibitory input on ghrelin secretion is represented by the activation of 

somatostatin (SS) receptors as indicated by evidence that native SS, its natural analog 

cortistatin, and a synthetic analog such as octreotide lower circulating ghrelin levels in 

humans [215]. Ghrelin secretion in humans is under the stimulatory control of the 

cholinergic, namely muscarinic receptors, and acetylcholine is the first stimulatory 

neurotransmitter shown to play a stimulatory role on ghrelin secretion in humans [216]. 

In rats, ghrelin shows a bimodal peak, which occurs at the end of the light and dark periods 

[217]. In humans, ghrelin levels vary diurnally in phase with leptin, which is high in the 

morning and low at night [201].  

It should be considered that ghrelin secretion may be a conditioned response which occurs 

to prepare the metabolism for an influx of calories. But, whatever the precise physiological 

role of ghrelin, it appears not to be an essential regulator of food intake, as ghrelin-null 

animals do not have significantly altered body weight or food intake on a normal diet [218]. 

Relationship between ghrelin and glucose-insulin homeostasis  

Current extensive study data of ghrelin’s role in metabolic processes indicate its 

unambiguous relation with control on glucose homeostasis and β-cell function. Both GHS-

R1a and GHS-R1b are present in animal and human endocrine pancreas [219, 220]. Ghrelin 

is also present in pancreas, and epsilon pancreatic cells have been suggested to be a putative 

ghrelin-expressing cell type [221]. Moreover, a specific receptor able to bind both acylated 

and nonacylated ghrelin has also been demonstrated within the human pancreas; this is 

therefore a non-GHS-R1a [168, 222]. Ongoing studies support the hypothesis that ghrelin, 

independently of its acylation, modulates glucose metabolism at the hepatic level [223].  

Exogenic ghrelin short-tem effects induce hyperglycaemia in experimental rodents via an GH-

independent mechanism of action [224]. In contrast, ghrelin-receptor antagonists may 

improve glucose tolerance in rats, with no weight gain due to increased insulin secretion 

[225]. Acute administration of ghrelin to humans increases plasma glucose levels and 

amplifies the hyperglycaemic effect of arginine [226]. This hyperglycaemic effect might 

result from the endocrine effects of ghrelin as well as from direct effects on hepatocytes in 

which it modulates glycogen synthesis and gluconeogenesis [227]. Although data of ghrelin 

long-term effects are insufficiently clarified, a tendency of an increase in plasma glucose levels 
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appears to be presented [224]. Many of the studies in patients with type 1 diabetes show low 

ghrelin levels, probably as a manifestation of a compensatory mechanism against 

hyperglycaemia [225]. 

Numerous studies indicate a negative association between systemic ghrelin and insulin 

levels [184, 228]. Thus, ghrelin is found to inhibit insulin secretion both in vitro and in vivo in 

most human and animal studies [226, 229]. In humans the acute administration of ghrelin 

inhibits spontaneous and arginine-stimulated insulin secretion but does not affect the 

insulin response to the oral glucose tolerance test (OGTT) [226, 230, 231]. In addition, the 

regulation of insulin secretion by ghrelin is closely related to the blood glucose level. Date et 

al. [232] reported that ghrelin stimulates insulin release in the presence of high levels of 

glucose (8.3mM) that could independently cause insulin release from cultured islet cells. In 

contrast, ghrelin had no effect on insulin release in the context of a basal level of glucose (2.8 

mM) [232]. Antagonism of the pancreatic ghrelin can enhance insulin release to meet 

increased demand for insulin in high-fat diet-induced obesity of mice [233].  

Ghrelin might influence some of the peripheral effects of insulin. Thus, it is found to 

stimulate hepatic glucose production [227], reinforce the action of insulin on glucose 

disposal in mice [234], inhibit adinopectin secretion [235] and stimulate secretion of the 

counter-regulatory hormones, including GH, cortisol, adrenaline [236] and possibly 

glucagon [237]. In healthy subjects, in the absence of GH and cortisol secretion, ghrelin 

acutely decreased peripheral, but not hepatic, insulin sensitivity together with stimulation of 

lipolysis. These effects occurred without detectable suppression of AMP-activated protein 

kinase phosphorylation (an alleged second messenger for ghrelin) in skeletal muscle [238]. 

So, ghrelin also exerts direct metabolic effects towards induction of insulin resistance 

independent of the regulation by counter-regulatory hormones.  

Insulin in turn decreases ghrelin levels, regardless of changes in glucose concentrations  

[239]. Broglio et al. [240] have found that both oral and intravenous insulin suppress ghrelin, 

although they exhibit opposite effects on glucose levels. The same authors have shown that 

protein-induced inhibition of ghrelin is enabled by oral administration, while intravenous 

arginine does not lead to ghrelin reduction regardless of insulin elevations, which is a fact of 

interest and of relation to protein diets [240]. 

Given all the above data, it is proposed that ghrelin could have an important function in 

glucose homeostasis and insulin release, independent of GH secretion [241]. Data of 

administration of GHSR1a antagonists suggest that these compounds improve long-term 

glucose tolerance and insulin resistance. Since there are some differences about the role of 

ghrelin on insulin secretion [188], further research on ghrelin-insulin interrelationship is 

expected. At least theoretically, ghrelin and/or its signalling manipulation could be used for 

the treatment or prevention of diseases of glucose homeostasis. 

Ghrelin in obesity, diabetes mellitus and metabolic syndrome 

In addition to a probable role in meal initiation, ghrelin seems to be an adiposity-related 

hormone that is involved in the long-term regulation of body weight Plasma ghrelin levels 

are inversely correlated with body mass index and current evidence strongly suggests that 
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ghrelin could contribute to obesity and the metabolic syndrome [225]. Variations within the 

ghrelin gene may contribute to early-onset obesity [242, 243] or be protective against fat 

accumulation [225], but the role of ghrelin polymorphisms in the control of body weight 

continues to be controversial [244, 245].  

It has been shown that ghrelin secretion differs between lean and obese subjects. Thus, 

plasma ghrelin concentration is found to be low in obese people and high in lean people in 

some studies [207, 208, 246]. The expression of ghrelin receptors in the hypothalamus 

increases markedly with either fasting or chronic food restriction [247], as does the 

hypothalamic response to a ghrelin-receptor agonist [248], which is consistent with a feed-

forward loop that enhances ghrelin-mediated stimulation of appetite during energy deficit. 

Anorexic individuals have high circulating ghrelin which falls to normal levels after weight 

gain [249]. The suppressed plasma ghrelin levels in obese subjects normalize after diet-

induced weight loss [250]. The postprandial falls of serum ghrelin concentrations are 

proportional to energy intake in lean subjects, but not in obese subjects. Unlike lean 

individuals, obese subjects do not demonstrate the same rapid post-prandial drop in ghrelin 

levels [251]. Moreover, obesity is associated with much lower overall reduction of 

postprandial ghrelin levels and an absence of nocturnal elevations as seen in subjects of 

normal weight [194, 195, 210]. This may result in increased food intake and contribute to 

obesity.  The fall in plasma ghrelin concentration after bariatric surgery, despite weight loss, 

is thought to be partly responsible for the suppression of appetite and weight loss seen after 

these operations [252].  

The severe hyperphagia seen in Prader–Willi syndrome is associated with elevated ghrelin 

levels [253] that is in contrast to other forms of obesity, and it has been hypothesized that 

ghrelin might contribute to the nature of this syndrome. Moreover, there are similarities 

between the clinical features of Prader–Willi syndrome and those predicted from 

overstimulation of NPY by ghrelin (e.g. hyperphagic obesity, hypogonadotropic 

hypogonadism and dysregulation of GH) and the correlation between ghrelin levels and 

hyperphagia and excessive obesity, in these patients [254]. Indeed, the high ghrelin levels in 

obese people with Prader–Willi syndrome make the carriers of the syndrome logical first-

line candidates for testing the weight reducing effects of ghrelin-blocking agents 

Recently, the role of ghrelin in diabetes mellitus has been investigated: polymorphisms of 

the ghrelin gene are associated with the risk of diabetes [255], ghrelin promotes regeneration 

of b-cells in streptozocin-treated newborn rats, preventing the development of diabetes in 

disease-prone animals after b-cell destruction [256], and ghrelin antagonists partially reverse 

hyperphagia in uncontrolled, streptozocin-diabetic rats [257]. It has been found that fasting 

ghrelin concentrations are lower in people with type 2 diabetes mellitus than in non-diabetic 

people, even after adjusting for BMI. It has also been shown that the decrease in circulating 

ghrelin is proportionate to the degree of insulin insensitivity. We also found significant 

negative correlation between ghrelin and fasting insulin, and HOMA-index, respectively, in 

insulin resistant women with type 2 diabetes mellitus [258]. These observations suggest that 

ghrelin and insulin sensitivity are linked. All the data indicate that ghrelin might have a role 

in the pathogenesis and therapy of diabetes, contributing to either the impairment of insulin 
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sensitivity or to the restraint of body-mass gain. Nonetheless, because of the controversy 

about the cause-and-effect relationship between ghrelin levels and diabetes mellitus, further 

investigations are needed to elucidate the precise role of ghrelin (and its variants) in the 

development and treatment of this disease.  

Low plasma ghrelin levels are associated with metabolic cluster per se, which indicates that 

ghrelin might be a useful biomarker for the metabolic syndrome [228, 259]. Thus, conditions 

of severe metabolic syndrome due to insulin resistance, such as in obese Pima Indians, are 

related with reduced fasting ghrelin plasma levels [207]. In a study on the relation between 

metabolic parameters, ghrelin, leptin and IGF-1 in a cohort of 1,045 individuals, Ukkola et al. 

[260] have found that low ghrelin levels are associated with metabolic syndrome and type 2 

diabetes mellitus only in presence of insulin and leptin resistance. At high leptin levels, 

ghrelin concentrations decrease linearly with increasing the number of metabolic syndrome 

components [260]. In patients on haemodialysis, fasting ghrelin levels negatively correlate 

with metabolic syndrome manifestation, ghrelin shows a tendency to decrease with 

increasing the number of the metabolic syndrome components, and the waist circumference 

appears to be an independent predictor of its levels [261]. 

In patients with the metabolic syndrome and low ghrelin levels, intraarterial administration 

of ghrelin rapidly improves endothelial function [262]. Similar to insulin, ghrelin stimulates 

an increased nitrogen oxide (NO) production in cultured bovine aortic endothelial cells in a 

dose- and time-dependent manner. It has been found that ghrelin-induced NO production 

in human aortic endothelial cells is arrested by their pre-treatment with a NO-synthase 

inhibitor, phosphatidylinositol synthase (PI 3)-kinase inhibitor, selective GHSR-1а 
antagonist or “exclusion” of these receptors. On the other hand, ghrelin has been found to 

stimulate enhanced phosphorylation of Akt (Ser473) and endothelial NO-synthase in human 

aortic endothelial cells, as well as phosphorylation of mitogen-activated protein (МАР) 

kinase, but not of МАР-kinase-dependent production of the vasoconstrictor endothelin-1 in 

bovine aortic endothelial cells. With regard to these data it may be concluded that ghrelin 

exhibits characteristic, rapid vascular effects, presented as stimulated NO production in the 

endothelium via signal pathways including the GHSR-1a, PI 3-kinase, Akt and endothelial 

NO-synthase, which may be taken into consideration for the development of innovative 

therapeutic strategies for endothelial dysfunction in diabetes and insulin resistance [262]. 

Vlasova et al. have found that peripheral injection of a ghrelin antagonist in experimental 

animals (rats) increases arterial pressure and pulse rate via at least partial activation of the 

sympathetic nervous system [263]. These findings direct our attention to eventual 

cardiovascular adverse effects, when administering ghrelin antagonists as a therapeutic 

strategy for reducing food intake, particularly in patients at a high cardiovascular (CV) risk 

(e.g., patients with metabolic syndrome). 

Ghrelin’s role in processes of reproduction and PCOS 

Presently not so much is known of ghrelin effects on processes of reproduction. 

Experimental models in rats have shown that ghrelin plays a role at different levels of the 

hypothalamic-pituitary-ovary axis regulation. Its central route of administration in female 
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rats results in suppression of the LH secretion at various stages of estrus [264]. In in vitro 

settings, ghrelin also inhibits gonadotropin-releasing hormone (GnRH) secretion from the 

hypothalamus [264]. At a pituitary level, ghrelin exhibits either stimulating or inhibiting 

action on basal LH secretion, depending on the menstrual cycle stage. However, the in vitro 

GnRH-stimulated LH release is inhibited by ghrelin, regardless of the steroid medium [265]. 

In rhesus monkeys, the confirmed inhibitory effect of ghrelin on the GnRH-LH system 

suggests that in primates, ghrelin exhibits a central regulatory effect on processes of 

reproduction [266].  

It was shown by Kluge et al. that ghrelin suppresses the secretion of LH and FSH in healthy 

women [267]. Ghrelin levels have been found to be higher in anovulatory women with 

excessive physical loading-induced anorexia nervosa and amenorrhea, as well as in normal 

weight-women with hypothalamic amenorrhea [268-270]. In normal-weight women with 

amenorrhea, the increased ghrelin levels have been associated with disturbed dietary habits 

and regimen [271]. It is not clear whether disturbances in ghrelin secretion play a direct role 

in neuroendocrine regulation of the hypothalamic-pituitary-ovary axis or present a marker 

of the metabolic status itself.  

In males, ghrelin has an additional inhibitory role, decreasing human chorionic 

gonadotropin (hCG)- and cAMP-stimulated testosterone secretion [272] and the expression 

of the gene encoding stem cell factor that is a key mediator of spermatogenesis and a 

putative regulator of Leydig-cell development [273]. In hypogonadal males, a positive 

correlation between ghrelin and androgens persists after testosterone replacement therapy 

[274]. 

There is no consensus on whether alterations in levels of appetite-regulating hormones, such 

as ghrelin, are associated with PCOS. Fasting ghrelin levels were found decreased in most 

[275-279], but not in all studies [280, 281] in women with PCOS. Thus in 2002, Pagotto et al. 

[275] first demonstrated that ghrelin levels were lower in obese women with PCOS, 

compared with these in weight-matched healthy controls. Ghrelin has been inversely 

correlated with insulin resistance markers. These correlations have persisted even after 

therapy (hypocaloric diet plus metformin or placebo) for improving insulin sensitivity. In 

both groups, weight reduction has resulted in minimal changes of plasma ghrelin levels. 

The observed negative correlation between ghrelin and androstenedione, but not between 

ghrelin and testosterone or other androgens, is interesting [275]. In PCOS, Schofl et al. have 

confirmed lower ghrelin levels that are in a close correlation with insulin resistance rates 

[276]. After therapy with metformin in insulin-resistant women, ghrelin levels have 

increased, but in insulin-sensitive women with PCOS, ghrelin levels have been comparable 

to these in controls. Furthermore, the authors have found no correlation between ghrelin 

and the body mass index (BMI) [276], which suggests a ghrelin-insulin resistance 

interrelation apart from ghrelin activity in controlling appetite, body weight, respectively. 

Panidis et al. [282] have reported that women with PCOS and hyperandrogenaemia have 

significantly lower ghrelin levels compared to healthy controls and PCOS carriers with 

clinical hyperandrogenism but normal androgen levels. Ghrelin levels in the latter are lower 

than these found in the control group, but the differences are not statistically significant. The 
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authors have concluded that PCOS-associated hyperandrogenaemia results in reduced 

ghrelin concentrations [282]. Although PCOS-associated hyperandrogenaemia and 17-OH-

progesterone levels are inversely related to ghrelin levels, anovulation and polycystic ovary 

morphology are associated with higher ghrelin concentrations [283]. Thus, it has been 

hypothesized that different clinical and biochemical manifestations of the syndrome might 

be associated with different concentrations of ghrelin. 

In support of the relation between PCOS and ghrelin, there are data of increased ghrelin 

levels after a 3-month treatment with an oral contraceptive containing both ethinyl 

oestradiol and drospirenone in women with PCOS [284]. Similar to other studies, ghrelin is 

negatively correlated with the BMI, waist/hip ratio, insulin, homeostatic model assessment 

(HOMA) index and free testosterone [284]. According to a study conducted by Fusco et al., 

ghrelin administration in normal weight-women and obese PCOS patients has exerted 

glucose-enhancing and insulin-lowering effects, the latter absent in the normal weight-

controls [285], which supports the relation between ghrelin and hormonal/metabolic 

disorders in PCOS. 

One of studies that have not confirmed changes in ghrelin levels in women with PCOS is 

this conducted by Orio et al. [280]. The authors have found no correlation between ghrelin 

and either of the hormonal or biochemical parameters (including insulin and insulin 

resistance markers), but only a correlation between ghrelin and the BMI [280]. These data 

support the relation determined between ghrelin and the body weight only and exclude the 

effects of the disease itself. These findings are in a sense similar to those observed by Bik et 

al., who have not found significant differences in ghrelin levels between a group of normal 

weight PCOS women and a group of normal weight healthy women; however, ghrelin was 

significantly lower in healthy obese women compared to lean women with PCOS [286]. 

Impaired ghrelin suppression after a test meal and increased feeling of hunger and 

decreased feeling of satiety (according to visual analogue scales) have been described in a 

small group of obese women with PCOS, even after weight reduction [287], which has been 

also confirmed by another study, comparing lean and obese women with PCOS and 

relevant, weight-matched controls [288]. Romualdi et al. [289] gave more detailed evaluation 

of ghrelin and polypeptide YY responses following oral load with a test meal (527 kcal, 

distributed by contents in 24.1% fats, 54.4% carbohydrates and 21.5% proteins) in women 

with PCOS. Low baseline ghrelin levels and reduced suppression after meals, more 

pronounced in the obese than in the lean patients was shown. The authors have found no 

correlation between ghrelin and the androgens; however, a negative correlation has been 

established between ghrelin and the НОМА-index. Compared to controls, PCOS women 

had a significantly suppressed neuropeptide Y response to injected ghrelin, as the response 

has restored after treatment with metformin and significant insulin reduction. In this 

experimental setting, leptin has undergone no significant changes [289]. Obviously, 

hyperinsulinaemia is the factor which exerts effect on the ghrelin-neuropeptide Y relation. 

We found significantly lower ghrelin levels in women with PCOS compared to healthy 

controls (21.78 ± 2.12 ng/ml versus 34.67 ± 3.57 ng/ml; p = 0.04), as ghrelin was inversely 

correlated with insulin levels at a degree similar to these of insulin resistance markers. 
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Negative correlations were also found with the BMI, waist measurement and waist-to-hip 

ratio, in conformity with most of the studies at present. Furthermore, the observed negative 

correlation between ghrelin and testosterone (r = −0.315; p < 0.05), and this between ghrelin 

and leptin (r = −0.306; p<0.05) disappear after the exclusion of BMI, waist-to-hip ratio and 

HOMA-index [290]. In a comparative study on ghrelin levels in insulin-resistant women 

with PCOS and women with type 2 diabetes and higher insulin resistance, ghrelin levels 

have been significantly lower in syndrome carriers versus diabetics [291]. Based on our data 

we consider that ghrelin levels in women with PCOS reflect both the metabolic and 

hormonal disturbances, typical for the syndrome. 

A recent study conducted by Panidis et al. [292] has confirmed that alterations in ghrelin 

secretion are intrinsic for the disease itself and has demonstrated that active (acetylated) 

ghrelin/total ghrelin ratio is decreased in normal weight-women with PCOS, as the 

anomalies are most pronounced in the severe forms of the syndrome, including all 

diagnostic criteria: hyperandrogenia, chronic anovulation and morphologically polycystic 

ovaries [292]. Based on the proven changes in women with PCOS and various phenotype 

manifestations, some authors have even suggested ghrelin to be used as a predictive marker 

of PCOS and have found through a plot-analysis of the receiver operating characteristic 

curve (ROC) a sensitivity of 70% and specificity of 86% with a cut-off value of 34.1 ng/ml, 

below which the diagnosis of PCOS is likely, while a cut-off ghrelin value below 9 ng/ml is 

highly specific for PCOS [293].  

In conclusion, there is, probably, an anomaly in ghrelin regulation in PCOS, related not only 

to overweight and insulin resistance. The mechanisms associating abnormal ghrelin 

regulation with the disease are still to be elucidated. However, the pathological and 

therapeutic importance of this association is unclear. Independent effects of ghrelin on the 

hypothalamic-pituitary-gonadal axis with an inhibitory effect on the LH secretion and a 

decreased LH response to GnRH, typical for the syndrome, may also be taken into 

consideration. 

4. Conclusion 

Given the growing epidemic of obesity, it has become increasingly important to understand 

the physiological processes that regulate body weight. Regulation of food intake and 

metabolism is maintained by complex pathways and neuronal circuits which themselves 

receive peripheral signals such as gut hormones. Metabolically important abdominal obesity 

with an excess of visceral fat accumulation results in altered release of adipokines, leading 

to CNS mediated skeletal muscle and hepatic insulin resistance. The central regulation of 

energy balance has become even more fascinating and complex with the characterization of 

mechanisms of action of NPY, the most abundant hypothalamic orexigenic factor. Much 

attention has recently centered on ghrelin, the only known circulating orexigen. Insulin 

resistance and compensatory hyperinsulinemia are independently associated with 

suppression of ghrelin that furthers our understanding of the variable expression of ghrelin 

in humans.  
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With continued research, it should be possible to elucidate exactly how the associations 

among insulin resistance, hyperinsulinemia, and orexigens (NPY and ghrelin) participate in 

the more intricate web of factors that regulate body weight. Better understanding of the 

mechanisms involved in the regulation of energy metabolism will become a background for 

development of new therapeutic approaches against obesity, insulin resistance, metabolic 

syndrome, and other nutritional disorders. 
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