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1. Introduction

The fields of Robotics and Automation have been experiencing a boom the last few years.
According to the “International Federation of Robotics” (IFR) in 2011, 140, 000 robot units
have been sold. This made 2011 the year with the most robot sales ever [52, 55]. Experts
predict a worldwide population of 1.3 million industrial robots until 2014. The prognoses for
the field of service robotics are also very promising [53, 54, 56]. The growing number of service
robots changes the general requirements for those robots. Whereas industrial robots are
optimized regarding precision, repeatability, and reliability, requirements for service robots
are different, due to more human-robot interaction (HRI) and operation in unstructured
environments. This means these robots need to integrate new concepts in terms of adaptivity,
safety, and universality, necessitating change in the characteristics of the actuation systems
and the structures.

Safety strategies can be divided into pre-collision and post-collision strategies [75].

Post-collision strategies traditionally refer to the fields of measuring and control. The
important questions in these fields are how human injury and robot damage can be minimized
after a collision has occurred. Existing standards regarding robot safety [59, 60] are currently
revised based on the most recent studies in the area of post-collision safety [12, 43–45].

Pre-Collision safety strategies have been discussed over the last 30 years [49, 67, 91, 93]
including their limitations. More recent works discuss the fact that since the robots are
operating in a human-centered environment, this must inform the design of the robots. Kathib
et al. [68] describe how a robot should be designed to establish autonomous tasks as well as
human guided tasks. Haegele et al. [46] determine that robots should either have a broad
sensory infrastructure to limit forces and moments through measuring them, or should be
inherently compliant. In 2006 Alami et al. [4] published a novel design paradigm for robots:
“design robots that are intrinsically safe and control them to deliver performance”. In
summary the requirements for a high degree of pre-collision safety are:

©2012 Gaiser et al.), licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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1. Lightweight

2. Inherent Compliance

These requirements are obvious in the field of service robotics since any interaction with
animals, technology, or humans will be safer by implementing them. Operating industrial
robots usually requires a strict division between the working area of the robot and the
working area of the human, since industrial robots normally do not fulfill these requirements.
However, there are many tasks that could be accomplished resulting in higher quality or more
efficiency, with closer human-robot interaction.

A lower inertia of the robot allows faster operating speed. At the same time lower inertia
reduces the impact in case of a collision. The application of composite materials can achieve
this while maintaining stiffness and precision of the robot. An impressive example is the DLR
“Lightweight Robotic Arm III” (LWR III) [50]. Another example presenting a robot for the
manipulation of small masses is described in [75].

When looking at compliant actuation systems for robots it becomes clear that there is currently
much effort to add compliance to conventional drives by adding elastic elements to the drive
chain. This concept is referred to as series elastic actuation and has been carried out in
many various forms [24, 121, 138, 140]. Other drives with more or less inherent compliance
are piezo-drives, shape-memory-actuators (SMA), electrorheological drives, and polymeric
actuators. Fluidic actuators are a well-suited actuation principle for compliant actuation.
Whereas pneumatic actuators are already compliant because of the compressibility of gases,
hydraulic actuators need the integration of compliant membrane structures in order to achieve
compliance. This group of actuators is referred to as “Flexible Fluidic Actuators”.

In addition to its drive elements a robot consists of structural elements connecting the
drive elements. So independently from the drive system a robot can exhibit compliant
characteristics via the integration of compliant structural elements.

2. Historical background

2.1. Flexible fluidic actuators

A Flexible Fluidic Actuator generally consists of a flexible shell that transmits potential energy,
delivered by the pressurized fluid, into a mechanical force, which then can be used to create a
motion.

The flexible fluidic operating principle has a strong background in biomimetics. Gutmann [41,
42] established the “Hydroskelett-Theorie” as an approach to explain evolutionary biology
via the concepts of constructional morphology. He understood that the design-principles
of hydrosceletts are responsible for the general designs of organisms. Gudo et al. [39,
40] developed this idea further by introducing the term “Engineering Morphology which
describes how Gutmann’s ideas can be applied to technical design. The biomimetic
background of flexible fluidic actuation was specifically discussed in [11, 130]. These works
discuss several examples on weevils and spiders and describe how crucial the membrane
properties are regarding efficiency and durability of the whole actuation system. The transfer
of the evolutionary optimized flexible fluidic drives developed by nature into powerful
technical systems is one focus of this work.

568 Smart Actuation and Sensing Systems – Recent Advances and Future Challenges
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A useful classification of Flexible Fluidic Actuators can be made according to their operating
principle, or the kind of force they are creating. Here we differentiate between designs that
use expansion, contraction or bending directions to drive a system.

2.1.1. Flexible fluidic “Expansion” actuators

The history of this group of actuators starts with simple designs for lifting applications
[32, 90, 133, 136]. Current “lifting bags” are mainly used for rescue operations [134]. However,
the biggest group of expansion actuators is air-springs or damping elements [17]. These
systems are either bellow-type actuators or rolling lobe-type actuators. The first rolling lobe
systems were developed in the 19th century [77] but the principle is still popular today. Some
differences between types of air springs are depicted in figure 1.

Bellow-type actuators are suitable drives for application in harsh environments since there is
no friction and they can compensate or create tilt motions up to 30◦ without any additional
transmission elements. The smallest commercially available bellow-type actuators have a
diameter of 160 mm. The following patents [10, 31, 37, 80, 96] give an idea as to how these air
actuators have developed throughout the last century. However, these patents only describe
the general design. Newer patents discuss problems concerning fatigue of the elastomer as
well as the connectors [107].

(a)
Conventional
Cylinder

(b)
Bellow-Type
Actuator

(c) Rolling
Lobe-Type
Actuator

Figure 1. Comparison of Different Kinds of Expansion Actuators [17]

Another big group is expansion actuators that work as rotary drive elements. [119] describes
a solution where the structural integrity is created by the housing and the torque is created by
an internal bellow-type actuator (figure 2(a))

The design proposed in [62] describes a bellow-type actuator suitable for linear or rotary
motions as well as single chamber actuators (figure 2(b)-2(d)). The proposed materials for
the bellow include rubbers as well as metals.

A very interesting design is introduced in [13]. The patent refers to fabrication techniques
used in the tire industry and describes a layered membrane design with several reinforcement
layers (figure 2(e), 2(f)).

[23] discusses the stress distribution in the membrane of a rotary actuator and requirements for
achieving low bending stiffness and high tensile strength. Another approach is described in
[34]. Here the drive element consists of a mono-material system. The whole drive is fabricated
in one step (figure 2(g)).

569Compliant Robotics and Automation with Flexible Fluidic Actuators and Infl atable Structures
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(a) [119] (b) [62] (c) [62] (d) [62] (e) [13]

(f) [13] (g) [119] (h) [74] (i) [74] (j) [47]

Figure 2. Radial Cross-Section View of Different Fluidic “Expansion” Drives

While the presented concepts are designed to operate with pressures in the range of 0− 20 bar

the development in [74] is operated with pressures up to 200 bar. The actuator set-up allows
both, linear and rotary actuation (figure 2(h), 2(i)). The focus in these works lays on heavy duty
machinery but rotary drives or trunk-like structures are discussed for robotic applications as
well. Detailed concepts regarding layered fiber reinforcements in the shell are introduced.

While the previous example requires complex knowledge and technology to produce an
individually shaped membrane, other examples implement standard materials for flexible
fluidic actuators. In [61, 81, 110] a design is proposed that uses bulky materials such as
ordinary water hoses to form the actuator. Figure 2(j) shows one set-up of this FLEXATOR
muscle. Subsequent developments applied the FLEXATOR technology to the fields of
rehabilitation [103] and horticultural robotics [129]. The works of Prior et al. [103] introduced
a unique approach that came to be known as “hybrid actuation” [117]. Here the powerful
fluidic actuators are combined with precisely controllable electrical actuators in a parallel
configuration.

2.1.2. Flexible fluidic “Contraction” actuators

This type of actuators generates a tensile force when pressure is applied. There is large
variety of “contraction” actuators. They must be sorted into two groups. The first group
includes actuators that generate a tensile force due to “Anisotropic Membrane Stiffness”.
Daerden and Lefeber described some of those actuators in their review article [20]. These
actuators increase in surface area when pressurized. The axial contraction is coupled to a
radial expansion in which some of the energy is used for membrane deformation. Generally
Joseph L. McKibben is said to be the inventor of the most popular design, often referred to
as “McKibben Muscle”. However, earlier patents describe the same design. In 1929 Dimitri
Sensaud de Lavaud [22] introduced a fluidic muscle as shown in figure 3(a). This early work
was later followed up by the patents of Morin [89] in 1947 and Woods [141] in 1953, where the
design and characteristics of the fluidic muscle were described in detail. The actuators consist
of a highly elastic inner membrane that is covered with a helically wound fiber reinforcement
like a braided fiber hose (figure 3(b)). When pressurized the fiber angles change until the
critical fiber angle of θ = 54, 4◦ is reached (figure 3(c)) [141].
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(a) [22] (b) [141] (c) geometric correlation
between fiber angle θ and
muscle diameter D [141]

(d) [119] (e) [92] (f)
[76]

(g)
[88]

Figure 3. Different Fluidic Muscles

In [101] Paynter describes a variation of this type of fluidic actuator. The “hyperboloid
muscle” is equivalent to a prestretched fluidic muscle, which extends the range of motion
(figure 3(d)). Other set-ups from Paynter are discussed in [98] and [100].

Commercially available fluidic actuators were introduced by Bridgestone Corporation, Japan,
FESTO AG&Co. KG, Germany, and Shadow Robot Company, UK. Bridgestone introduced a
single-acting [128] and a antagonistic [92] actuator design (figure 3(e)) but soon stopped their
activities in the field. With operating pressures up to 2 bar and a fatigue life of 67, 000 load
cycles these actuators weren’t really competitive.
Nowadays FESTO offers the biggest portfolio of fluidic muscles [29, 30]. Operating pressures
are 0 − 8 bar in connection with a fatigue life of 10, 000 − 1 Mio load cycles depending on the
load case.

Lewis [76] and Monroe [88] proposed a design with only axially fiber reinforcements. Thus
actuation is connected with a radial stretch of the pure rubber sections between the axial fiber
strands (figure 3(f), 3(g)).

The second group of “Contraction” actuators generates the force due to “Vectored Structural
Degrees of Freedom”. These actuator designs try to raise efficiency and to minimize the
hysteresis compared to the first group of actuators. Ideally there is no strain of the membrane
and almost no internal friction. When pressurized these actuators increase in volume while
maintaining the same surface area. Yarlott [143] proposed a folded structure that unfolds
when pressurized and thus contracts (figure 4(a))

(a)
[143]

(b)
[73]

(c) [58]

 

(d) [19]
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Figure 4. Some FFAs based on “Vectored Structural Degrees of Freedom”
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The work of Kukolj [73] shows an actuator with a net as the fiber reinforcement. This
eliminates the friction between the fiber strands, but the friction between membrane and fiber
reinforcement remains (figure 4(b)). Immega [58] enhanced this idea by implementing a stiff,
folded membrane in between the fiber mesh (figure 4(c)).

A newer design known as “Pleated Pneumatic Artificial Muscles (PPAM)” was introduced by
Daerden and Lefeber [19, 21]. The design is similar to the Yarlott muscle. Figure 4(d) and 4(e)
show the design and the force-displacement characteristics of these artificial muscles.

Erickson [25] described a contraction actuator that can be considered an inverse rolling-lobe
cylinder. This set-up has a large working range of 40-60% of the initial length (figure 4(f)).

2.1.3. Flexible fluidic “Bending” actuators

Bending actuators are generating a bending motion when pressurized, which is used to
manipulate objects in an adaptive and compliant way. Staines [120] presented vacuum
operated and Baer [7, 8] pressure operated conceptual solutions for this problem (figure 5(a)
and 5(b)).

(a) [120] (b) [7, 8] (c) [95]

(d) [5] (e) [18] (f) [18]

Figure 5. Bending Actuators

The work by Orndorff and Ewing [27, 95] as well as Andorf et al. [5] introduce designs where
bending occurs due to “anisotropic membrane stiffness”. Craig et al. [18] point out that these
types of actuators can be folded to reduce shipping volume specially for space applications.
Figure 5(c)-5(e) show the different designs.

Bending actuators designed with multi-lumen hoses are represented by the work of Suzumori
et al. [122–126] shown in figure 5(f). Radial reinforcements inhibit radial expansion so that the
operating pressure is 1.4 − 4 bar.

There is a large variety of trunk-like bending actuators that create bending motion by adding
structural constraints. A few examples are shown in figures 6(a)-6(c).

Monolithic bending actuators represent the last group in this section. Different research
groups have been working on this topic during the last years [57, 71, 145, 146]. These actuators

572 Smart Actuation and Sensing Systems – Recent Advances and Future Challenges



Compliant Robotics and Automation with Flexible Fluidic Actuators and Inflatable Structures 7

(a) [15] (b) [84] (c) [6] (d) [145]

(e) [71] (f) [57]

Figure 6. Trunk-Like Bending Actuators and Monolithic Bending Actuators

are single material devices and mainly fabricated in on step. Operating pressures are mostly
< 1 bar. Some prototypes are shown in figure 6(d)-6(e).

2.1.4. Flexible fluidic actuators - combined motion

This group of actuators produces multiple directions of motion. Griebel et al. [38] developed
a placement actuator for EEG-electrodes that conducts a linear expansion in combination with
a coaxial rotation (figure 7(a)). Paynter [99, 102] on the other hand supresses the linear motion
on purpose in order to design an pure rotary drive. As shown in figure 7(b) a pre-twisted
membrane is straightened when pressurized and thus generates a rotary motion.

(a) [38] (b) [99] (c) [16] (d)
[139]

Figure 7. Actuators with two directions of motion

Other concepts use several different cavities to create multi-motion actuators. Claus [16]
presents a push-pull actuator while Wilson [139] combines expandable hoses to build a
versatile robotic arm (figure 7(c) and 7(d)).

Alternative approaches are presented by Kimura and Brown. Kimura et al. [69] describe a
principle that is called “whole skin locomotion”. Here an elongated toroid turns itself inside
out and hence can move over surfaces or through gaps (figure 8(a)). The concept by Brown et
al. [14] is referred to as “jamming of granular material”. The idea here is known from vacuum
mattresses in ambulances. A flexible bag containing a granular material is shaped around
an object and then evacuated. Friction, suction and mechanical interlocking connects gripper
and object (figure 8(b)).

573Compliant Robotics and Automation with Flexible Fluidic Actuators and Infl atable Structures



8 Will-be-set-by-IN-TECH

(a) Whole Skin
Motion by Kimura et
al. [69]

(b) Whole Skin
Gripper by
Brown et al. [14]

Figure 8. Actuators based on Whole Skin Effects

2.2. Flexible fluidic structural elements

Flexible fluidic structural elements complete the biomimetic approach. There are many
examples of hydrostatic skeletons in nature [130].

Inflatable structures are well known in fields of crisis intervention [26] and exhibition stand
construction [94]. Other applications include space structures like antennas [33, 79, 82, 132]
and rovers [28, 48, 63, 72].

Most robotic designs with inflatable structures aim at space applications since they have a
small shipping volume when deflated. Koren et al. [72] proposed a design for zero gravity
applications and operating pressures of about 3.5 bar (figure 9(c)). Shoham et al. [104, 105, 118]
developed a inflatable robot as shown in figures 9(a) and 9(b). They also characterized the
robot regarding its stiffness at internal pressures up to 2 bar.

(a) inflated
[118]

(b) deflated [118] (c) [72] (d) [106]

Figure 9. Different Robots with Inflatable Structures

The works of Sanan et al. [106], Maruyama et al. [83], and Voisemebert et al. [135] focus more
on service and inspection robotics. Operating pressures are in the range of 0.4 − 0.6 bar. The
1-DOF arm developed by Sanan is shown in figure 9(d).

3. Flexible fluidic actuators - fabrication

3.1. FFA - Materials

As the name implies FFAs are made of flexible shell materials. This fact limits the number
of relevant materials naturally. Normally laminated foils [112], vulcanized elastomers [36],
coated fabrics [97], layered set-ups 1, or various combinations are used. A reasonable
differentiation can be made between primary shaping processes like rubber molding and

1 http://www.otherlab.com/
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processes that use semifinished products like foils, in order to form the actuator’s cavity. Both
processes have their pros and cons.

3.1.1. Semifinished materials

Material selection cannot be considered without looking at the fabrication process. Of all
welding technologies high-frequency (HF) welding can produce the most resilient seams [2].
However, HF-welding can only be achieved with materials that contain sufficiently strong
dipoles. Thermoplastic Urethanes (TPU) have compared to PVC and PA the best material
properties [144]. The latest material developments regarding composite sheet materials will
be described in the following sections. The HF-welding technology is mostly used for more
complex actuator technologies since the technology does not require very complicated molds.

3.1.2. Vulcanized elastomers

Vulcanized elastomers are often processed in compression molding processes. The uncured
rubber monomer is put in the heated cavity of a compression mold. The press is closed
and under the influence of heat and pressure the rubber is cross-linked. The variety of
rubber compounds is infinite. The final material properties can be influenced by fillers,
reinforcements and a large variety of chemical additives. How to achieve materials with
tailored properties for flexible fluidic actuators will be presented. Compression molding
requires complex molds, which limits variations in shape but provides actuators for high
operating pressures.

3.2. FFA - fabrication processes

The two main processes for FFA fabrication are compression molding and HF-welding. A
detailed description of both process developments is given here.

3.2.1. Compression molding

The requirements for vulcanized flexible fluidic actuators are simple:

• High pressure resistance

• High fatigue resistance

• Modular design

• Reproducible fabrication process

In order to achieve these properties the actuator shell is divided into two layers and fabricated
in a two-step compression molding process. In the first step the inner shell is made. The
inner shell (figure 10(b)) is responsible for tightness and fatigue strength of the actuator. It is
vulcanized in a mold as shown in figure 10(a).

The second step needs some preparation. First the inner shell is covered with a braided
aramid fiber sleeve, which is fixed around the rubber with a Vectran® yarn. This fiber
reinforcement determines the pressure resistance of the actuator. After that the metal
connectors are inserted and the mold adapters are added. Finally a thin layer of rubber is
applied to the surface (figure 11(a)). The set-up is now ready for the second vulcanization

575Compliant Robotics and Automation with Flexible Fluidic Actuators and Infl atable Structures
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Inner Shelll of

the Actuator
Mold Cavity

Upper Mold

Lower MoldCore

(a) Cross-section View of the first Mold (b) Partial Section of the demolded
Inner Shell

Figure 10. First Fabrication Step

step. The prepared actuator is inserted in the second mold and pressure is applied as depicted
in figure 11(b). Fiber reinforcement and metal connectors are vulcanized to the inner shell.

Metal Connector

Outer Ferrule
Inner Yarn

Braided Sleeve + Elastomer

Pressure

Connector

Inner Shell
Mold Adaptors

(a) Partial Section of the Actuator Prepared for the Second
Fabrication Step

Pi

Druckluft

Compressed

Air

(b) Cross Section View of the second Mold

Figure 11. Second Fabrication Step

Operation shows that fatigue crack growth is the main failure mode of vulcanized flexible
fluidic actuators. There are three main mechanisms to enhance crack growth resistance: Use
of stress and strain crystallizing rubbers, use of fillers (mainly carbon black), and dispersion
of pulp fibers. The first two mechanisms are implemented by the proper choice of the basis
material ( in our case a chloroprene rubber mixture (CR)). However, the particle morphology
of carbon blacks limits their contribution to fatigue resistance [142]. Crack bridging effects
can only be achieved by dispersing micro fibers in the basis elastomer. Aramid fiber pulps are

well-suited for this purpose [3, 70, 131]. With a specific surface are of 5 − 15 m2

g and a minimal
fiber diameter of 10 μm they can enhance the overall material properties significantly (figure
14).

(a) Single Pulp Fiber (b) Aramid Fiber Pulp

Figure 12. Morphology of Fiber Pulps
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In order to determine the best concentration masterbatches with 0,5%, 1%, 2%, and 5%-mass
have been tested according to DIN 53 504. Figure 13(a) shows how the pulp fibers get oriented
in flow direction. Hence the samples with parallel and orthogonal pulp fiber orientation
have been tested. The orientation has a significant influence on the force-displacement
characteristics. The figures 13(c)-13(d) shows crack surfaces with different fiber orientations.

(a) Sample
Geometry and
Pulp Fiber
Orientation

(b) Sample Plate (c) Pulp Fiber
Orientation Parallel
to Crack Surface

(d) Pulp Fiber
Orientation Orthogonal
to Crack Surface

Figure 13. Material Characterization

Generally the goal is to define the maximum fiber concentration that does not lower the
tensile strength significantly. The results show that a concentration of 1%-mass leads to the
best material properties. The force-displacement plots show a clear influence of the fiber
orientation, but in parallel configuration there is no significant difference compared to the
pure rubber material (figure 14).

0

50

100

0 50 100 150 200

Displacement [mm]

F
o
rc

e
 [
N

]

 Sample 1 parallel

 Sample 2 parallel

 Sample 3 parallel

 Sample 4 orthogonal

 Sample 5 orthogonal

 Sample 6 orthogonal

(a) 0% Pulp Fibers

0 50 100 150 200

0

50

100

F
o
rc

e
 [
N

]

Displacement [mm]

 Sample 1 parallel

 Sample 2 parallel

 Sample 3 parallel

 Sample 4 orthogonal

 Sample 5 orthogonal

 Sample 6 orthogonal

(b) 1% Pulp Fibers
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Figure 14. Force-Displacement Plots for different Pulp Fiber Concentrations
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3.2.2. High frequency welding

Commercially available fiber reinforced TPU foils show several drawbacks, such as low tensile
strength, delamination between fibers and TPU-matrix, and axial fiber porosity. The general
requirements for HF-welded FFAs are:

• A maximum thickness of 700 μm

• A tensile strength between 30 and 100 N
mm2

• A modulus of 100 to 150 N
mm2

• Gas-tight including no axial fiber porosity

• Odourless

• Processable with HF technology

Two material systems meet these requirements. PEEK-monofilament reinforced TPU films
are composite sheets with two layers of monofilament PEEK-mesh between three layers of
TPU-films. The overall material properties are: tensile strength 33 N

mm2 , Young’s modulus of

168 N
mm2 , specific weight 269 g

m2 , thickness 450 μm.

Aramid-fiber reinforced TPU films are processed slightly different. Since the aramid fibers
are spun to a yarn and are not available as monofilament material with sufficient strength, the
yarn must be sealed prior to the laminating process. This is done by applying a TPU solution
on the aramid fabric. After the evaporation of the solvent all yarn surfaces are covered with a
thin layer of TPU. The pretreated aramid fabric is then laminated between two layers of TPU
film. The resulting material properties are: thickness 580 μm, specific weight 365 g

m2 , tensile

strength 60 N
mm2 .

A schematic view of the general production process is illustrated in figure 15. The
inter-chamber connections of the pre-cut foil pieces are welded first. These pre-assembled
pieces are then welded together around the outer contour in as many layers as desired. This
second step closes the actual actuator chamber.

Figure 15. (A) upper welding electrode, (B) lower welding electrode, (C) centering coil, (D) two foil
pieces, (E) hole for air passage, (F) lower welding electrode with undercut, (G) centering coil, (H) upper
welding electrode with undercut, (I) foil segments from first step

3.3. FFA - evaluation

All dynamic testing was accomplished on a fatigue test rig consisting of a pressure-tight
container, in which the actuators are mounted. The pressure in the container is monitored
which allows detection of leaks in the actuators.

578 Smart Actuation and Sensing Systems – Recent Advances and Future Challenges
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3.3.1. Vulcanized actuators

The relationship between fatigue resistance, operating pressure, and material combination is
shown in figure 16. The choice of the base rubber compound influences the fatigue resistance
significantly. The best fatigue resistance can be achieved with CR-rubber containing 1%-mass
of aramid pulp fibers. At 6 bar the actuator withstands over 1, 200, 000 load cycles. In order to
keep testing simple all fatigue evaluation was carried out with actuators 18 mm in diameter.
All actuators failed due to fatigue cracks in the inner rubber shell. This results in excellent
fail-safe characteristics, since the actuator never bursts and can be changed without any
danger to the whole system.

3 4 5 6 7 8 9 10 11

10
5

10
6  NR 0% Fiber Pulp

 CR 0% Fiber Pulp

 CR 0,5% Fiber Pulp

 CR 1% Fiber Pulp

L
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d
 C
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s

Operating Pressure [bar]

(Pressure Tolerance +/-0,1bar)

Figure 16. Fatigue Resistance of 18 mm-Actuators

3.3.2. HF-welded actuators

To evaluate the influence of the various production parameters during HF-welding on
lifespan, several endurance tests were performed. In these tests, one parameter is varied
and all others kept constant. Each experiment was performed with ten actuators. This was
necessary because the deviation in lifespan was about 30% of the average lifespan. The
influence of the following parameters on the lifespan has been determined:

• Determination of the geometry of the welding tool: In this test it was determined how
the geometry of the welding tool influences the lifespan of the actuators. The first tool
set-up consists of two electrodes (ground and high frequency) with the same geometry
and mass. The second tool set-up consists of one electrode (high frequency) with the shape
of the weld seam. The other electrode (ground electrode) is a flat plate.

• Identification of the most durable seam thickness: The seam thickness was varied
between 95% and 15% of the total strength of the two films in order to determine which
weld strength achieved the longest lifespan. In this experiment it was also determined
how thick or thin a seam can be produced.

• Variation of the welding force: It was determined how the welding force, pressing the two
electrodes together, affects the lifespan. This parameter indirectly sets the temperature at
which the seam is formed.
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• Varying the time of the load cycle: In addition to previous experiments where the load
cycle time was six seconds (3 s pressure / 3 s no pressure) the cycle times were varied at 2,
4, 6, 10, and 20 seconds.

• Evaluate the best pressure rise time: In this experiment the actuators were filled via a
restrictor. So the time to fill is adjustable. These different times were 40, 125 and 250 ms. A
shorter time than 40 ms between the electrical signal to the switching valve and the reach
of 95% of the desired pressure was technically not possible.

• Evaluate the best release time: Analogous to the determination of the pressure rise time,
the pressure reduction period was varied. The restrictors were used with the same settings
as the pressure rise test.

• Limitation of the expansion: This test was necessary to evaluate the effect on durability
when the maximum deformation is limited. The expansion is limited to 100, 66, 50, and
33%.

It has been found that the lifespan increases when the deformation speed is low. When the
pressure rise time is six times higher (40 → 250ms), the lifespan increases by a factor of 2.5.
The pressure release time influences the lifespan similarly. The limitation of the maximum
expansion to 50% of the nominal stroke increases the lifespan by a factor of 4. The use of
two electrodes with the same mass and same shape also creates an increase by a factor of 2.
The production of a seam with a higher initial welding force also has a positive effect on the
lifespan of the actuators. This increase is only about 10%. The optimal seam thickness varies
depending on the structure of the material used. The increases on the lifespan which can be
achieved with this optimization are by a factor of two. Weld seams with a thickness less than
20% or greater than 80% of the nominal thickness of the two films are not useful. The variation
of the load cycle time shows that the actuators fail very quickly at an operating frequency of
6 seconds. For longer load cycles, the composite material has more time to relax and reduce
internal stresses. With shorter cycle times the internal stresses caused by the previous load
cycle are not yet dissipated and a kind of solidification occurs.

Endurance tests of actuators with different film materials were conducted in order to compare
the film properties.

• Determination of the lifetime curve: These tests were conducted with ten actuators for
each pressure step. This pressure was applied cyclically to determine the durability of the
actuator as a function of pressure. Pressure values of 3, 4, 6 and 8 bar were used. All tests
were carried out using a commercial film material.

• Continuous operation of the actuators of PEEK reinforced TPU film: With ten actuators
made of this material an endurance test at six bar and a cycle time of 6 seconds was
performed. In this endurance test, the results of some of the previous test runs were
considered. The thickness and the initial load were adjusted. The other parameters like
pressure rise/release time, expansion ratio, and welding tools have not been altered to
ensure the comparability of results.

• Continuous operation of the actuators of aramid reinforced TPU film: The parameters of
this endurance test were identical to those of PEEK actuators.

Determining the lifespan trajectory has shown that the operating pressure has a big effect on
the durability. If the average lifetime at 6 bar of about 500 cycles is set to one, the actuators
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achieve at 8 bar only the value of 0.2. At a pressure of 4 bar they reach a 8 and at 3 bar they
reach a value of 66. In comparison, the average lifetime of PEEK actuators at 6 bar is around
112 and 205 for the aramid-reinforced actuators. The failure mode mostly was breaking of the
weld between the tube and the TPU.

4. Series of flexible fluidic actuators

Over the years, a large variety of flexible fluidic actuators have been developed. The following
sections give an overview of the most recent models either fabricated by compression molding
or HF-welding.

4.1. Vulcanized Actuators

All vulcanized actuators are fabricated using the process described in chapter 3. This process
represents a scalable and reproducible fabrication process resulting in the following actuator
geometries. Figure 17 gives an overview over all rubberbased FFAs. Each section includes
the general properties and the actuator characteristics. The standard operating pressure is
0 − 10 bar for all vulcanized FFAs.

Figure 17. Series of Vulcanized FFAs: (from left to right) 36mm, 18mm, 11mm, and single chamber FFA

4.2. HF-welded actuators

HF-welded actuators and the corresponding joint modules have been called GPA
(Gelenkmodul fuer Pneumatische Aktoren). GPAs have already a fairly long and successful
history as can be seen from the different generations shown in figure 18. The emphasis of
continuing developments is improving the lifespan of actuators, the welding process, the
maintainability, and some economic aspects.

GPA Type Torque [Nm]
(min. - middle
- max.) at 4
bar

Range of
Motion [◦] at
4 bar

Dimensions
[mm]

Weight
[kg]

number of
parts to be
machined

T1-14T 3 - 10 - 14.5 ±83 85x75x70 0.25 16
T2-13RVD 2.1 - 9.9 - 17.6 ±85 110x95x80 0.26 6
T3-12RVD 1.7 - 7.1 - 13 ±116 103x80x69 0.18 10

Table 1. Properties of different GPA versions

In table 1, the actuator designators define the number of chambers and the material. The
range of motion depends on the applied pressure because the antagonistic actuator needs to

581Compliant Robotics and Automation with Flexible Fluidic Actuators and Infl atable Structures



16 Will-be-set-by-IN-TECH

∅ 11mm Actuator:

• Effective Diameter of 11 mm

• 5 Pleats

• Range of Motion 90◦

• Symmetric Shape
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∅ 18mm Actuator:

• Effective Diameter of 18 mm

• 5 Pleats

• Range of Motion 90◦

• Symmetric Shape

• Burst Pressure > 40 bar
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∅ 36mm Actuator:

• Effective Diameter of 36 mm

• 6 Pleats

• Range of Motion ±90◦

• Asymmetric Shape
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Single Chamber Actuator:

• Effective Diameter of 40 mm

• 1 Pleat

• Range of Motion ±12◦ or 19mm
Linear Motion

• Symmetric Shape
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be compressed and thus the range of motion depends on the applied torque. Except for the
extreme angular ranges, the torque over angle is fairly linear. Figure 19 shows the torque-angle
plot for different pressure values.
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(a) GPA 1 (b) GPA 2 (c) GPA 3

Figure 18. The three GPA generations

Figure 19. Torque-Angle Plot for GPA-3 module with a 10 chamber actuator

Of course table 1 does not reflect all the important parameters. For example, the lifespan
of actuators has grown dramatically from a view thousand up to more than 350, 000 stress
cycles (full range motion with 4 bar forth and back in 3.6 s) for GPA3.2 joint modules. Lifespan
depends very much on the maximum applied pressure and the valves to be used. The value
of 4 bar is a good compromise between maximal torque and lifespan. Most GPA types may
be operated using higher pressure (up to 6 bar), but the lifespan of actuators will decrease
dramatically at this pressure. In many cases repair welding is possible.

5. Designing with flexible fluidic actuators

5.1. Design principles

Using flexible fluidic actuators as drives makes the designing process comparatively easy.
Since the compressive force of the actuator is directly used to generate torque, no additional
transmission elements are necessary. However, the flexible properties of the actuators require
guiding components along the the actuators track of motion. If those guiding elements are not
included, the actuator will work, but will eventually have decreased range of motion and less
torque. The guiding elements for vulcanized actuators are metal connectors at the end of the
actuator and additional metal brackets in the midsection of the actuator. HF-welded actuators
mainly use additional lugs around the chambers which are included in the seams or the end
areas of the actuators. These lugs are then clamped in the structure of the corresponding joint.
Position and type of the guiding element are additional parameters to determine the overall
characteristics of the flexible fluidic drive.
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5.2. Operating flexible fluidic actuators

The requirements to operate FFAs are pressure supply, control members, and sensory
infrastructure. Depending on the complexity of control that is desired, control members
and sensors can include valves, position sensors, pressure sensors, and micro controllers. A
detailed overview for highly integrated FFAs is given in [1]. Using hydraulics for mobile
applications instead of pneumatics can help to avoid bulky pressure supplies.

5.3. Structural modeling of flexible fluidic actuators

Structural and material nonlinearities as well as large strains make it very hard to predict
the behavior and characteristics of flexible fluidic actuators. Thus implementing a structural
model of FFAs is a challenging task. The FEM-model was developed with ANSYS in order
to provide a design tool for FFAs. The configuration of the model is illustrated in figure 20.
The different layers of the actuator shell are modeled using different elements. The inner
and outer rubber shell is modeled with 941, 902 SOLID285-elements using a hyperelastic
material model according to YEOH 2. The fiber reinforcement is represented by 13, 428
SHELL181-elements which are connected to REINF265-elements respectively 3. The structural
integrity of the corresponding joint is modeled using 1, 502 MPC184-Link/Beam-elements.
The metal brackets are implemented using 14.042 SOLID185-elements 4. Including the contact
elements, the model consists of 1, 235, 804 elements.

Figure 20. Set-up of the FEM-Model for a Flexible Fluidic Actuator

2 C10 = 0.477330421717; C20 = −0.148261658100; C30 = 0.225732915194
3 Young’s Modulus E‖ = 124 kN

mm2 ; E⊥ = 8 kN
mm2 ; Poisson’s Ratio ν = 0.32

4 Young’s Modulus E = 210 kN
mm2 ; Poisson’s Ratio ν = 0.32
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In order to compare the structural model with the behavior of the real actuator at first a strain
analysis is conducted. Figure 21(a) compares the strain behavior of the model and the real
actuator for joint motions of 0◦ − 90◦. The comparison shows good compliance of model and
actuator.

(a) Strain Analysis of a Flexible Fluidic
Actuator (∅ 18mm), FEM-Model vs.
Real Actuator

(b) Stress Analysis of the Fiber Reinforcement of a Flexible
Fluidic Actuator (∅18 mm)

Figure 21. Structural Analysis of the Actuator Model

The stress analysis of the fiber reinforcement in the actuator shell is shown in figure 21(b). The
regions of high stress correspond with the areas where fatigue failure occurs.

6. Modeling and control of flexible fluidic actuators

From the control point of view, FFAs represent a complex dynamic system of high
nonlinearity. In contrast to conventional fluidic actuators, FFAs posess some important
properties, which are essential with respect to modeling and control problems:

• as a consequence of using viscoelastic materials for the chamber manufacturing, actuator
torque and volume characteristics are complex non-linear functions not of pressure only,
but also of angular displacements

• there are no "classical" sealing elements with static friction and stick-slip effects, but the
viscose friction and damping effects can play an important part

• hysteresis effects by torque generating are indicated

Due to restricted volume of this section, the modeling and parameter identification
approaches as well as different control concepts will be presented briefly. More details can
be found in the related references.

6.1. Modeling

Generally, the model of FFA as a torque source consists of a model of actuator mechanics and
pressure dynamic model. The modeling process includes the experimental investigation of
the basic actuator characteristics with following data fitting.
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6.1.1. Mechanical model

Using FFAs, a compliant robotic joint of rotary type can be realized either as an antagonistic
set up with two working chambers (Fig. 22a) or as a unit with one working chamber and a
retraction spring (Fig. 22a). Fig. 22 shows mechanical schematics of the both joint types.

p2 

+q

2

-q

1

p1 

fluid flow

(a) with two antagonistic assembled flexible
chambers

+q

2

-q

1

p

fluid flow

mechanical spring

(b) with one flexible chamber and a
retraction spring

Figure 22. Working principle of a fluidic actuated rotary robotic joint

As shown in previous sections by means of experimental investigations (static load tests),
the static torque characteristics of the FFA are in general nonlinear functions not only of
the operating pressure p only, but also of the working angle q. This is a basic feature of
FFAs, in contrast to conventional fluidic actuators like pneumatic and/or hydraulic cylinders
or vane actuators and the source of inherent compliancy of FFAs. Taking into account this
basic feature, the total torque for the compliant robotic joint with antagonistic set-up can be
determined as

τ (q, q̇, p1, p2) = τ1 (q, p1)− τ2 (q, p2)− τloss (q, q̇, p1, p2) (1)

or as
τ (q, q̇, p) = τ1 (q, p)− τ2 (q)− τloss (q, q̇, p) (2)

for the joint with one flexible chamber and a retraction spring. Here τ1 and τ2 represent static
actuator torques acting in positive and negative directions respectively, τloss represents the
torque losses like viscous friction (damping) and can include also tourque/angle hysteresis.
These effects are typical for soft fluidic actuators (including linear pneumatic muscles) and
are an inevitable consequence of using viscoelastic materials in the chamber. The results
of experimental investigations of basic characteristics and dynamic modelling of compliant
fluidic robotic joint operated by gaseous as well as liquid working media, was reported
in [86, 87] and summarized in [85], whereby the torque losses τloss was measured in first
approximation in the experiments at constant velocities. The hysteresis was measured,
performing the torque measurements in opposite angle directions. The torque characteristic
τi (q, pi) of an individual chamber i, experimentally determined during static load tests, can
be analytically described by means of a third-order polynomial with angle q as independent
variable, as

τi (q, pi) = κ3 (pi) · q3 + κ2 (pi) · q2 + κ1 (pi) · q + κ0 (pi) , (3)

where the polynomial coefficients κ3...κ0 are functions of pressure in the chamber. For control
purposes, the torque characteristic 3 can be approximated well by using the polynomial fit
with six constant polynomial coefficients k5...k0 [86]:

τi (q, pi) = k5 · q3 + k4 · q3 + (k3 · pi + k2) ·+k1 · pi + k0, (4)
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The mean relative error of this simplest satisfactory approximation is < 9% (see [85] for more
details).
Assuming the identity of both actuator chambers, the torque τ2 of the antagonist chamber in
(1) can be obtained by mapping the torque τ1 of the agonist symmetrically with respect to the
ordinate as

τ2 (p2, q) = τ1 (p1,−q) f or p1 = p2. (5)

The second term in (2) when using a mechanical spring with a linear characteristic can be
determined as τ2 (q) = cSq, where cS is a spring constant. Despite obvious uncertainties,
especially in FFA torque losses and fluctuations in model parameters due to behaviour of
viscoelastic material, model (1) - (5) can be useful for approximate description of FFA torque
characteristics.

6.1.2. Pressure dynamic model

In the case of pneumatics (i.e. for FFA, operated with a gas/air), the pressure dynamics in an
actuator chamber i can be described by

ṗi =
χ

Vi

(

RTṁi − piV̇i

)

, (6)

where R is the universal gas constant, T is the air temperature, Vi is the chamber volume, the
mass flow rate ṁi defines the amount of air, passing through a valve into or out of the chamber
in a time unit. It is assumed that the heat transfers at chamber’s charging and discharging are
the same polytropic processes, characterized by the polytropic coefficient χ. This topic is
discussed in more detail in [85]. The volume characteristic of an elastic chamber is a nonlinear
function of current displacement angle q and pressure pi. Based on the experimental data it
can be approximated as

V̇i (q, pi) = ν1 (pi) q2 + ν2 (pi) q + ν3 (pi) (7)

where values of polynomial coefficients ν1, ν2, ν2 are functions of pressure [64]. Similar to the
torque characteristic, the volume characteristic of the FFA-based soft robotic with antagonistic
set up is assumed to be symmetrical with respect to the joint angle:

V̇1 (q, p1) = V̇2 (−q, p2) for p1 = p2. (8)

The air mass flow rate ṁi through the valve can be modeled by the standardized expression
for air flow through an orifice (ISO 6385), whereby the orifice area varies with control input
[85]. To provide a more exact model for servovalves, taking into consideration also the
hard nonlinearities as the dead zones, an experimental procedure for obtaining of the real
relationship

ṁi = fm (u, pus, pds) (9)

between the air flow, the input voltage u to the valve, as well as the up- and downstream
pressures (i.e. pus and pds respectively) were applied [64, 137]. To achieve a model that
describes the complete behavior of valves, both charging and discharging processes were
explored for constant chamber value, inflow and exhaust flow maps were

calculated and then combined. In case of chamber charging, the upstream pressure is
equivalent to the supply pressure (i.e. pus = ps), while the downstream pressure is equal
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Figure 23. Experimentally determined flow map for the servo-valve Festo MPYE-5-1/8LF-010-B.

to the chamber pressure (pds = pi). In case of chamber discharging, the upstream pressure
is equivalent to chamber pressure (pus = pi) and the downstream pressure equals to
atmospheric pressure (pds = pa). Assuming that ps and pa are constant, expression 9 can
be rewritten as

ṁi = fm (u, pi) (10)

Fig. 23 shows an example of the experimentally determined characteristic of a servo valve.

6.2. Embedded control approach

In section 4 different kinds of FFAs and joint modules have been described. These actuators
and joint modules were not developed with only one special application in mind. The main
advantages of FFAs are their compactness and high torque to weight ratio as well as their
inherent compliance. Thus it is wise to have a broad palette of solutions w.r.t. control of joint
modules. Constituents for requirements for a joint module toolbox might include

• economic solutions,

• degree of compactness,

• quality of control and maximal joint rate, and

• modularity

to name the most important ones. Of course many other aspects like environmental ones
may be considered (e.g. under water operation). Economic aspects might include overall
costs, especially relative costs of joint module and components needed for control. Other
aspects might address the lifespan of actuators, which is a compromise between maximum
pressure to be applied and lifespan of actuator, type of actuator etc. Economic aspects may
also include energy, consumption of compressed media, but also system integration aspects
will play a role. The degree of compactness is dependent on the degree of integration of
control components like sensors, valves and control logic. It also depends on the amount
of tubing and cables needed for operation. High quality of control most often relies on
stability, precision of position, tracking accuracy, torque precision, degree of overshooting,
and bandwidth of control. In general, the more ambitious the requirements for control are, the
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higher will be the costs especially for the valves. The higher the required bandwidth of control,
the larger the valves will be. The pure size of the valves are in contradiction to compactness
and weight requirements [? ]. To some degree this also holds for sensor system and control
and communication logic. High integration will enhance modularity when viewed from a
higher standpoint where a joint module is one of many more other parts of a plant. With
a closer view of a joint module, high integration will in general restrict the range of control
components which can be used. Modularity should not only mean mechanical modularity
but also different options for supply of compressed air, for electrical power supply, and for
communication and system integration. A range of actuator solutions arranged by the degree
of mechatronic integration is shown in Figure 24.

Figure 24. Different Degrees of Integration of the Control Components and Drive Systems

In this section our approach and solutions for embedded control as well as the achieved
results will be described in more detail. The realization is around a 16-bit microcontroller
(MC), a PIC24HJ128GP506 of Microchip with 40 MIPS performance and a broad variety
of peripherals including communication via CAN. A miniature controller board CBR2 has
been developed, and is able to control up to two joint modules reading joint values via 2
SPI-interfaces, pressure values via I2C or analog channels and control of switching valves by
8 output compare modules configured for PWM-mode. Control system integration is handled
by an upper level control system on a PC running a user interface and coordinating different
joint modules. Communication between MC and PC may be via RS232 and/or via CAN.
The MC understands a simple 2-byte-command set with instructions for position set point,
position ramp, torque command, pressure control, gravity compensation, parameter setting
and for definition for periodical delivery of local information (to be specified by the PC) in a
programmable rate with periods down to 21ms via CAN for one joint and 45 ms for 6 joints.
General programming considerations relate efficiency of control calculation programming
and means for utilizing parallelism. As no operating system kernel is used, mainly interrupt
routines and the chipset inherent and in parallel running subunits are used. This works
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very well for analog input of pressure signals and for CAN-message communication. Up
to a certain level of analog signal information blocks as well as CAN message blocks are
handled by DMA transfer autonomously without putting load on the CPU kernel. Message
processing is implemented by a main loop, and the sampling task is a high priority interrupt
task. The microcontroller does not offer floating point operations at the instruction level.
Table 2 gives a hint of the relative efficiency programming int-, long int- and floating point
operations 5. Therefore mainly int16 was needed (e.g. to get more decimal places) long int
(=int32) operations including shifting were used. This also means, that calculations for control
algorithms were kept relatively simple. Trigonometric functions are implemented via tables:

Operator + - ∗ ÷ »const. <
int 2 2 2 20 1 13

long int 6 6 11 469 6 16
float 124 148 118 380 - 77

double 140 152 113 383 - 77

Table 2. Instruction cycles for different operators and operands

For control of pneumatic actuators by an MC we use 2/2-way solenoid switching valves,
(2 valves per actuator) one for inflation and one for deflation. Thus four valves per joint
are needed, although for some cases one actuator might be replaced by a passive spring.
This case will not be considered here. Presuming that a valve is sufficiently tight for higher
pressure values, the maximum torque of the joint is not dependent on the maximal flow of
the valves. Thus relatively small valves may be used if no special requirements for maximum
speed/control bandwidth are given. The most compact and light weight valves are spider
type valves. Additionally we mainly use modified double arranged switching valves of mass
flow of Qn = 16 SLPM (standard liters per minute) for EV08-type valves and 22 SLPM for
EV09-type valves. Switching time is about 2 ms. These valves are light and compact enough
to be integrable as demonstrated in Figure 24. For higher control bandwidth, higher mass flow
is necessary. One may either operate two or more valves in parallel as one logical valve or use
other models with higher mass flow. For torque and for position control pressure control is
used. To measure pressure we use amplified pressure sensors with analog or I2C interface,
1ms response time and 10 bit resolution for a pressure range up to 7 bar. Using the MC’s
PWM features one can control mass flow by manipulating the length of the duty cycle. In
our case a duty cycle has a maximum length of 7 ms, the sampling time of our control loop
(142 Hz), which amounts to a PWM value of 1094. Unfortunately mass flow is also dependent
on the type and the exemplar of valve, power supply voltage, and pressure difference. This
means a model for each valve is needed. One must distinguish between the valve responsible
for inflation and the one for deflation. In the first case, the pressure difference is given by
the constant supply pressure and the actual pressure in the actuator. In the second case the
pressure difference is between internal pressure and the 0 bar environment. In Figure 25 the
measured flow model is shown for inflating and deflating direction.

If one transforms flow values to the percentage scale, one gets a fairly linear relation, except
for PWM values where inflation/deflation starts as can be seen in Figure 25(d). By means of
interpolation using two characteristic curves for valve modelling, the MC can approximately
set the percentage of mass flow given the actual pressure in the actuator. For control of mass
flow a third characteristic curve will be needed.

5 C30-Compiler, no optimization
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(a) (b)

(c) (d)

Figure 25. Flow Charcteristics of an EV08-Switching Valve

Based on such models, pressure control according to the scheme shown in Figure 27(a) give
results shown in Figures 26(a) and 26(b).

In Figure 27(a), q denotes angular position, qs position set point, pi denotes internal pressure
of actuator 1 and 2 respectively. Position control may be designed as a cascade on the base
of pressure control and thus can build up (virtual) torque level using the linearized torque
characteristic. Position control may also be implemented without pressure control (avoiding
pressure sensors). Such schemes rely heavily upon the antagonistic actuator and use it as a
kind of brake. Generally such schemes show decreased performance, may clip the angular
range, have less stability and in many cases consume more compressed air. Figures 26(c) and
26(d) show position control results for different loads and different valve arrangements. The
controller scheme is shown in figure 27(b).
It is difficult to achieve higher accuracy than for example 0.5 − 1◦. This is due to the accuracy
of valve control and to some degree of stochastic behavior in the flow starting part of the
valves as well as limited position sensor accuracy giving poor velocity information. 14-bit
sensors [AS5048 from AMS] are on the market and MC-technology is developing at a fast pace,
so that there is a good chance tuning and quality of embedded control will soon improve.
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(a) Pressure Control - Different Valves (b) Pressure Control - Double Valve Arrangement
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(c) Position Control - Single EV09-Valve
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(d) Position Control - Double EV09-Valve

Figure 26. Results of Embedded Control using Switching Valves

6.3. Advanced control concepts

Implementation of advanced control concepts requires the use of a high-performance
PC-based controller. The control concept has a cascade structure and is applied for both
(pneumatic and hydraulic) FFA realizations [85]. Control algorithms for pressure, position
and interaction control for single FFA as well as for compliant robotic arms, using different
valve types, were developed and tested.

6.3.1. Pressure control

Fast and precise pressure control in the inner loop of the cascade control scheme is necessary
for effective control of FFAs. To decouple the pressure subsystem from the mechanical
subsystem, a control law was derived using the feedback linearization approach, which
was modified with regards to specific traits of soft actuators [85]. In order to compensate
non-linearities of FFAs pressure dynamics, model (6) - (7) of actuator chamber volume is used
in control law as feedback and for the determined flow rate the control voltage is obtained
by inverting of experimental flow map (figure 10). The effectiveness of designed pressure
controller has been confirmed through several experiments (step response), in pneumatic
case both for PWM-controlled on-off valves [86] as well as for different types of servo valves
[64, 137].
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(a) Pressure Control Scheme

(b) Position Control Scheme

Figure 27. Different Control Schemes

6.3.2. Position control

For the position control in the outer loop, a sliding mode control with time delay estimation
(SMCTE) was proposed and successfully tested for a single rotary joint. In the control design,
the specific experimentally investigated dynamic model of pneumatic driven FFA was taken
into account [85, 86]. In hydraulic case the iterative feedback tuning technique was applied
[85]. For pneumatic driven planar robots with two soft fluidic actuators, the SMCTE approach
was implemented for decentralized joint position control and shows better results than Fuzzy
control, optimized using genetic algorithm [64]. Position control for pneumatic soft-robots
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with spatial modular kinematics based on FFA modules is considered in [127]. In addition
to decentralized SMCTE position controller the active gravity compensation-based on the
quasi-static robot model is used in feed-forward loop to take the weight of robot mechanics
into account. Experimental investigations, conducted with different loads for soft-robots
with 4 and 6 degrees of freedom (DOF), show the behavior, the quality and the limits of the
decentralized control concept with and without active gravity compensation.

6.3.3. Interaction control

The application of different control strategies for physical interaction of pneumatic soft-robots
with the environment is studied in [147] by simulation and in [9] also by experiment. For
control feedback the current measurements of pressure and joint angle position as well as a
force/torque observer based on inverted experimental torque characteristics of FFA are used.
Hereby the force sensor abilities of FFAs as of a kind of smart actuators are utilized. An
adaptive admittance control with trajectory modification (ACTM) is compared by simulation
to an adaptive admittance control with variable stiffness regulation (ACSR) using a model of a
planar robot with two rotary joints. Both concepts enable desired force tracking in constraint
direction and compliant position control in unconstrained direction. Furthermore the more
promising ACSR approach was implemented and validated within an experimental set-up
using a planar soft-robot with two FFA joint units by tracking even or lightly curved surfaces
without knowledge of the environment stiffness.

7. Inflatable structural elements

Chapter 2.2 showed some examples of how inflatable structures can contribute to compliant
robotics. This chapter shows how a modular design can help to integrate inflatable structures
in robots independently from the drive concept. The main load cases of robotic structures
are bending and torsion. In the shell of inflatable structures we have a state of plane stress.
The shell cannot carry significant compressive force. However, when pressurized the shell
is pretensioned. Compressive forces thus decrease this pretension in the shell. When the
compressive forces overcome the pretension the whole structure deflects and yields the
external loads.
The general fabrication process of structural elements is identical to the process described
in chapter 3.2.1. The different load cases require different reinforcements in the shell. Two
different layers are integrated in the shell in order to carry bending and torsion respectively.
The fibers of the braided reinforcement follow the directions of the principal stresses for
torsion on the surface of a cylinder as shown in figure 28(a). The reinforcement for pressure
stability and bending are are shown in figure 28(b). This second reinforcement layer is a
woven fabric tube with radial and axial fiber directions. The relationships between internal
pressure and bending or torsional stiffness are presented in figure 28(c) and 28(d). These
graphs show how the stiffness can be adjusted depending on the compliance requirements.
Each front end of the structural element is equipped with a four screw flange, which allows
for easy mounting and pressure sensor integration [36].

8. Flexure hinges in the field of robotics

The combination of flexible fluidic actuators and flexures leads to robotic structures with
extraordinary characteristics in terms of weight, compliance, and degree of integration. This
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Figure 28

section introduces fiber reinforced flexures fabricated in a VARTM-process (Vacuum Assisted
Resin Transfer Molding).

A flexure hinge transforms an applied force into a rotary motion due to its different structural
stiffnesses. The shorter the flexure length the more precise is the rotating motion. General
consideration of beam theory show how the maximum bending stress σmax limits the
deflection ∆x of the beam [51, 78].

σmax =
3∆xE h

2
L2 (11)

Given that the desired deflection cannot be changed, the bending stress can only be influenced
by the beam’s height h and length L. By subdividing the bending beam of a flexure hinge the
bending stress stays low without losing structural strength (figure 29).

Fq 

x

Figure 29. Simplified schematic view of a flexure hinge as a subdivided bending beam

Practically this approach is implemented by using woven fiber tapes to reinforce the bending
section. The single fiber filaments represent the subdivided beams. After evaluation of
technical fibers UHMWPE-fibers (also know under the brand name DYNEEMA®) have been
found to meet the requirements best [36].
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Dynamic testing has shown that after 100, 000 cycles, no visible damage is present. Static
testing has also been described in earlier work [36]. The properties have found to be
extraordinary with operating loads up to 100N and a maximum carrying capacity of
over 3, 000N. The enhanced fabrication process for flexures allows for the production of
single-acting (mass 9.1 g) and double-acting (mass 11.6 g) drives with full integration of the
flexible fluidic actuator as well as the position sensor as described in [36]. Figure 30 shows the
different joint-modules. These modules now can be freely combined as shown in figure 35.

(a) Single-Acting composite flexure
drive

(b) Double-Acting
composite flexure
drive

Figure 30. Different Designs for Composite Flexure Drives in Robots

9. Applications

A large amount of robotic systems with flexible fluidic actuators have been developed over
the last ten years. This is represented in many publications and patents [35, 65, 66, 108–111,
113–116]. These systems come from fields such as prosthetics, orthotics, medical devices as
well as humanoid robotics and automation. Here some of the latest developments in the fields
of vulcanized and HF-welded actuators are presented.

9.1. Robotic systems based on vulcanized FFAs

9.1.1. Modular flexible fluidic drive elements

These drives are based on the ∅36 mm actuator. Integrated in the modules are the valves
and one position sensor (AS5045-austriamicrosystems) as well as two pressure sensors
(MS5803-14BA-measurement specialties) (figure 31).

Connector

Plug-In Valve

Circuit Board with

Pressure Sensor

Diametrically Polarized Magnet

Hall-Encoder for Angular

Measurement

Figure 31. Highly Integrated Flexible Fluidic Drive Module
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The modules can be combined in several parallel and serial configurations. Hence the
torque-angle characteristics can be varied and adjusted to the case of operation, which is
presented in figure 32-34.

Figure 32. Single Drive Module

Figure 33. Double Module - Parallel Configuration

Figure 34. Double Module - Serial Configuration
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9.1.2. Three-fingered composite gripper

The fiber reinforced flexure hinges are combined to form a three-fingered gripper as shown in
figure 35. The base of this gripper is built of three double-acting flexure drives. Each finger
is designed with two single acting flexure drives. The base of the gripper has three main
positions. These positions are for spherical, cylindrical and precision grasping (figure 35).
However, the compliance of the gripper allows a large variety of grasps. Figure 36 shows the
taxonomy of the different grasps. The total weight of the gripper is 400 g. Each finger has a
length of 140 mm.

(a) Overview (b) Spherical (c)
Parallel

(d) Precision

Figure 35. Main Base Positions of the Composite Gripper

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 36. Grasp Taxonomy of the Composite Gripper

9.1.3. Lightweight Robotic Arm (LRA)

The drive modules, compliant structural elements, and the composite gripper have modular
interfaces and can be combined freely. To evaluate the whole system a 6 DOF arm has been
designed and built (figure 37). The proximal joint consists of two combined drive modules in
parallel configuration. The weight of the whole arm is 3.45 kg and has a total length of 735 mm.
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Figure 37. Lightweight Robotic Arm

9.2. Robotic systems based on HF-welded FFAs

The most recent achievements concerning HF-welded actuators are in the field of orthotics.
The wide range of design possibilities of this manufacturing technology enable tailored
geometries. Figure 38(a) shows an active elbow orthesis actuated with HF-welded FFAs.

(a) Elbow Orthesis (b) 6-DOF GPA-Arm

Figure 38. Systems with HF-welded Actuators
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The GPA modules also allow modular combination. Figure 38(b) shows a complete
6-DOF arm including two controller boxes and an anthropomorphic hand. The controller
boxes provide valves, pressure sensors and microcontrollers to operate the whole arm
independently. The whole arm-hand system has a weight of 3.2kg and a overall length of
620mm.

10. Conclusions

The future of robotics will require more and more inherent compliance. Inherent compliance
can only be achieved by integrating elastic elements in the drive chain of a robotic system.
Flexible Fluidic Actuators can be an appropriate solution for this problem. FFAs exhibit
inherent compliance no matter if they are operated pneumatically or hydraulically. A big
advantage is that FFAs do not require any transmission elements to create a rotary motion. The
high torque-to-weight ratio make them suitable drives for robotics, prosthetics, orthotics, and
general automation tasks. The modularity allows easy implementation of various kinematics,
either for grippers and/or arms. The fluidic operation principle also make FFAs a very
promising drive system for under water and deep sea operation. The challenges regarding
fabrication and fatigue resistance of FFAs have been solved. The modeling and control
approaches are very promising and the required control infrastructure will definitely shrink
with future valve technologies and high-performance micro controllers.
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