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1. Introduction 

The promising video coding standard, H.264/AVC [1], is developed by the Join Video Team 

of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group 

(MPEG). By utilizing several new techniques, such as advanced intra predictions, variable 

block size ME, integer transformation, in-loop deblocking filter, H.264/AVC has achieved 

significant compression gain compared with previous video coding standards. It is now 

widely applied to many types of visual services, for example Digital Multimedia 

Broadcasting, Mobile Phone, and High Definition (HD) video delivery. In the near future, 

holography video and Super-HD video are expected to hit consumer market. These kinds of 

large sized video contents require higher coding efficiency while keeping the encoder 

complexity within an acceptable level. Therefore, new techniques are needed to reduce the 

computational complexity so that various real time video encoder and delivery services for 

the large sized video contents could be feasible.  

In particular, Block-Matching Motion Estimation (BMME) with Full Search (FS) algorithm 

[2] is the main computational burden in H.264/AVC due to exhaustively search all possible 

blocks within the search window using Lagrangian multiplier. Although FS algorithm can 

obtain the optimum motion vector (MV) in most cases, it consumes more than 80% of the 

total computational complexity. Thus, a fast and efficient motion estimation algorithm is 

required for H.264/AVC. Recently, two major approaches were researched to overcome this 

problem. One employs fast mode decision algorithms to skip unnecessary block modes in 

variable block checking process [3, 4]. The other one utilizes Fast Motion Estimation (FME) 

searching algorithms to reduce unnecessary search points [5-11].  

Various algorithms have been proposed to reduce search points for FME Search algorithm. 

Motion adaptive search (MAS) [5] utilized the motion activity information to adjust the 

search strategy. In Variable Step Search (VSS) algorithm [6], motion search range is 
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determined by using the degree of correlation between neighbouring motion vectors. A 

Multi-Path Search (MPS) algorithm [7] has been proposed, in which all the eight neighbours 

around the origin of the search window were performed to find candidate points. This 

algorithm has good rate-distortion performance, but its computational complexity reduction 

is limited. To tackle this drawback, the directional gradient descent search (DGDS) 

algorithm [8] is developed. It searched on the error surface in eight directions by using 

directional gradient descent. The search patterns in each stage depend on the minima found 

in eight directions and thus the global minimum can be traced more efficiently. 

The hybrid multi-hexagon-grid search (UMHexagonS) algorithm [9] was adopted in 

H.264/AVC reference software JM as its significant reduce the computational complexity 

with only little degradation in rate-distortion performance. UMHexagonS takes advantage 

of four kinds MV predictions to decided initial search point, i.e. the Median Prediction (MP), 

the Uplayer Prediction (UP), the Corresponding-block Prediction (CP) and the 

Neighbouring Reference-picture Prediction (NRP). After selecting the best initial point, it 

employs the unsymmetrical-cross search pattern and uneven-hexagon-grid search pattern, 

which are shown in Figure 1 as step2 and setp3-2. In these uneven search patterns, the 

number of horizontal search points is more than that of vertical points. This is mainly based 

on a common assumption, that the movement in the horizontal direction is higher than that 

in vertical direction. However, motion characteristic in each video sequence is unique. Also, 

the characteristic may change with the time. Therefore, with this horizontal-heavy pattern, 

UMHexagonS would lose accuracy and waste searching power.  
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Figure 1. Search process of UMHexagonS algorithm 

Predictive Intensive Direction searching (PIDS) algorithm was proposed in [10] to solve the 

problem caused by uneven search patterns by using a adaptive searching pattern. In PIDS 

algorithm, the correlation between predicted motion vector and optimal motion vector was 

investigated. The study revealed that the probability of predicted and optimum motion 
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vector existing in the same directional region is at least 75%. Based on this statement, PIDS 

algorithm exploited the predicted MV direction to decide the intensive search direction. 

Thus, the intensive-direction search and coarse-direction search are selected adaptively for 

different regions. One example of search process of PIDS is depicted in Figure 2. As the 

uneven search pattern is changing according to the predicted motion vector of each block, it 

performs more precisely than UMHexagonS and achieves more computation reduction.  

 

Figure 2. Search pattern of PIDS, example of intensive search in d1 

However, the PIDS algorithm’s adaptive intensive search selection is limited in directional 

regions. With fixed number of search points in each direction, it cannot adjust the search 

range for different motion scenes. In study [11], a statistic analysis of MV distribution was 

carried out. A large number of global minima occupy near the search centre especially at the 

zero MV (0, 0) with a certain percentage of optimal MVs outside the radius of 10 pels. It 

indicated that most predicted and optimal MVs have high locality correlation. Meanwhile, 

some irregular MVs can hardly be well predicted due to poor correlation. In this chapter, 

direction and distance correlation between predicted MV and optimal MV are investigated 

MV correlation statistics information is calculated for each frame as its motion characteristic. 

With this information, the intensive and coarse search regions are adaptively changed for 

each block. The Simulated Annealing concept [12, 13] is employed to control searching 

process and to adaptively choose the intensive search region. After this Introduction the 

chapter is organized into five more sections as follows. 

Section 2 statistical analyse MV direction and distance correlation characteristic. The block-

matching motion estimation is described in this section. Section 3 gives an overview of 

simulated annealing and simulated quenching algorithm. Based upon analyses, the 

proposed SAAS algorithm is presented in section 4. The experimental results are given and 

illustrated in section 5. Finally, section 6 draws the final conclusion.  
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2. Statistical analysis of MV correlation characteristic  

Because of the consistency of object and the consistency of motion, MVs have high 

correlation in both spatial and temporal domains. Thus MV prediction technique is adopted 

in H.264/AVC to improve ME efficiency. A predicted motion vector, predmv , is generated by 

previously coded neighbourhood motion vectors and MVD, the difference between the 

current vector and the predicted vector, is encoded and transmitted.  

For the regions with smooth motion of a moving background and uniform motion of rigid 

objects, there normally exist very high correlations between predicted and optimal motion 

vectors. So that the BMME search algorithm only need to check a few points to obtain 

optimal position. While for the poor motion vector correlation scenario, like the complex 

and irregular motion, more candidate points are needed to be checked. Therefore, MV 

correlation characteristic will affect the searching strategy chosen in the BMME algorithm. In 

order to adaptively select an appropriate search pattern, MV correlation is statistical 

analysed in this section.  

 

Figure 3. Direction and distance classification of MV correlation ( ),
i j

d g
p MVC  

To sufficient describe MV correlation characteristic, the MV correlation statistics are 

calculated in two aspects: motion vector directional correlation statistic and motion vector 

distance correlation statistic. Combining these two correlations together, the search window 

is divided into 8 direction regions id  and a group of octagon grids jg , as illustrated in 

Figure 3. Normally, the motion content of each video sequence is unique and the scene is 

changing with time. MVs correlation characteristic is changing with sequences and time. In 

this case, the analysis of MV correlation is frame based to improve the accuracy. The 

predicted and optimal motion vectors of previous frame are utilized for current coding 

frame. 
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MV directional difference MVDd describes the directional similarity between predicted MV 

direction predd and optimal MV direction bestd , and is measured in degrees as follows  

 = bestMVD predd d d−   (1) 

where, [ 180 ,180 ]
MVD

d ∈ −   is classified into 8 classes, with boundary of 22.5± ° , 67.5± ° , 112.5± °

and 157.5± ° as illustrated in Figure 3. The statistical calculation is carried out by exploding 

the MV directional distribution in these classes. Then the distribution probabilities 

( )
idp MVC  of MV directional correlation are obtained. If MV directional correlation is high, 

bestd locates in forward or backward of predd , as shown in Figure 4. Class ( )1 22.5 ,22.5d °∈ − °

and Class ( ) ( )2 180 , 157.5 157.5 ,180d ∈ − ° − ° ° ° indicate the forward and backward direction and 

normally have higher probabilities than other classes. 

 

Figure 4. Two situation of bestd locating along predd  

MV distance correlation is measured by the distance between global minimum point and 

searching centre, which is known as the motion vector difference (MVD). Several Octagon 

grids jg are utilized to categorise the MV distance correlation, as such circle-approximated 

pattern is more accurate to describe the MVD distribution. The interval between neighbour 

octagon grids is 4 pels, which is shown in figure 3. To evaluate the characteristic of MV 

distance correlation, MV distance correlation probabilities ( )
jgp MVC  are calculated. 

Considering both directional and distance, MV correlation probabilities ,( )
i jd gp MVC for the 

current coding frame are defined as: 

 ( ) ( ) ( ),i j i jd g d gp MVC p MVC p MVC= ×   (2) 

where (1,8)id ∈  is the directional classes and ( )1, /4jg sr∈  is the octagon grids within search 

range .sr The MV correlation ,( )
i jd gp MVC  represents the possibility of optimal MV obtained 

in the class ( , )i jd g . 
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( )jgp MVC  

g1 [2,4] g2 [4,8] g3 [8,12] g4[12,16] g5[16,20] g6[20,24] g7[24,28] g8[28,32] 

50.85% 40.09% 2.26% 0.10% 0.00% 1.65% 4.94% 0.10% 

d1 8.03% 4.08 3.22 0.18 0.01 0.00 0.13 0.40 0.01 

d2 35.72% 18.16 14.32 0.81 0.04 0.00 0.59 1.76 0.04 

d3 6.79% 3.45 2.72 0.15 0.01 0.00 0.11 0.34 0.01 

d4 0.41% 0.21 0.16 0.01 0.00 0.00 0.01 0.02 0.00 

d5 17.81% 9.06 7.14 0.40 0.02 0.00 0.29 0.88 0.02 

d6 23.93% 12.17 9.59 0.54 0.02 0.00 0.39 1.18 0.02 

d7 6.28% 3.19 2.52 0.14 0.01 0.00 0.10 0.31 0.01 

d8 1.03% 0.52 0.41 0.02 0.00 0.00 0.02 0.05 0.00 

Table 1. MV correlation probabilities of video sequence coastguard, the 10th frame 

One example is given in Table 1, which shows the MV correlation characteristic in the 10th 

frame of “coastguard” CIF video sequence. For better understanding, the 10th frame of the 

“coastguard” is given in Figure 5. It can be observed that the fast moving boats bring some 

fast and irregular motion, while camera panning generates smooth movement on 

background. According to Table 1, more than 35% of optimal MVs are detected in the 

directional class 2d . In class 5d and class 6d , there are also big percentage of optimal MVs 

appears, which implies the motion of this frame is directional irregular. While the distance 

correlation suggests that 90% of optimal MVs locate within the radius of 8 pels, which is 

quite stable when considering distance correlation. Considering both directional and 

distance correlation, there are only 3 partition regions, i.e. ( )2 1,d g , ( )2 2,d g and ( )6 1,d g  with 

more than 10% probabilities to contain the optimal position. In the meanwhile, 21 of 64 

regions’ MV correlation probabilities are more than 0.1%. This suggests that intensive search 

is only needed to be performed in these regions. While the rest of regions, it is sufficient to 

be coarsely searched or even be totally skipped. 

 

Figure 5. The 10th frame of CIF video sequence “coastguard”. 
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Further illustration is demonstrated in Figure 6. The directional division describe the 

direction difference between the predicted motion vector and the optimal motion vector. 

The Octagon grid partitions represent the distance difference between two vectors. Such 

category division is not in image pels domain. It represents the unique motion character of 

each frame. Direction class d1 covers 22.5o±  of direction different between predicted motion 

vector and optimal motion vector. For each MB, the predicted motion vector determines the 

initial direction d1 and then the division pattern is rotated accordingly. As the motion 

correlation for each frames are different, the division pattern is different among frames. For 

each macroblock, the predicted MVs are different, so that the search pattern is also 

adaptively changed.  

Based on above satiric analysis, SAAS algorithm is proposed, which provides a more 

accurate approach to obtain optimal motion vector. Similar to PIDS algorithm, the number 

of search points in each division is adaptively adjusted. But more computational complexity 

can be saved as the intensive searching areas are more precisely divided with help of 

different Octagon grids. 

 

Figure 6. MV correlation statistics of coastguard, the 10th frame 

3. Observations of simulated annealing and simulated quenching 

algorithm 

3.1. Simulated annealing algorithm 

Simulated annealing (SA) [13] is a probabilistic method for finding the global minimum of 

an optimization problem. It works by emulating the physical process where liquids are 

slowly cooled so that the atoms are often able to line themselves up and form a pure crystal. 
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The crystal can be seemed as the minimum energy state for this system. SA is especially 

suitable for the large scale problems with the global minimum hidden among several local 

minimum. The motion estimation is such kind of optimization problem that search for the 

optimal motion vector with minimum RD cost. However, most fast motion estimation 

search algorithms look for steepest descent for minimization and go downhill as far as they 

can go, as shown in Figure 7. Hence, these algorithms are easily trapped into a local 

minimum.  
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Figure 7. Uphill and downhill searching on rate-distortion surface 

Avoiding the disadvantage stated above, SA algorithm can be viewed as a good solution to 

motion estimation search algorithm, in which occasional uphill moves will help the process 

escape from local minima. The so-called Boltzmann probability distribution as defined in 

equation (5), 

 ( ) ( )~ /Prob E exp E kT−   (3) 

expresses that a system at temperature T has its energy probabilistically distributed among 

all different energy states. Even at low temperature, there is a chance for the system to get 

out of a local energy minimum. Therefore, the system sometimes goes uphill as well as 

downhill. But lower the temperature, less chances for any significant uphill to take place. 

The basic elements of simulated annealing are as follows: 

• A finite solution space S (set of states). 

• An objective function ( )E s  (analogy of energy) at state s , whose minimization is the 

goal of the procedure. 

• A Neighbourhood structure ( )N s .  

• A nonincreasing function T called cooling schedule, which controls the annealing 

procedure, and T(t) is called the temperature at time t.  
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Given the above elements, the process of SA searches for the minimum energy state 0  s  is 

described as follows: 

3.2. Simulated Quenching algorithm 

SA solution usually requires a large number of function evaluations to find the global 

minimum, which cause the speed of process is quite slow. That is the main disadvantage 

when using in fast motion estimation algorithm. To speed up the algorithm, a Simulated 

Quenching (SQ) methodology was proposed. Like SA, SQ algorithm also resembles the 

cooling process of molten metals through annealing. The analogy of the technique remains 

the same as that of SA except for quick temperature reduction annealing schedule. Thus the 

cooling rate becomes one of important parameters, which governs the successful working of 

SQ.  

As in fast motion estimation algorithm, video contents and motion character are changing 

all the time, it’s quite difficult to find a unique cooling scheme for such complicated 

application. In our proposed SAAS algorithm, we adaptive choose annealing schedule 

according to MV correlation probabilities information. For the frame with steady motion 

and high MV correlation, larger values of MV correlation probabilities are more easily to 

distribute in fewer divided regions. In this case, the faster anneal schedule will safely lead to 

global optimum. While a slower annealing schedule will be choosing when the frame with 

more irregular motion and MV correlation distribution is flat. The proposed SAAS 

algorithm with adaptive cooling scheme is specified in next section.  

4. Proposed SAAS algorithm 

The PIDS algorithm adaptive selects the intensive and coarse search regions in directional 

partition. However, with fixed number of search points in each direction area, it cannot 

adjust the search range for different motion scenes. To tackle this drawback, search pattern 
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in SAAS algorithm is no longer restricted to certain directional regions, but is adaptively 

selected from more specific divided regions based on the MV correlation statistics. Flow 

chart of the SAAS algorithm is depicted in Figure 8 for better illustration. For each frame, 

ME search pattern is determined by MV correlation statistics. For each block, 24 directional 

candidates are employed to determine initial class d1 as shown in Figure 9. Then, the search 

window division is carried out based on ME search pattern of the frame. One example of 

d1=c4 in the 10th frame of coastguards is demonstrated in Figure 10. In order to avoid 

trapping into a local minimum, Simulated Annealing based solution methodology is 

adopted to process the uphill and downhill searches, where MV correlation probabilities are 

set as the temperature parameter to control the annealing process adaptively.  

 

Figure 8. Flow chart of the proposed SAAS algorithm 

4.1. Dynamic update of MV correlation probability 

In the SAAS algorithm, it is very important to keep MV correlation probabilities accurate. 

Not only because the MV correlation probabilities is the crucial element for search region 

partition and annealing schedule, but also motion characteristic of each video sequence is 

unique and the MV correlation probabilities are changing all the time. A pre-processing step 

is conducted to reveal the motion correlation characteristic for the each frame.  
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The MV correlation probabilities ,( )
i jd gp MVC are calculated with equation (2) by MV 

directional and distance correlation probabilities. In order to get more accurate MV 

correlation characteristic, the first octagon grid is started from 2 pixels to get rid of the 

points near centre. This is mainly because of the MV directional difference is meaningless 

when optimal points are close to the centre point. After the calculation, the MV correlation 

probabilities are sorted by descending order with corresponding region ( ),i jd g , which 

represents the region in direction id  and in the jg  grid. A parameter ( ),i jtemp d g  that 

affects the annealing schedule as well as acceptance condition is also assigned by MV 

correlation probabilities ,( )
i jd gp MVC . 

4.2. Step 1: Initial search point decision 

The initial search point is selected from the four prediction models defined in the 

UMHexagonS. Based on the analysis in the last section, vectors around initial search point 

have a high probability to be the optimal MV. Therefore, we define large diamond search 

with 8 searching points around the start search point, which is similar shown in Figure 2 as 

step1. In contrast to the 25 point rectangular full search in UMHexagonS, this large diamond 

search reduces the computational requirement without sacrificing its accuracy. The point 

with the minimum rate-distortion cost is determined as the initial search point.  

 

Figure 9. 24 candidate directions for d1 determination 

4.3. Adaptive partition of search area 

After obtaining the initial search point, search area need to be divided based on MV 

correlation probabilities and predicted MV. 24 candidate directions ( )1 2 24 , ,c c c… , 3 times 
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more than PIDS’s, are employed which is indicated in Figure 9. The candidate direction  ic  

with minimum degree difference to predd is determined as initial search direction d1. The 

directional regions with boundary of 22.5 ,± ° 67.5 ,± ° 112.5± ° and 157.5± ° are spread 

according to the initial search direction d1. Then the octagon grids are utilized to divide the 

search window into  regions, where  is the search range. Based on that, the search window is 

adaptively partitioned. The coordinate of each region is represented by ( , ).i jd g Parameter

( , )i jtemp d g are assigned to each region ( , )i jd g  as indexing. One more example is shown in 

Figure 10, which shows the search window divisions are adjusted when initial direction 

d1=c4 in coastguards’ 10th frame. Compared to the search window partition in figure 6, when 

d1=c1, the whole search pattern is changed as the difference of predicted MV. In next step, the 

simulated annealing search process will be conducted on different search region ( , )i jr d g

with parameter ( , )i jtemp d g as cooling scheme. 

 

Figure 10. Search area division by directions and grids in SAAS, example of d1=c4, the 10th frame of 

coastguard 

4.4. Step 2: Simulate annealing search  

4.4.1. Objective function and solution space 

In order to employ simulated annealing search in BMME algorithm, the SA elements are 

defined combing the concept of motion estimation in this section. The procedure for optimal 

MV searching is performed using predicted MV as centre of the search window. To optimally 

select the least rate-distortion cost, Lagrangian multiplier tool [14] are defined as follow: 

 ( ), ( , ( )) ( )preM dMJ mv SAD R mm vs c vv mλ λ ⋅ −= +   (4) 
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where mv is the candidate motion vector, predmv is the predicted the motion vector from 

neighbour blocks. s and c are the source video and the reconstructed video, respectively. 

SAD represents sum of absolute difference between the block in current frame and the block 

in the reference frame. ()R represents the bits used to encode the motion information 

computed by a table-lookup and Mλ is the Lagrangian multiplier set according to the 

quantization parameter (QP), which is given by 

  /30.85 2QP
Mλ = ×   (5) 

This rate-constrained function has achieved good RD performance for motion estimation. In 

SA search step, RD cost function ( ), MJ mv λ is employed as Objective function E . 

 ( ), ME J mv λ=   (6) 

The divided regions ( ),i jr d g  in search window are denoted as solution space, which is 

indexed by MV correlation probabilities rather than spatial neighbour region. The order 

of regions with decreasing MV correlation probabilities for the 10th frame of sequence 

coastguard is shown in Table 2. This mechanism can be seemed as a randomly selection 

from solution space. Compared to the simple downhill search in continuous space, this 

scheme intensively searches the regions with higher MV correlations probabilities  

first. For the regions with lower probabilities, coarse search or early terminal will be 

applied. 

 

order 
MV Correlation 

Probability % 

Region 

Coordinate 
order 

MV Correlation 

Probability % 

Region 

Coordinate 

1 18.16 (d2 ,g1 ) 16 0.81 (d2,g3) 

2 14.32 (d2 ,g2 ) 17 0.59 (d2,g6) 

3 12.17 (d6 ,g1 ) 18 0.54 (d6,g3) 

4 9.60 (d6 ,g2 ) 19 0.52 (d8,g1) 

5 9.05 (d5,g1 ) 20 0.41 (d8,g2) 

6 7.14 (d5,g2 ) 21 0.40 (d5,g3) 

7 4.08 (d1,g1 ) 22 0.40 (d1,g7) 

8 3.45 (d3,g1 ) 23 0.39 (d6,g6) 

9 3.22 (d1,g2 ) 24 0.34 (d3,g7) 

10 3.19 (d7,g1 ) 25 0.31 (d7,g7) 

11 2.72 (d3,g2 ) 26 0.29 (d5,g6) 

12 2.52 (d7,g2) 27 0.21 (d4,g1) 

13 1.76 (d2,g7) 28 0.18 (d1,g3) 

14 1.18 (d6,g7) 29 0.17 (d4,g2) 

15 0.88 (d5,g7) 30 0.15 (d3,g3) 

Table 2. Mv search region order in the 10th frame of sequence coastguard 



 
Simulated Annealing – Single and Multiple Objective Problems 188 

4.4.2. Annealing schedule  

The annealing schedule is one of crucial parameter for the SA process. If the temperature in 

the system dropping too fast, the advantage of SA, which converge to the global optimum, 

is defeated. However the too slow cooling process might affect the efficiency of our fast 

searching algorithm. Moreover, it quite difficult to set a fixed annealing schedule for the 

changeable video contents. In SAAS algorithm, the sorted MV correlation probabilities 

,( )
i jd gp MVC are assigned to corresponding annealing parameters ( ),i jtemp d g  for region

( ),i jr d g to control the annealing schedule.  

 
,

( ) ( )( , ) ( )
i ji ji j d g d gtemp d g p MVC p MVC p MVC= ×=   (7) 

( ),i jtemp d g is a set of parameter in pixel domain for particular block, while ( ),i jd gp MVC is a 

relative parameter in frame level. By using this adaptive annealing schedule, the cooling 

speed is changing with video content and motion correlation, while governs the successful 

working of the SA procedure. 

To improve the searching efficiency, SAAS performs different number of iterations at 

different temperature status. Inside each region ( ), ,i jr d g mv search is randomly performed 

along the direction id in the range of 1[ , ]j jg g− . The number of search points ( ( , )i jNumS d g ) in 

division ( , )i jr d g is determined by a pair of thresholds, temp_high and temp_low.  

  ( )
( )

( )
4, , _

, 2, _ , _

1, ( , ) _

i j

i j i j

i j

temp d g temp high

NumS d g temp low temp d g temp high

t

ttt

emp d g

tt

ttt

temp low

tt

tttttt

 >



= < <


<

  (8) 

After several experiments with more than 50 different sequences, we empirically 

determined temp_high = 0.3 and temp_low = 0.15. These thresholds provide satisfying 

performance on different motion senrou. By utilizing this mechanism, SAAS exploits 

intensive search in the regions with high MV correlation, and selects fewer search points in 

less correlation region automatically. 

4.4.3. Minimum accepted condition 

The minimum accepted condition in SA is based on Boltzmann probability distribution. 

Referring to equation (3), there is a high probability to perform uphill search when 

difference of cost function E is smaller and the temperature T is higher. By using Boltzmann 

concept, SAAS utilizes the following SA Condition. 

 
( ) ( )( )

( )

,i jE best E r d g

E best
ρ

−
<   (9) 
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Where, is current global minimum and is a threshold controlled by annealing parameter, 

and is given by: 

  
( )( )

1

2 log ,i jtemp d g
ρ

−
=

⋅
  (10) 

With ,ρ the SA condition is directly proportionate to ( ),i jtemp d g and inversely proportional 

to difference of cost function E. If ( ) ( ( , ))i jE best E r d g> , region ( ),i jr d g is directly identified as 

the current global optimal. Otherwise, the SA condition still provides occasional upward 

moves. As ρ  is controlled by ( ),i jtemp d g , for the division with lower ( ),i jtemp d g , the 

chance to conduct upward moves is smaller.  

4.4.4. Termination condition  

It is impossible to conduct SA search on all search partition, as there are regions partitioned 

in search window. Moreover, the majority of regions contain low MV correlation 

probabilities, as shown in Table 1. For these reasons, it is appropriated to limit the total 

number of search regions (NumSR) and have an early termination condition. Two 

termination conditions are given, one is the temperature status and the other is the number 

of searched regions.  
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If one of these termination conditions is satisfied, the SA search will stop and go to the 

Extended Hexagon Search step which is introduced in UMHexagonS, to refine the local 

optimum. Otherwise, SA search will proceed to next region by the indexed of the decreasing 

parameter temp.  

4.5. Step 3: Extended hexagon-based search 

A large hexagon search pattern and a small diamond search pattern are employed in this 

step, which is modified from UMHexagonS. The large diamond pattern has six search 

locations, while the small diamond search pattern has four points. The large hexagon 

pattern in the step 3-1 is recursively used and its centre recursively moved until the location 

with the minimum rate-distortion cost lies in the centre of the hexagon. After this, a small 

diamond pattern in the step 3-2 is recursively utilized until the location with the minimum 

rate-distortion cost is at the centre of this pattern. Finally, this point is determined as the 

point of motion vector for the current block. But our Extended Hexagon-based search 

process is only limited within the one search region ( ),i jr d g , which contains the optimal 

MV. Compared to UMHexagonS, this centre basis optimal MV refinement approach can 

obtain optimal MV with fewer search points. 
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Sequence 
ME TIME (sec) Average Search Points 

UMH PIDS Gain SAAS Gain UMH PIDS Gain SAAS Gain 

Bus 725.6 618.3 14.79% 558.4 23.04% 30.61 19.43 37.52% 13.15 57.03% 

Coastguard 742.5 622.4 16.17% 569.6 23.28% 32.11 19.62 38.90% 13.29 58.62% 

Crew 655.5 587.1 10.43% 544.2 16.98% 20.79 14.35 30.99% 10.72 48.45% 

Harbour 711.8 580.8 18.40% 554.8 22.04% 33.23 18.12 45.46% 13.09 60.61% 

Mobile 648.7 538.7 16.97% 501.5 22.70% 28.85 16.14 44.06% 10.65 63.08% 

Stefan 568.8 489.5 13.94% 444.9 21.79% 25.38 15.43 39.22% 9.99 60.63% 

Template 597.3 512.2 14.25% 487.5 18.38% 22.40 12.53 44.07% 8.99 59.85% 

Average  14.99%  21.17%  40.03%  58.32% 

Table 3. Results of proposed SAAS comparing to that of UMHexagonS and PIDS in terms of average 

search points reduction (%) and motion estimation time reduction (sec) (QP=28) 

5. Experimental results  

In this section numerous experiments with H.264/AVC reference Joint Model (JM) software 

version 16.1 were conducted. We compared the proposed SAAS algorithm against the FS, 

PIDS and UMHexagonS algorithms, in terms of computational complexity (speed measured 

by ME time and average search points (ASP)) and Rate-distortion performance (PSNR and 

bit rate). Several commonly used sequences, covering a wide range of motion characteristics, 

are taken into consideration.  

 

 

 

 

 

Figure 11. Rate-Distortion performance comparison of FS, UMHexagonS, PIDS and SAAS at various 

QPs 
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The group of picture (GOP) structure was IPPP, in which only first frame has been coded as 

I frame and first P frame has been coded by UMHexagonS. The sequences are tested at 30fps 

(frames per second). The Content Adaptive Variable Length Coding (CAVLC) entropy coder 

is used for all the simulations, with 5 reference frames. A search range of 32 and the 

quantization parameter of 28 are used. The simulation platform in our experiments is done 

with a PC of 2.44 GHz CPU and 8G RAM.  

For complexity comparisons, the proposed algorithm is compared to the hybrid 

UMHexagonS adopted by the H.264/AVC reference software. Two different measurements 

are used to calculate the computational efficiency, average search points requirement and 

encoding time. Results are presented in Table 3. As shown in the Table 3, SAAS needs 48-

63% less search points than UMHexagonS and saves average of 21% encoding time. Since it 

performs more precise search pattern adjustment, SAAS requires average 45% less search 

points than PIDS.  

 

 

 

Sequence 
PSNR(dB) Bit-rate (kb/s) 

FS UMH PIDS SAAS FS UMH PIDS SAAS 

Bus 
35.792 35.786 35.809 35.800 1225.29 1240.05 1262.27 1249.88 

Gain -0.006 0.017 0.008 Degrade 1.20% 3.02% 2.01% 

Coastguard 
35.610 35.600 35.602 35.598 1342.64 1344.28 1345.30 1348.56 

Gain -0.010 -0.008 -0.012 Degrade 0.12% 0.20% 0.44% 

Crew 
37.895 37.870 37.870 37.869 680.590 672.72 671.94 678.053 

Gain -0.025 -0.025 -0.026 Degrade -1.16% -1.27% -0.37% 

Harbour 
35.623 35.627 35.627 35.625 1572.30 1571.14 1569.25 1572.59 

Gain 0.004 0.004 0.002 Degrade -0.07% -0.19% 0.02% 

Mobile 
35.376 35.370 35.377 35.383 1843.16 1843.08 1844.19 1848.52 

Gain -0.006 0.001 0.007 Degrade 0.00% 0.06% 0.29% 

Stefan 
36.632 36.607 36.602 36.607 1189.09 1202.54 1206.90 1209.64 

Gain -0.025 -0.030 -0.025 Degrade 1.13% 1.50% 1.73% 

Template 
35.608 35.595 35.587 35.585 1159.96 1162.89 1162.81 1164.11 

Gain -0.013 -0.021 -0.023 Degrade 0.25% 0.24% 0.36% 

Average  -0.012 -0.009 -0.010  0.21% 0.51% 0.64% 

Table 4. Results of proposed SAAS comparing to that of FS, UMHexagonS and PIDS in terms of PSNR 

gain (dB) and bit-rate degradation (%) (QP=28) 
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Considering the large reduction in the computational complexity, the quality degradation is 

very small. Rate-Distortion performances are presented in Table 4. In all cases, the FS 

outperforms the others in image quality and bit-rate. Compared to FS, average PSNR 

degradation of the proposed algorithm is only 0.010. In term of bit-rate, SAAS has a slightly 

higher degradation than PIDS and UMHexagonS. SAAS has bit-rate decreasing of 0.64% in 

average. Further information can be obtained in Figure 9, which compares the rate-

distortion performance among FS, UMHexagonS, PIDS and SAAS against different QPs (16, 

20, 24, 28, 32, 36 and 40). Figure 10 compares the simulation results versus frame number of 

video sequences Coastguard. It is clearly reveal the superiority of SAAS to UMHexagonS in 

computational reduction, which more than 50% of search points are saved while the PSNR 

and bit-rate performance are very similar. From the results above, it can be confirmed that 

the SAAS algorithm has the capability to dramatically reduce the computational burden 

with negligible degradation in the RD performance. 

 

 

 

 

 
 

Figure 12. Rate-Distortion performance and complexity cost comparison versus frame 

6. Conclusion 

This chapter presents a novel fast motion estimation algorithm, Simulated Annealing 

Adaptive Search algorithm. As mv field has heavy correlation, the proposed algorithm takes 

the advantage of MV correlation information, which is statistically calculated and plays a 

significant role in SAAS process. In the SA search step, the search region is adaptively 

divided and the divisions are searched indexed by MV correlation probabilities in 

descending order. Furthermore, by utilizing Boltzmann probability concept, the minima 

acceptation or rejection condition of each SA search is controlled by this correlation 
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information. The experimental results demonstrate that more than 48% of ASP and 21% of 

ME time can be saved, while maintaining a similar bit-rate without losing the picture 

quality. 
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