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1. Introduction 

The determination of when and how genes are “turned on and off” is a challenge in pos-

genomic era. Differences between two species are closer to gene expression and regulation 

than to gene structures (Howard & Benson, 2002). The first and key step in gene expression 

is promoter recognition by RNA polymerase enzyme (RNAP). The promoter sequences can 

be defined as cis-acting elements located upstream of the transcription start site (TSS) of 

open reading frames (ORF). To make an analogy, genes represent the “computer memory” 

and promoters represent the “computer program” which acts on that memory. The study 

about promoters can assist in providing new models about the constitution of the computer 

program and how it operates (Howard & Benson, 2002). 

The proper regulation of transcription is crucial for a single-cell prokaryote since its 

environment can change dramatically and instantly (Huffmann & Brennan, 2002). In face of 

this, the detailing of the principals and the organization of transcriptional process is helpful 

for understanding the complexity of biological systems involved, for instance, cellular 

responses to environmental changes or in the molecular bases of many diseases caused by 

microbes (Janga & Collado-Vides, 2007). 

While several sequenced genomes have their protein-coding gene repertoire well described, 

the accurate identification and delineation of cis-regulatory elements remain elusive 

(Fauteux et al., 2008). At this moment, the challenges are to analyze the available sequences 

and to locate TSS, promoters and other regulatory sequences (Askary et al., 2009). The 

purpose of this review is to provide a brief survey of promoter sequences characteristics and 

the advances of computer algorithms for their analysis and prediction. This chapter is 

organized in two main sections. The established knowledge about biological features of the 
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promoters will be described in the first section, focusing in their genetic role and sequence 

content constitution. This is an important topic for understanding the intrinsic difficulties in 

the in silico promoter prediction approaches. The second section is devoted to give a 

reasonably concise background of the most used methodologies for E. coli promoter 

prediction and recognition, presenting their applications, as well as their limitations.  

2. The bacterial promoter sequences 

A common feature of the transcriptional regulators is their ability to recognize specific DNA 

patterns in order to modulate gene expression (Jacques et al., 2006). The upstream 

regulatory region of the bacterial coding regions contains the promoter, that is, the DNA 

sequence which determines specific recognition by RNAP (Barrios et al., 1999). The 

following section presents a concerned description about the promoter sequences and their 

role as gene expression regulators. 

2.1. Promoter sequences and gene expression specificity 

In bacteria, RNAP holoenzyme consists of five subunits (2α,β,β’,ω) and an additional sigma 

(σ) subunit factor (Figure 1). A collection of different σ subunits act as key regulators of 

bacterial gene expression. The σ factor led RNAP sequence-specific binding at promoter 

where melting of the DNA double strand occurs (Borukov & Nudler, 2003). The substitution 

of one σ factor by another can initiate the transcription of different groups of genes 

(Schultzaberger et al., 2006). The numbers of σ factors encoded in bacterial genomes is 

highly variable. It is possible that the number of σ factor genes is related to the diversity of 

lifestyles encountered by a bacterium (Janga & Collado-Vides, 2007). 

 

Figure 1. The RNAP enzyme (KEEG-modified1). 
1Available on http://www.genome.jp/kegg/pathway/ko/ko03020.html). 

The σ factors are labeled according to their molecular weight (e.g. σ24, σ28, σ32, σ38, σ54 and 

σ70) and each one has been assigned to a global function role (Table 1). The σ70 is most 

commonly used σ factor in E. coli. It is the responsible for the bulk housekeeping 

transcriptional activity, for this reason it is responsible for the initiation of a large number of 

genes (Potvin & Sanschagrin, 2008; Schultzaberger et al., 2006).  

Regardless of the σ factor, most of the promoters can be dissected into two functional sites, 

known as the -35 and -10 regions upstream of the TSS. Mutations in the consensus 
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sequences of the promoters can affect the level of expression of the gene(s) they control, 

without altering the gene products themselves (Lewin, 2008). The canonical consensus and 

the number interspacing nucleotides recognized by the most important σ are presented on 

Table 1. Just for σ54, the consensual region is located in the -12 and -24 nucleotides. 

 

σ  

Factor 
Gene  

Cellular  

Uses 

 -35 consensus

Region Separation 
-10 consensus 

Region 
Reference 

28 fliA Flagellar genes CTAAA 15 pb GCCGATAA 

Helmann & 

Chamberlin, 

1987 

32 rpoH 
Heat shock  

Response 
CCCTTGAA 13-15pb CCCGATNT 

Cowing et al., 

1985 

38 rpoS 
Starvation  

Response 
TTGACA 16-18pb CTATACT Typas et al., 2007 

54 rpoN 
Nitrogen  

Metabolism 
CTGGNA 6pb TTGCA 

Barrios et al., 

1999 

70 rpoD Housekeeping TTGACA 16-18pb TATAAT 
Lisser & 

Margalit, 1993 

24 rpoE 
Heat shock  

Response 
GGAACTT   15pb  GTCTAA 

Rhodius et 

al.,2006 

Table 1. E. coli σ factors and their promoter sequences binding sites (LEWIN, 2008).  

A comprehensive study of the promoter content information was carried out by 

Schultzaberger et al. (2006). The authors have used the Claude Shannon’s information 

theory and have built a promoter model by aligning and refining of 559 sequences upstream 

of TSS. The results for the promoter motifs showed, among others, two interesting results: (i) 

the difference of TSS prokaryotic information (0.39+-0.06 bits) in opposite to eukaryotic TSS 

(~3bits) and, (ii) the notorious high degree of conservation of the last nucleotide (T) in the     

-10 region. Another important discussion described in the paper is about the -10 extended 

region. According to Hook-Barnard et al. (2006), some promoters are functional without the 

-35 region and this missing information is compensated by four nucleotides upstream of the 

-10 element. Its consensus sequence is TRTG (according to IUPAC code, the letter R 

represents A or G). About this issue, the authors suggest that in prokaryotes the extended -

10 may be an evolutionary predecessor to the modern bipartite promoter or vice versa. 

However, the second possibility does not explain the origin of bipartite promoter.  

As it has been related so far, the promoter motifs are not strictly conserved within a set of 

promoters recognized by a given σ factor and also differ according to the σ factor which 

recognizes them. The structure of bacterial promoters limits the efficacy of prediction by a 

global analysis approach. A limited analysis of a putative promoter sequence by comparison 

with the σ70 promoter consensus motif can lead to an unacceptable rate of false negatives 

and incorrect assignments (de Avila e Silva et al., 2011). 
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2.2. Structural properties of promoter sequences  

The motifs obtained from promoter sequences compilation are indicative of the existence of 

a nucleotide signal in them. Nonetheless, it also been demonstrated that primary DNA 

sequence is not the only source of information in the genome for the transcription regulatory 

process (Olivares-Zavaleta et al., 2006).  According to many authors (e.g, Kanhere & Bansal, 

2005a; Klaiman et al., 2009; Wang & Benham, 2006), not only regulatory sequences contain 

specific sequence elements that serve as target for interacting proteins, but also present 

different properties, such as: suitable geometrical arrangement of DNA (curvature), 

propensity to adopt a deformed conformation facilitating the protein binding (flexibility) 

and physical properties (e.g., stacking energy, stability, stress-induced duplex 

destabilization). Several studies have reported that eukaryotic and prokaryotic σ70-

dependent promoter sequences have lower stability, higher curvature and lesser flexibility 

than coding sequences (Gabrielian & Bolshoy, 1999; Kanhere & Bansal, 2005a). 

DNA stability is a sequence-dependent property based on the sum of the interactions 

between the dinucleotides of a given sequence. It is possible to calculate the DNA duplex 

stability and to predict the melting behavior if the contribution of each nearest-neighbor 

interaction is known (SantaLucia & Hicks, 2004). A eukaryotic and prokaryotic promoter 

stability analysis was carried out by Kanhere & Bansal (2005a). The authors reported that 

promoters from three bacteria which have different genome composition (A+T composition: 

E. coli 0.49, B. subtilis 0.56 and C. glutamicum 0.46) show low stability peak around the -10 

region. It is also reported that the average stability of upstream region is lower than the 

average stability of downstream region.  

Intrinsic DNA curvature and bendability were shown to be important as physical basis in 

many biological processes, in particular in those which have interaction of DNA with DNA-

binding site proteins, such as transcription initiation and termination, DNA origins of 

replication and nucleosome positioning (Gabrielian & Bolshoy, 1999; Jáuregui et al., 2003; 

Nickerson & Achberger, 1995; Thiyagarajan et al., 2006). Specifically, bending is related with 

twists and short bends of approximately 3 base-pairs, while curvature refers to loops and 

arcs involving around 9 base-pairs (Holloway et al., 2007). DNA curvature in prokaryotes is 

usually present upstream of the promoter but sometimes within the promoter sequence 

(Jáuregui et al., 2003; Kozobay-Avraham et al., 2006). The distribution of curved DNA in 

promoter regions is evolutionarily preserved, since orthologous groups of genes with highly 

curved upstream regions were identified (Kozobay-Avraham et al., 2006). As related by 

Pandey & Krishnamachari (2006), sequences derived from non-coding regions had similar 

overall base composition but different curvature values from promoter regions, indicating 

that the differences in curvature values are not just the consequence of base composition but 

also the organization of bases in sequences. 

Another DNA feature that can distinguish promoter sequences is stress-induced DNA 

duplex destabilization (SIDD). According to Wang & Benham (2006), SIDD is not directly 

related to primary sequence alone, nor equivalent to stability of DNA double helix. In this 

complex process, the differences between the energy cost of strand separation for the 



Bacterial Promoter Features Description  
and Their Application on E. coli in silico Prediction and Recognition Approaches 245 

specific base pairs involved and the energy benefit from fractional relaxation of the 

superhelical stress provides the energies that govern SIDD. Promoters are strongly 

associated with regions of low SIDD energy. Certain non-coding regions containing 

promoters or terminators are unstable, while transcripted regions remain stably duplexed 

under the stress imposed by negative superhelicity. The change of the level of superhelicity 

on a promoter region can shows a variety of effects on the expression of the genes it encodes 

(Wang & Benham, 2006).  

As related so far, the promoters present organizational properties which, in different scales, 

may play a significant role in the transcription process. Recent studies have reported 

promising results using DNA structural or biophysical properties as predictors of promoter 

regions, either alone or associated with the sequence composition. A concerned description 

of these approaches and their results will be presented in the next section. 

3. In silico promoter prediction  

In silico promoters prediction and recognition is an active research topic in molecular 

biology and a challenge in bioinformatics. The correct classification of a given DNA 

sequence as promoter or non promoter improves genome annotation and allows generating 

hypotheses in the context of the bacterial transcription initiation process and gene function 

(de Avila e Silva et al., 2011; Jacques et al., 2006).  

Experimental methods applied to the identification of promoters by molecular methods can be 

laborious, time-consuming and expensive. Consequently, it is important to develop algorithms 

that can rapidly and accurately evaluate the presence of promoters (Jacques et al., 2006; Li & 

Lin, 2006). A variety of in silico techniques have been used to identify TSS and to characterize σ 

factor-DNA interactions. Despite the wide range of research carried out in promoter 

prediction, these techniques are still not fully developed, particularly for genome scale 

applications. Currently, many programs for promoters and TSS prediction are available. 

However, their results are not completely satisfactory due to their rate of false positive 

predictions (Askary et al., 2008; Li & Lin, 2006). An overview about how to evaluate a 

classification performance of a given approach and the results of some published papers 

especially devoted to improve promoter prediction will be described in the following sections.  

3.1. Performance measures for the evaluation of promoter classification 

programs 

A classification model (or classifier) is a mapping from instances of predicted classes 

(Fawcett, 2006). The promoter prediction problem is a kind of binary classification, as the 

input sequence can be classified in only one class of two non-overlapping classes (Sokolova 

& Lapalme, 2009). The result of a classifier during testing is based on the counting of the 

correct and incorrect classifications from each class (Bradley, 1997). In this way, the four 

possible outcomes of a classification model evaluate this correctness (Bradley, 1997; Fawcett, 

2006; Sokolova & Lapalme, 2009):  
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i. TP: promoter sequences classified as promoter (true positive);  

ii. TN: non-promoter sequences recognized as non-promoters (true negative); 

iii. FP: non-promoter sequences classified as promoter (false positive); 

iv. FN: promoters classified as non-promoter sequences (false negative). 

This information is then normally displayed in a two-by-two confusion matrix (Table 2). A 

confusion matrix is a form of contingency table showing the differences between the true 

and predicted classes for a set of labeled examples (Bradley, 1997).  

 

Data Class Classified as promoter Classified non-promoter 

Promoter True positive (TP) False negative (FN) 

Non-promoter False positive (FP) True negative (TN) 

Table 2. Confusion matrix for classification results 

Although the confusion matrix shows the whole information about the classifier’s 

performance, it is the basis for many common metrics (Bradley, 1997; Fawcett, 2006). The 

often used performance measures are accuracy, sensitivity, specificity, precision and 

receiver operating characteristics ROC graphs. Their formulas are presented in equations 1 

to 4. The accuracy measure gives an overall effectiveness of a classifier. Alternative 

measures are sensitivity (proportion of observed promoter sequences that are predicted as 

such) and specificity (probability of a classifier identifies non-promoter sequences). 

Additionally, the precision is related to the class agreement of identified promoters given by 

the classifier (Sokolova & Lapalme, 2009). A reliable performance of a promoter prediction 

program is the harmonic average of the sensitivity and specificity. A ROC graph is a 

technique for visualizing, organizing and selecting classifiers based on their performance 

(Figure 2). ROC graph allows visualizing and selecting classifiers based on their 

performance. It is presented as two-dimensional graphs in which TP rate is plotted on the Y  

 

Figure 2. An example of ROC curve obtained from NN simulations results of E. coli promoter 

prediction and recognition (de Avila e Silva et al., 2011b) 
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axis and FP rate is plotted on the X axis. A common method associated with the ROC graph 

is to calculate the area under the ROC curve, abbreviated AUC. The AUC of a classifier is 

equivalent to the probability that the classifier will rank a randomly chosen positive instance 

higher than a randomly chosen negative instance. Further information about the ROC curve 

can be found in Fawcett (2006). 

 
TP TN

Accuracy
TN TP FN FP




  
 (1) 

 
TN

Specificity =
TN + FP

 (2) 

   
TP

Sensibility or recall =
TP+FN

 (3) 

 
TP

Precision
TP FP




 (4) 

3.2. Position-weight matrices 

Consensus sequences have been used to predict promoters by simple pattern matching. 

These strategies for promoter identification are usually based on a prior knowledge of some 

characterized sequences (Jacques et al., 2006). The first alignments of E. coli promoters were 

carried out by Hawley & McClure (1983), Galas et al. (1985), Lisser & Margalit (1993). From 

those compilations, the promoter consensual motifs were established. 

A more sophisticated approach based on alignment is the Position-Weight Matrix (PWM). In 

this two-dimensional array, the rows represent one of the nucleotides A, T, C or G and the 

columns represent the analyzed motif. This accepted method yields results by aligning 

examples of referenced sequences, which allow estimating the base preference at each 

position of a matrix (Song et al., 2007). A weight is assigned to each base at each position in 

the promoter sequence and the final score of a candidate sequence decreases according to 

given differences of the reference matrix. Detailed information about the first 

implementations and the mathematical background can be found in Stormo (2000). 

Huerta & Collado-Vides (2003) use a two stage PWM code-named Cover. This approach 

searches for conserved motifs using multiple sequence alignment methods and generates 

weight matrices for σ70-dependent promoter sequences. Aiming to select the best matrices, 

the authors added some criteria, such as the spacers between -10 and -35 hexamers, the 

distance from -10 region and the start codon, the distance from -10 region and the TSS, and 

statistical analysis and the matrix score. Despite the 86% of predictive capacity of this 

approach, the accuracy obtained was 53%. This value indicates that this approach presents a 

high number of false positives. 

Li & Lin (2006) have proposed a variation from PWMs called Position Correlation Scoring 

Matrix (PCSM). This approach considers the position-specific weight matrices at ten specific 
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positions for the promoter. A PCSM for promoter and another for non-promoter training 

sequences sets have been computed. For classifying a new test sequence, the resulted scores 

from promoter and negative PCSM were used. Based on those scores, the sequence was 

identified as promoter only if the score was higher for positive PCSM. The results achieved 

in this paper present sensitivity of 91% and specificity of 81%. In order to predict promoters 

in the whole genome, the PCSM was applied and all the 683 experimentally identified σ70-

dependent promoter sequences were successfully predicted. Besides that, 1567 predictions 

were considered as probable promoters. 

To predict σ28 promoter-dependent sequences of ten gamma-proteobacteria species, Song et 

al. (2007) carried out an alternative approach based on PWM named as Position Specific 

Score Matrix (PSSM). The species chosen were E. coli, Bacillus subtilis, Campylobacter jejuni, 

Helicobacter pylori, Streptomyces coelicolor, Corynebacterium glutamicum, Vibrio cholera, 

Shewanella oneidensis, Xanthomonas oryzae and Xanthomonas campestris. This approach 

involved two steps: (i) a simple pattern-matching with the short E. coli σ28 promoter 

consensus sequence (TAAAG-N14-GCCGATAA) for predicting σ28 promoters upstream of 

mobility and chemotaxis genes in test species; (ii) these predicted promoters were used to 

generate a preliminary PSSM for each species. The total length of DNA analyzed for each 

bacteria was between 4 x 105 bp and  7 x 105 bp. The cut-off values chosen were set to control 

the false positive rate at 1 every 5 x 105 bp of sequence analyzed using random DNA 

sequence of 5 x 107 pb. Although the performance measures were not present by the authors, 

this paper is devoted to predict other promoter sequences than those recognized by σ70 and 

it shows interesting results about the σ28 consensual promoter sequences. 

PWM models are commonly used because they are a simple predictive approach. Moreover, 

they are a convenient way to account for the fact that some positions are more conserved, 

than others (Stormo, 2000). However, in a large number of sequences the consensus can be 

insufficiently conserved, that is, they present insertions, deletions, variable spacing between 

elements or they are difficult to define. In such cases, this approach yield many false 

predictions (Kalate et al., 2003). Another limitation is the assumption that the occurrence of a 

given nucleotide at a position is independent of the occurrence of nucleotides at other 

positions (Stormo, 2000). Additionally, the use of this approach is highly influenced by the 

cut-off value chosen, since low cut-off values encourage a high false positive rate, while high 

cut-off values encourage a high false-negative rate (Song et al., 2007).  

3.3. Machine Learning 

Machine Learning (ML) concerns the development of computer algorithms which allow the 

machine to learn from examples. The classification (or pattern recognition) is an important 

application of ML techniques in bioinformatics due to their capability of capturing hidden 

knowledge from data. This is possible to achieve even if the underlying relationships are 

unknown or hard to describe. Additionally, they can recognize complex patterns in an 

automatic way or distinguish exemplars based on these patterns (Cen et al., 2010; Sivarao et 

al., 2010).  
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ML approaches usually split the data set into training and test groups. They learn from 

examples (training data), and the set of examples, which were not exposed to the classifier in 

the training process, are used to test the classification model. Among all ML techniques, 

Support Vector Machines (SVM) and Artificial Neural Network (ANN) applications have 

produced promising results in the promoter prediction problem. For this reason, the 

purpose of this section is to provide an explanation about the basic ideas of these two ML 

approaches.  

3.3.1. Support vector machines 

SVM has been applied to identify important biological elements including protein, 

promoters and TSS, among others. This technique is used in bioinformatics as not only it can   

represent complex nonlinear functions but it also has flexibility in modeling diverse sources 

of data. This approach, introduced by Vapnik and his collaborators in 1992, is usually 

implemented as binary classifiers and it yields results by two key concepts: the separation of 

the data set into two classes by a hyperplane, and the application of supervised learning 

algorithms denoted as kernel machines (Ben-Hur et al., 2008; Kapetanovic et al., 2004; Polat 

& Günes, 2007). In a simple way (Figure 3), SVM classifies the data by: (i) drawing a straight 

line which separates the positive examples in one side and negative examples in the other 

side and, (ii) computing the similarity of two points with the kernel function (Ben-Hur et al., 

2008). The kernel function is crucial for SVM, since the knowledge captured from the data 

set is obtained if a suitable kernel is defined (Ben-Hur et al., 2008). Further information and 

mathematical background of SVM can be found in Abe (2010), Ben-Hur et al. (2008), and 

Zhang (2010). 

 

Figure 3. Representation of the basic idea of the SVM classification  

Some published paper devoted to promoter prediction using SVM. L. Gordon et al. (2003) 

carried out SVM with alignment kernel in two different data sets: promoters and coding 

regions, and promoters and non-promoter intergenic regions. The average error achieved 

was 16.5% and 18.6%, respectively for the data sets used. This method is preferable in cases 

which present a sufficient number of known promoter regions, but might not know 

anything about their composition (L. Gordon et al., 2003). This tool is available online in 

http://nostradamus.cs.rhul.ac.uk/~leo/sak_demo/. Another SVM carried out by J. J. Gordon 
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et al. (2006) made a joint prediction of E. coli TSS and promoter region. Their approach was 

based on an ensemble SVM with a variant of string kernel. This classifier combines a PWM 

and a model based on the distribution of distances from TSS to gene start. They have 

achieved results close to those previously described in the literature (average error rate of 

11.6%). The authors report that their results open up the application of SVM on the 

prediction and recognition of special categories of regulatory motifs. Moreover, the authors 

also claim that this model can be broad to other bacterial species which present similar 

consensus sequences and TSS location.  

By using a combination of feature selection and least square support vector machine (LSSVM), 

Polat and Günes (2007) have proposed an approach named FS_LSSVM based in two steps. 

In the first step, the feature selection process was carried out aiming to reduce the 

dimensionality of E. coli promoter sequences with the use of C4.5 decision tree rules. As a 

result, the data set, which originally presented 57 attributes, was reduced to 4 attributes. 

After this process, the second step made the prediction of promoter sequences with the 

application of the LSSVM algorithm. The success rate (capability of recognizing promoter 

sequences) of this approach was of 100%. In face of this result, the authors claim that 

FS_LSSVM has the highest success rate and can be helpful in the promoter prediction and 

recognition issue. Nonetheless, this approach was carried out in a small data set (53 

promoters and 53 non-promoters sequences) which does not represent the available entire 

set of E. coli σ70-dependent promoter sequences (600 sequences experimental identified, 

approximately). In a small data set, the lack of conservation that characterizes bacterial 

promoter sequences cannot be detected, explaining the high efficiency reported. 

The SVM algorithms present many advantages in their use when compared with other 

methods. First of all, SVM produces a unique solution since it is basically a linear problem. 

Second, SVM is able to deal with very large amounts of dissimilar information. Third, the 

discriminant function is characterized by only a comparatively small subset of the entire 

training data set, thus making the computations noticeably faster (Kapetanovic et al., 2004). 

On the other hand, a problem of SVM is its slow training, as it is trained by solving a 

quadratic programming problem with the number of variables equal to the number of 

training data (Abe, 2010). 

3.3.2. Artificial Neural Networks 

The artificial neural networks (ANN) are powerful computational tools inspired (they are 

not a faithful models of biological neural or cognitive phenomena) on the structure and 

behavior of biological neurons (Hilal et al., 2008; Wu, 1996). As in the human brain, the basic 

unit of ANN is called artificial neuron (Figure 4b), and it can be considered as a processing 

unit which performs a weighted sum of inputs (Hilal et al., 2008). In a simplest form, ANN 

can be viewed as a graphical model consisting of networks with interconnected units. The 

connection from a unit j to unit i usually has a weight denoted by Wij. The weights represent 

information being used by the net to solve a problem (Wu, 1996). 
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Figure 4. In (a) an example of MLP architecture and in (b) an artificial neural representation 

The way by which the neurons are interconnected defines the ANN architecture. There are 

many kinds of architecture, but this review describes only the multilayer perceptron (MLP) 

architecture. The reasons for this choice are the capability of MLP capture and discover 

high-order correlations and/or relationships in input data and its wide applicability on 

promoter prediction (Hilal et al., 2008; Wu, 1996). Three-layer ANN (Figure 4a) is known as 

universal classifier as it is able to classify any labeled data correctly if there are no identical 

data in different classes (Baldi & Brunak, 2001). 

The MLP presents three kinds of layers: input layer, output layer, and hidden layers (Figure 

4a). The input layer contains the neurons which receive the information from external 

sources and passes this information to the hidden layer for network processing. The use of 

hidden neurons makes the learning process harder to visualize, since the search has to be 

conducted in a much larger space of possible functions in order to decide how input 

features should be represented by the hidden neurons. The output layer contains neurons 

that receives processed information and sends output signals out of the system. In all layers 
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there is a bias input which provides a threshold for the activation of neurons (Hilal et al., 

2008). The neurons in a given layer are fully connected by weights with the neurons on the 

adjacent layer. Each layer is comprised of a determined number of neurons. The number of 

input neurons corresponds to the number of input variables into the ANN, and the number 

of output neurons is the same as the number of desired output variables. The number of 

neurons in the hidden layer(s) depends on the application of the network (Hilal et al., 2008). 

MLPs have been applied successfully to solve many problems by training them in a 

supervised way with a highly popular algorithm known as back-propagation (Wu, 1996). 

This algorithm is the most widely used to adjust the connection weights. During the training 

of multilayer neural networks classifiers, the weights are usually corrected so that the sum 

of squares error between the network outputs and the desired output are minimized (Abe, 

2010). 

The first NN promoter prediction, as presented by Demeler and Zhou (1991), had simple 

architecture and the results showed high accuracy and false positive rate. More complex 

architectures were applied by Mahadevan and Ghosh (1994), who used a combination of 

two ANN to identify E. coli promoters of all spacing classes (15 to 21 bases). The first ANN 

was used to predict the consensus motifs, while the second was designed to predict the 

entire sequence containing varying spacer lengths. Since the second NN used the 

information of the entire sequence, there were possible dependencies between the bases in 

various positions. This procedure presents as result a poor prediction (recall). To predict and 

find relevant signals related to TSS, Pedersen and Engelbrecht (1995) devised two ANN 

with different windows on the input data. An interesting result obtained from the sequence 

content information analysis suggests that important regions for promoter recognition 

include more positions on the DNA than usually assumed (-10 and -35 region). In spite of 

the high false positive rate, the interesting idea of both papers was to measure the relative 

information and the dependencies between bases in various positions. A comprehensive 

summary of the first ANNs application on promoter prediction can be obtained from Wu 

(1997). 

Neural Networks Promoter Prediction (NNPP) is - up to now - one of the few online available 

tools (http://www.fruitfly.org/seq_tools/promoter.html). NNPP was originally developed to 

predict core promoter regions in Drosophila melanogaster (Reese, 2001). However, this tool 

was also trained to predict E. coli promoter sequences. NNPP is based on a neural network 

where the prediction for each promoter sequence element is combined in time-delay neural 

networks for a complete promoter site prediction (Reese, 2001). An improved version of 

NNPP was obtained by addition of the distance between the TSS and TLS (Burden et al., 

2005). Despite the improved sensitivity (86%), the NNPP approach gives a large number of 

false positives (precision 54%). 

DNA promoter information, other than nucleotide composition, was used as ANN input 

data by several authors. Rani et al. (2007) propose a global feature extraction scheme which 

extracts an average signal from the entire promoter sequence of 80 bp length. The resulting 

signal was composed by a combination of promoter dinucleotides. After this procedure, 
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MLP training was carried out with the promoter signal as positive examples and four 

different negative data sets: (i) genes, (ii) genes and non-promoter intergenic sequences, (iii) 

60% AT reach random sequences and (iv) 50% AT reach random sequences. The specificity 

values for each data set were 79%, 88%, 98% and 99%, respectively. For the sensitivity, the 

results achieved were 80%, 63%, 93% and 95%. After the ANN results simulations, the 

authors spliced the promoter data in two linearly separable groups: a major data set and a 

minor data set. The first group was composed by sequences which were correctly classified 

by ANN, and the misclassified sequences were grouped in the minor data set. Although it 

was possible to separate the sequences in two groups, both set of promoter sequences 

showed a similar signal in the dinucleotide space. The authors claim that the feature 

extraction and classification methods are generic enough to be applied to the more complex 

problem of eukaryotic promoter recognition. Although highly efficient, this approach is 

limited to the AT-rich sigma sequences like σ70, as showed by the promoter sequence 

description obtained from de Avila e Silva et al. (2011). 

By using an ANN architecture fed by difference in DNA stability values between upstream 

and downstream regions in vicinity of known TSS, Askary et al. (2009) presented an 

approach named N4 devoted to E. coli TSS prediction. In this paper, the ANN input 

sequence slides a 414-nucleotides window with sliding size of one nucleotide. Each window 

was applied in the form of 413 nearest neighbors (or dinucleotides). The results obtained 

show sensitivity and precision of 94%. The initial state of this ANN was the Kanhere and 

Bansal’s algorithm (described in the section 3.4) which was improved by the training 

process. In fact, the authors transpose the idea of the Kanhere and Bansal’s algorithm into 

the ANN architecture. An interesting result presented in this paper, was the analysis of how 

the promoter information was used by N4 to learn. They show that N4 learn from the -10 

and -35 motifs, and the +160 position. A single alteration at the +160 position makes N4 to 

recognize a non-promoter sequence as promoter. This position is downstream of TLS which 

indicates that this approach probably uses the position of ORF for the accurate prediction of 

TSS. 

Rani and Bapi (2007) used n-gram as feature for a neural network classifier for promoter 

prediction in Escherichia coli and Drosophila melanogaster. An n-gram is defined as a selection 

of n contiguous characters from a given character stream. The authors show that the number 

of n-grams which presents the best results for E. coli was n=3 against a negative examples set 

consisting of gene and non-promoter intergenic segments. The performance measures 

presented were: sensitivity of 67.75%, specificity of 86.10% and precision of 80.0%. 

According to the authors, these results reinforces the idea that 3-grams usage a pattern 

which can distinguishing a promoter of other sequences, since higher order n-grams 

features was not powerful enough to discriminate promoter and non-promoter. In addition 

to this result, the authors apply challenge the 3-grams on promoter identification in the 

whole genome. The identification of 19 NCBI annotated promoters was 100% positive and 

encouraging them to propose this methodology as a potential promoter annotation tool. 

An ANN-based approach was used by de Avila e Silva et al. (2011) for promoter prediction 

according to the σ factor which recognizes the sequence. This bioinformatics tool, denoted 
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as BacPP, was developed by weighting rules extracted from ANNs trained with promoter 

sequences known to respond to a specific σ factor. The information obtained from the rules 

was weighted to optimize promoter prediction and classification of the sequences according 

to σ factor which recognize them. The accuracy results for E. coli were 86.9%, 92.8%, 91.5%, 

89.3%, 97.0% and 83.6% for σ24, σ28, σ32, σ38, σ54 and σ70 dependent promoter sequences, 

respectively. As related by the authors, the sensitivity and specificity results showed similar 

values, indicating that this tool present a reduction of false positive rate. In contrast to tools 

previously reported in the literature, BacPP is not only able to identify bacterial promoters 

in background genome sequence, but it is also designed to provide pragmatic classification 

according to σ factor. By separating the promoter sequences according their σ factor which 

recognize them, the authors have demonstrated that the current boundaries of prediction 

and classification of promoters can be dissolved. Moreover, when applied to a set of 

promoters from diverse enterobacteria, the accuracy of BacPP was 76%, indicating that this 

tool can be reliably extended beyond the E. coli model.  

In spite of the ANN capability capture imprecise and incomplete patterns, such as 

individual promoter motifs including mismatches (Cotik et al., 2005), this ML approach can 

present some intrinsic difficulties. Many decisions related to the choice of ANN structure 

and parameters are often completely subjective. The final ANN solution may be influenced 

by a number of factors (e.g., starting weights, number of cases, number of training cycles, 

etc.). Besides, the overtraining needs to be avoided, since it results in ANN which 

memorizes the data, instead of to do a generalization of them (Kapetanovic et al., 2004). 

3.4. Other approaches 

The symbolic representation of DNA nucleotides given by the letters A,T,G,C lead to many 

studies which aiming at understanding its structure through distributions, complexities, 

redundancy and statistical regularities (Krishnamachari et al., 2004). All this kind of 

information have a theoretical potential to be a distinguish feature of promoter sequences. 

Some papers are devoted to applied this features either alone or in combination with other 

approaches for improve promoter prediction results. 

Kanhere and Bansal (2005b) developed their own promoter recognition approach based on 

differences of DNA stability between promoter and coding regions. That tool was improved 

by Rangannan e Bansal (2007) and achieves sensitivity of 98% and a just precision of 55%. 

The authors claim that this stability-based approach can be used to annotate entire genome 

sequences for promoter regions. According to the authors, the low precision can be reduced 

if it was combined with other sequence based methods. Additionally, they argue that this 

method can be used to investigate characteristic properties of specific subclasses of 

promoters, as well as other functional elements which no exhibit obvious consensus 

sequences. 

Jacques et al. (2006) describe a novel approach based on matrices representing the genomic 

distribution of hexanucleotides pairs. The principal strategy was based on the observation 

that the promoters are over-represented in intergenic regions relative to the whole genome. 
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This approach was carried out for ten prokaryotic genomes and the analysis of characterized 

promoter sequences generates a sensibility of the matrices generated. These results present 

different sensibility values according to the analyzed bacteria. The lowest value was 29.4% 

for C. glutamicum and the highest value was 90.9% for Bradyrhizobium japonicum. For the 

other genomes (E. coli, B. subtilis, S. coelicolor, H. pylori, C. jejuni, Staphylococcus aureus, 

Mycobacterium tuberculosis and Mycoplasma pneumonia), the sensibility achieved was around 

45%. According to the authors, these results suggest that transcription factor DNA binding 

sites from various bacterial species have a genomic distribution significantly different from 

that of non-regulatory sequences. Besides the lower sensitivity values for some species, this 

paper presents the potential of genomic distribution as indicator of DNA motif function. 

This algorithm took advantage of a yet unexploited concept, can be used in a wide variety of 

organisms, required almost no previous knowledge of promoter sequences to be effective 

and can be combined with other methodologies. Additionally, the authors claim that this 

approach can be designed to predict precise promoter sequences using any annotated 

prokaryotic genome. 

The SIDD values were used by Wang and Benham (2006) for demonstrating that this 

information can be useful when applied to promoter prediction. They define a promoter as 

extending from positions -80 to +20 with respect to the TSS and they define strong SIDD as 

any value below 6 kcal/mole. SIDD values correctly predicted 74.6% of the real promoters 

with a false positive rate of 18%. When the SIDD values were combined with -10 motifs 

scores in a linear classification function, they predict promoter regions with better than 90% 

accuracy. The authors attribute their success to the fact that about 80% of documented 

promoters contain a strong SIDD site. The authors also observed a bimodal distribution of 

SIDD properties, which can reflect the complexity of transcriptional regulation, suggesting 

that SIDD may be needed to initiate transcription from some promoters, but not others. 

4. Conclusions 

A brief survey of currently E. coli promoter information and their recognition and prediction 

approaches was presented. In order to improve the in silico promoter prediction, an 

appreciation of the biological mechanistic of promoter sequences is necessary. In this way, 

the comprehensive analyses of bacterial promoter sequences revealed the fact that the 

sequence dependent properties are important and can be exploited in developing in silico 

tool for promoter prediction. 

The currently available approaches described in this paper make efforts to reduce the 

number of false predictions. Recent bioinformatics applications are increasingly 

appreciating the DNA structural features and incorporating this kind of information for 

detecting promoter tools. Some works shows the advantage of the use of the feature 

selection or extraction process as an important part of pattern recognition, since this 

procedure can decrease the computation cost and increase the performance of the 

classification (Polat and Günes, 2009). One of the goals of promoter recognition is to locate 

promoter regions in the genome sequence. Predicting promoters on a genome-wide scale is 
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problematic due to the higher number of false positive predictions caused by the large 

amount of DNA analyzed. It is important for consideration the fact that a given 

classification method is not universally better than other, since each method has a class of 

target functions for which it is best suited (Bradley, 1997). 
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