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1. Introduction

Many digital signal processing (DSP) systems tend to have a very high computational
complexity when they target a large part of the Nyquist band. This corresponds to
a wide-band system with one or several so called don’t-care bands approaching zero.
Examples of such systems include frequency selective filters, fractional-delay filters, and
differentiators. This chapter considers finite-length impulse response (FIR) filters due to
their attractive implementation features. In particular, they can be implemented with
non-recursive structures. In contrast to infinite-length impulse response (IIR) filters, they
are therefore always automatically stable and have no bound on the maximal sampling rate,
see [1, 2].

For frequency-selective wide-band FIR filters, the frequency-response masking (FRM)
technique can be employed for complexity reductions due to its use of sparse (namely
periodic) subfilters, see [3–10]. For other functions, the FRM technique cannot be used
directly, and one therefore has to seek other methods to reduce the complexity. This chapter
discusses such a method which utilizes a two-rate technique, but only for the derivation of
efficient single-rate structures. The basic two-rate approach was originally introduced in [11]
and has since then been exploited and extended for various contexts as detailed in [12–19]
and to be reviewed in this chapter. For single-function systems, it is however necessary
to combine the two-rate technique with the FRM approach in order to achieve an overall
complexity reduction. For multi-function realizations, complexity savings may be obtained
without incorporating the FRM approach but it offers further complexity savings in such
cases, as exemplified in [19]. Recent results have shown that the two-rate approach offers
dramatic complexity reductions for wide-band systems, especially when combined with the
FRM approach.

© 2013 Johansson and Gustafsson; licensee InTech. This is an open access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



1.1. Chapter outline

Following this introduction, Section 2 considers the two-rate based structure that is
appropriate for so called left-band and right-band systems which have don’t-care bands at
the low-frequency and high-frequency regions, respectively. Section 3 discusses the extension
to so called mid-band systems which have don’t-care bands at both the low-frequency and
high-frequency regions. In Section 4, multi-function system realizations are considered,
whereas Section 5 gives more implementation details. Finally, Section 6 concludes the
chapter.

2. Two-rate based structure for left-band and right-band systems

This section will first revisit FIR filters and their computational complexity. After that, the
two-rate based structure for left-band and right-band systems will be discussed.

2.1. Complexity of FIR filters

Consider a causal FIR filter with an impulse response h(n), transfer function

H(z) =
NH

∑
n=0

h(n)z−n, (1)

and frequency response

H(ejω) =
NH

∑
n=0

h(n)e−jωn. (2)

The order of the system is NH and the impulse response duration (length) is NH + 1. A
direct-form implementation of the filter, corresponding directly to the convolution

y(n) =
NH

∑
k=0

x(n − k)h(k), (3)

where x(n) is the input and y(n) the output, requires NH + 1 multiplications and NH

additions to compute each output sample y(n). In the case of a linear-phase frequency
response, h(n) is symmetric or anti-symmetric which reduces the number of multiplications
to roughly NH/2 1.

The filter order required is determined by the application and specification. For example,
for frequency selective filters, the order is inversely proportional to the transition band

1 An even-order symmetric (anti-symmetric) linear-phase filter requires NH /2 + 1 (NH /2) multiplications whereas an
odd-order linear-phase filter requires (NH + 1)/2 multiplications.
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(don’t-care band) ∆ = ωs − ωc, where ωc and ωs denote the passband and stopband edges,
respectively, see [20, 21]. Hence, when the don’t-care band decreases towards zero, the order
increases rapidly. Then, using a direct-form realization, the computational complexity may
become intolerable as it follows the filter order. The same trend exists also for other functions
that are not frequency selective filters, like differentiation and integration, as seen in [22].

2.2. Two-rate based structure

To reduce the complexity, we consider here a structure that is derived via a two-rate
approach, seen in Fig. 1. This structure is efficient for left-band systems (like a differentiator)
targeting the frequency region ω ∈ [0, ωc], 0 < ωc < π. The same structure can also be used
for right-band systems targeting the band ω ∈ [ωc, π], 0 < ωc < π. The only difference will
appear in the design, and we will therefore focus on the left-band case in this chapter, and
only comment upon the right-band case in the design section.

For a left-band specification, the basic idea is to first interpolate the input signal x(n) by
two through upsampling by two followed by a lowpass filter with transfer function F(z)
2. Then, a subsequent filter with transfer function G(z) follows that performs the actual
function. Finally, downsampling by two takes place to retain the original sampling rate.
Using multi-rate theory, see [23], it is readily shown that this scheme corresponds to a linear
and time-invariant (LTI) system with a transfer function H(z) that equals the 0th polyphase
component of the cascaded filter F(z)G(z), i.e.,

H(z) = F0(z)G0(z) + z
−1

F1(z)G1(z) (4)

where

F(z) = F0(z
2) + z

−1
F1(z

2) (5)

and

G(z) = G0(z
2) + z

−1
G1(z

2). (6)

The final realization is thus a single-rate structure. A two-rate technique is only used to
derive efficient structures. It is noted here that the order and delay of the overall filter H(z)
is NH = (NF + NG)/2 and DH = (DF + DG)/2, respectively. This can be understood by
noting that F(z) and G(z) can be viewed as operating (in principle) at two times the input
rate, because the structure is derived by sandwiching F(z)G(z) between upsampling and
downsampling by two.

2 The same function can be achieved by sampling the underlying analog signal with a higher sampling rate instead of
sampling it slower and then use interpolation in the digital domain. However, this also increases the requirements
on the analog-to-digital converters which are power-hungry components and in many cases one of the bottlenecks
in overall systems. It is therefore often preferred to perform interpolation in the digital domain.
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Figure 1. (a) Two-rate approach. (b) Equivalent LTI system when F(z) is an HB filter. (c) and (d) Polyphase component F0(z)
of the HB filter F(z) = F0(z2) + z−DF when realized with the FRM approach for an even-order (c) and odd-order (d) masking

filter.

2.2.1. Filter Types

It is possible and efficient to let F(z) be a linear-phase half-band (HB) FIR filter 3. Such a filter
has a symmetric impulse response and every second impulse response value is zero, except
the center tap which equals unity for an interpolation filter that preserves the signal energy.

This corresponds to a pure-delay polyphase component F1(z), namely F1(z) = z−(DF−1)/2,

3 If the delay is of importance, one may need to use a nonlinear-phase (approximately linear-phase) low-delay HB
filter F(z) instead. Further, if there are additional requirements in the don’t-care band, like attenuation requirements
at ω = π, a general filter F(z) must be used instead, i.e., a non-HB filter. See [19] for details.
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Overall filter H(z) Half-band filter F(z) G(z)

Type I, even order 2(m + p + 1) Type I, order 4m + 2 Type I, order 4p + 2
Type II, odd order 2(m + p) + 1 Type I, order 4m + 2 Type I, order 4p

Type III, even order 2(m + p + 1) Type I, order 4m + 2 Type III, order 4p + 2
Type IV, odd order 2(m + p) + 1 Type I, order 4m + 2 Type III, order 4p

Table 1. Linear-phase filter types.

where DF is the delay of F(z), which is always an odd integer. When F(z) is a linear-phase
filter, G(z) is of the same type as that of the overall filter H(z), i.e., a linear-phase filter
(nonlinear-phase filter) when H(z) is a linear-phase filter (nonlinear-phase filter). In this
section, we focus on linear-phase filters. In the next section, nonlinear-phase applications are
considered.

When F(z) is a linear-phase HB filter, it is a symmetric Type I filter with the odd-integer delay
DF. Its delay contribution, DF/2, to the overall delay DH is therefore an integer plus a half.
It is consequently the delay contribution DG/2 of G(z) that determines whether the overall
delay is an integer or an integer plus a half. As DG/2 then must be an integer or an integer
plus a half to obtain an overall linear-phase filter, DG must be an integer. Consequently, G(z)
is either a Type I or Type III linear-phase FIR filter, i.e., an even-order filter with a symmetric
or anti-symmetric impulse response. In other words, the type and order of G(z) determines
the type and order of the overall filter, as summarized in Table 1. A formal proof of these
facts is given in [17].

The order of G(z) is thus somewhat restricted as it cannot take on all even orders. However,
the effective order of G(z) can be reduced by two by setting its first and last impulse response
value to zero. In this way, two multiplications and additions may be saved in some cases.
For the HB filter F(z), it does not make sense to try to reduce the effective order in this way,
as its impulse response is always zero for odd indexes of n (except for the center tap).

2.3. Complexity reduction

Assume that H(ejω) is to approximate a desired function D(jω) in the band ω ∈ [0, ωc]. Due
to the principle of interpolation by two in the two-rate based scheme, the effective bandwidth
of G(z) is ωc/2, and thus always less than π/2. The complexity of G(z) alone will therefore
be substantially lower than that of a regular direct-form realization of H(z). (This will be
discussed in more detail in the design example considered later in Section 2.4). However,
the overall complexity is also determined by the filter F(z). The requirement on this filter is
roughly the same as that of the overall filter H(z) and its complexity is therefore relatively
high. In other words, a major part of the overall complexity is moved to the filter F(z)
and thus to F0(z) in Fig. 1. Therefore, for a single-function system, there will not be any
computational savings using this approach straightforwardly. This is because we can equally
well combine the three subfilters into one single conventional filter.

Nevertheless, overall savings can indeed be obtained by utilizing additional complexity
saving techniques for the lowpass frequency selective HB filter F(z). Specifically, by realizing
F(z) as an FRM filter, see [3–10], we can express the transfer function as

F(z) = 2A(zL)B0(z) + 2[z−LDA − A(zL)]B1(z) (7)
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where A(zL) is a period model filter and [z−LDA − A(zL)] is its complement, whereas B0(z)
and B1(z) are masking filters. Specifically, in the case of a HB filter, as detailed in [5, 7], A(z)
is given as

A(z) = A0(z
2) + 0.5z−DA , (8)

with DA being the delay of A(z), whereas the masking filter are related according to

B1(z) = z−DB − (−1)DB B0(−z), (9)

with DB being the delay of B0(z). One then finds that F0(z) becomes, for DB even:

F0(z) = 2z−(LDA+1)/2B01(z) + 2[2B00(z)− z−DB/2]A0(z
L) (10)

and, for DB odd:

F0(z) = 2z−(LDA−1)/2B00(z) + 2[2B01(z)− z−(DB−1)/2]A0(z
L) (11)

where B00(z) and B01(z) are the polyphase components of B0(z), i.e., B0(z) = B00(z
2) +

z−1B01(z
2). The resulting structures for F0(z) are depicted in Fig. 1(c) and (d). More details

can be found in [7].

As seen, F0(z) makes use of three subfilters, of which A0(z
L) is periodic for an integer

L > 1. A periodic filter is a sparse filter, meaning it has many zero-valued filter coefficients.
Specifically, only every Lth impulse response value of A0(z

L) is non-zero. Consequently,
a linear-phase filter A(zL) of order NA requires roughly only NA/(2L) multiplications and
NA/L additions. In this way, substantial overall savings can be obtained as compared to the
conventional direct-form structures.

2.4. Design

Filters are typically designed in the minimax (Chebyshev) sense or least-squares sense, or
possibly combinations thereof, see [24–26]. The goal of this chapter is to demonstrate that
the complexity (number of multiplications and additions) can be reduced when using the
two-rate based structures instead of regular structures. This will be done by designing both
filter classes to meet the same specification and then comparing the resulting complexities 4.
To this end, the selection of approximation type is irrelevant, as long as one uses the same for
both filter classes. In this chapter, we use minimax design, but other designs can of course
be used as well after some minor appropriate modifications.

For minimax design, the maximum of the modulus of an error function E(jω) is minimized.
The error function is typically given as

E(jω) = W(ω)[H(ejω)− D(jω)], ω ∈ Ω. (12)

4 Another type of comparison is to study the approximation error differences between two solutions having the same
filter implementation complexity. However, such a comparison is appropriate when using two different design
methods applied to the same filter class (structure) which does not apply here.
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where D(jω) is a desired function to be approximated in the frequency band Ω by the filter
frequency response H(ejω), whereas W(ω) is a positive weighting function. A conventional
FIR filter, with the frequency response in the form of (2), is then designed by solving the
following approximation problem.

Approximation problem: Given NH , find the unknowns h(n) and δ to minimize δ subject to

|E(jω)| ≤ δ. (13)

For a linear-phase filter, we also have the additional symmetry constraints h(n) = h(N − n)
or h(n) = −h(N − n).

For a conventional filter, the problem above is a convex optimization problem which has
a unique global optimum. It can be found using linear programming, see [27], or the
more efficient McClellan-Parks-Rabiner algorithm given in [28]. In practice, one usually
has a specification on the desired approximation error δ, say δe. The filter will meet this
specification if δ after the optimization satisfies δ ≤ δe.

For the two-rate based filters, the design becomes more intricate because it contains cascaded
and parallel subfilters. This means that the unknowns are not h(n) but instead f (n)
and g(n), in general, and a(n), b0(n), and g(n) when F(z) is realized as an FRM filter.
Hence, conventional design methods can no longer be used. Moreover, due to the cascaded
subfilters, we are now facing a nonlinear (nonconvex) optimization problem, which means
that an overall globally optimum solution cannot be guaranteed. Nevertheless, if carefully
designed, even a locally optimum solution for a two-rate based structure can be substantially
less complex than the corresponding globally optimum direct-form structure. To ensure a
good local optimum, the overall two-rate based filters are designed in three steps as explained
below. Although F(z) should here be an FRM HB filter in order to achieve any savings,
we will first explain the essential design steps in terms of a regular HB filter for the sake
of simplicity. After that, the necessary modifications required for an FRM design will be
pointed out.

2.4.1. Basic Three-Step Design Procedure

Given the desired function

D(jω) = e−jω(NG+NF)/4D0(jω) (14)

and bandwidth ω ∈ [0, ωc], ωc < π, as well as a targeted approximation error δe, perform
the following three-step procedure for each combination of filter orders NG and NF around

estimated required orders N̂G and N̂F:

(1) Design the regular FIR filter G(z), which gives G0(z) and G1(z) after polyphase
decomposition. It is done by minimizing the maximum of |EG(jω)| in the band ω ∈
[0, ωc/2] where 5

EG(jω) = G(ejω)− e−jωNG/2D0(j2ω). (15)

5 For a right-band specification, the band for G(z) is ω ∈ [ωc/2, π/2].

Two-Rate Based Structures for Computationally Efficient Wide-Band FIR Systems
http://dx.doi.org/10.5772/52198

195



(2) Design a regular lowpass HB FIR filter F(z), which gives F0(z) and F1(z) = z−(DF−1)/2,
DF = NF/2, after polyphase decomposition. It is done by minimizing the maximum of
|EF(jω)| in the band ω ∈ [π − ωc/2, π], where 6,

EF(jω) = F(ejω). (16)

(3) Use F0(z), G0(z), and G1(z) obtained above as the initial solution in a further nonlinear
optimization routine that solves the approximation problem stated in (13). If the resulting
approximation error δ is smaller than δe after the optimization, store the result.

The estimated orders required, N̂G and N̂F, can be found by separately designing G(z) and
F(z) to approximate their respective desired functions (as given in Steps 1 and 2, respectively)
with the same tolerance as the overall targeted error, i.e., δe (or similar as in [17–19]). As the
bandwidth of G(z) is always below π/2, its order is typically below 12 for approximation
errors down to some −100 dB, provided a smooth function is targeted, like a differentiator

or integrator. Hence, the value of N̂G is readily found by designing G(z, d) for all low-order

filters, using conventional techniques, and then set N̂G to the lowest one for which the

approximation error |EG(jω)| is below δe. As to the lowpass HB filter F(z), the value N̂F

can be found via well-known formulas for order estimation, see [20, 21], and a few designs
around the estimated value.

Regarding the designs, the problems in Steps 1 and 2 are convex, and thus have unique
global optima, provided they are formulated in accordance with the approximation problem
stated earlier in this section. These problems can be solved using any regular solver for such
problems. As F(z) is a linear-phase filter, it can alternatively be designed using the efficient
McClellan-Parks-Rabiner algorithm given in [28]. The problem in Step 3 is nonlinear because
of the cascaded subfilters. In the examples of this chapter, we use the general-purpose
nonlinear-optimization routine fminimax in MATLAB together with the real-rotation theorem,
see [29], to solve the problem. The real-rotation theorem states that minimizing | f | is
equivalent to minimizing ℜ{ f ejΘ}, ∀Θ ∈ [0, 2π]. The optimization problem is then solved
with ω and Θ discretized to dense enough grids. A few hundred and 10–20 points,
respectively, are typically sufficient in practice.

2.4.2. Modifications When Using an FRM Filter F(z)

When F(z) is an FRM filter, we can use essentially the same design steps as outlined above.
However, a difference is that F(z) is now realized in terms of the two subfilters A(zP) and
B0(z) or, equivalently, F0(z) is now realized in terms of the three subfilters A0(z

L), B00(z) and

B01(z). This means that three parameters, N̂A, N̂B, and L̂, instead of only one parameter, N̂F,
need to be estimated. Given the same approximation error and band edges as before, F(z)

as well as N̂A, N̂B, and L̂, can be obtained as outlined in [7]. It is noted here that the design
of F(z) in Step 2 now corresponds to a nonconvex problem due to cascaded subfilters in the
FRM approach. In [7], this is solved via initial linear optimizations and further nonlinear
optimization, similar to the approach given above for the two-rate based structure.

6 For a right-band specification, a highpass filter F(z) is designed instead, in the stopband ω ∈ [0, ωc/2].
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Figure 2. Magnitude response and approximation error of the two-rate and FRM based filter in Example 1. Throughout this

chapter, we have used T = 1 for simplicity.

2.5. Examples

Consider a first-degree differentiator with the desired function [4]

D(jω) = e−jω(NG+NF)/4 jω (17)

in the frequency region ωT ∈ [0, ωc], 0 < ωc < π. This function can be approximated by
a Type III linear-phase FIR filter, i.e., by a filter of even order and with an anti-symmetric
impulse response, see [4].

Example 1: ωc = 0.95π, and δe = 0.01 (−40 dB). Using a conventional differentiator,
the specification is met by a 60th-order filter which requires 30 multiplications and 59
additions in an implementation. Using instead the two-rate and FRM based approach, with
L = 5, we can meet the specification with filter orders 22, 18, and 2, for A(z), B0(z), and
G(z), respectively. The corresponding overall realization requires 17 multiplications and
31 additions. Thus, multiplication and addition savings of 43% and 47%, respectively, are
achieved. The savings are however dependent of the bandwidth ωc as will be illustrated
below in Example 2. As always when using linear-phase FRM filters, the price to pay is a
somewhat increased delay, and a few more delay elements. In this example, the delay is
increased from 30 to 32 samples whereas the number of delay elements is increased from 60
to 64. The increase is thus only 7%. The overall filter frequency response is plotted in Fig. 2.

Example 2: Figure 3 shows the number of multiplications required for the conventional
direct-form filter and the two-rate based filter, both approximating first-degree Type III
differentiators with approximation errors of δ = 0.01, 0.001, 0.0001 (−40, −60, −80 dB).
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As the plots reveal, the complexity savings using the two-rate based filter is increased
substantially when the bandwidth approaches π. The break-even point is somewhere
around ωc = 0.8π from which the savings increase approximately linearly with increasing
bandwidth. In the region between 0.8π and 0.98π, the savings go from around zero up to
some 65%. Similar savings are obtained also for the number of additions as it is proportional
to the number of multiplications. Again, a price to pay for the arithmetic complexity
reductions is a moderate increase of the delay and number of delay elements, typically
between some 5% and 20%.

From the results in [17, 22], the number of multiplications required for a regular Type III
differentiator can be estimated as

M̂regular = π
0.810[− log10(δc)]0.919

π − ωc

. (18)

For the two-rate based differentiators, we have instead from [17]

M̂tworate = π
0.884[− log10(δc)]0.852

π − 0.956ωc

. (19)

Comparing the two expressions, we see that the main difference is the multiplicative constant
0.956 in front of ωc in the latter expression. This explains why the savings increase with
increasing bandwidth, as illustrated in Fig. 3.

2.6. Generalization to M > 2

The two-rate based scheme can readily be extended to the one depicted in Fig. 4(a) where
the interpolation factor is an arbitrary integer M. Here, the basic principle is thus to first
interpolate with M via the interpolation filter F(z). Then the actual function is again
approximated by G(z). Finally, downsampling by M occurs. Using multi-rate theory, one
finds again that this structure has the LTI system equivalent seen in Fig. 4(b). That is, the
overall transfer function is

H(z) = F0(z)G0(z) +
M−1

∑
m=1

z
−1

Fm(z)GM−m(z), (20)

where Fm(z) and Gm(z) are polyphase components of F(z) and G(z) in the polyphase
representations

F(z) =
M−1

∑
m=0

z
−m

Fm(z
M), G(z) =

M−1

∑
m=0

z
−m

Gm(z
M). (21)

Using an Mth-band interpolation filter F(z), also the generalized scheme is appropriate for
left-band and right-band systems. It has turned out though that the case with M = 2 typically
is the most efficient choice which is why that case has been considered in detail in this section.
This is because the additional cost of F(z) exceeds the additional savings of G(z) when going
from M = 2 to M > 2. This in turn is due to the fact that the complexity of G(z) is already
very low for M = 2. A more detailed discussion on this is found in [17].
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Figure 4. (a) Two-rate approach with arbitrary M. (b) Equivalent single-rate realization.

3. Two-rate based structure for mid-band systems

This section extends the results to mid-band systems which target the region ω ∈ [ωc1, ωc2],
0 < ωc1 < ωc2 < π. Example applications include fractional-degree differentiators and
integrators, see [30–33]. For later discussions, we define the don’t-care bands ∆1 and ∆2 as

∆1 = ωc1, ∆2 = π − ωc2. (22)

Two-Rate Based Structures for Computationally Efficient Wide-Band FIR Systems
http://dx.doi.org/10.5772/52198

199



In principle, we can again make use of the scheme in Fig. 4 with a lowpass filter F(z) but it is
not efficient for mid-band systems. This is because the filter G(z) then needs to approximate
the desired function in the band between ωc1/M = ∆1/M and ωc2/M = (π − ∆2)/M.
Although this implies that the width of the upper don’t-care band of G(z) is increased
substantially to roughly (M − 1)π/M instead of the original ∆2 = π − ωc2, its lower
don’t-care band, ∆1/M = ωc1/M, becomes M times narrower. This means that the
complexity of G(z) may thereby even increase, not decrease. In the left-band case, this is
not a problem as there is no don’t-care band to the left.

The width of both the lower and the upper don’t-care bands of G(z) can be increased by
using a bandpass filter F(z) instead of a lowpass filter. This also means that we have to use
M > 2. Again, it appears that the most efficient case is for the lowest possible M which is
here M = 3. The reason for this is two-fold. First, odd values of M makes it possible to
center the passband of G(z) around π/2, which maximizes the minimum of its lower and
upper don’t-care bands. Second, the complexity of F(z) alone reduces with reduced M, in
accordance with the discussion in [17] for the left-band case. In addition, the use of M = 3
instead of M > 3, makes it possible to double the amount of sparsity of F(z), and thus its
efficiency, by expressing it as a periodic filter.

Here, G(z) is to approximate D(jωM − j(K − 1)π) in the frequency region ω ∈ [ω
(G)
c1 , ω

(G)
c2 ]

where

ω
(G)
c1 = (K − 1)π/M + ∆1/M, ω

(G)
c2 = Kπ/M − ∆2/M, (23)

with K being an appropriately chosen odd integer. For M = 3, one should use K = −1.
After the downsampling by M, the above region is mapped to the targeted region ω ∈

[ωc1, ωc2]. Further, F(z) is to approximate M in the same region as that of G(z) and zero in
the corresponding image bands created in the upsampling. Hence, F(z) is here a bandpass
filter with passband and stopband edges at

ω
(F)
c1 = ω

(G)
c1 , ω

(F)
c2 = ω

(G)
c2 (24)

and

ω
(F)
s1 = (K − 1)π/M − ∆1/M, ω

(F)
s2 = Kπ/M + ∆2/M, (25)

respectively. Moreover, with M = 3 and K = −1, F(z) is a symmetric bandpass filter centered
on π/2. Consequently, it can be expressed as

F(z) = 3P(z2) (26)

where P(z) is a unity-gain-passband third-band highpass filter. The polyphase
decomposition of P(z) is then P(z) = 1/3 + z−1P1(z

3) + z−2P2(z
3) which leads to F(z) =

1 + 3z−2P1(z
6) + 3z−4P2(z

6) and the polyphase components

F0(z) = 1, F1(z) = 3z−1P2(z
2), F2(z) = 3P1(z

2). (27)

A filter F(z) of the form above requires roughly only one third of the complexity of a general
filter of the same order.
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NH NG NF DH DE Mult Add

Regular 124 - - 62 124 125 124
Two-rate, regular F(z) = P(z2) 126 10 372 63 126 73 134

Two-rate, FRM F(z) = P(z2) 140 10 412 70 140 41 59

Table 2. Results of Example 3.

3.1. Complexity savings

As opposed to the case of linear-phase overall filters considered in Section 2, we can
here achieve complexity savings without using additional FRM techniques. The reason is
two-fold. First, as seen above, F(z) = P(z2) is already sparse. Second, as a mid-band
system is often a nonlinear-phase system, the filter coefficient are not symmetric. By using
the two-rate based structure, symmetry can partially be utilized as F(z) is a symmetric filter
whereas only the low-order G(z) is unsymmetric. As to the sparsity, the degree of sparseness
can be increased by realizing P(z) as an FRM third-band filter. Details are given in [18].

3.2. Examples

Example 3: Consider the approximation of a fractional-degree differentiator with the desired

function D(jω) = e−jω(NG+NF)/4(jω)0.5 in the frequency band ω ∈ [0.02π, 0.98π] and for an
approximation error of δe = 0.01. Figure 5 shows the frequency response and approximation
error of the two-rate based design. The filter has been designed using essentially the same
three-step procedure described earlier, but after minor appropriate modifications, as detailed
in [18]. Table 2 gives the results for the conventional direct-form realization and for the
two-rate based realizations, both with a sparse regular bandpass filter and a sparse FRM
bandpass filter. The quantity DH denotes the integer part of the group delay whereas DE
denotes the number of delay elements. As seen from the table, substantial savings are
achieved using the two-rate based structures, especially when the FRM technique is also
utilized. As usual when using the FRM technique, one has to pay a price in a somewhat
increased delay. It is also noted that the savings increase/decrease with increased/decreased
bandwidth (decreased/increased width of the don’t-care bands). This is in line with the basic
two-rate based scheme and it was exemplified earlier in Example 2.

4. Multi-function systems

In this section, we will discuss the extension to the realization of multifunction systems. The
two-rate based approach is even more efficient for such systems as the same F(z), and thus
the same F0(z), is shared between all functions. We will illustrate this for Farrow-structure
based (see [34]) variable fractional-delay (VFD) filters. As an example will reveal, the two-rate
based structure offers dramatic complexity reductions in this application, even without
using the additional FRM approach. However, incorporating the FRM approach, further
complexity savings are obtained.

4.1. Variable fractional-delay filters

Variable fractional-delay filters find applications in many different contexts like interpolation,
resampling, delay estimation, and signal reconstruction, see [35–40].
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Figure 5. Fractional-degree differentiator responses in Example 3 using the two-rate based structure with an FRM bandpass

filter targeting ωc1 = 0.02π and ωc2 = 0.98π.

The VFD filter, with a transfer function H(z, d), is for z = ejω to approximate the ideal VFD
filter frequency response

D(jω, d) = e−jω(DH+d) (28)

where DH is a fixed delay which usually is an integer or an integer plus a half. Further, d
is the fractional delay. The ideal response should be approximated in the band ω ∈ [0, ωc],
0 < ωc < π, and for all fractional delays d ∈ [−0.5, 0.5] meaning that a whole sampling
period (interval) is covered. In general, the sampling period is T, but we have used T = 1 in
this chapter for simplicity.

Using the Farrow structure, H(z, d) is expressed in the form

H(z, d) =
L

∑
k=0

dk Hk(z). (29)

where Hk(z) are fixed subfilters which, essentially, realize the weighted differentiators
e−jωDH × (−jω)k/k! This follows immediately by truncating the Taylor series expansion
of e−jωd, see [41]. Further, when there are no restrictions on the fixed part of the delay,
it is possible and efficient to use linear-phase subfilters Hk(z), thus with symmetric or
antisymmetric impulse responses. We then have DH = NH/2, and the following two
different cases. When Gk(z) are of even order NG, they are of Type I (Type III) for even
(odd) values of k. This results in an integer DH . In the odd-order case, Gk(z) are instead of
Type II (Type IV) for even (odd) values of k. In this case, DH is an integer plus a half. In both
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Figure 6. Farrow structure realizing the VFD filter transfer function in (29).

cases, the impulse responses are symmetric (anti-symmetric) for even (odd) values of k, thus
gk(n) = (−1)kgk(NG − n).

Figure 6 shows the regular Farrow structure realizing (29). As seen, the problem amounts to
realizing the L + 1 differentiator functions with ideal responses (−jωT)k/k!. In other words,
it essentially corresponds to the realization of a multi-function system, although, in this case,
the partial outputs are finally combined via the FD multiplications to form only one output.
Using now the two-rate based approach introduced in Section 2.2, each Hk(z) is realized as

Hk(z) = 2F0(z)Gk0(z) + z−(DF+1)/2Gk1(z) (30)

where F0(z) and z−(DF−1)/2 are again the polyphase components of a linear-phase HB
interpolation filter F(z) with a passband gain of two and delay DF, whereas Gk0(z) and
Gk1(z) are the polyphase components of the subfilters Gk(z). This follows from sandwiching
the filter F(z)G(z, d) between the upsampler and downsampler, where G(z, d) approximates
an FD filter in the region [0, ωc/2]. That is,

G(z, d) =
L

∑
k=0

dkGk(z). (31)

The overall realization is shown in Fig. 7. It is noted that F(z) again can be realized using
the FRM approach in order to further reduce the complexity, as demonstrated in [19]. In this
case, F0(z) is again realized as in Fig. 1(c) or (d).

4.2. Design examples

Example 4: We consider the design of a VFD filter with a bandwidth of ωc = 0.9π. The
filter has been designed using essentially the same three-step procedure described earlier.
More details are given in [19]. Tables 3 and 4 summarize the results where the number
of multiplications and additions covers all fixed subfilters assuming appropriate use of
direct-form and transposed direct-form realizations. In addition, L general multipliers and
adders are needed for implementing the FD multiply-and-add chain, but this is required in
all VFD filter structures. Further, the NRMS and δgd values given in the tables indicate the
normalized root-mean square error and maximum group-delay error as defined by (33) and
(36), respectively, in [42], whereas δe denotes the maximum of the modulus of the complex
error. Further, DE denotes the number of delay elements. It is seen from the table that that
the two-rate based structure is considerably more efficient than the regular Farrow structure.
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Figure 7. Two-rate based structure realizing the VFD filter transfer function in (29) with Hk(z) as in (30).

Linear-Phase L NH NE NF NA NB P

Reg. Farrow, WLS [44] 7 73 n/a n/a n/a n/a n/a
Hybrid, WLS[42] 7 117 n/a n/a n/a n/a n/a

Simplified [43] 9 73 n/a n/a n/a n/a n/a
Two-rate based 7 75 12 138 n/a n/a n/a

Two-rate based with FRM 7 87 12 162 46 26 3

Table 3. Results of Example 4.

Linear-Phase DH DE Mult Add NRMS (%) δe [dB] δgd

Reg. Farrow, WLS [44] 36.5 73 191 374 0.00023 −100.04 0.000446
Hybrid, WLS[42] 58.5 117 148 285 0.00021 −100.21 0.000395

Simplified [43] 36.5 73 91 158 not reported −102.14* not reported
Two-rate based 37.5 75 80 149 0.00019 −102.96 0.000318

Two-rate based with FRM 43.5 87 71 129 0.00019 −104.15 0.000263

Table 4. Results of Example 4. *Magnitude and phase delay errors.

It is also more efficient than two alternative approaches whose results are also included
in the table, namely for the hybrid structure in [42] and the structure in [43] which meets
roughly the same specification. It is also seen that the extended structure that utilizes the
FRM technique offers further complexity reductions. The price to pay in this case is however
a slight increase of the delay and delay elements, but the figures are still considerably smaller
than for the structure in [42]. Compared with the regular Farrow structure in [44] and the
one in [43], one has to pay the moderate price of a delay and delay element increase of some
3% using the basic structure in Fig. 7(b) and 19% using the extended structure incorporating
the FRM approach.

5. Multiple-constant multiplication techniques for the subfilter

implementations

This section will discuss implementation details, design trade-offs, and comparisons when
the multiplications in the filters are implemented using multiple constant multiplication
(MCM) techniques, which realize a number of constant multiplications using only shifts,
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Figure 8. Two-rate and FRM based VFD filter in Example 4. Error and group delay responses for 11 evenly distributed values of
d between −0.5 and 0.5.

adders and subtracters. The situation is different here though, than for the most commonly
considered transposed direct-form filter realization, as the proposed structures consist of
cascaded subfilters. This section will therefore elaborate on these issues and provide design
examples. The focus here is on VFD filters using the two-rate based structure without the
additional FRM approach.

For dedicated hardware implementations, one can take advantage of MCM techniques to
reduce the implementation cost. Multiplications by constant coefficients can be performed
using adders, subtracters, and shifts. As adders and subtracters have approximately the same
implementation complexity we will refer to both as adders. Efficient realization of constant
multiplications is an active research area and much effort has been focused on the case where
one input data is multiplied by several constant coefficients. This problem has mainly been
motivated by single-rate FIR filters, where for a transposed direct form FIR filter the input
is multiplied by several coefficients, see [45–49]. The resulting implementation of several
multiplications is denoted multiplier block, as in [45].

Work has also been done for sampling rate change with an integer factor in [50] and rational
factor in [51], where it was shown that FIR filters in parallel can be implemented either using
one multiplier block or by using a constant matrix multiplication block, as in [52–55], with
the first approach requiring more delay elements than the latter. As a Farrow filter also is
composed of several FIR filters in parallel we have the same implementation alternatives
here, not only the single multiplier block case as reported in [56]. This has been extensively
discussed in [57]. In Fig. 9, the approach to implement the subfilters proposed in [56] is
shown. This approach typically requires few additions for the multiplier block. However, a
separate set of registers is required for each subfilter and the number of structural adders
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Constant matrix multiplication

Figure 10. Realization of Farrow filter using direct form subfilters resulting in a constant matrix multiplication and a single set

of registers.

is high. Alternatively, in Fig. 10, an approach based on the observation in [50] and further
discussed in [57] is shown. Here, only one set of registers is required and the structural
adders of the subfilters are merged into the matrix-vector multiplication.

The Farrow filter part of the two-rate based structure in Fig. 7 can be implemented similarly
to what is shown in Figs. 9 or 10. For transposed direct form subfilters, as in Fig. 9,
the corresponding structure would have two inputs, and, hence, result in a constant matrix
multiplication. Using direct form subfilters, as in Fig. 10, requires two sets of registers, one
for each input. For the HB filter it is convenient to use a direct form subfilter as the delayed
input values are easily obtained from the registers. We note that the input to the lower branch
subfilters in Fig. 7 is just a delayed version of the input, which is available from the upper
branch subfilter F0(z). Therefore, it is possible to use the registers of the HB filter as registers
for direct form subfilters. The resulting structure is illustrated in Fig. 11.

Naturally, it is also possible to use a transposed direct form HB filter and/or transposed
direct form subfilters in the Farrow filter part. From a complexity point of view, a transposed
direct form HB filter will have the same number of adders and registers. However, it will not
be possible to share registers as shown in Fig. 11.
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constant matrix multiplication.

5.1. Example and comparisons

Example 5: We consider a specification where the bandwidth is 0.9π and the modulus of the
complex error should be below 0.0042. To meet this specification, the Farrow structure in Fig.
6, with subfilters jointly optimized as outlined in detail in [41], requires 45 fixed multipliers,
88 fixed adders, and 5 variable multipliers. The two-rate based structure in Fig. 7, with
subfilters jointly optimized as detailed in [14], requires 30 fixed multipliers, 53 fixed adders,
and 5 variable multipliers. Thus, in terms of number of multiplications and additions, the
two-rate based structure is superior.

To refine the comparison when MCM techniques are applied we must quantize the filter
coefficients. For a relative comparison, one can use simple rounding. We found that the
original Farrow structure requires 11 bits to fulfil the requirements whereas the structure in
Fig. 7 requires 13 fractional bits. The slightly larger number of bits for the two-rate approach
is explained by the fact that a cascaded filter must meet the requirements which leads to a
somewhat more stringent requirement on the subfilters, at least when simple rounding is
used.

For the regular Farrow structure in Fig. 6, together with the realization in Fig. 9 a total of
33 adders are required for the multiplier block using the RAG-n algorithm in [45]. This is an
optimal result since there are 33 different (odd) coefficients as discussed in [58], and, hence,
there is no need to apply the slightly more efficient algorithms in [47–49]. Furthermore, 80
structural adders and 118 registers are required for the FIR subfilters. Further, five general
multipliers and four additional adders are required (for both the regular Farrow and two-rate
based filters). Alternatively, using the proposed structure in Fig. 10 the constant matrix
multiplication can be realized using 96 adders using the algorithm in [53]. In addition,
26 structural adders are required. One observation is that separating the symmetric and
anti-symmetric subfilters may reduce the complexity as some algorithms work better for
fewer columns. If this is utilized, the number of adders can be reduced to 107 by applying
the algorithm in [52] to the resulting two matrices and adding and subtracting the results.
The number of registers is now decreased to 30, whereas the number of general multipliers
and additional adders is constant.

For the two-rate based structure in Fig. 7, the HB filter requires 43 structural adders and
29 registers. The sum of products are realized by computing the corresponding multiplier
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Filter structure Mult Add Registers

Farrow with transposed direct-form subfilters 5 117 118
Farrow with direct-form subfilters 5 111 30
Proposed two-rate based structure 5 85 35

Table 5. Results of Example 5.

block with RAG-n and transposing it. For the constant matrix multiplication, 38 adders
are required. This number is not reduced by separating the symmetric and anti-symmetric
subfilters. A total of six additional registers are required as well as the five general multipliers
and four additional adders.

The results are summarized in Table 5. It is seen that the two-rate based structure still has
the lowest complexity for most implementation technologies as five registers will typically
be less complex to implement than 26 adders. Furthermore, whereas the use of transposed
direct form subfilters for the Farrow filter, as proposed in [50, 57], reduces the number of
adders related to the multiplication, it is for the two-rate approach still more efficient to use
direct form subfilters.

6. Conclusion

This chapter has reviewed recent two-rate based structures and their design for obtaining
efficient wide-band FIR systems. Left-band, right-band, and mid-band systems, as well as
single-function and multi-function systems, were covered. Several design examples were
given, for differentiators and VFD filters (a special case of multi-function systems), revealing
dramatic complexity savings for wide-band specifications. More details can be found in
[12–19].
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