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1. Introduction 

The use of energy on a large scale has been a determining aspect of the world economy in 
modern times. For the last several centuries, this energy has come mainly from the 
transformation of combustible fossils, in the form of peat, coal, petroleum, and natural gas. 
During the year 2003 the supply of primary energy ran to 10,579 Mtoe (443 EJ), and this 
number represented a 75% increase over 30 years [1]. Of this, 80% came from fossil fuels. In 
2003, the production of electricity worldwide was still dominated by coal (40%), followed by 
natural gas (19%), and nuclear and hydro generation (15% each) [1]. 

In contrast to the overall energy requirements stated above, transportation depends almost 
exclusively (to 95%) on petroleum and its derivatives; the problems surrounding this 
resource will necessitate the investment of an estimated 16 trillion U.S. dollars to develop 
and update new ways to power vehicles [1]. Bauen [1] mentioned that, in order to reduce 
CO2 emissions, in the future we could use a pre-combustion at the coal plants, producing 
250 Mt of hydrogen per year, which is six times the present production. He held out a vision 
of use of fuel cells for the transformation of energy and its use in hybrid vehicles which 
would use as their fuel hydrogen produced from water. With respect to the energy invested 
during a process, Liu et al. [2] state that apart from a qualitative understanding of the 
energy, a quantitative understanding is essential, analyzing an industrial process in terms of 
the material flow and amount of energy, using as example an analysis of the statistical data 
from an aluminum refinery at Zhenzhou, China. 

Research on renewable energy sources is, in large measure, driven by the expectation of 
future shortages in the supply of crude oil. In the U.S.A., maximal crude-oil production 
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occurred in the 1990s [3]; this event was termed “Peak Oil” for the American case. Other 
important oil producers, such as Mexico, Indonesia, United Kingdom, Norway, Romania, 
are also clearly beyond their date of maximal production. As to the timing of Peak Oil on the 
worldwide scale, different workers have, at different times, made their predictions; some of 
these are summarized in Table 1. Most of these forecast that Peak Oil was less than a dozen 
years away from the date of their prediction, though some predictions are slightly more 
sanguine [15], [17]. But even if, by dint of new exploration, new crude-oil production 
technologies, more efficient use of this resource, and the development of alternative energy 
technologies the actual Peak Oil date has continually been deferred, this signal event will 
probably take place at some point in the relatively near future. This represents a substantial 
menace for the world economy, in light of the increasing energy demand of major, rapidly 
industrializing national economies, especially in Asia and South America.  
 

Date of

forecast

Peak Oil date Reference

2000 2004-2014 Bartlett [4] 

2001 Beyond 2020 Deffeyes [5] 

2002 2011-2016 Smith [6] 

2003 Around 2010 Campbell [7] 

2004 2006-2007 Bakhtiari [8] 

2005 After 2010 Koppelaar [9] 

2006 After 2010 Skrebowski [10] 

2007 2008-2018 Robelius [11] 

2008 2035 CERA, [12] 

2008 2010-2011 Hirsch [13] 

2009 2015 de Almeida [14] 

2010 2030 Aleklett [15] 

2011 2015-2020 Murphy [16]    

2011 2035 Winch [17] 

Table 1. Peak Oil dates projected by various authors. 

The wide use of crude oil, and of fossil fuels in general, has also given rise to a separate, but 
equally pressing concern: that the liberation of carbon dioxide to the atmosphere attendant 
on the use of these fuels is having a major, and potentially accelerating, deleterious climate 
effect, which may impinge in critical ways on the world economy and the well-being of 
mankind. The two considerations are independently important: even if easily accessible, 
vast new oilfields were to be found in the near future, relieving the supply concerns in this 
area, the continuous increase in atmospheric CO2 over the past decades is deemed to be of 
sufficient concern to warrant worldwide, concerted efforts to reduce production of this gas, 
mainly by switching energy production on a large scale to new, alternative forms, which 
minimize or entirely avoid the formation of this by-product. 
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2. Overview 

2.1. Hydrogen production 

A promising part in the new developments of energy technologies is played by hydrogen. It is 
not a primary fuel, as no hydrogen can be mined on our planet; rather it has to be considered 
an energy vector, a material produced by an endergonic chemical process starting from 
hydrogen-containing compounds, and whose chemical potential can in turn be converted to 
other forms of energy, by combustion in air, through fuel cells, or by other means. Hydrogen 
is, thus, useful as a storage form of energy derived from intermittent sources such as wind 
power, to later be transformed to electricity when and where required. An important 
application would be as a portable energy source in automotive transport, where hydrogen 
fuel cells now operate with an efficiency of about 40%, and perhaps 50% in the near future, 
while gasoline- or diesel-operated internal-combustion engines have efficiencies of 25%-30% 
under real driving conditions [18]. Also, fuel-cell powered vehicles are mechanically simpler, 
facilitating new designs in automobile construction. Finally, and importantly, fuel cells with 
proton membranes only release water to the environment, an innocuous product. 

On our planet, hydrogen occurs naturally in the form of compounds such as water or 
hydrocarbons. It can be produced in elementary form through partial combustion of fossil 
fuels, as in reforming of natural gas, in coal gasification, through high-temperature 
electrolysis, e.g. at operating temperatures of 800°C in nuclear reactors [19], or from 
renewable energy by processes such as water electrolysis, water photoelectrolysis, or 
biomass gasification. In 2007 about 50 million metric tonnes of hydrogen were used 
worldwide, mainly in the production of ammonia fertilizers, in chemical syntheses, and in 
refining processes [20]. 95% of the hydrogen production is in a captive mode (i.e. it is 
produced where it is used) starting from fossil fuels (50% from natural gas, 30% from crude 
oil, and 20% from coal). However, from an economic-environmental point of view, the most 
favourable method of hydrogen production is starting from renewable energies, mainly 
from hydro and wind energies through electrolysis; nonetheless, water electrolysis only 
accounts for 4% of total worldwide hydrogen production [21], even though as far back as 
1977 there was already an international consensus about the need for a concerted initiative 
to develop water-electrolysis technologies such as aqueous water electrolysis, solid-polymer 
and solid-oxide water electrolysis, and electrocatalysis [22]. 

Another method of hydrogen production is the reduction of water using aluminium or its 
alloys. Because of its light weight and great strength, aluminium is widely used for 
structural purposes, but it also offers important advantages for its potentially wide 
employment as an energy carrier: its high energy density, of 29 MJ/kg, the fact that it is the 
most abundant metal in the earth´s crust, and its highly negative standard redox potential 
(ε0 = -1.66 V) which makes it, in principle, an excellent reducing agent, capable of producing 
hydrogen gas upon contact with water, in a corrosion process which does not entail 
production of CO2. This type of reaction can be carried out with the help of alkali, or under 
neutral conditions, or at elevated temperatures, or via reaction of aluminium with alcohol 
[23]. As a practical example for the high energy density of aluminium, it can be calculated 
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that an electrical automobile energized by fuel cells could run a distance of 400 km with 
about 4 kg of hydrogen which could be obtained from 36 kg of aluminium via an 
aluminium-water reaction [23]. This example points out the advantages inherent in the use 
of aluminium metal as a compact source of hydrogen; by contrast, storage of hydrogen at 
standard temperature and pressure requires volumes 3000-fold larger than for gasoline, and 
in liquid state it is necessary to take it to temperatures of -253°C through cooling systems, 
which entails additional important energy costs. 

The aluminium-water reaction produces energy in different forms, all of which are 
potentially usable: heat, water vapour, and hydrogen gas. The water vapour and hydrogen 
gas formed can be used to power a turbine, and the hydrogen gas furthermore represents an 
energy reservoir to be used by high-temperature combustion or to feed fuel cells. Such 
systems have been quantitatively modeled [24], [25] and [26]. 

2.2. Aluminium production 

The main prime material for aluminium production is alumina (Al2O3), found in a large 
number of natural minerals. 98% of metallurgical alumina is produced by the Bayer process 
[27] starting from bauxite, a mineral composed to 50%-80% of hydrous alumina (aluminium 
hydroxides and oxyhydroxides). A simplified rendition of the chemistry underlying the 
Bayer  process is given in the equation:  

 Al2O3�nH2O + 2NaOH   →   2NaAlO2 + (n + 1)H2O (1) 

The production of 1 kg of aluminium takes about 2 kg of alumina, which would be derived 
from 4 kg of bauxite. The energy investment in 1 kg of aluminium is 29.6 MJ for the 
obtention of the prime material (i.e. bauxite mining, alumina refining, and production of the 
carbon anodes) and 56 MJ for the electric work of alumina reduction.  As the heat content 
required by the carbon for each kg of aluminium is about 14 MJ, the total energy investment 
of the aluminium is about 100 MJ/kg [28]. 

As stated before, it is of advantage to produce the hydrogen at the point of use, therefore, 
portable systems are required, based on electrochemical oxidation of the aluminium [29], or 
on the aluminium-water reaction in alkaline conditions, or on the oxidation of 
mechanochemically or mechanically activated aluminium [29]. Theoretically the 
electrochemical oxidation has an energy density of 4300 Wh/kg and an electrical efficiency 
of 55%. Chemical-oxidation technologies with aluminium can reach energy densities of 1040 
Wh/kg and electrical efficiencies of 25%. As a reference in the comparison of efficiencies 
Schwarz et al. [30] stated that power plants which use heat derived from fossil fuels have 
efficiencies of 53% in the case of natural gas, 48% for crude oil, and 43% for coal. 

3. Performance of the aluminium-water reaction 

Because of its low equivalent weight, aluminium is an excellent potential producer of 
hydrogen by weight, though it is outdone in this regard by sodium borohydride, which in 
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hydrolysis can produce 2.4 litres of hydrogen gas per gramme of substance. Aluminium and 
magnesium have values of 1.245 L and 0.95 L per gramme respectively, while their 
corresponding hydrides, AlH3 and MgH2, produce 2.24 L g-1 and 1.88 L g-1, respectively [31]. 

Due to its highly negative redox potential, aluminium should react easily with water, 
producing hydrogen gas and Al(OH)3 according to the equation: 

 2Al  +  3H2O  →  3H2  +  Al2O3   (2) 

In practice however, aluminium is generally passivated by formation of a tightly adhering 
surface film. For example, when exposed to air, the surface of aluminium metal is rapidly 
oxidized to form a tight layer of aluminium oxide, which prevents further penetration of 
oxygen, thus protecting the underlying metal from further oxidation. This passivation of the 
aluminium also interferes with the aluminium-water reaction at the interface between metal 
and liquid. Surface oxidation of the aluminium also comes about as a result of the 
aluminium-water reaction itself, and may also constitute a limitation to the rate and yield of 
the reaction. Overcoming these impediments is a central problem in all practical applications 
of the aluminium-water reaction. 

The passivating surface layer of Al2O3 is an amphoteric material, soluble in both strongly 
acidic and strongly basic aqueous solution. Therefore, both acidic and basic hydrolysis of 
aluminium can be employed for hydrogen production. However, the corrosive character of 
the solutions employed in these instances is of disadvantage in practical applications.  
Accordingly, a large part of the recent research in this area has centred on methods to 
promote the aluminium-water reaction in neutral or near-neutral conditions, by employing 
special aluminium alloys, by addition of activators, by mechanical pretreatment of the 
aluminium, or by irradiation. 

For several decades, aluminium alloys with gallium and indium have been studied as 
highly reactive materials in the aluminium-water reaction, as the minor-metal admixtures 
cause embrittlement of the metal and destruction of the intergranular bonds and of the 
passivating aluminium oxide film. The activation of aluminium powders by grinding or co-
milling with gallams of various compositions, Ga-In (70:30), Ga-In-Zn (70:25:3), Ga-In-Sn 
(62:25:13), Ga-In-Sn-Zn (60:25:10:5), leads to significant rates of hydrogen gas evolution on 
water contact [31] [32]. These are in the range of 14-20 mL g-1 min-1 with powders prepared 
by soft mechanical treatments, but can be two orders of magnitude higher, at 1000 - 2500 mL 
g-1 min-1, in the case of the milled powders. The rate of the reaction rises with increasing 
admixture of the gallam, up to 10 wt%, relative to the aluminium, and with the reaction 
temperature. The cost of the gallams is, obviously, a consideration; still, a 2%-3% admixture 
of gallam and a temperature of 60°C bring about hydrogen evolution rates of 2000 mL g-1 
min-1.  Materials with lower gallium content, however, perform more poorly, and an 
increase in the concentration of cheaper dopants (Sn, Zn, Pb) is ineffective [33]. 

Certain aluminum-based composites, generally containing aluminium at 80 wt%, doped 
with gallium, indium, zinc, or tin, obtained by co-melting of the metallic components, have 
been studied by powder X-ray diffraction, differential thermal analysis, and EDX [33]. The 
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tests indicated the presence of a crystalline aluminium metal phase, an intermetallic 
compound, InSn4, and a eutectic in the Ga-In-Sn-Zn system, melting at 6°C, distributed over 
the grain boundary space. Some of these alloys performed satisfactorily in the aluminium-
water reaction, forming hydrogen and amorphous precipitates of the corresponding metal 
hydroxides; however, they lost effectiveness upon storage at room temperature, and were 
completely stable only in vacuum at liquid-nitrogen temperature. 

Shaytura et al. [34] studied the aluminium-water reaction in the presence of an undisclosed 
chemical activator which interacts with the OH-groups of the Al(OH)3 formed during the 
reaction, thereby affecting the pore size distribution in the newly made oxide layer, which 
facilitates permeation through this layer and thus the hydrogen-forming reaction. Similar 
effects of better pore-size distribution and faster hydrogen evolution were also obtained by 
applying an ultrasonic field to the reacting mixture. 

Czech and Troczynski [35] found that the passivation of aluminium metal in water in the 
pH range from 5 to 9 is significantly suppressed when the metal has been milled with 
inorganic salts, such as KCl o NaCl.  Corrosion of this type of aluminium in tap water, with 
production of hydrogen and precipitation of aluminium hydroxide, at normal pressure and 
a temperature of about 55°C, is rapid and substantial. By way of example, 92% of the 
aluminium in the Al-KCl system (milled for 1 h) is corroded in 1 h, in aqueous solution at 
neutral or near-neutral pH, with liberation of 1.5 mol of hydrogen for each mole of 
aluminium consumed in the reaction.  Apart from gaseous hydrogen, only solid aluminium 
hydroxides are formed as by-products of the reaction; this is a promising aspect for direct 
recycling from this system. 

Similarly, Alinejad and Mahmoodi [36] proposed a simple method for hydrogen generation, 
based on highly activated aluminium and water. Activation was achieved by milling 
aluminium powder with sodium chloride as a nano-miller. The mean rate of hydrogen 
release per gram of aluminium was 75 ml/min, for powder prepared with a salt/aluminium 
molar ratio of 1.5, and 100% yield was reached after 40 minutes. 

Mahmoodi and Alinejad [37] also reported preparing highly active material for the 
aluminium-water reaction by ball-milling the metal with a large amount of sodium chloride 
as a nano-miller, in a dilute argon atmosphere. The powder obtained could be stored for a 
long time; once submerged in hot water, it was rapidly hydrolysed, and hydrogen was 
produced in a 100% yield. The rate of hydrogen generation was found to depend critically 
on the initial water temperature. The heat released in the exothermal aluminium-water 
reaction was employed to raise the water temperature during the reaction.  The mean rate of 
hydrogen production was ∼101 and ∼210 ml/min per 1 g de Al, using initial water 
temperatures of  55°C y 70°C, respectively. However, distinctly higher rates of hydrogen 
evolution were achieved (713 mL g-1 min-1) when the aluminium was activated by ball 
milling with 7 wt% bismuth. 

Wang et al. [38] used nanocrystals of metal oxides such as TiO2, Co3O4, Cr2O3, Fe2O3, Mn2O3, 
NiO, CuO, and ZnO as modifiers in aluminium metal powders to produce hydrogen by a 
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room-temperature reaction with deionised water or tap water. They studied the effect of 
TiO2 nanocrystals of different crystal size on hydrogen production in the reaction with tap 
water, and showed that the water quality and the metal-oxide nanocrystals such as TiO2, 
Co3O4, and Cr2O3 increase hydrogen production by the reaction of the aluminium powder in 
neutral water at ambient temperature. 

Mercury or zinc amalgam have been used as activators to promote the hydrolysis of 
aluminium [39]. The results showed that in the presence of mercury or zinc amalgam 
aluminium hydrolysis to generate hydrogen could take place at room temperature, in 
distilled water. The rate of hydrogen release depended on the reaction temperature, and the 
maximum rate of hydrogen generation was 43.5 cm3 h-1 cm-2, obtained at 65°C with the zinc-
amalgam technique. For this method, the apparent energy of activation for aluminium 
hydrolysis induced by zinc amalgam had a value 43.4 kJ mol- 1, while in the case of the 
mercury method it was 74.8 kJ mol-1. The results of the X-ray diffraction analysis showed 
that the subproduct formed is bayerite. 

Deng et al. [40] used three different modification agents, γ-Al2O3, α-Al2O3, and TiO2, to 
surface-modify aluminium particles. The selected oxide was ball-milled with the aluminium 
metal in ethanol suspension, using highly pure Al2O3 spheres. They investigated the effect of 
different modification agents on hydrogen generation in the reaction of aluminium powder 
with water. The different modification agents were seen to have different effects on the 
dynamics of the aluminium-water reaction.  In particular, induction times for the reaction 
increased in the series: γ-Al2O3-modified aluminium < α-Al2O3-modified < TiO2-modified, 
interpreted as the series of increasing energy barriers for nucleation of hydrogen bubbles on 
the variously modified metal surfaces. 

Fan et al. [41] prepared a series of aluminium-based materials by ball-milling and/or fusion; 
they used the techniques of XRD, SEM, and TG-DTA to characterise the samples. They 
evaluated the effects of different alloying metals, such as Zn, Ca, Ga, Bi, Mg, In, and Sn, on 
hydrogen generation through hydrolysis in pure water. They found mechanical milling to 
be preferable to melting as a method to produce aluminium alloys containing metals with 
low melting points (Ga, In).  The addition of Sn, Ga, or In could reduce the hydrolysis rate of 
the Al-Bi alloy, but the addition of Zn accelerated the hydrolysis of this alloy. Best yields of 
hydrogen were obtained with quinternary alloys containing Al, Bi, Zn, Ga, and calcium 
hydride. 

Parker et al. [42] developed a process to obtain hydrogen by the reaction of mixtures of 
finely divided magnesium and finely divided aluminium with seawater, at normal pressure 
and temperature. The procedure is appropriate for fixed applications where no electric net is 
available, it requires no or only a minimal supply of electricity. As a side product a mixture 
of magnesium hydroxide and aluminum hydroxide are obtained; these side products have a 
high market value as prime materials for the production of thermal and electrical insulation 
(i.e. heatproof sheathings or linings). 

Soler et al. [43] experimented with aluminium strips in aqueous solutions of NaOH or KOH, 
at alkali concentrations of 1 to 5 M and temperatures between 290 K and 350 K, and found a 
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maximum hydrogen production per gramme of aluminium of 3100 cm3 min-1 with 5 M 
NaOH at 350 K, while the use of 5 M KOH at 350 K gave a rate of 2900 cm3min-1 per gramme 
of aluminium. 

Macanás et al. [44] examined the effect of the presence of various inorganic salts, at a 
concentration of 0.01 M, as corrosion promoters in the reaction of metallic aluminium in 0.1 
M NaOH at 75°C and found the advantages of 100% yield of hydrogen production, self-
initiation without heating, and significant accelerating effects (almost two-fold in the case of 
NaF, and 1.5-fold with MgCl2, Fe2(SO4)3, Na2SO4, and FeCl3). High rates and good yields of 
hydrogen were also achieved in the absence of NaOH with the use of mixed solutions of 
sodium aluminate, sodium stannate, and sodium metaborate, each in concentrations 
between 0.1 M and 0.5 M. In almost all of these experiments, beginning and end values of 
pH were between 12 and 13.  

The use of solutions containing only sodium aluminate was examined by Soler et al. [45] in 
comparison with NaOH solutions giving the same initial pH value; similar results both in 
terms of yields and of maximum hydrogen flow rates were obtained, leaving in doubt 
whether there is a specific chemical effect of the aluminate, especially as this salt was used in 
high concentration (0.5 M). For the sodium aluminate case, an Arrhenius energy of 
activation of 71 kJ mol-1 was determined, interpreted as indicating that the rate-controlling 
step in the process was a chemical event.  

The aluminium-water reaction in the presence of sodium stannate at 0.075 M (Soler et al., 
[46]) gives interesting results in terms of acceleration. In this case, the reaction is affected 
from its earliest stages by formation of metallic tin as a by-product, noticeably reducing the 
hydrogen yield and complicating the product mixture. The energy of activation of the 
hydrogen formation was determined at 73 kJ mol-1.  

Uehara et al. [47] observed that when aluminium metal was cut under water effervescence 
occurred at the freshly cut surface, which however soon subsided.  The method is obviously 
not applicable as a practical way to produce hydrogen gas; nonetheless, the observation 
serves to illustrate the problem of rapid passivation under water and the need to address 
this issue in a realistic manner to produce hydrogen in the aluminium-water reaction, e.g. 
through addition of appropriate activators.  

Watanabe [48] studied the mechanism of the aluminium-water reaction in aluminium 
powders with particle sizes in the micron and sub-micron range, obtained by mechanical 
grinding, and came to the following conclusions. Micro-cracks formed at grain boundaries 
at the surface of the metal particles grow inward, due to corrosion by water. Inside these 
fissures, unsaturated aluminium atoms (with one free bond or two free bonds, i.e. (Al=) and 
(Al-)) may conform, with other such atoms, clusters which split the water molecules present 
in the crack, with initial formation of AlH3, and hydroxylated aluminum species in the 
crevice wall. The formation of these species creates internal stresses in the metal, extending 
the micro-cracks, by a kind of micro-tribochemical effect. The AlH3 further reacts with 
water, producing diatomic hydrogen. 
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In a simulation using the reactive force-field method (ReaxFF), Russo et al. [49] examined 
the dynamics of water dissociation at the surface of aluminium nanoclusters, over time 
periods of up to 70 ps, and with different numbers of total participating water molecules. 
Interestingly, an optimum water concentration (of about 30 water molecules per Al100 
cluster) was found, indicative of two countervailing effects: the need for some additional 
solvating water molecules to assist the reaction of the aluminium-adsorbed water 
undergoing reaction, and surface saturation of the aluminium surface at high water 
concentration, sterically hindering the binding of hydrogen to the cluster. 

Table 2 summarises further results reported with different mixtures as prime materials for 
the aluminium-water reaction.  A few examples of the related magnesium-water reaction are 
also included. 
 

Mixture Process Rate of hydrogen 

production  

Source 

Hydrogenated Mg3La  + 

water 

Hydrolysis, during the 
first 20 minutes 

43.8 ml min-1 g-1 Ouyang et 
al. [50] 

Hydrogenated La2Mg  + 

water 

40.1 ml min-1 g-1 

Milled Mg  +  sea water Hydrolysis, during the 
first 10 min 

90.6 ml min-1 g-1 Zou et al. 
[51] 

Milled Mg/Co (95:5)  + sea 

water 

Hydrolysis, during the 
first minute 

575 ml min-1 g-1 Zou et al. 
[51] 

Milled Al/Bi/NaCl 

(80:15:5)  +  water 

Hydrolysis, during the 
first  30 min  

300 ml min-1 g-1 Fan et al. 
[52] 
 Milled Al/Bi/CaH2

(80:10:10)  +  water 

Hydrolysis, during the 
first  3 min  

340ml min-1 g-1 

Milled Al/Bi (80:20)  +  

water 

Hydrolysis, during the 
first  30 min  

24 ml min-1 g-1 

Al-20%wt CaH2 Hydrolysis, during the 
first  5 min 

24 ml min-1 g-1 

Ni20Al80  +  0.46 M NaOH Hydrolysis, during the 
first 15 min  

63 ml min-1 g-1 Hu, et al. 
[53] 

Ni30Al70 + 0.46 M NaOH Hydrolysis, during the 
first 15 min  

54 ml min-1 g-1 

Ni40Al60 + 0.46 M NaOH Hydrolysis, during the 
first 20 min  

47 ml min-1 g-1 

Ni50Al50 + 0.46 M NaOH Hydrolysis, during the 
first 60 min 

7.3 ml min-1 g-1 

Table 2. Mixtures of water, aluminium, and other materials, for hydrogen production 
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4. Applications of the aluminium–water reaction 

4.1. Thermal energy 

A special type of application of the aluminium-water reaction, which emphasizes the 
thermal aspect, was described by Sabourin et al. [54], who carried out the combustion of 
nano-aluminium (38 nm diameter particle size) in mixtures of liquid water and hydrogen 
peroxide. They obtained, at 3.65 MPa argon pressure, mass burning rates per unit area 
between 6.93 g cm-2 s-1 (at 0% H2O2) and 37.04 g cm-2 s-1  (at 32% H2O2), corresponding to 
linear burning rates of 9.58 cm s-1 y 58.2 cm s-1, respectively. The difficulty lies in the high 
cost of the preparation of aluminium on the nanoscale for its combustion [55]. 

There are various techniques to prepare aluminium on the nanoscale, such as the electro-
exploded wire method cited by Kotov [56] and by Kwon et al. [57], explosion in plasma [58], 
plasma electro-condensation process [59], sol-gel [60], heating evaporation [61], and 
evaporation [62], for which two routes can be used: induction heating evaporation (IHE) 
and laser-induction complex heating evaporation (LCHE). For the “IHE” method one uses a 
chamber which contains an induction coil; in the centre of the coil are located two crucibles, 
one made of graphite, the other of alumina. The alumina crucible is charged with 
aluminium of 99.6% purity, while the interior of the chamber holds a dilute argon 
atmosphere at 10 Pa pressure. The coil is energized at high frequency at an initial power of 5 
kW; after several minutes the aluminium metal has melted. The coil is deenergized, and the 
molten liquid rapidly evaporates; these atoms of evaporated aluminium are collected 
through collisions with the argon gas, producing in this manner aluminium nanopowders. 
For the “LCHE” method the equipment is fitted with a continuous-wave 1.6-kW CO2 laser; 
this laser is switched on when the aluminium has molten and vaporises it rapidly, in the 
subsequent condensation step aluminium nanopowder is again obtained. The thermal 
properties were determined by Chen et al. [62] using thermogravimetric (TGA) techniques 
and differential thermo-analysis (DTA), finding that the temperature peaks were at 560°C 
and 565°C, and the enthalpy increases were 1.18 kJ/g and 3.54 kJ/g for “IHE” y “LCHE”, 
respectively.  

Shafirovich et al. [63] proposed the use of NaBH4/metal/H2O, were aluminium metal in 
powder form can be used, thus reducing the extra cost entailed in the preparation of 
nanoparticulate aluminium. In their experiments they used different stoichiometric ratios, 
with the result that the mixtures containing powdered aluminium  do not burn as easily as 
when nanoscale aluminium is used. To resolve this problem they added magnesium in 
powder form as an activator, thus achieving combustion.  Here again, the main result is the 
thermal effect, with only a minor yield of hydrogen.  

A different type of thermal application with Al/H20/NaOH, where the aluminium used was 
the shavings from lathes and milling machines, i.e. aluminium pieces on the centimeter 
scale, was described by Olivares-Ramírez et al. [64]. In this system, in a first stage 
hydrolysers are used to obtain hydrogen through the chemical reaction between aluminium, 
sodium hydroxide, and water, the hydrogen obtained is then passed through water to trap 
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the vapour generated in the original exothermal reaction; finally the hydrogen is burned in 
air. The second stage consists of a refrigerator based on the ammonia-water absorption 
principle, energized by the heat produced in the combustion of the hydrogen.  

4.2. Fuel cells 

Hydrogen is the fuel most frequently used in fuel cells.  At present, microfuel cells are being 
developed for applications in portable electronic devices, to address the problem of 
hydrogen storage in a portable mode. The difficulty lies in that we do not yet have portable 
systems for hydrogen storage; for instance, even a small hydrogen container, to energize a 
laptop computer, would not be allowed onto an airplane. Small aluminium-water reactors, 
however, could supply this need [65]. The hydrogen could be produced from variegated 
sources, such as electrical wire, metal hydride, or aluminium foil. 

Jung et al. [66] describe a small-scale hydrogen generator, in which two types of additives, 
NaOH or CaO, are used to control the flow of the hydrogen generated, with the idea that 
this could be connected to a small fuel cell. In their experiment they feed the reactor, 
through a micro-pump, with NaOH solution at a rate of 0.2 x 10-6 m3 min-1, at a pressure of 
1500 kgf cm-2, and NaOH at concentrations of 5%, 10%, 15% y 20% (w/w), achieving a 
maximum hydrogen production of 2.65x10-3 m3 using 15% (w/w) NaOH.  They also tested 
mixtures of aluminium with 5% (w/w) NaOH, obtaining the maximal production of 
hydrogen (3.22 x 10-3 m3) with a CaO:Al mass ratio of 0.1; best performance was obtained at 
2000 kgf cm-2. 

Shkolnikov et al. [67] presented a 2-W cell-phone consisting of a micro fuel cell and a micro 
generator for hydrogen based on the aluminium-water reaction. Each gramme of aluminium 
produces 1.2 -1.8 Wh of electrical energy. In their experimental work they examined three 
ranges of current density: low current density, i.e. <200 mA cm−2; medium current density, 
200–500 mA cm−2, and high current density, >500 mA cm−2. The micro fuel cell used was of 
the air–hydrogen polymer electrolyte membrane type, the air being supplied by a micro fan 
which was itself energised by the micro fuel cell.  

Wanga et al. [68] used a mini-reactor containing an aqueous sodium hydroxide solution and 
strips of an alloy consisting to 99% (w/w) of aluminium, connected to a fuel cell, to 
constitute a portable device.   In their work they tried NaOH concentrations of 9%, 17% y 
25% (w/w); with the latter concentration they observed the maximum rate of hydrogen 
production, 247 ml min-1, at an initial temperature of 20°C; once this was coupled to the cell, 
the latter used hydrogen at a rate of 40 ml min1, producing power values of up to 0.15 W. 

In an attempt to use lower-cost aluminium for hydrogen production, Silva et al. [69] used 
aluminium from empty soft-drink cans. To speed up the reaction they used 2 M NaOH, 
removing the paint cover of the cans with sulfuric acid, then cutting them into strips to 
introduce them into the reactor, which produced experimentally 0.049 moles of hydrogen 
per gramme of aluminium. This hydrogen was then used in a PEM-type fuel cell.  The 
oxygen for the fuel-cell operation was obtained by water electrolysis energized by 
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photovoltaic cells.  The fuel cell worked with efficiencies of up 10.14%, and achieved a cell 
voltage of 150 mV. 

A portable generator of 2050 mL capacity has been described by Fan et al. [70], charged with 
Al-Bi-NaCl, in which the aluminium and the bismuth were in powder form (13 microns) 
mixed with sodium chloride particles. The mixtures originally evaluated were Al with 10 
wt% Bi and 1, 3, 5, or 10 wt% NaCl, where the composition Al-10wt.%Bi–5wt.% NaClgave 
the best hydrogen yield (1063 mL/g Al). Later experiments examined the addition of zinc, 
when the highest rate of hydrogen production (1026 mL/g Al) was obtained with the 
mixture Al-10 wt.%Bi-1 wt.%Zn-2 wt.%NaCl. The authors propose this generator as suitable 
for use with hydrogen fuel cells. 

4.3. Power plants 

Vlaskin et al. [71] designed a co-generation power plant in which they used aluminium 
powders with mean particle sizes of up to 70 µm as the main fuel and water as the main 
oxidizing agent. The plant can function autonomously (i.e. without connection to the 
electrical net), without ceasing production of hydrogen, electrical energy, and heat. One of 
the key components of the pilot plant is water-aluminium in a high pressure reactor 
projected for hydrogen production at a rate of 10 nm3 h-1. The hydrogen formed flows 
through a condenser and a dehumidifier with a dew point of -25°C, and enters then a 16-kW 
hydrogen-air fuel cell. Using 1 kg of aluminium the experimental plant produces 1 kWh of 
electrical energy and 5 – 7 kWh of heat. Total efficiency of the power plant is 72%, and 
electrical efficiency is 12%. The electrical efficiency of power plants based on the aluminium-
water reaction can be raised by developing devices which use vapour-hydrogen at high 
temperature to produce electrical energy. They reported that the cost of electrical-energy 
production in power plants fuelled by aluminium is comparable to the energy costs 
involved in power generation via the traditional liquid hydrocarbons, while energy 
generation based on aluminium is a more ecological option. 

Rosenband and Gany [72] carried out a parametric study on the aluminium-water method, 
using a special type of aluminium powder activated by a thermo-chemical process involving 
a small proportion of a lithium-based activator [73]. The experiments showed a rapid, 
sustained self-starting reaction between aluminium and water, proceeding even at room 
temperature, with hydrogen yields of virtually 100% under appropriate conditions. The 
method demonstrates a safe and compact method of hydrogen storage (11 wt%, based on 
aluminium). They propose that possible applications would be in fuel cells, as well as in 
land and sea traffic. The rate of the reaction is independent of the type of water (distilled 
water, tap water, seawater). The apparent activation energy of the process is about 16.5 
kcal/mol.  

Silva et al. [74] studied the recycling of aluminium for green energy production, producing 
high-purity hydrogen gas by the reaction between aluminium and sodium hydroxide at 
different molar ratios. The results showed acceptable hydrogen yields of sufficient purity for 
use in PEM fuel cells for electricity generation.  A test with 100 aluminium cans reacting 
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with caustic soda showed that hydrogen production would be possible with a scale-up to 5 
kWh in few hours. This work is environmentally friendly and shows that green energy can 
be produced from aluminium residues at low cost. The hydrogen was easily liberated 
through a spontaneous chemical reaction, and at relatively low cost, through contact of 
aluminium from discarded cans with aqueous sodium hydroxide solution. They obtained 
hydrogen of high purity, which they used in a commercial fuel cell to produce electricity. 
The hydrogen was produced from a recyclable material, without input of energy and 
without any additional release of contaminants to the air.  They also successfully used the 
by-product obtained, NaAl(OH)4, to produce an aluminium hydroxide gel to treat water 
contaminated with arsenic.  

Zhuk et al. [75] investigated the generation of electricity using low-cost aluminium, and 
found that suppressing parasitic corrosion while at the same time maintaining the 
electrochemical activity of the metal anode is one of the main problems affecting the energy 
efficiency of aluminium-air batteries. The need to employ aluminium alloys or high-purity 
aluminium causes a significant increase in the cost of the anode, and therefore in the total 
cost of the energy produced in the aluminium-air battery; this limits possible applications 
for this type of power source. They stated that the process of parasitic corrosion is itself a 
possible method of hydrogen production. Hydrogen produced in this manner in an 
aluminium-air battery can be used in a fuel cell or burnt to produce heat. Different anode 
materials would be suitable, such as commercial aluminium, aluminium alloys, or 
secondary aluminium, which are much cheaper than special alloys for aluminium anodes or 
high-purity aluminium. Their work consisted mainly in a comparison of the cost of energy 
production with commercial aluminium alloys, high-purity aluminium, and a special Al-In 
anode alloy, as anode materials for an aluminium-air battery and for the combined 
production of electrical energy and hydrogen.  

Davoodi et al. [76] tested a microscopic device, based on the principles of scanning 
electrochemical microscopy (SECM), for collecting electric energy off the surface of an 
aluminum alloy, AA3003, immersed in 0.01 M aqueous sodium chloride. Using a nanometer-
scale atomic-force microscope (AFM), the probe would gather the electrochemical current on 
the aluminium surface, searching for the regions of highest current density.  Their results are 
interesting from a mechanistic point of view, as they document a large variation in local 
current densities (from 0.45 pA µm-2 for matrix regions to 14.2 pA µm-2 for trenches at 
intermetallic particles); they probably do not hold out realistic prospects for using this 
method in an economic sense for energy production.  

According to Namba et al. [77] the process of remelting of scrap aluminium produces a slag 
which contains not only metal oxide, but also other by-products. He reported that in Japan 
0.35 million tons of this dross are produced yearly. It is remelted to recover aluminium 
metal with a concentration of between 10 and several dozen percent by weight. Hiraki and 
Akiyama [78] proposed a novel system to treat aluminium residues, such as this slag. They 
evaluated from the point of view of the life cycle the total exergy loss (EXL)  in comparison 
to the EXLs attendant on the co-production of 1 kg of hydrogen at 30 MPa and 26 kg of 
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aluminium hydroxide. The exergy flow diagram shows that the exergy of aluminium 
residues containing only 15% of  the metal by weight is still large, while the exergy of pure 
aluminium hydroxide is relatively small. The exergy of the proposed system (150.9 MJ) is 
inferior by 55% compared to the conventional system (337.7 MJ), in which the gas 
compressor and the production of aluminium hydroxide consume significantly more 
exergy.  The results also show that the exergy analysis should be applied to the life-cycle 
assessment (LCA) as a critical consideration for practical use, additional to the conventional 
LCA on the emission of carbon dioxide.  When this concentration becomes smaller than 20% 
by weight due to the remelting, the slag is chemically treated as an inocuous substance by 
methods such as high-temperature fusion in the electric arc, at a cost of US$200-300 per 
tonne. 

5. Patents on reactors for the aluminum-water reaction 

Houser [79] developed an invention on heating systems, and more specifically a device in 
which the chemical oxidation-reduction reactions would proceed producing heat, but 
without flame formation, in contrast to most heating systems. The system has a housing 
whose lower part holds the liquid reagent, e.g. NaOH solution. The solid reactant, e.g. 
aluminium metal, is immersed in the solution to produce heat and gaseous product, e.g. 
hydrogen. The position of the container within the deposit is regulated to control the extent 
of immersion, and the solid reagent inside the container can react with the liquid, producing 
heat. The hydrogen gas produced rises to the top of the conical cover and exits via a topside 
conduit to be washed with water and then transferred to storage or used directly via 
combustion. The water bath insulates the interior of the system, thus precluding combustion 
of the hydrogen in the system. The sodium aluminate produced in the reaction forms a 
mud, which is diverted to the drain by an inclined conical wall in the lower part of the 
housing. To start the system functioning, the lower part of the housing is filled with the 
solution and the container is raised above the level of the solution. To activate the heating 
system, the solution is first ohmically heated by an electrical resistance to about 140°C for 
total efficiency. 

Houser [80] describes another gas generator which utilizes spherical pieces of a solid 
reactive material in contact with a second, liquid reagent. The spheres are moved through 
the reaction chamber via inclined channels with holes, which could be made e.g. from screen 
mesh tubing. The liquid reagent is sprayed from dispersion nozzles onto the spheres which 
move upward via the channels. The solid residues are removed from the spheres through 
the rolling action of the spheres against the channel walls and washed away by gravity. The 
liquid reagent is again conducted to a sump, whence it is pumped through a filter to remove 
the waste product of the reaction; it then is returned to the nozzles in the reaction chamber.  
The concentration of the liquid reagent is regulated through a sensor in the sump, which 
controls the addition of concentrated make-up solution. The temperature of the liquid 
reagent is also controlled by a sensor in the sump or a thermostatic valve in the sediments 
filter, allowing the liquid to flow through an indirect heat exchanger. The gas generated is 
delivered from the reaction chamber by its own pressure. Not surprisingly, the preferred 
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embodiment of the invention is the production of hydrogen from aluminium spheres and 
sodium hydroxide solution. 

Andersen and Andersen [81] built a prototype device to produce hydrogen by making 
aluminium react with water in the presence of sodium hydroxide at between 0.26 M and 19 
M.  The reaction takes place with effervescence at the metal surface; at the same time, a 
precipitate collects at the bottom of the container. The zone of effervescence is kept separate 
from the zone where the precipitate collects. This reduces the possible hindrance of the 
hydrogen-generating reaction by the precipitate. Satisfactory results are obtained with 
sodium hydroxide concentrations between 1.2 and 19 M and at temperatures from 4°C to 
170°C, with best performance seen at NaOH values between 5 and 10 M and solution 
temperatures around 75°C. 

Andersen and Andersen [82] also constructed another prototype which produces heat and 
hydrogen gas, all at ambient temperature. Here, aqueous NaOH (18 wt%) half-fills an 
expandable container which adjusts to the momentary pressure and temperature of the 
reaction by expanding and contracting, thus controlling the level of immersion of a fuel 
cartridge containing aluminium filings or shavings or aluminium foil, to manage the 
intensity and duration of the reaction. The upper part of the container is built from flexible 
material and joined to the support of the fuel cartridge, so that, as the hydrogen is produced, 
the internal pressure in the container increases, moving the upper lid and thus lifting the 
aluminum out of the aqueous sodium hydroxide, thereby stopping the chemical reaction. As 
the hydrogen is consumed, e.g. by combustion, the internal pressure in the container drops, 
and the aluminum again gets in contact with the lye, and hydrogen production restarts. This 
cycle repeats itself until the aluminium is used up. 

Troczynski [83] described a hydrogen-generating system based on hydrolysis of a composite 
aluminium material, at a pH close to neutral, to supply hydrogen to fuel cells or other 
devices. The process of use involves: (a) Supply of water to the composite material in the 
reactor vessel to produce the hydrogen (b) Passage of the hydrogen formed from the reactor 
to a buffer vessel, and (c) liberation of the hydrogen from the buffer vessel to the fuel cell, at 
a second, lower, pressure which is compatible with the fuel cell.  Several reactor vessels and 
several buffer vessels are monitored by pressure sensors and connected by processor-
controlled valves to assure a continuous supply of hydrogen to the fuel cell.  

Fullerton [84] developed a recyclable hydrogen generator which uses aluminium, an alkali 
hydroxide, and water, connected to a user, which could be an internal-combustion engine, a 
turbine, or a fuel cell. The hydrogen generator safely supplies the hydrogen demand at 
atmospheric pressure, and it can be stored anywhere at low cost, as it is safe and inert.  

6. Conclusions 

Interest in hydrogen as an energy carrier is based on considerations of the finite nature of 
our hydrocarbon resources and of the worldwide deleterious effects of the carbon dioxide 
emitted during hydrocarbon-based energy production. In this context, the aluminium-water 
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reaction shows interesting possibilities as an energy-providing small or mid-scale reaction. 
In contrast to gasoline-air based systems, which benefit from the ubiquitous presence of air, 
the aluminium-water reaction requires that the latter be specifically supplied or brought 
along; however, the ready  availability of water at most places minimizes the importance of 
this consideration.  

An attractive feature of the aluminium-water reaction as a way to produce hydrogen gas on 
demand is its essential simplicity. Obviously, in its most basic form, the reaction is 
fundamentally hampered by passivation of the metal, but this can be overcome by the use of 
strongly alkaline conditions. However, the corrosiveness of such conditions is a distinct 
drawback; for this reason, extensive research has centred in recent years on means of 
maintaining an active metal surface in aqueous conditions at neutral or near-neutral pH, e.g. 
by the use of aluminium alloys. Research in these aspects is likely to remain important in the 
immediate future.  

Large-scale application of the aluminium-water reaction appears less promising and is 
unlikely to replace to any significant extent the more established modalities, e.g. energy 
storage in battery banks. 
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