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1. Introduction 

Human red blood cells (RBCs) or erythrocytes have remarkable deformability. Upon 

external forces, RBCs undergo large mechanical deformation without rupture, and they 

restore to original shapes when released. The deformability of RBCs plays crucially 

important roles in the main function of RBCs - oxygen transport through blood circulation. 

RBCs must withstand large deformations during repeated passages through the 

microvasculature and the fenestrated walls of the splenic sinusoids (Waugh and Evans, 

1979). RBC deformability can be significantly altered by various pathophysiological 

conditions, and the alterations in RBC deformability in turn influence pathophysiology, 

since RBC deformability is an important determinant of blood viscosity and thus blood 

circulation. Hence, measuring the deformability of RBCs holds the key to understanding 

RBC related diseases. For the past years, various experimental techniques have been 

developed to measure RBC deformability and recent technical advances revolutionize the 

way we study RBCs and their roles in hematology. This chapter reviews a variety of tools 

for measuring RBC deformability. For each technique, we seek to provide insights how 

these deformability measurement techniques can improve the study of RBC 

pathophysiology.  

2. Deformability of RBCs 

RBCs are the most deformable cell in the human body. RBC deformabiltiy is an intrinsic 

mechanical property determined by (1) its geometry, (2) cytoplasmic viscosity, mainly 

attributed to hemoglobin (Hb) solution in the cytoplasm, and (3) viscoelastic properties of 

RBC membrane cortex structure.  
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2.1. RBC geometry 

Mature human RBCs have a biconcave disc shape and they do not contain nucleus or 

subcellular structures but mainly consist of Hb solution in the cytoplasm (Fig. 1a). A typical 

human RBC has a thickness of 2-3 μm, diameter of 6-8 μm, cell volume of 90 fl, and surface 

area of approximately 136 μm2 (Kenneth,2010). Depending on species, RBC shape and size 

vary. In mammals, RBCs develope from nucleated progenitor cells in bone mellow but RBCs 

discard their nucleus as they mature, whereas RBCs of other vertebrates have nuclei. 

Throughout their life span of 100-120 days, human RBCs circulate the body delivering 

oxygen from the lungs to tissues. RBCs gradually lose their deformability with age and 

eventually rupture in spleen. The biconcave shape of normal RBCs has advantages in 

having deformability. Compared to a spherical shape, RBCs with biconcave shape have less 

volume for a given surface area, which can decrease bending energy associated with the 

membrane (Canham,1970).  

2.2. Membrane cortex structure 

The unique deformability of RBCs is mainly determined by the structures of RBC membrane 

cortex. The membrane of human RBC is a multicomponent structure comprised of three 

layers: (1) an external carbohydrate-rich layer, (2) the phospholipid bilayer with 4-5 nm 

thickness, embedded with transmembrane proteins, and (3) a 2-D triangular mesh-like 

spectrin cytoskeleton network attached to the surface bilayers. The mesh size of the spectrin 

network is 60-80 nm. The spectrin network is anchored to the phospholipid bilayer via 

juntional complexes and ankyrin proteins. Junctional complexes and ankyrin proteins can 

diffuse in the lipid membrane.  

(c)
(b)(a)

~ 8 µm

~ 2 µm

Volume ~ 90 fl

Surface area ~ 136  µm2

 

Figure 1. (a) RBC morphology. (b) Spectrin network measured by high resolution negative staining 

electron microscopy. (b) Schematic model of the red cell membrane. Reproduced, with permission, from 

(Liu, Derick et al.,1987; Tse and Lux,1999). 

2.3. Viscoelastic properties of RBC  

In a view of classical mechanics, soft biomaterials can be characterized by viscoelastic 

properties - exhibiting both energy-storing elastic and energy-dissipating viscous 

characteristics. RBC is a typical soft biomaterial showing unique viscoelastic properties 

(Hochmuth and Waugh,1987). 
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2.3.1. Elastic property 

Elastic property chracterizes deformability of a material when a force is applied. Since RBC 

cytoplasm mainly consists of Hb solution, the elastic properties of RBC is determined by 

RBC membrane cortex structures. RBC membranes are only a few molecules thick, and they 

can be treated with a 2-D continuum model. Although the deformation of RBC membrane is 

highly complex, it can be simply explained by three fundamental deformation modes: area 

expansion, shear, and bend of the membrane (Fig. 2).  

Area expansion Shear Bend

 

Figure 2. Schematic illustrations of area expansion, shear, and bend modes of a 2-D membrane. 

The elastic property of a 2-D membrane cortex is characterized by three mechanical elastic 

moduli: area expansion modulus K, shear modulus µ, and bending modulus B. The detailed 

explanations for three elastic moduli are described as follow: 

Area expansion modulus. The area expansion (or compression) modulus K reflects the 

elastic energy storage produced by an isotropic area dilation or compression of the 

membrane surface. The area expansion modulus K is described as 

   ,t
o

A
T K

A


  (1) 

where Tt, A0, and A correpond to the isotopic tensile force, the original surface area, and 

the increase in surface area, respectively (Hochmuth and Waugh,1987). The area expansion 

modulus of RBC membranes is mainly dominated by the elasticity of the bilayer. 

Interestingly, the lipid bilayer itself is highly inextensible; the stand-alone lipid bilayer area 

compression modulus was given in the range of 200-300 mN/m (Rawicz, Olbrich et al.,2000). 

However, RBC membranes exhibit significant area extensibility. There is a wide range of 

measured values for K of RBCs that fall into two groupings. (1) Values reported from 

micropipette-based studies are in the range of 300-500 mN/m (Evans,1973; Waugh and 

Evans, 1979). (2) Recently, measurements based on dynamic membrane fluctuations report 

K of RBC membranes in the range of 10-100 N/m (Gov, Zilman et al.,2003; Betz, Lenz et al., 

2009; Park, Best et al.,2010; Park, Best et al.,2011; Byun, Higgins et al., in press). These two 

techniques sample mechanical responses of the RBC under very different loading conditions 

and they involve different components of the cell; micropipette-based studies mainly probes 

lipid-bilayer dominated behavior while membrane fluctuation measurements primarily 

analyze spectrin network dominated behavior. In addition, the area expansion modulus K of 

RBC membranes can be changed by temperature; the micropipette asiperation techniques 

measured K at 25 °C is 450 mN/m and the temperature dependency of K was found to be -6 

mN/m°C. (Waugh and Evans,1979).  
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Shear modulus. The shear modulus µ of a 2-D structure reflects the elastic energy storage 

associated with extension of the membrane surface with the same membrane area. The shear 

modulus µ is described as 

  2 2 ,
2sT
     (2) 

where Ts is the shear force and  is the the extension ratio (Evans,1973). Shear modulus of 

lipid bilayers is essentially zero due to its fluidity nature; shear modulus of RBC is mainly 

contributed from the spectrin network. The shear moduli of RBC membranes have been 

extensively measured by micropipette aspiration; the values for µ are in the range of 6-10 µ 

N/m (Evans and La Celle,1975; Chien, Sung et al.,1978; Waugh and Evans,1979; Evans, 

Mohandas et al.,1984). Techniques based on optial tweezers (Lenormand, Hénon et al.,2001; 

Dao, Lim et al.,2003), magnetic twisting cytometry (Puig-de-Morales-Marinkovic, Turner et 

al., 2007), and dynamic membrane fluctuation measurements (Park, Best et al.,2010; Park, 

Best et al.,2011) have also reported consistent values for µ. The shear modulus µ is sensitive 

to the environment condition of the membrane. The shear modulus decreased as 

temperature increased from 5 to 45C (Waugh and Evans,1979). Decreasing pH significantly 

increase the shear modulus of RBC membranes, but increasing pH above 7.2 does not cause 

a significant change (Crandall, Critz et al.,1978). More interestingly, bimodal distributions in 

the values for µ were observed in independently reported data (Lenormand, Hénon et al., 

2001; Park, Best et al.,2010), suggesting the nonlinear stiffening of spectrin network (Park, 

Best et al.,2011).  Malaria invasion cause significant increases in shear moduli values (Mills, 

Diez-Silva et al.,2007). 

Bending modulus. Bending modulus (or fluxural modulus) B of a membrane is determined 

by the energy needed to deform a membrane from its original curvature to some other 

curvature. The bending modulus B of a 2-D membrane is described as  

  1 2 3M B C C C    (3) 

where M is the bending momemt. C1 and C2 are two principle curvatures, and C3 is the 

curvature in the stress-free state (Helfrich,1973; Evans,1974). Bending of a 2-D structure 

involves both area compression and expansion. For a lipid bilayer structure, the bending 

modulus, area expansion (or compression) modulus, and the thickness of the bilayer are 

related by B=h2K/4, where h is the bilayer separation distance, and K is the compressibility 

of the bilayer (Helfrich,1973; Evans,1974). The elastic bending moduli B of lipid bilayer is 

determined by chemical compositions of the lipids, and there is a broad range of reported 

bending moduli for lipid bilayers (Boal,2002). The elastic bending moduli B of RBC 

membranes have been measured with various techniques. The values for the bending 

modulus measured by micropipette-based studies are in the range of 50 kbT (~ 10-19 Nm) 

where kb is Boltzmann constant, and T is the temperature (Evans,1983). The bending 

modulus B of RBCs does not significantly change with temperature (Nash and Meiselman, 
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1985) or cell Hb concentration for both normal and sickle cells (Evans, Mohandas et al., 

1984). The recent experiments (Betz, Lenz et al., 2009; Yoon, Hong et al., 2009) have also 

measured that the bending modulus of RBCs is of the order of 50 kbT. However, several 

other techniques have measured lower bending moduli of RBC membranes. Studies based 

on measurements of RBC membrane fluctuations reported membrane bending moduli in the 

range of 10 kbT (~ 10-22 J) (Brochard and Lennon,1975; Zilker, Engelhardt et al.,1987; Zilker, 

Ziegler et al.,1992; Park, Best et al.,2010; Park, Best et al.,2011).  

2.3.2. Viscous property 

While the elasticic property of RBC membranes characterizes its resistance to deformation, 

the viscous property characterized its resistance to a rate of deformation (Hochmuth and 

Waugh, 1987). The viscous properties of RBC membranes can be determined by 3-D 

cytoplasmic viscosity and 2-D membrane viscosity.  

Cytoplasmic viscosity. The values for the 3-D viscosity of blood plasma and cytosolic Hb 

solutions are ~ 1 mPa·s and ~ 5 mPa·s, respectively (Cokelet and Meiselman,1968). Cytosolic 

viscosity depends on the concentration and viscosity of Hb. By measuring the dynamic 

contour fluctuations of RBC membrane, the cytoplasmic viscosity has been obtained in the 

range of 2-5 mPa·s (Yoon, Hong et al.,2009). Recently, the dynamic membrane fluctuation 

measurements retrieved the cytoplasmic visocity of the RBCs at physiological osmotic 

pressure as 5-6 mPa·s, and the cytosol viscosity increases monotonically from with 

increasing osmolality (Park, Best et al.,2011).  

Membrane viscosity. The major source of viscous dissipation in RBC membranes is the 

membrane viscosity. During the recovery process after large deformation of RBCs, 2-D 

membrane viscosity dominates energy dissipation (Evans and Hochmuth,1976). The 2-D 

viscosity of lipid membranes 2D can be qualitatively related to a 3-D bulk visosity of 

phospholipid 3D as 2D ~3D ·d where d is the thickness of the 2D structure. For a typical 

lipid bilayer, 3D ~ 103 mPa·s and d ~ 1-10 nm, and thus 2D ~ 10-10-10-9 Ns/m. Reported 

surface viscosities for lipid bilayers are of the order of 10-10-10-9 Ns/m (Waugh,1982; Evans 

and Yeung,1994). Considering viscous dissipation due to a 2-D membrane viscosity, the 

modified version of the shear force from Eq. (2) is described as  

  2 2
2

ln
2 ,

2s DT
t

    
  


   (4) 

where t is time (Evans and Hochmuth,1976). Assuming the RBC membrane follows Kelvin-

Voigt model, Eq. (4) can be simply expressed as  

 2 / .c Dt      (5) 

where tc is the recovery time after large deformation of RBC membranes (Evans and 

Hochmuth,1976). Typically, tc  ~ 0.06 s at 37C (Hochmuth, Buxbaum et al.,1980), and thus if 
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µ ~ 1-10 µN/m,  ~ 0.06 – 0.6 µNs/m. The 2-D surface viscosity of RBC membranes has been 

measured by several experiments. Tether experiments performed on model membrane 

systems, where cytoskeleton structure was absent, obtained a resultant upper bound of 5×10-

3 µN·s/m for 2D (Waugh,1982). The diffusion constant of membrane-bound proteins can be 

used to calculate the membrane viscosity (Saffman and Delbrück,1975). Using this method, 

the 2-D membrane viscosity values of RBC membranes have been reported in the range of 

(0.5-14)x10-9 Ns/m with various technqiues including fluorescence photobleaching recovery 

(Golan and Veatch,1980), fluorescence photo-bleaching technique (Kapitza and Sackmann, 

1980), and restriction of the lateral motion of membrane embedded proteins (Tsuji and 

Ohnishi,1986).  

2.4. Mathematical models and simulations 

Using mathematical models, the mechanics of the membrane cortex structures has been 

simulated. Using a worm-like-chain model with surface and bending energy, the force-

displancement relations for the spectrin network of RBCs have been described (Discher, 

Boal et al.,1998; Dubus and Fournier,2006). The viscoelastic properties of the RBC membrane 

was described using an effective continuum membrane model that simulates a finite-

thickess 2-D continuum plane model with in-plane shear modulus and bending modulus 

(Dao, Lim et al.,2003). Recently developed numerical models accurately describes the 

complex viscoelastic properties of RBCs deformabilty (Fedosov, Caswell et al.,2010).  

3. RBC deformability and blood microcirculation 

The RBC deformability can influence blood microcirculation since viscosity and flow can be 

significantly changed by the viscoelastic properties of RBCs.  

3.1. Blood viscosity 

Viscosity of liquid characterizes its resistance to flow under certain deforming force, 

especially shear stress. Under laminar flow conditions where particles move parallel to 

adjacent neighbors with minimal turbulence, the fluidity is classified by the dependence of 

viscosity to shear strain or shear stress: (1) Newtonian fluid, if the viscosity is independent 

of shear stress or shear strain so that shear stress is linearly proportional to shear strain, (2) 

non-Newtonian fluid whose viscosity either decrease (shear-thinning) or increase (shear-

thickening) depending on the changes of shear stress (Merrill,1969).  

Blood is non-Newtonian fluid which exhibits shear-thinning behavior. Blood viscosity 

decreases at high shear stress due to the deformation of RBCs, while it increases at low shear 

stress because RBCs aggregate with each others and form stacked coin structure, called 

rouleaux (Shiga, Maeda et al.,1990). For normal blood at 37°C, blood viscosity at high shear 

rate (100~200 s-1) is measured as 4 ~ 5 cP, while it increases rapidly up to 10 cP as shear stress 

decreases less than 10 s-1  (Rand, Lacombe et al.,1964).  
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Whole blood is a two-phase liquid consisting of a liquid medium (plasma) and formed 

elements such as RBCs, white blood cells, and platelets. Thus, its viscosity is mainly 

determined by (1) viscous properties of plasma, (2) the fraction of RBCs in the blood 

(hematocrit, normal range is 42 – 47%), and (3) viscoelastic properties of the formed 

elements.  
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Figure 3. (a) Apparent viscosity of blood as a function of shear rates. (b) Hematocrit effects on blood as 

a function of shear rates. Modified, with permission, from (Somer and Meiselman,1993; Baskurt,2007) 

 Plasma is a Newtonian fluid which viscosity in normal condition varies 1.10 ~ 1.35 cP at 

37°C, while the viscosity of pure water is 1.0 cP at 20°C (Lowe, Drummond et al.,1980). 

Plasma proteins such as fibrinogen are thought to cause RBC aggregation by facilitating 

binding between RBCs. Elevated levels of fibrinogen concentration in plasma enhance 

RBC aggregation and thus it increases blood viscosity.  

 Formed elements in the stream lines of laminar flow of blood can be considered as the 

source of turbulence which significantly increases blood viscosity. Among formed 

elements, RBCs cause the most significant effects since RBCs concentration is the 

highest among the formed elements in blood. The blood viscosity increases as 

hematocrit increases; the hematocrit effect becomes more severe when shear stress 

decreases since more aggregation of RBCs takes place (Dormandy,1970; Baskurt,2007). 

3.2. Blood flow in microcirculation 

Microcirculation transports blood to the small vessels in the vasculature embedded within 

organs. The arterial side of vessels in the microcirculation, surrounded by smooth muscle 

cells, has the inner diameter of ~ 10 – 100 μm. Capillaries, parts of the microcirculation, have 

only one RBC thick, having the diameter of  ~ 5 – 10 μm. Blood flow in microcirculation has 

low Reynold number and thus it is governed by Stoke’s law (Baskurt,2007). Flow dynamics 

in microcirculation requires deep consideration of (1) fluid dynamics in capillaries, (2) 

interaction between formed elements with vessel walls, and (3) the structure and network of 

microvessels. Blood flow in microcirculation is not only determined by the geometric 

features of blood vessels and hydrostatic blood pressure, but also affected by the rheological 

properties. RBC deformability can significantly alter blood flow in microcirculation (Chien, 
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1987). The reduction in RBC deformability under certain physiological or pathological 

conditions results into the retardation of blood-flow thourgh the microcirculation, which 

plays important roles in the stages of peripheral vascular insufficiency (Reid, Dormandy et 

al.,1976); reduced RBC deformability in sickle cell disease and malaria results into occlusions 

in the microcirculation.  

4. Measurement techniques for individual RBCs 

4.1. Micropipette aspiration 

Micropipette aspiration techniques have been extensively used to measure the mechanical 

properties of RBC membranes (Evans and La Celle,1975; Shiga, Maeda et al.,1990; 

Hochmuth, 2000). Micropipette aspiration uses a glass micropipette, having inner diameter 

of 1~3 μm, to apply negative pressure onto RBC membranes. When negative pressure is 

applied, RBC membrane is aspirated into the micropipette and the amount of aspiration 

depends on the viscoelastic properties of cell membrane. Detailed measurement techniques 

vary depending on the mechanical property of interest (Fig. 4): (1) measuring pressure 

necessary to aspirate the membrane when the aspirated distance is equal to the radius of the 

pipette; (2) measuring the ratio between aspirated length of membrane and the radius of the 

pipette in given pressure; (3) measuring pressure required to aspirate whole RBC inside the 

micropipette (Evans,1973; Evans and La Celle,1975). The area expansion modulus of RBC 

membranes can be measured by using micropipette aspiration based on Eq. (1); the 

measured value for K for normal RBCs at room temperature was 450 mN/m (Evans and 

Waugh, 1977). In order to measure the shear modulus of RBC membranes, the second 

method (Fig. 4b) can be used and the shear modulus µ of the RBCs can be related to the 

aspirated length (or “tongue length”) of membrane Dp as,  

 / ~ / ,p p pD R pR    (6) 

where Rp is the radius of the micropipette, p is the applied pressure (Evans,1973; Chien, 

Sung et al.,1978). Using micropipette aspiration, the value for µ was measured as 91.7 

µN/m (Evans, Mohandas et al.,1984).  

(A) (C)(B)

 

Figure 4. Various methods for micropipette aspiration. (A) Measuring pressure P to aspirate the 

distance same with the micropipette radius. (B) Measuring the ratio between the aspirated length of 

membrane D and the micropipette radius at a certain negative pressure. (C) Measuring pressure  

Pt necessary to aspirate a whole RBC into the pipette. Reproduced, with permission, from (Evans and  

La Celle,1975) 
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Micropipette asperation technique can measure the bending elastic modulus B of RBC 

membranes (Evans,1983; Shiga, Maeda et al.,1990). The value for B depends directly on the 

magitude of the aspiration pressure when RBCs start to buckle and inversely on the pipette 

area; measuring negative pressure with varying radius of the pipette can measure B of 

RBCs. The measured value for B was 43.5 kBT (Evans,1983). By measuring the time for 

recovering original shape from releasing negative pressure, the 2-D viscosity of RBC 

membranes can also be obtained by Eq. (5).    

4.2. Atomic force microscopy 

Atomic force microscopy (AFM) is a tip-scanning technique that images topographies of 

materials in atomic or molecular scale (Binnig, Quate et al.,1986). It uses a cantilever with a 

sharp tip as a probe. Depending on the amount of force to apply or sensitivity, diverse tip 

shapes are used such as triangular, parabolic, or cylindrical shapes (Weisenhorn, Khorsandi 

et al.,1993). As a tip scans over a sample with physical contact, the vertical motion of the tip 

is monitored by photodiodes which precisely detect small changes in laser beam position 

reflected from the tip. As shown in Figs. 5a-b, the topographic images of RBCs can be 

obtained in high spatial resolution; cytoskeleton structure of membrane can even be 

revealed (Kamruzzahan, Kienberger et al.,2004).  

(a) (b)

10 µm 3 µm 

(c) (d)

 

Figure 5. AFM measures RBC topography and deformability. (A) Topogram of normal RBCs. (B) 

Detailed texture of the RBC membrane surface. (C) Indentation depth measurement. (D) Different force-

versus-indentation depth curves of RBCs in various conditions: a. anisocytosis; s. hereditary 

spherocytosis; d. G6PD deficiency; and n. normal condition. Reproduced, with permission, from 

(Kamruzzahan, Kienberger et al.,2004; Dulinska, Targosz et al.,2006)  

Since AFM can apply forces to sample surfaces at the nN scales, it can measure mechanical 

properties of soft materials such as RBCs. The displacement of the stage required for the 

same deflection of the tip is different between solid- and soft-materials, from which applied 

forces can be calibrated. For a parabola-shaped or a spherical tip having the radius of 

curvature Rc, the indentation depth z relates an applied force F and a relative Young’s 

modulus E* (Weisenhorn, Khorsandi et al.,1993): 

  * 3/24
( ) .

3
cR

F E z   (7) 

The relative Young's modulus E*  is defined as: 
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    
     (8) 

where E1, E2, 1, and 2 are the Young’s moduli and Poisson ratios for the simple and the tip, 

respectively. Since typical value of E2 (~150 GPa for Si3N4 tip) is much greater than that of 

biological samples (1 ~ 100 kPa), the rightmost equation is valid for biological samples 

(Radmacher,1997). The Poisson ratio is 0.5 for a perfectly incompressible and elastic material 

deformed elastically; the Poisson ratio of soft tissues varies with 0.490 ~ 0.499 (Fung,1993). 

Young’s moduli of RBCs at various pathophysiological conditions have been measured 

using AFM. Young’s moduli of healthy RBCs have been obtained to be is 4.4 ± 0.6 kPa 

(Dulinska, Targosz et al.,2006). RBCs from hereditary spherocytosis, thalassemia (Dulinska, 

Targosz et al.,2006) and diabetes mellitus (Fornal, Lekka et al.,2006), and sickle cell traits 

(Maciaszek and Lykotrafitis,2011) have measured.  

4.3. Optical tweezers 

Optical tweezers use highly focused laser beams that transfer linear or angular momentum 

of light, in order to optically trap μm- and nm-sized dielectric spherical particles (Ashkin, 

1970). Light refraction at a sample induces linear momentum change, resulting into trapping 

forces (Fig. 6). High numerical aperture (NA) objective lens is used to generate a tightly 

focused optical trap, and its trapping force is governed by the refractive indices of sample 

and surrounding medium, laser power, and sample size; optical force to trap particles much 

smaller than laser wavelength can be described by Rayleigh scattering theory, while 

trapping samples much larger than laser wavelength belongs to Mie scattering regime 

(Ashkin, Dziedzic et al.,1986; Svoboda and Block,1994). Optical tweezers have been widely 

used in many fields such as biophysics and soft matter sciences, where manipulation of μm 

sized particles (e.g. cells or microspheres) with a small force (pN scale) is required (Grier, 

2003; Lee and Grier,2007).  
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Figure 6. Principles of optical tweezers. (A) Laser beam with gradual intensity transfers linear momentum 

to a microsphere to escape from the beam center. (B) Focused Gaussian beam exerts trapping force. (c) 

Deformation of a RBC by exerting various optical forces to microspheres attached on the RBC membrane. 

The change of diameter D in response of optical force F is converted to shear modulus of the RBC. 

Modified, with permission, from (Svoboda and Block,1994; Henon, Lenormand et al.,1999). 
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Since optical tweezers can apply forces at the pN level, it has been employed for measuring 

the deformability of RBCs. Measurements of the mechanical properties of RBCs with optical 

tweezers can be done either by applying optical force to microspheres attached to RBCs 

(Henon, Lenormand et al.,1999; Dao, Lim et al.,2003) or stretching RBCs by diverging beams 

from opposite directions (Guck, Ananthakrishnan et al.,2001). In the former approach, two 

silica beads are attached to the opposite sides of a RBC, then these beads are trapped with  a 

Nd:YAG laser beam ( = 1064 nm) with maximum power of ~ 605 mW, corresponding 

maximum optical force is 80 pN (Henon, Lenormand et al.,1999). The change in the 

projected diameter of the RBC in response of optical force is converted to shear modulus of 

the RBC using mathematical membrane models. The shear modulus of discotic RBCs were 

measured as ~ 10 μN/m (Dao, Lim et al.,2003). Using optical twezers system with a high 

power laser, the shear modulus values of RBCs under large deformation (corresponding to 

400 pN) was measured as 11-18 μN/m while initial values were 19-30 μN/m, showing 

hyperelastic constitutive response (Lim, Dao et al.,2004). Optical stretcher, a variant of 

optical tweezers, uses two diverging laser beams from opposite directions (Guck, 

Ananthakrishnan et al.,2001). Linear momentum changes by two laser beams apply 

stretching force to the RBC along the optical axis, and the RBC deformations under varying 

optical force are measured from which mechnical properties are retrieved. Optical tweezers 

can also be used for detecting membrane fluctuation dynamics of RBCs by imposing a 

deformation (Yoon, Kotar et al.,2011).  

4.4. Magnetic twisting cytometry 

Magnetic twisting cytometry (MTC) applies both static and oscillating magnetic field to 

ferromagnetic microbeads attached to the surface of cell membrane (Wang, Butler et 

al.,1993). Depending on the applied magnetic field, the microbeads exhibit both translational 

and rotational motion, which applies torques to the cell membrane. The motion of beads is 

recorded by a CCD camera, and the stiffness G’ and loss modulus G of the membrane can 

be obtained by analyzing the displacement of bead in response to applied torque. By 

varying oscillating frequency (0.1 to 100 Hz) and the magnitude of applied magnetic field  

(~ 1 - 10 Gauss), the stiffness and loss modulus of RBC membranes are measured at different 

driving frequencies (Puig-de-Morales-Marinkovic, Turner et al.,2007).  

(a) (c)(b)

 

Figure 7. Magnetic Twisting Cytometry (a) Bright field and (b) Scanning electron microscopy images of 

RBCs with ferromagnetic beads attached. (c) Principles of magnetic twisting cytometry. Reproduced, 

with permission, from (Puig-de-Morales-Marinkovic, Turner et al.,2007) 
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The torsional stiffness modulus is independent of frequency, whose value is ~ 10-3 Pa/nm at 

sinusoidal magnetic field of 1 G, while the loss modulus increases as frequency increases; 

these values correspond to the bending moduli in the range of 0.2 - 0.8 pN·μm and the shear 

moduli in the range of 6-12 μN/m (Puig-de-Morales-Marinkovic, Turner et al.,2007). MTC 

technique also revealed dramatic increases in the stiffness of malaria-infected RBC at the 

febrile temperature (41°C) (Marinkovic, Diez-Silva et al.,2009). 

4.5. Quantitative phase imaging 

Quantitaitve phase imaging technqiues measure the electric field, i.e. amplitude and phase 

images whereas conventional brightfield microscopy only images light intensity (Fig. 8) 

(Popescu, 2011). Employing the principle of laser interference, electric field information of 

target sample is modulated onto intereferograms recorded by a CCD camera. By using 

appropriate field retrieval algorithms, the field information can be retrieved from the 

measured holograms (Debnath and Park, 2011). Typical interferogram and quantitative 

phase image of a RBC are shown in Fig. 8b-c. Quantitative phase imaging techniques can 

measuring dynamic membrane fluctuations of RBCs (Popescu, Ikeda et al.,2005; Popescu, 

Park et al.,2008; Park, Best et al.,2011) as well as cellular dry-mass (Popescu, Park et al.,2008). 

Dynamic membrane fluctuation, consisting of submicron displacement of the membrane, 

has a strong correlation with deformability of RBCs and can be altered by biochemical 

changes in protein level (Waugh and Evans,1979). By measuring membrane fluctuation of 

RBCs, bending modulus and tension factor of RBCs were calcualated (Popescu, Ikeda et al., 

2006). 
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Figure 8. Quantitative phase imaging. (A) Schematic of the principle of quantitative phase imaging. (B) 

Measured interferogram and (C) retrieved phase image of a RBC using quantitative phase imaging. 

Reproduced, with permission, from (Park, Best et al.,2011). 

Diffraction phase microscopy (DPM), a highly stable technique for quantitative phase 

imaging, has been widely used for investigating the deformability of RBCs. Employing 

common-path laser interferometry, DPM provides full-field quantitative phase imaging 

with unprecedented stability (Park, Popescu et al.,2006; Popescu, Ikeda et al.,2006). DPM 

measured spatiotemporal coherency in dynamic membrane fluctuations (Popescu, Park et 

al.,2007), shear modulus for the RBCs invaded with malaria-inducing parasite Plasmodium 

falcifarum (Pf-RBCs) (Park, Diez-Silva et al.,2008), and effective viscoelastic properties of 

RBCs (Wang, Ding et al.,2011). Recently, integrated with a mathematical model, DPM 

provide the mechanical properties of individual RBCs from membrane fluctuations: shear 

modulus, bending modulus, area expansion modulus, and cytoplasmic viscosity (Park, Best 
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et al.,2010). Several alterations in the deformability of RBCs have been studied using DPM, 

including the effects of ATP (Park, Best et al.,2010; Ben-Isaac, Park et al.,2011), the nonlinear 

behavior of RBC deformability in response to different osmotic pressure (Park, Best et al., 

2011), and malaria egress mechanism (Chandramohanadas, Park et al.,2011). Employing 

spectroscopic quantitative phase imaging, cytoplasmic Hb concentration that is tightly 

related to the cytoplasmic viscosity, can also be simultaneously quantified (Park, Yamauchi 

et al.,2009; Jang, Jang et al.,2012). In addition, polarization-sensitive quantitative phase 

microscopy will be potentially used for the study of sickle cell disease and its implications to 

RBC deformability (Kim, Jeong et al.,2012).  

4.6. Dynamic light scattering 

Dyanmic light scattering signals provide rheological information about RBCs (Tishler and 

Carlson, 1987; Amin, Park et al.,2007). Although dynamic light scattering have been 

extensively used in combination with ektacytometry, it provides averaged signals from 

many RBCs. Thus it is difficult to access the deformability of individual RBCs.  

Fourier transform light scattering (FTLS) provides both static and dynamic light scattering 

signal from individual cells. Light field, measured by quantitative phase microscopy or 

digital holographic microscopy, contains both amplitude and phase information, and thus 

far-field light scattering pattterns can be directly calculated by numerically propagating the 

measured field – technically applying Fourier transformation (Ding, Wang et al.,2008). FTLS 

technique can provide both morphological and rheological information about individual 

biological cells. By analyzing dynamic light scattering signals measured by FTLS, one can 

qualitatively access the membrane surface tension and viscosity of individual RBCs (Park, 

Diez-Silva et al.,2010). Due to its capability of measuring light scattering signals from 

individual cells with high signal-to-noise ratio, FTLS has been employed to study several 

pathophysiological effects to the deformabiltiy of RBCs, including malaria infection (Park, 

Diez-Silva et al.,2010), depletion of ATP (Park, Best-Popescu et al.,2011), and sickle cell 

disease (Kim, Higgins et al.,2012).  

5. Measurement techniques for blood rheology 

5.1. Blood viscometer and ektacytometry 

Blood viscometer measures the viscosity of blood over a wide range of shear rates. Blood 

viscometer controls either shear stress or shear rate of blood using rational objects. Stress-

controlled blood viscometer applys a constant torque which corresponds to constant 

rotational speed in a well-designed rotational rheometer. In a rate-controlled system, 

applied torque is controlled by a stress-sensing device so that a constant rotational speed is 

achieved. Viscometers can be classified by the cylinder shape: a concentric cylinder, a cone 

plate, and a parallel plate viscometer (Fig. 9). 

Cylinder-type viscometer uses two concentric cylinders: a rotational inner cup and a 

stationary outer cylinder. Time-independent shear rate can be precisely measured by  



 
Blood Cell – An Overview of Studies in Hematology 180 

concentric cylinder viscometer (Nguyen and Boger,1987). Cone and plate viscometer rotates 

an inverted cone having very shallow angle (~ 5°); the shear rate under the plate is 

maintained consistently and independent of a flow curve. Parallel plate viscometer is a 

simplified version of the cone and plate viscometer and has a advantage of flexible space 

between two parallel plates. The viscous fluid can confined and rotated in narrow space 

between two circular parallel plates (Gent,1960).  

 

Figure 9. Schematic diagrams of typical viscometers. (a) Concentric cylinder viscometer (or Couette 

viscometer), (b) cone and plate viscometer, and (c) parallel plate viscometer. (d) Experimental setup of 

ektacytometer.  

Ektacytometer employes a laser diffraction technique with blood viscometer in order to 

measure RBC deformabiltiy. Conventional blood viscometer applys controlled shear stress 

to the RBCs in the blood viscometer, and deformability of RBCs can be measured from laser 

diffraction pattern. Ektacytometer consists of a concentric rotational outer cup and a 

stationaly inner cylinder; outer cup produces varying shear stress field on blood (Fig. 9d). 

Through the measurement of diffraction patterns of the laser passing through the blood, 

RBC deformability can be obtained. The RBC deformation is quantitatively calculated from 

the scattered laser beam intensity pattern. Under a certain shear rate, isointensity curves in 

the intensity pattern of the scattered beam will show elliptical shapes, which represent 

elliptically deformed RBC population (Bessis, Mohandas et al.,1980). From the measured 

isointensity curves, a deformaion index (DI) of RBCs is calculated as 

 ,
l s

DI
l s





   (9) 

where l and s are distances along the long- and short- axes in the elliptical isointensity 

curves. DI values are measured at different angular velocities (and thus different shear rate) 

of the outer cyliner in the ektacytometer. Ektacytometer is a simple and effective technique 

to measure the deformability of RBC population, and it has been widely used for the study 

pathophysiology of RBCs. Abnormal deformability in RBCs from patients with hereditary 

pyropoikilocytosis, hereditary spherocytosis, and Hb CC disease were studies by 

ektacytometer (Mohandas, Clark et al.,1980). 

5.2. Microfluidic device technique 

Microfluidic device has emerged as a promising tool to precisely control fluids with small 

volumes of fluid containing samples and reagents in channels with dimensions of 10-100 
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μm. Microfludic device reduced space, labor, and measurement time on numerous 

experiments, and also enabled precise control and manipulation of the small volume of 

samples. Microfludic device has been used to study the deformabiltiy of RBCs. Microfluidic 

channel with a few micrometer diameter mimics micro-capillary structure in blood 

circulation system. Rheological behaviors of Pf-RBCs were studies in microfludic devices 

(Shelby, White et al.,2003). Microfludic device was used to induce large deformation of 

RBCs and its mechanical behavior was studied (Fig. 10) (Li, Lykotrafitis et al.,2007) .  

0  s 0.4  s 0.8  s 1.4  s
 

Figure 10. (a-d) Snapshot showing the fluidization of a healthy RBC when it passes through a 

microfluidic channel. Reproduced, with permission, from (Li, Lykotrafitis et al.,2007).  

For the study of sickle cell disease, microfluidic device has been used to measure the 

resistance change rate of blood flow under the sudden change of oxygen concentration 

(Wang, Ding et al.,2011). Recently, microfludic channels with obstracles have measured the 

deformabiltiy of malaria infected RBCs in high throughput (Bow, Pivkin et al.,2011; Diez-

Silva, Park et al.,in press).  

5.3. Filtration test 

Filtration test measures RBC deformabiltiy using a membrane filter with holes of diameter 

of 3-5 μm (JANDL, SIMMONS et al.,1961). By applying a negative pressure, whole blood is 

subject to pass through holes in the membrane filter. The deformability of RBCs can affect 

the speed of flow. RBC deformabiltiy can be calculated from either the flow time or the volume 

of blood filteres in a certain amount of time (~1 min). Since the filteration test requires for a 

relatively simple instrument and provides clinically relevant results with high reproducibility, 

it has been widely used in various studies related to RBC deformability, including the effects 

of diabetes (Juhan, Buonocore et al.,1982), spesis (Baskurt, Gelmont et al.,1998), sickle cell 

disease (JANDL, SIMMONS et al.,1961), and oxygen radical (Srour, Bilto et al.,2000).  

6. Pathophysiological coditions affecting RBC deformability 

Mechanical properties of RBCs is crucial for cell physiology of RBCs. This essential 

deformability is in turn affected by various physiological and pathological cues. 

6.1. Temperature 

Temperature plays important roles in RBC deformabilty. The elastic properties of RBC 

membrane were investigated as function of temperature using the micropipette aspiration 
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technique (Waugh and Evans,1979). Over the temperature range of 2-50C, both the shear 

modulus and the area expansion modulus decrease as temperature increased; the changes 

were -610-2 μN/mC and 6103 μN/mC, respectively. Due to the structual transitions of 

proteins occuring at certain critical tempertures, RBC deformabiltiy exhibits complex 

behaviors. At the transition temperature, RBCs undergo a sudden change from blocking to 

passing through a micropipette with a diameter of ~ 1 μm (Artmann, Kelemen et al.,1998). 

Body temperature or febril temperature are particularly important in various pathophysiology 

of RBCs. Membrane fluctuation measurements using DPM revealed that the shear modulus of 

Pf-RBCs significantly increases as temperature increases from body temperature to febrile 

temperature whereas healthy RBCs do not show noticible changes (Park, Diez-Silva et al., 

2008). MTC study also reported that Pf-RBCs becomes significantly stiffened with temperature 

compared to the healthy RBCs (Marinkovic, Diez-Silva et al.,2009).  

6.2. Morphology 

RBCs exhibit diverse morphological features depending on pathophysiological conditions 

(Diez-Silva, Dao et al.,2010). A healthy human RBC shows a smooth and biconcave disc 

shape (discocyte). However, atypical shapes of RBCs can be found under abnormal 

pathophysiological conditions, including acanthocyte, stomatocyte, schizocyte, and tear 

drop cells (Kenneth,2010). Our understanding of what determines RBC morphology and 

how RBC morphologies are related to the mechanics of RBCs still remains incomplete. One 

of the hypotheses describing RBC morphology is the bilayer-couple hypothesis (Sheetz and 

Singer,1974); small changes in the relaxed area difference between two layers of 

phospholipids. Later, this model can be used for explaning stomatocyte–discocyte–

echinocyte morphological transitions (Lim HW, Wortis et al.,2002).  

(a) (c)

(d) (e) (f)

(b)

 

Figure 11. (a-c) Topographies of (a) discocyte, (b) echinocyte, and (c) spherocyte. (d-f) Retrieved 

mechanical properties: (d) bending modulus , (e) shear modulus µ, and (f) area modulus KA of 

discocytes (DCs), ATP-depleted discocytes [DCs (-ATP)], echinocytes (ECs), and spherocytes (SCs). 

Reproduced, with permission, from (Park, Best et al.,2010) 
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Increased deformability of RBCs in abnormal shapes has been reported with various 

experimental methods. Ektacytometer measured increased DI values for SCs and ECs that 

were induced by 2,4-dinitrophenol treatment (Meiselman,1981). Recently, using DPM, the 

mechanical properteis of RBCs in different morphologies were quantified from dynamic 

membrane fluctuations (Park, Best et al.,2010). Bending modulus and area expansion 

modulus of ECs and SCs showed significantly high values compared to normal DCs. The 

shear moduli values show bimodal distributions (Fig. 11e), suggesting two independent 

conformations of the spectrin network: a soft configuration (µ ~ 7 µN/m) and a stiff one (µ ~ 

12 µN/m). Aging of RBCs also cause significant morphological alterations: aged RBCs 

exhibit decreased surface area and volume (Waugh, Narla et al.,1992). The aged RBCs were 

found by ektacytometry to have decreases shear modulus mainly because of decreased 

surface area and increased cytoplasmic viscosity.  

6.3. Osmotic pressure 

Different osmolalities of extracellular medium can bring significant changes in RBC shape 

and thus deformability. At normal physiological condition (295mOsm/kg), RBCs maintain 

their biconcave shapes. In hypotonic medium, RBCs are swollen due to water intake. At the 

osmotic pressure less than 100mOsm/kg, most of RBCs are lysed. In the hypertonic case, 

RBCs lose its volumes, which result in significant cell shrinkage. Although the total amount 

of Hb molecules in RBCs, or the mean corpuscular Hb (MCH), does not significantly change 

at different osmolality, Hb concentration can be considerably changed due to water influx 

and efflux. RBCs exhibit the maximum deformability at physiological condition; under 

either hypertonic or hypotonic condition, the deformability of RBCs decreases (Mohandas, 

Clark et al.,1980).  
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Figure 12. (a) DI of RBCs as a function osmolality, measured by ektacytometer. Modified, with 

permission, from (Mohandas, Clark et al.,1980). (b) Membrane fluctuations of RBCs as a function of 

osmotic pressure, measured by DPM. (c) Retrieved mechanical properties of RBCs from membrane 

fluctuations. 20 individual RBCs were measured at each osmotic pressure. Modified, with permission, 

from (Park, Best et al.,2011). 

A recent study, based on membrane fluctuation measurements, retrieved mechanical 

properties of RBC membrane under diffferent osmolarities (Park, Best et al.,2011). Although 

membrane fluctuation or deformability decreases either in hypotonic or hypertonic case; the 
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reasons for the decreased deformability are different. Under hypotonic cases, both shear 

moduli and area expansion moduli increase, suggesting nonlinear stiffening in streached 

membrane structure. Under hypertonics cases, other mechanical parameters are not 

significantly changed except that cytoplasmic viscosity increases.  

6.4. ATP effect 

The presence of adenosine 5’-triphosphate (ATP) is important in maintaining the biconcave 

shape of RBCs and also significantly affects the RBC deformability. In the absence of ATP, 

RBCs loss its biconcave shapes and become flattened echinocytes (Sheetz and Singer,1977). 

The metabolic state of RBCs, determined by the level of ATP, is crucial for maintaining 

cellular deformability. When celullar ATP level decreases, the stored RBCs significantly lose 

the deformability (Weed, LaCelle et al.,1969). Micropipette aspiration technqiue measured 

mechanical properties of RBCs upon ATP depletion; shear modulus and elastic area 

compression modulus increase by 17% and 14%, respectively (Meiselman, Evans et al.,1978). 

Decreased membrane fluctuation in the absence of ATP was first observed by using dark-

field microscopy (Tuvia, Levin et al.,1998). Membrane fluctuation measurements studied the 

effects of ATP to the mechanical properties of RBCs (Betz, Lenz et al.,2009; Park, Best et 

al.,2010). Analysis on dynamic membrane fluctutions further showed non-Gaussian 

dynamics in the presence of ATP, suggesting the metabolic remodelling in the lipid 

membrane and spectrin network structure (Park, Best et al.,2010). ATP-dependent RBC 

deformability has been also studied using theoretical models (Gov and Safran,2005; Ben-

Isaac, Park et al.,2011).  

6.5. Malaria: Parasite invasion 

Pathogenesis of malaria causes structural and mechanical modifications to the host RBCs. 

During intra-erythrocytic development, the malaria-inducing parasite exports proteins that 

interact with the host cell membrane and spectrin cytoskeletal network (Simmons, Woollett 

et al.,1987). Parasite-exported proteins modify material properties of host RBCs, resulting in 

altered cell circulation. Despite the genetic and biochemical approaches identified, proteins 

exported by parasites have remained elusive as well as the mechanism and effect of these 

proteins on the host cells. 

Pf-RBCs exhibits significantly decreased deformability. Microfluidic technique demonstrated 

the occlusion of small channels by infected RBCs (Shelby, White et al.,2003). Optical 

tweezers technique measured that membrane shear modulus continuously increases as the 

disease progesses during the intraerythrocytic cycle (Suresh, Spatz et al.,2005).  Employing 

genetic knock-out assay, the effects of RESA protein to the host RBC deformabiltiy has been 

studied (Mills, Diez-Silva et al.,2007). Membrane fluctuation measurement also showed 

increased shear modulus of malaria-invaded RBCs (Park, Diez-Silva et al.,2008). Recently, 

the loss of deformability in the malaria-invaded RBCs has been simulated using multiscale 

numerical models (Fedosov, Lei et al.,2011).  
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Figure 13. Malaria parasite life cycle in human body. Reproduced, with permission, from (Cho, Kim et 

al.,2011). (b) Optical images of a healthy RBC and a Pf-RBC (schizont stage) stretched by optical 

tweezers. Reproduced, with permission, from (Suresh, Spatz et al.,2005). 

6.6. Genetic diseases: sickle cell disease 

Sickle cell disease, characterized by abnormal rheological properties and a sickle-shape of 

RBCs, is an autosomal recessive inherited blood disorder. A point mutation in β-globin gene 

encoding Hb results in the production of sickle Hb (HbS) instead of normal Hb (HbA) 

(Barabino, Platt et al.,2010). Under deoxygenated conditions, HbS molecules becomes self-

assembled and grows to fibers inside RBCs up to a few micrometer lengths. Due to these 

highly stiff HbS fibers, sickle RBCs have elongated- and crescent-shape at deoxygenated 

conditions and the deformabiltiy of sickle RBCs significantly decreases.  

Sickle RBCs have different morphologies depending on its density (Kaul, Fabry et al.,1983; 

Evans, Mohandas et al.,1984). After repeated sicklings, a fraction of RBCs becomes 

irreversibly sickled cells and they exhibit the most significant loss in deformability. While 

Hb concentrations does not affect static rigidity of normal RBCs, static rigidity of sickle 

RBCs depends on Hb concentration (Evans, Mohandas et al.,1984). Earlier studies using 

ektacytometry and filteration techniques reported decreased deformability of sickle RBCs 

even under oxygenated conditions (Chien, Usami et al.,1970; Klug, Lessin et al.,1974).  

Quantitative phase microscopy measured decreased membrane fluctuations for sickle RBCs 

(Shaked, Satterwhite et al.,2011). FTLS showed significantly altered elastic and viscous 

membrane properties in sickle RBCs (Kim, Higgins et al.,2012). Recently, four important 

mechanical properties of sickle RBCs were retrieved with memebrane fluctuations 

measurements (Byun, Higgins et al.,under review). Using AFM technique, decresed 

deformability was measured in sickle RBCs (Maciaszek, Andemariam et al.,2011). RBCs in 

sickle cell trait, having only one abnormal allele of the Hb beta gene, also exhibit decreased 

deformability compared to healthy RBCs (Maciaszek and Lykotrafitis,2011).  
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Figure 14. (a) Illustration showing structural modifications inside a sickle RBC. Modified, with 

permission, from (Barabino, Platt et al.,2010). (b-d) Typical morphologies of sickle RBCs measured by 

DPM; (b) echinocyte, (c) discocyte, and (d) crescent-shaped irreversibly sickled cell. Reproduced, with 

permission, from (Kim, Higgins et al.,2012).  

6.7. Other conditions altering RBC deformability  

There are still many pathophysiological conditions that affect the deformabiltiy of RBCs, 

which are not covered in the above sections. Several hereditary disorders associated with 

formation of RBC membrane structures and Hb protein can result into altered RBC 

deformability. Thalassemias, causing the formation of abnormal Hb molecules due to the 

limited synthesis of the globin chain, results into loss of RBC deformability. Thalassemia is 

thus often accompanied by the destruction of a large number of RBCs in spleen, 

accompanying with the enlargement of spleen. In addition, abnormal Hb molecules in 

thalassemia often caues the formation of Heinz bodies, inclusions within RBCs composed of 

denatured Hb, and it causes the local rigidification of RBC membrane (Reinhart, Sung et al., 

1986). Ektacytometer study measured that RBCs in hereditary spherocytosis showed 

markedly diminished deformability while their surface/volume ratio was normal 

(Nakashima and Beutler,1979). RBCs from the patients with homozygous hereditary 

elliptocytosis exhibits marked abnormalities in deformability and membrane fragility; these 

changes are closely related to the reduced levels of band 4.1 proteins (Tchernia, Mohandas et 

al.,1981). Since band 4.1 plays an important role in the modulation of spectrin-actin 

interaction, it has been suggested to be closely related to the maintenance of normal 
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membrane shape and deformability. In addition, it will be possible to study RBC 

deformability in vivo in the near future, by directly imaging and manipulating RBCs 

through highly scattering skin tissues. Recent works have demonstrated that it is indeed 

possible to control and suppress multiple light scattering (Vellekoop, Lagendijk et al.,2010; 

Vellekoop and Aegerter,2010; Mosk, Lagendijk et al.,2012; Park, Park et al.,2012; Park, Park 

et al.,2012). In diabetes mellitus, RBCs exhibit reduced deformability (McMillan, Utterback 

et al.,1978), which has been attributed to the changes in lipid composition of the membranes. 

This impaired RBC deformability in diabetes occurs before significant histological vascular 

changes (Diamantopoulos, Kittas et al.,2004). RBCs from the patients with diabetes mellitus 

undergoes substantial alterations in the lipid composition, membrane proteins, and  Hb 

molecules. Saturated fatty acid levels in diabetes mellitus were significantly elevated 

compared to normal RBCs while the amount of polyunsaturated fatty acids were decreased 

in diabetes (Prisco, Paniccia et al.,1989). 

7. Conclusion and outlook 

We have highlighted techniques for studying RBC deformabilty. Due to various 

deformability test techniques developed in the last years, our understandings on 

pathophysiology of RBCs have been significantly improved. Recent advances have enabled 

the precise measurements of various biomechanical properties of RBCs under systemically 

controlled conditions that mimic complex in vivo physiological environments. However, 

three major technical issues should be resolved in order to bring a much significant impact. 

First, the molecular mechanisms on RBC deformability should be directly accessed and 

studied. Employing biochemical assays such as molecular imaging and genetic knock-out 

methods, the relation between molecule-level changes and cellular-level deformability 

alterations can be studied. Second, such measurements should be performed at individual 

cell levels. Profiling mechanical, chemical, and biological properties at the cellular levels and 

their correlations may allow accessing to unexplored regimes of diseases mechanisms. 

Third, interactions between cell-to-protein, cell-to-cell, and cell-to-vessel should be 

considered, since these interactions can be affected and in turn modify RBC deformability. 

As more knowledge is gained about the pathophysiology of RBCs and their circulation 

through biomechanical studies, the potential for the development of novel diagnostic and 

treatment strategies for various RBC-related disease will become real and answer to 

important questions in hematology. 
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