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1. Introduction 

Due to the nature of welding process involving localized heat generation from moving heat 

source (s), rapid heating in the welded structures, and subsequent rapid cooling, problems 

such as residual stresses and distortions of welded structures remain great challenges to 

welding practitioners, designers and modeler. From modeling point of view, it will be very 

useful if the parameters of interest which contribute to the residual stresses and distortions 

in various types of welded joint and structure application can be simulated numerically so 

that welding performance with respect to the various aspects could be assessed and 

evaluated in an efficient manner (Goldak & Akhlagi, 2005; Lindgren, 2006; and Zacharia et 

al., 1995). Thorough consideration and assessment of the welding quality could then also be 

performed in earlier stage in a virtual environment. Moreover, dimensional inaccuracies due 

to the welding deformation giving rise problems in subsequent assembly and fabrication 

processes could also be predicted along with the necessary justification needed.  

In recent years, various aspects and interests in the numerical modeling of welding residual 

stresses and distortions, mostly using finite element method, have been elaborated by 

researchers. Teng & Lin (1998) predicted the residual stresses during one-pass arc welding 

in steel plate using ANSYS software and discussed the effects of travel speed, specimen size, 

external mechanical constraints and preheating on the residual stresses. Tsai et al. (1999) 

studied the distortion mechanisms and the effect of welding sequence on panel distortion 

and utilized 2D finite element model. Residual stresses and distortions in T-joint fillet welds 

with the effects of flange thickness, welding penetration depth and restraint condition of 

welding was simulated by Teng et al. (2001) using thermal elasto-plastic finite element 
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techniques. Further, effect of welding sequences on residual stresses of multi-pass butt-

welds and circular patch welds was also investigated by Teng et al. (2003). Moreover, Chang  

& Lee (2009) performed the finite element analysis of the residual stresses in T-joint fillet 

welds made of similar and dissimilar steels.  

The present study extends the previous work of Teng et al. (2001) and focuses on numerical 

simulation of welding sequence effect on temperature distribution, residual stresses and 

distortions of T-joint fillet welds. Several welding sequences were considered and the 

resulted distribution of welding temperature, longitudinal and transverse residual stresses 

and angular distortions were simulated utilizing three dimensional finite element models. 

Four welding sequences considered were one direction welding, contrary direction welding, 

welding from centre of one side and welding from centres of two sides. Further, a welding 

sequence producing the smallest residual stress, distortion as well as distortion difference 

between both flanges was then investigated. The numerical simulation was done in ANSYS 

environment.  

2. Theoretical background 

Basic mechanisms of welding residual stress and distortion together with the finite element 

formulations used in the 3D numerical simulation are described in the following sub-

sections.  

2.1. Basic mechanism of welding residual stresses 

Complex heating and cooling cycles encountered in weldments lead to transient thermal 

stresses and incompatible strains produced in region near the weld. After heat cycles of 

welding diminished, the incompatible strains remain and provoking locked stresses or 

frequently termed as welding residual stresses. In general, term of residual stress deal with 

those remaining stress in a structure even though no external load applied (Masubuchi, 

1980). Several terms having similar meaning with residual stress were found in some 

literatures, namely: internal stress, initial stress, inherent stress, reaction stress, lock-in 

stress, etc. In term of welding process, residual stress are the remaining internal stresses 

after welding and cooling down to room temperature.  

There are two basic mechanisms to explain how residual stress produced by welding 

process, namely: the structural mismatch and the uneven distribution of non-elastic strain 

composed by plastic and thermal strains.  

2.1.1. Residual stress due to mismatch 

The residual stress mechanism due to mismatch may be simply illustrated in Fig. 1. 

Consider three carbon-steel bars of equal length and cross section connected together with 

two rigid blocks at the ends. The middle bar is heated up to 600oC and then cooled to room 

temperature while no applied heating on the other two bars. Since the expansion of the  
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Figure 1. Illustration of residual stress mechanism in welding (source: Masubuchi, 1980) 

middle bar is restricted by other bars, compressive stress is encountered at the middle bar 

and the two side bars are subjected to opposite tensile stress. The compressive stress on 

middle bar, increases in linear elastic manner when it is heated (AB curve) until the yield 

stress of material in particular temperature reached, then plastic deformation is encountered 

which affects in decreasing compressive stress (BC curve). During cooling stage, the stress 

sign in middle bar is dramatically changed from compressive to tension stress and increases 

in linear elastic way (CD curve) up to the yield stress at point D. Then, non-linear plastic 

behaviour takes place (DE curve) in room temperature resulting in a tensile residual stress 

in the middle bar and contrary a compressive residual stress in both side bars which are 

equal to one-half of tensile stress in the middle bar.  

2.1.2. Residual stress due to uneven distribution of non-elastic strains 

When a metal bar is subjected to a uniform heat, it produces a uniform expansion lead to no 

thermal stresses. However, when it is subjected to non-uniform heat as the case of welding, 

thermal stresses and strains will be formed. Residual stress field in plane stress condition (σz 

= 0) can be expressed by the following formulas: 

 Elastic and plastic strains: 
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where: 

, ,x y xy   is components of the total strain,  

, ,x y xy     is components of the elastic strains,  

, ,x y xy     is components of the plastic strains.  

 Relationships of stress vs. elastic strain by Hooke’s law: 
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 The stress must satisfy the equilibrium conditions: 
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 The total strain must satisfy the conditions of compatibility: 
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The second term of Eq. (4), which is called the incompatibility term, R, is determined by 

plastic strain. When the value of R is not zero, thus residual stresses will exist in the weld 

joint.  

 

2 22

2 2
.

y xyxR
x yy x

        
    

  (5) 

More realistic illustration of the residual stress mechanisms during welding in typical plate 

joints is shown in Fig. 2. Welding bead is made along x-axis on the plate. Welding is carried 

out by moving the welding arc at speed v, and presently it is located at the origin O, as 

illustrated in Fig. 2a. Temperature distributions along particular points at weldline are 

shown in Fig. 2b, while stress resulted in the respect points are shown in Fig. 2c.  

Along point A-A which is located ahead of the welding arc is not affected by heat yet. 

Section B-B experiences highest heat distribution (Fig. 2b. 2) which results in compressive 

stresses at just besides of weldline and surrounded by opposite tensile stresses in the side far  
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Figure 2. Schematic illustrations of heat cycles in welding and residual stress results (source: 

Masubuchi, 1980) 

away from weld line, whilst at weldment has zero stress due to metal melted (Fig. 2c. 2). 

Section C-C which is located at some distance behind welding arc is subjected to moderate 

heat (Fig. 2b. 3) due to cooling stage started in this section in which the condition at this 

section is similar to those CD curve in Fig. 1. Some distance far away from heat source, 

cooling down into room temperature is achieved which results in residual stresses in similar 

way to those in the end of DE curve in Fig. 1.  

Furthermore, typical distributions of butt joints in plate are presented in Fig. 3. Components 

of residual stress are categorized into transverse and longitudinal, designated as σx and 

σyrespectively (Fig. 3a). Across the weldline, tensile residual stress in longitudinal direction 

parallel to the weldline is found in the weldment region and compressive residual stresses 

occur in the others region away from weldline (Fig. 3b). Transverse residual stresses 

distributions along weldline are typically compressive part in the ends of plate, otherwise 

are tensile part with magnitude of stresses is lower than longitudinal residual stress (Fig. 

3c). Masubuchi & Martin (Masubuchi, 1980) have developed the distribution of longitudinal 

residual stress σx which can be estimated as follows: 
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Figure 3. Typical distributions of residual stress in plate butt joints (source: Masubuchi, 1980) 

 

Figure 4. Typical residual stresses in welded structural profiles (source: Masubuchi, 1980) 

Fig. 4a shows residual stresses produced in welded T-shape and the residual stresses 

distributions. As can be further seen, high tensile residual stresses parallel to the axis are 

produced in areas near the weld in section away from the end of the column. In addition, 

stresses in the flange are tensile near the weld and compressive away from the weld. The 

tensile stresses near the upper edge of web are due to longitudinal bending distortion 

caused by longitudinal shrinkage. Furthermore, Figs. 4b and 4c show the typical distribution 

of residual stress in an H-shape and a box shape, respectively, particularly the distributions 

of residual stresses parallel to the weld line, in which the residual stresses are tensile in areas 

near the welds and compressive in area away from the welds.  
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2.2. Welding distortions 

Distortion is closely related to the amount of residual stress and the degree of joint restraint 

during welding process. The correlation between distortion and residual stress is illustrated 

in Fig. 5. As rule of thumb, the welded joint with lower degree of restraint has an advantage 

due to less residual stress but it tends to get higher distortion. Conversely, the welded joint 

with higher degree of restraint has less distortion but it will further result in higher residual 

stress.  

 

Figure 5. Welding residual stress and distortion correlation (source: Bette, 1999) 

 

Figure 6. Three basic dimensional changes during welding (source: AWS Welding Handbook, 1987) 

There are three basic dimensional changes during welding process with which we can easily 

understand the mechanism of distortion, namely: 

 Transverse shrinkage, Fig. 6A, is a distortion perpendicular to the weld line 

 Longitudinal shrinkage, Fig. 6B, is a distortion parallel to the weld line 

 Angular change, in butt joint and T joint fillet weld, as shown in Figs. 6C and 6D, 

respectively, deformation in rotation form around the weld. It happens when the 

transverse shrinkage is not uniform in the thickness direction 

In actual structures, the welding distortions are frequently more complex than these basic 

distortions or taking place with some conditions. For examples, pure transverse or 

longitudinal shrinkage will only take place when the following conditions apply, i. e. 
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thickness of member is large enough and centre of gravity of the welds is in line with the 

neutral axis of the components. When it is not the case, the rotational deformations such as 

the angular, bending and buckling distortion may be happened.  

The empirical formula to estimate the quantity of transverse shrinkage of carbon and low 

alloy steel butt welds can be found in American Welding Society (AWS) Welding Handbook 

(1987) as follows: 

 0.2 0.05 .wA
S d

t
   (7) 

where: 

S is transverse shrinkage, in,  

Aw is cross sectional area of weld, in2,  

t is thickness of plate, in,  

d is root opening, in.  

In fillet weld, the amount of transverse shrinkage is less than that happened in butt weld. 

The transverse shrinkage in fillet weld may be expressed by the following formulas found in 

AWS Welding Handbook (1987): 

 For T-joint with two continuous fillet welds: 
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where: 

S is transverse shrinkage, in. or mm,  

Df is fillet leg length, in. or mm,  

t is bottom plate thickness, in. or mm,  

C1 is 0. 04 or 1. 02 when using unit in. or mm, respectively.  

 For lap joint with two fillet welds (the thickness of two plates are equal): 
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  (9) 

where: 

S is transverse shrinkage, in. or mm,  

Df is fillet leg length, in. or mm,  

t is plate thickness, in. or mm,  

C2 is 0. 06 or 1. 52 when using unit in. or mm, respectively.  

Compared to transverse shrinkage, the quantity of longitudinal shrinkage for butt joint is 

much less, approximately 1/1000 of the weld length. King, 1944 (as cited in AWS Welding 
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Handbook, 1987) proposed a formula to estimate the longitudinal shrinkage of butt joint as 

follows: 

 73 10 .
C I L

L
t

    (10) 

where: 

ΔL is longitudinal shrinkage, in. or mm,  

I is welding current, A,  

L isweld length, in. or mm,  

t is plate thickness, in. or mm,  

C1 is 12 or 305 when using unit in. or mm, respectively.  

 

Figure 7. Angular change in T-joint fillet weld, (A) free restrained stiffeners, (B) restrained stiffeners 

The primary source of angular change is due to non-uniform of transverse shrinkage in 

thickness direction. Fig. 7a shows angular change of the free restraint T-joint fillet weld. 

When the stiffeners are prevented from moving, a wavy distortion occurs as can be seen in 

Fig. 7b. Masubuchi et al., 1956 (as cited in AWS Welding Handbook, 1987) established a 

relationship between angular change and distortion at fillet weld using a rigid frame 

analysis in the following expression: 
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where: 

δ is distortion,  

L is length of stiffener spacing,  

 is angular change,  

x is distance from centreline of frame to the point at which δ is measured, Fig. 7b.  
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To summary this section, many factors affect the welding process, thus the produced 

residual stresses and distortions, such as types of material, types of welded joints, structure 

thickness, joint restraint, heat input as well as welding sequence, which is the subject of the 

present study.  

2.3. Thermal and Mechanical Finite Element Equations 

The corresponding finite element equations of thermal and mechanical are obtained by 

choosing a form of interpolation function representing the variation of the field variables, 

namely temperature, T and displacement, U, within the corresponding finite elements of the 

structural model and by applying further the weighted-residual or variational argument to 

the mathematical models. Furthermore, with imposing the boundary and initial conditions, 

the discritized equations obtained are solved by finite element techniques through which the 

approximated solution over the finite element model considered could then be obtained.  

The thermal finite element equation including boundary condition may be written as 

follows: 

    C K
.

TT T F ,
          
  

  (12) 

in which: 

 C N N
T

V
ρc dV,             (13) 

 fK B B N N
T T

V S
k dV  h dS,                       (14) 

   f refN N
T T

V S
F Q dV   h T dS.
T
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where:  

ρ is the density (kg/m3),  

c is the specific heat (J/kg. K),  

k isthe conductivity (W/m. K),  

hf is the convective heat transfer coefficient (W/m2. K),  

Q isthe rate of internal heat generation per unit volume (W/m3),  

[N]  is the matrix of element shape functions,  

[B]  is the matrix of shape functions derivative, and  

{T}  is the vector of nodal temperature.  

The results of temperature distribution and history obtained from Eq. (12) are then inserted 

into the mechanical model in the form of thermal load. Incorporating the elasto-plasticity 
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analysis, the mechanical finite element equation may be written in the form of incremental 

as: 

        1 1 1

1 2K Δ K Δi i i
R R ,

  
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in which: 
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where:  

{∆U} is the incremental of nodal displacement,  

{∆T} is the incremental of nodal temperature,  

[B] is the matrix of strain-displacement,  

[De] is the matrix of elastic stiffness,  

[Dp] is the matrix of plastic stiffness,  

[Cth] is the matrix of thermal stiffness,  

[M] is the temperature shape function,  

{p} is the vector of traction or surface force,  

{f} is the vector of body force, and  

i is the current step of analysis.  

The vector of nodal displacement at the next step of analysis, i+1{U} could be obtained from: 

      1 Δii U  U U .   (21) 

Furthermore, the updated condition of stress in the structure could be obtained from the 

following stress-strain relation: 

      1 Δ
ii  σ σ σ ,   (22) 

      ep thΔ D B Δ C M Δ                σ U T .   (23) 

Commonly, the iterative method of Newton-Raphson is employed in the finite element 

solver to solve the nonlinear equations. For further treatment, see (Bathe, 1996). Note also 
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that from the thermal analysis results, the updated stress and displacement conditions are 

now obtained.  

3. Material and methods 

In this study, material used for the welding simulation was SAE 1020 with the material 

properties vary according to the temperature history (Teng et al, 2001 and ASM, 1990). In 

addition, the welding parameters used in this analysis were as follows: single pass GTAW 

welding method, welding current, I = 260 A, welding voltage, V = 20 V, and welding speed, 

ν = 5 mm/s.  

3.1. The variations of welding sequence 

Several welding sequences (WS) were considered in this study and the numerical 

investigation of the resulted temperature distribution, longitudinal and transverse residual 

stresses and angular distortions due to the welding sequences was then carried out. Four 

welding sequences considered were the one direction welding (WS-1), the contrary direction 

welding (WS-2), the welding from centre of one side (WS-3), and the welding from centres 

of two sides (WS-4), which are illustrated in Fig. 8.  

 

Figure 8. Variation of welding sequence employed in this study: (a) the one direction welding (WS-1), 

(b) the contrary direction welding (WS-2), (c) the welding from centre of one side (WS-3), and (d) the 

welding from centres of two sides (WS-4).  
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3. 2. Finite element simulation of welding 

In the present study, a thermal elasto-plastic finite element procedure was employed to 

simulate the thermo-mechanical response of welding problem. In the procedure, two 

sequenced thermal and mechanical analyses were carried out independently (uncoupled) to 

obtain the total or desired response of the welding structure modelled.  

A transient thermal analysis of heat conduction was carried out in the first step to obtain 

temperature distribution histories over the structural model. In the thermal analysis, the 

welding heat input, Qa was calculated according to Masubuchi (1980) and the arc efficiency, 

ηa for GTAW was assumed to be 0. 60 (Grong, 1994). Also, the values of convective heat 

transfer coefficient, hf and reference temperature were taken, respectively, to be 15 W/m2. K 

and 25°C (298. 15 K).  

In the next step, a structural analysis was carried out to now obtain the mechanical response 

of the structural model, where the temperature history obtained from the first step was 

employed as a thermal load in the analysis. The material model of elasto-plastic based on 

the von Mises yield criterion and isotropic strain hardening rule was chosen, in which its 

response over the history was determined by the temperature-dependent material 

properties inputted. The boundary condition or constraint on the structural model needs 

also to be assigned accordingly.  

Fig. 9 represents the mesh of T-joint fillet weld employed in this study along with the 

position of constraint assigned on the finite element model. The total number of nodes and 

elements utilized for the 3D model were 3654 and 2961, respectively. The analyses were 

implemented in ANSYS environment utilizing the element type of SOLID70 for the thermal 

analysis and that of SOLID45 for the structural analysis.  

 

 

 

 

Figure 9.  (a) Geometry of T-joint fillet welds, (b) Mesh of T-joint fillet weld along with its constraint 

position.  
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4. Results and discussion  

With the finite element procedures described in the previous section, results on the problem 

considered are presented in this section. The finite element simulation for all the variation of 

welding was completed in 45 load-steps (LS). During the number of load-steps, the welding 

process took for 40 load-steps, while the cooling one took for the rest of the LS. For the 

presentation of welding simulation, the results of the LS which respectively represent the 

conditions of the peak temperature and the beginning of cooling processes were taken and 

plotted. Note that the temperature went down towards the reference (room) temperature 

after the LS of 41. Accordingly, the longitudinal and transverse residual stresses and the 

distortions occurred due to the welding sequences were presented and discussed.  

4.1. Welding simulations and temperature distributions 

First, thermal profile produced during welding as the heat source travels is presented as 

shown in Fig. 10. Fig. 10 represents the thermal profiles on several selected nodes along one 

fillet weld taken from WS-1 simulation results. It was shown that heat was moving as the 

welding heat source travelled. This can also be seen from the high temperature of the next 

adjacent node when the previous node has achieved its peak temperature. In addition, the 

next adjacent node’s peak temperature was higher than that of the previous one, which also 

indicated that heat was accumulated. Subsequently, it has been distributed through the 

welding structure and the heat release to the surroundings was due to convective heat 

transfer.  

 

Figure 10. Thermal profiles on several selected nodes along the fillet weld.  

Figs. 11 - 14 illustrate the welding simulation showing the peak temperature for each 

welding sequence and the temperature distribution after welding towards the room 

temperature. From the temperature distributions, it is clear that the peak temperature 

achieved in the welding was greatly affected by the welding sequence. The welding 

sequences produced different interaction between the current step and the accumulation of 

heat carried out from the previous steps due to the sequential path followed.  
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Figure 11. The welding simulation for WS-1: (a) the peak temperature achieved at the LS of 40, and (b) 

the temperature distribution after the welding process at the LS of 41.  

 

Figure 12. The welding simulation for WS-2: (a) the peak temperature achieved at the LS of 40, and (b) 

the temperature distribution after the welding process at the LS of 41.  

 

Figure 13. The welding simulation for WS-3: (a) the peak temperature achieved at the LS of 30, and (b) 

the temperature distribution after the welding process at the LS of 41.  
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Figure 14. The welding simulation for WS-4: (a) the peak temperature achieved at the LS of 40, and (b) 

the temperature distribution after the welding process at the LS of 41.  

The peak temperature achieved for each welding sequence as well as the peak temperature 

difference between WS were summarized in Table 1, in which the highest peak temperature 

of 2928 K belongs to WS-4 having the highest heat accumulation at the end of the welding 

process. The shapes of the temperature profile at the fillet welds during welding were 

depicted in Fig. 15.  

From Fig. 15, it can be seen the differences of the temperature profile at the fillet welds 

during different WS. It is interesting to note that in general the temperature profiles of WS-1 

and WS-2 tend to be similar. In a less extent, it also happened for those of WS-3 and WS-4, as 

the peak temperature of WS-3 was achieved at the LS of 30. Nevertheless, the peak 

temperature achieved was very different, even for the WS having similar temperature 

profiles such as WS-1 and WS-2. This verified again that the peak temperature achieved in 

the welding was greatly affected by the welding sequence.  

 

 

 

Figure 15. Peak temperature for each welding sequence.  
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Table 1 describes further the peak temperature achieved in a WS and the peak temperature 

difference between WS, in which the smallest and largest peak temperature differences 

between WS were 79 and 552 K, respectively.  

Moreover, it may be also interesting to note how the peak temperature achieved in a WS 

may be related to the corresponding residual stresses and angular distortions produced.  

 

Welding sequence 

 (WS) 

Load-step

 (LS) 

The peak temperature 

achieved [K] 

The peak temperature 

difference between WS [K] 

4 40 2928 - 

3 30 2849 79 

1 40 2756 93 

2 40 2376 380 

Table 1. The peak temperature achieved for each welding sequence.  

4. 2. Residual stress distributions 

Fig. 16 and 17 shows respectively the simulated distributions of longitudinal and transverse 

residual stresses for each welding sequence investigated in this study. It is seen from Fig. 16 

and 17, the maximum values of the longitudinal and transverse residual stresses occurred in 

the weld bead region for all the welding sequences. Note also that the distribution of the 

residual stresses produced from each of the welding sequences.  

It can be seen that the smallest longitudinal and transverse residual stresses occurred in   

WS-2. It is interesting to note that the welding sequence also had the lowest peak 

temperature as indicated in Table 1. Also, for longitudinal residual stresses, their 

distributions due to the welding sequences tend to be similar. For transverse ones, the 

distributions were different. It seems that for the later, it could be related to the way of the 

welding had been performed.  
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Figure 16. Simulated distributions of longitudinal residual stresses for: (a) WS-1, (b) WS-2, (c) WS-3, 

and (d) WS-4.  

 

 

Figure 17. Simulated distributions of transverse residual stresses for: (a) WS-1, (b) WS-2, (c) WS-3, and 

(d) WS-4.  
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Fig. 18 describes the transverse residual stress distribution along the fillet weld for each WS. 

The maximum values of longitudinal and transverse stresses as well as von Mises stress for 

each welding sequence were summarized in Table 2. The ratio between the longitudinal and 

the transverse residual stress values for the problem considered varies from 1. 06 to 1. 22.  

 

 

Figure 18. Distribution of transverse residual stress along the fillet weld for each welding sequence.  

Observing further Fig. 18, it is also interesting to note the consistency of trends of the 

transverse residual stresses distributions produced by the WS simulated in the present 

study. It can be clearly observed that the distributions of transverse residual stresses 

produced by WS-3 and WS-4 and WS-1 and WS-2, respectively, are in consistent nature with 

respect to the welding sequences.  

 

 

 

Welding sequence 

(WS) 

The maximum longitudinal stress 

value [MPa] 

The maximum 

transverse stress value 

[MPa] 

The maximum 

von Mises stress value 

[MPa] 

2 240 197 117 

4 283 266 251 

3 292 257 249 

1 298 250 250 

 

 

Table 2. The maximum longitudinal and transverse stress values for each welding sequence.  
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4.3. Distortions 

Fig. 19 illustrates the distortions of the welding structure due to the welding sequences. The 

initial undeformed configurations were also shown. From Fig. 19, it can be seen the angular 

distortions occurred in both flanges. It can be further revealed that there was the difference 

of distortion between the flanges showing that the distortion was unsymmetrical. The 

maximum value of angular distortion took place on the right flange for all the welding 

sequences, unless that of WS-2 which took place on the left one. The simulation results 

obtained also clearly indicate the influence of the welding sequences examined in the 

present study to the angular distortions of the T-joint fillet weld considering the same 

boundary conditions appliedin the corresponding FEM models of the T-joint fillet weld.  

Furthermore, Table 3 summarizes the vertical displacements and the angular distortions of 

both flanges due to the welding sequences. The angular distortion differences were also 

shown in Table 3.  

 
 

 
 

Figure 19. Distortions of the welding structure due to the welding sequences: (a) WS-1, (b) WS-2, (c) 

WS-3, and (d) WS-4.  
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Welding sequence (WS) 

The left flange 

(X = -100 mm) 

The right flange 

(X = 100 mm) 
Angular distortion 

difference 

[rad] Uy [mm]

Angular 

distortion

[rad] 

Uy [mm]

Angular 

distortion

[rad] 

 

1 0. 897 0. 0090 1. 005 0. 0101 0. 0011 

3 0. 755 0. 0076 0. 990 0. 0099 0. 0023 

2 2. 344 0. 0240 0. 897 0. 0090 0. 0150 

4 0. 783 0. 0078 0. 812 0. 0081 0. 0003 

 

 

 

Table 3. The vertical displacements and the angular distortions of both flanges due to the WS.  

4.4. Discussions and recommendation for further research  

From the results, it seems that, for the problem considered in this numerical study, two 

welding sequences, namely WS-2 and WS-4, have taken the attention. The WS-2, which 

is called as simple alternating welding, has produced the lowest peak temperature and 

the smallest longitudinal and transverse residual stresses as well. Meanwhile the WS-4, 

which is called as multiple crossing welding, has produced the smallest angular 

distortion and angular distortion difference, although it produced the highest peak 

temperature.  

The information appears to be consistent with respect to the welding sequences 

performed. The corresponding value of the von Mises stress and the distortion difference 

produced as shown respectively in Table 2 and 3 indicated this as well. In particular, the 

results were also in contrast to those of WS-1 and WS-3. Not only did the welding 

sequences produce high angular distortions, but also they resulted in relatively high 

values of the von Mises stresses. Furthermore, the distortion results obtained appears to 

be match with the ones usually found in the welding practice incorporating alternating 

welding.  

Also, considering limited literatures concerning welding simulation of T-joint fillet welds in 

3D (Chang & Lee, 2009 and Deng et al., 2007), the results obtained would be very valuable 
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and useful to welding designers and practitioners, because the results have been describing 

the predicted or anticipated residual stresses and distortions with respect to the welding 

sequences, varied from simple to multiple crossing welding. In addition, the assessment of 

welding performance which can be taken in an efficient and fast manner allows the 

designers to integrate it in their subsequent design plans.  

Furthermore, the 3D simulation results of T-joint fillet weld may be further used as 

validation model for 3D welding simulations as well as for other numerical technique 

implementations such as mesh-less techniques, where no predefined mesh is required to 

build interpolation of the potential field variables investigated thus reducing cumbersome 

mesh preparation and increasing the related simulation time.  

Moreover, the relationship between the input and output variables of the welding process 

may be further investigated and optimized using techniques from artificial intelligence (AI) 

family, such as neural networks and genetic algorithm. For examples, in the single pass 

GTAW welding method presented in this study, the variables of welding current, voltage, 

welding speed and welding sequences have been examined, in which more output variables 

may be also examined, such as the nature and dimensions of weld bead. Thus, much more 

information and insights can be revealed in such a welding process, which is in turn very 

useful to optimize the welding process.  

It is noted here that the aspects of shrinkage were not discussed in the present paper. The 

aspects could be also related to the variation of welding speed. Also, it may be interesting 

if some welding paths in one WS are performed and simulated simultaneously thus 

allowing the exploitation of symmetry and anti-symmetry boundary conditions in the 

finite element model. The aforementioned aspects would be the subjects of further 

investigations.  

5. Conclusions  

Welding sequences effect on temperature distribution, residual stresses and distortions of 

T-joint fillet welds has been studied numerically in this paper. The simulation results 

revealed that peak temperature achieved in the welding was greatly affected by the WS 

and residual stress and angular distortion produced cannot both hold in minimum for a 

WS. The smallest longitudinal and transverse residual stresses occurred in WS-2, while the 

smallest angular distortion and difference in WS-4. The distributions of temperature, 

longitudinal and transverse residual stresses as well as angular distortions were also 

presented.  

Investigating the aspects of shrinkage and simultaneous welding as well as the 

implementations of other related numerical techniques for further and better understanding 

of the welding process and its optimization would be the subjects of further publication in 

the future time.  
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