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1. Introduction 

Electromagnetic interference (EMI) is an undesirable and uncontrolled off-shoot of explosive 

growth of electronics and widespread use of transient power sources. Conducting polymers 

nanocomposites represent a novel class of materials that possess unique combination of 

electrical, thermal, dielectric, magnetic and/or mechanical properties which are useful for 

suppression of electromagnetic noises. Now it is possible to incorporate various dielectric or 

magnetic fillers within conducting polymer matrices to form multifunctional nanocomposites. 

The first section of this chapter gives a brief overview of fundamentals of EMI shielding & 

microwave absorption, theoretical aspects of shielding, governing equations, various techniques 

for measurement of shielding effectiveness and different strategies for controlling EMI. In the 

next section, a comprehensive account of potential materials for handling of EMI are described 

with special reference to nanocomposites based on intrinsically conducting polymer matrix 

filled with conducting [e.g. metals, graphite, carbon back, carbon nanotubes, graphene], 

dielectric (e.g. BaTiO3 or TiO2) or magnetic (e.g. γ-Fe2O3, Fe3O4, BaFe12O19) inclusions. 

2. Electromagnetic Interference (EMI) shielding 

Electromagnetic interference shielding (EMI) is an undesired electromagnetic (EM) 

induction triggered by extensive use of alternating current/Voltage which tries to produce 

corresponding induced signals (Voltage and current) in the nearby electronic circuitry, 

thereby trying to spoil its performance. The mutual interference among electronic gadgets, 

business machines, process equipments, measuring instruments and appliances lead to 

disturbance or complete breakdown of normal performance of appliances. The EM 
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disturbances across communication channels, automation, and process control may lead to 

loss of time, energy, resources and also adversely affect human health. Due to these reasons 

only, use of mobile phone is restricted inside robotic operation theatres or during 

onboard/flight which may trigger series of electronic failures and a crash in worst 

case/scenario. Therefore, some shielding mechanism must be provided to ensure 

undisturbed functioning of devices even in the presence of external electromagnetic (EM) 

noises. For efficient shielding action, shield should possess either mobile charge carriers 

(electrons or holes) or electric and/or magnetic dipoles which interact with the electric (E) 

and magnetic (H) vectors of the incident EM radiation. Therefore, in the recent past, a wide 

variety of materials (Abbas et al, 2007; Colaneri et al, 1992; Joo & Epstein, 1994; Ott, 2009; 

Paul, 2004; Saini et al, 2009a, 2010, 2011; Schulz et al, 1988; Singh et al, 1999a, 2000b) have 

been used for EMI shielding with a broad range of electrical conductivity (σ), good 

electromagnetic attributes such as permittivity () or permeability (μ) and engineered 

geometries. The designing a EMI shielding with a certain level of attenuation, meeting a set 

of physical criteria, maintaining economics and regulating the involved shielding 

mechanism is not a straight forward task and involves complex interplay of intrinsic 

properties (σ,  and μ) of shield material and logical selection of extrinsic parameters. 

Therefore, to touch the theoretically predicted shielding performance of a materials and to 

satisfy stringent design criteria, elementary knowledge of shielding theory, set of governing 

theoretical equations, important design parameters and relevant measurement technique 

becomes a prime prerequisite.  

3. Shielding definitions and phenomenon 

EMI shield is essentially a barrier to regulate the transmission of the electromagnetic EM 

wave across its bulk. In power electronics, term shield usually refers to an enclosure that 

completely encloses an electronic product or a portion of that product and prevents the EM 

emission from an outside source to deteriorate its electronic performance. 

Conversely, it may also be used to prevent an external susceptible (electronic items or 

living organisms) from internal emissions of an instrument’s electronic circuitry. 

Shielding is the process by which a certain level of attenuation is extended using a 

strategically designed EM shield. The shielding efficiency is generally measured in terms 

of reduction in magnitude of incident power/field upon transition across the shield. 

Mathematically shielding effectiveness (SET) can be expressed in logarithmic scale as per 

expressions (Saini et al 2009a, 2011): 

 T T T
T

I I I

P E H
SE  (dB) 0  0   0  

P E H

     
          

     
R A M 10 10 10SE SE SE 1 log 2 log 2 log     (1) 

where PI (EI or HI) and PT (ET or HT) are the power (electric or magnetic field intensity) of 

incident and transmitted EM waves respectively. As shown in Fig. 1, three different 

mechanisms namely reflection (R), absorption (A) and multiple internal reflections (MIRs) 

contribute towards overall attenuation with SER, SEA and SEM as corresponding shielding 

effectiveness components due to reflection, absorption and multiple reflections respectively. 
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3.1. Theoretical shielding effectiveness 

Before starting the shielding analysis, it is necessary to understand the various 

electromagnetic terminologies (Ott, 2009).  

 

Figure 1. Schematic representation of EMI shielding mechanism 

 

Figure 2. Dependence of wave impedance on distance from source normalized to /2π 
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According to the distance r between the radiating source and the observation point, an 

electromagnetic radiative region can be divided into three parts (Fig. 2) relative total 

wavelength   of the electromagnetic wave. The region within the distance   /2r  is the 

near field while the distance   /2r is the far field. Between the two regions, as the 

distance   /2r , is the transition region. For designing a material for particular shielding 

application, it is imperative to have in-depth knowledge of both intrinsic & extrinsic 

parameters on which shielding effectiveness depend alongwith suitable theoretical relations 

correlating them with reflection, absorption and multiple-reflection loss components. 

3.1.1. Shielding theory  

This section presents the shielding basics based on the transmission line theory 

(Schelkunoff, 1943) and the plane wave shielding theory (Schulz et al,1988). Assume a 

uniform plane wave characteristic by E and H that vary within a plane only with x direction 

as showed in Fig. 3. The Maxwell’s curl equations give: 

  
dE

j H
dx

and    ( )
dH

j E
dx

  (2) 

where   is the permeability of the material and    o r . o  and r  are the permeabilities 

of air (or free space) and shield material respectively,   is the conductivity of material in S/m. 

where   is the permittivity of the material and    o r . o  and r  are the permittivities of 

air (or free space) and shield material respectively,   2 f  .  ( f ) is angular frequency 

(linear frequency) in Hz.  

 

Figure 3. Propagation of electromagnetic waves and its interaction with the shield material 
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All homogenous materials are characterized by a quantity known as the intrinsic impedance: 

 


 



j

j
 (3) 

When an electromagnetic wave propagates through the material, the wave impedance 

approaches the intrinsic impedance of the material. For dielectric material, the conductivity 

is extremely small (  ) and the intrinsic impedance of Eq. (3) becomes: 

 


  (4) 

For a conductor used below optical frequencies defined by  , the intrinsic impedance 

of Eq. (3) can be written as: 

  


 
  (1 )

j f
j  (5) 

It is customary to define propagation constant (  ) in the media such that: 

         ( ) ( ).j j j  (6) 

where is attenuation constant and   is phase constant. A good conductor is a medium for 

which  / 1 . Under this condition the Eq. (6) becomes: 

      (1 )j j f  (7) 

Therefore, we can write      1 / f , where quantity   represents skin depth 

which is defined as the distance required by the wave to be attenuated to 1 / e  or 37% of its 

original strength. For a dielectric plane sheet   / 1 and Eq. (6) becomes: 

       2 j  (8) 

The impedance of a homogenous barrier of thickness t  is 

   
  





( )cosh( ) sinh( )

cosh( ) ( )sinh( )

Z t t t
Z

t Z t t
  (9) 

 


  



( ) (0)

cosh( ) ( )sinh( )
H t H

t Z t t
 (10) 

 
  




( )
( ) (0)

( )cosh( ) sinh( )

Z t
E t E

Z t t t
 (11) 

where (0)Z is the impedance at interface 0  looking into the plane and ( )H t is the 

impedance at interface t  looking into the right of the plane at x t . If ( )Z t , reflection 
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occurs at the boundary x t . Let iE and iH are the incident electric and magnetic fields, rE

and rH the reflected fields, and tE and tH the transmitted fields as shown in Fig. 3. With the 

continuity of the tangential field component at a boundary we can write: 

  i r tE E E  and  i r tH H H   (12) 

The electric and magnetic fields of a plane wave are related by the intrinsic impedance of the 

medium 

  ,i iE H  r rE H and  ( )t iE Z l H  (13) 

Solving the above equations, the expression of reflection coefficients can be written as: 

 



 


( )

( )

r

E i

E Z t
q

Z tE
 (14) 

 



   


( )

( )

r

H Ei

H Z t
q q

Z tH
  (15) 

The corresponding transmission coefficients can be written as: 

 


   


2 ( )
1

( )

t

E Ei

E Z t
p q

Z tE
 (16) 

 


   

2

1
( )

t

H Hi

H
p q

Z tH
 (17) 

When two mismatched interfaces must be considered in the same plane, the net transmission 

coefficients is the product of the transmission coefficient across the two boundaries i.e.: 

    (0) ( ) (0) ( )E H E E H Hp p p p p t p p t   (18) 

Considering the re-reflection effect, the transmission coefficients across the plane are:  

  
( ) ( ) (0)

.
(0)H i i

H t H t H
T

HH H
 (19) 

   
( ) ( ) ( ) ( )

.E Hi i
w w

E t Z t H t Z t
T T

Z ZE H
  (20) 

where (0)E , ( )E t , (0)H and ( )H t  are the actual values at interfaces i.e. at  0x and x t . 

wZ is the impedance of the incident wave. Using equations (9), (10) and (11) for the plane of 

the thickness 0 and t   

 
  




( )

(0) cosh( ) ( )sinh( )

H t

H t Z t t
  (21) 
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  




( ) ( )

(0) ( )cosh( ) sinh( )

E t Z t

E Z t t t
  (22) 

From equations (14) and (15) we may write: 

 


2( )

(0)
w

i
w

ZH t

Z ZH
   (23) 

 


( ) 2 (0)

(0)i
w

E t Z

Z ZE
  (24) 

where (0)Z is the impedance at interface  0x looking into the plane. By substituting (23) 

and (24) into equations (19) and (20) we get: 

 
      21 t t

E H HT T p q e e
  (25) 

where  

   


 


 
4

( )
w

H
w

Z
p

Z Z t
   (26) 

 
  
  

 
 

 


 

( )

( )

w
H

w

Z Z t
q

Z Z t
  (27) 

when ( ) wZ t Z , taking  /wk Z  we can write:  

 
 

 


2

4

1
H

k
p p

k
 (28) 

 
 
 


 



2

2

1

1
H

k
q q

k
   (29) 

 E HT T         21 t tT p qe e   (30) 

By definition total shielding effectiveness is: 

       2
10 1020log 20log 1 t t

TSE T p qe e    (31) 

       
  
SE SE SER A M

2
10 10 1020log 20log 20log 1t t

TSE p e qe   (32) 
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Therefore, after careful comparison of δ with shield thickness (t) two situations can be 

visualized:  

a. When (t << δ): which occurs either at low frequencies or in case of electrically thin sample 

where actual shield thickness is much less than skin depth. In such a case the absorption 

which is a bulk (or thickness) related phenomenon, can be neglected and attenuation 

occurs almost exclusively by reflection. The total shielding becomes frequency 

independent and can be expressed in terms of free space impedance (Zo=377 ) as: 

 O
10 T

Z
SE (dB) = 20log 1+ tσ

2

 
  

 
 (33) 

b. When (t >> δ): which is valid in our case and generally occurs at higher frequencies 

where skin depth becomes much less as compared to actual shield thickness i.e. in case 

of electrically thick samples. In such regime, attenuations due reflection, absorption and 

multiple internal sub-phenomenon becomes a straight forward exercise after making 

good conductor approximation i.e.  / 1T  [or   1 . . wk i e Z ].  

3.1.2. Reflection loss 

The reflection loss (SER) is related to the relative impedance mismatch between the shield’s 

surface and propagating wave. The magnitude of reflection loss under plane wave (far field 

conditions) can be expressed as (Saini et al, 2011): 

 T
R 10

o r

σ
SE (dB) = 10log

16ωε μ
 

   
 

 (34) 

where σT is the total conductivity, f is the frequency in Hz, μr is the relative permeability 

referred to free space; The above expression shows that SER is a function of the ratio of 

conductivity (σT) and permeability (μr) of the shield material i.e. quantity (σT/μr). Further, 

for a given material (i.e. fixed σT and μr) SER decreases with increase in frequency. 

3.1.3. Absorption loss 

As shown in Fig. 1, when an electromagnetic wave pass through a medium its amplitude 

decreases exponentially. This decay or absorption loss occurs because currents induced in 

the medium produce ohmic losses and heating of the material, and Et and Ht can be 

expressed as  t
t iE E e  and  t

t iH H e  (Ott, 2009). Therefore, the magnitude of 

absorption term (SEA) in decibel (dB) can be expressed by following equation:  

 
ASE (dB) =

 
 

  
      

   


1

2

1020 log 8.68 8.68
2

T rt t
te  (35) 

where t is shield thickness in inches and f is frequency in Hertz. The above expression 

revealed that SEA is proportional to the square root of the product of the permeability (μr) 
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times the conductivity (σT) of the shield material i.e. quantity (σT.μr)1/2 (Saini et al, 2009a, 

2011). Further, for a given material, absorption loss increases with increase in frequency. 

Therefore, a good absorbing material should possess high conductivity and high 

permeability, and sufficient thickness to achieve the required number of skin depths even at 

the lowest frequency of concern. 

3.1.4. Multiple Internal Reflections (MIRs)  

If the shield is thin, the reflected wave from the second boundary is re-reflected from the 

first boundary and returns to the second boundary to be reflected again and again as shown 

in Fig. 1. The attenuation due these multiple internal reflections i.e. SEM can be 

mathematically expressed as (Ott, 2009, Saini et al, 2011):  

  
 
     
 
 

SE
A

2 10
10 1020log (1 ) 20log 1 10t

MSE e  (36) 

Therefore, it can be seen from the above expression that SEM is closely related to absorption 

loss (SEA). MSE  is also important for porous structures and for certain type of filled 

composites or for certain design geometries. It can be neglected in the case of a thick 

absorbing shield due high value of SEA so that by the time the wave reaches the second 

boundary, it is of negligible amplitude. For practical purposes, when SEA is ≥ 10 dB (Saini, et 

al 2009a, 2011) SEM can be safely neglected. Usually MSE  is important only when metals are 

thin and are used at very low frequencies (i.e. ~kHz range). However, for highly absorbing 

materials or at very high frequencies (~GHz or high), condition  10ASE dB  gets satisfied 

and re-reflections can be safely ignored i.e.  0MSE .  

3.2. Experimental shielding effectiveness 

Experimentally, shielding is measured using instruments called network analyzer. Scalar 

network analyzer (SNA) measures only the amplitude of signals whereas vector network 

analyzer (VNA) measures magnitude as well as phases of various signals. Consequently, 

SNA can not be used to measure complex signals (e.g. complex permittivity or permeability) 

and therefore, despite its higher cost VNA is the most widely used instrument. 

The incident and transmitted waves in a two port VNA (Fig. 4) can be mathematically 

represented by complex scattering parameters (or S-parameters) i.e. S11 (or S22) and S12 (or 

S21) respectively which in-turn can be conveniently correlated with reflectance (R) and 

transmittance (T) i.e. T = |ET/EI|2 = |S12|2 = |S21|2, R = |ER/EI|2 = |S11|2 =|S22|2, giving 

absorbance (A) as: A = (1-R-T). When SEA is greater than 10 dB, SEM becomes negligible      (~ 

-1.0 dB) and can be neglected (Saini et al, 2011) so that SET can be expressed as: SET = SER + 

SEA. In addition, the intensity of the EM wave inside the shield after primary reflection is 

based on quantity (1-R), which can be subsequently used for normalization of absorbance 

(A) to yield effective absorbance {Aeff=[(1-R-T)/(1-R)]} so that experimental reflection and 

absorption losses can be expressed as (Hong et al, 2003; Saini et al, 2009a, 2011):  
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R 10SE = 10log (1- R)  (37) 

 
 A 10 eff 10

T
SE = 10log (1- A ) = 10log

1- R

 
 
  

 (38) 

Therefore, from the knowledge of reflected and transmitted signals i.e. R and T, VNA can 

easily compute reflection and absorption loss components of total shielding. 

 

Figure 4. A two port VNA (left) and its internal block diagram (right)  
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3.3. Estimation of electromagnetic attributes  

The attenuation of EM radiation by intended shield material is critically dependent on its 

electromagnetic attributes like complex permittivity [  * =(  '  j  " )] and complex 

permeability [  * =(  '  j  " )], and their estimation is of paramount importance. Both 

complex dielectric permittivity and magnetic permeability consists of real part and 

imaginary parts as shown in Fig. 5 

 

Figure 5. Complex electromagnetic attributes of a shield 

Parameter  ' or r  (real permittivity) represents the charge storage (or dielectric constant) 

whereas  "  (imaginary permittivity) is a measure of dielectric dissipation or losses. 

Similarly,  '  (or r ) and  " represents magnetic storage and losses respectively. The extent 

of losses can be assessed by calculating dielectric/magnetic loss tangent (tan δ) (Colaneri et 

al, 1992; Joo. et al, 1994; Saini. et al, 2009a, 2011) which is the ratio of imaginary and real 

permittivity/permeability.  

3.3.1. Measurement and conversion techniques  

While designing a shield, all the above parameters must be taken into consideration. The 

incident and transmitted travelling waves inside a VNA can be represented by complex 

scattering parameters (or S-parameters) i.e. S11 (or S22) and S12 (or S21) respectively, which are in-

turn closely related to the electromagnetic (EM) attributes (Nicolson & Ross, 1970; Ott, 2009; 

Paul, 2004; Weir, 1974). There are many techniques developed for measuring these S-parameters 

like Transmission/Reflection method, Open ended coaxial probe technique, Free space 

technique, Resonant cavity method and Parallel plate technique (Ott, 2009; Tong, 2009). Among 

these techniques Transmission/Reflection method is the most popular as it simultaneously 

measures of all four S-parameters and gives complex permittivity as well as magnetic 

permeability by using suitable algorithms or models developed for obtaining the permittivity 

and permeability from the recorded S-parameters. Table 1 gives an overview of some the 

conversion techniques, S-parameters & to and their evaluation capability for output attributes. 

Each of the above conversion technique has different advantages and limitations. The selection 

of the technique depends on several factors such as the measured S-parameters, sample length, 

desired output properties, speed of conversion and accuracies in the converted results. Among 
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above-mentioned procedures, Nicholson-Ross-Weir (NRW) technique is the most widely used 

regressive/iterative analysis as it provides direct calculation of both the permittivity (  * ) and 

permeability (  * ) from the input S-parameters.  

 

Conversion technique Input S-parameters Output attributes 

Nicolson-Ross-Weir (NRW) 
S11, S21, S12 and S22  or and 

S11 and S21 (or S22 and S12) 
εr and μr 

NIST iterative 
S11, S21, S12 and S22 or pair 

S11 and S21 (or S22 and S12) 
εr and μr  = 1 

New non-iterative 
S11, S21, S12 and S22  or and 

S11 and S21 (or S22 and S12) 
εr and μr  = 1 

Short circuit line (SCL) S11 or S22 εr 

Table 1. Conversion techniques, input S-parameters & output attributes 

3.3.2. Nicholson-Ross-Weir (NRW) technique 

Nicholson-Ross-Weir (NRW) technique (Nicolson & Ross, 1970; weir, 1974) provides direct 

calculation of both the permittivity (  * ) and permeability (  * ) from the input S-parameters. 

It is the most commonly used technique for performing such conversions where the 

measurement of reflection (  ) and transmission ( T ) coefficient requires all four (S11, S21, S12, 

S22) or a pair (S11, S21) of S-parameters of the material under test to be measured. The 

procedure proposed by NRW method is deduced from the following set of equations: 

 
 

 
 


 

2

11 2 2

1

1

T
S

T
  and   

 
 

 


 

2

21 2 2

1

1

T
S

T
 (39) 

Once these S-parameters are extracted from the network analyzer, simultaneous solving of 

equation set (39) gives the reflection coefficient as: 

    2 1X X  (40) 

The condition [|Γ| < 1] is used for finding the correct root of the quadratic equation so that 

parameter X can be expressed as:  

 
 


2 2
11 21

11

1

2

S S
X

S
 (41) 

Therefore, the transmission coefficient can be written as: 

 
 
  


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11 21

11 211

S S
T

S S
  (42) 

The permeability is then given by: 
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where λo and λc are free space and cutoff wavelength respectively and  is given by (Tong, 

2009): 
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Therefore, the permittivity can be written as: 
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Equations (44) & (45) have infinite number of roots since the imaginary part of the term 

ln(1/T) is equal to i(θ + 2πn) where n= 0, ± 1, ± 2…, i.e. the integral multiples of ratio L/λg, 

where L is sample length and λg, is wavelength inside the sample. This brings phase 

ambiguity and the correct value of ‘n’ can be determined by either of two methods: 

a. The analysis of group delay:  

The calculated group delay for nth solution can be determined from: 

 
 




 
  
 
 

2

, 2 2

1r r
cal n

c

fd
L

df c

  
 

 


 
  

 



2

2
2

2 2

2

1

r r
r r

r r

c

df
f

df
L

f
c

c

    (46) 

The group can also be directly measured by network analyzer by measuring the slope of the 

plot between phase ( ) of the transmission coefficient versus frequency as: 
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The correct root (n=k) should satisfy the condition   , 0cal k meas  

b. Phase unwrapping method:  

By estimating n from λg using initial guess values of ε and μ for the sample, we get: 
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where εr and μr are initially guessed permittivity and permeability respectively, γ is 

propagation constant of material, c is velocity of light and f is frequency of incident EM 

radiation. 

3.4. Shielding material and design considerations 

The careful analysis of theoretical shielding expressions revealed that in order to meet 

design requirements and for extending efficient shielding action, shield should possess a 

balanced combination of electrical conductivity (σ),  dielectric permittivity () and 

magnetic  permeability (μ) and physical geometry (Chung, 2001; Joo & Epstein, 1994; 

Saini, 2009a). Further, as shown in Fig. 1, the primary mechanism of EMI shielding is 

reflection from the front face of the shield, for which the shield must possess mobile 

charge carriers (electrons or holes) that can interact with the electromagnetic fields to 

cause ohmic (heating) losses in the shield. As a result, the shield needs to be electrically 

conducting, although only moderate conductivity (10-3 to 1.0 S/cm) is sufficient (Olmedo 

et al, 1997; Saini, et al 2011). The secondary EMI shielding mechanism is absorption for 

which shield should possess electric and/or magnetic dipoles which can interact with the 

electromagnetic fields in the radiation.  

Metals are by far the most common materials for EMI shielding (Ott 2009; Paul 2004; Schulz 

et al, 1988) owing to their high electrical conductivity. In principle, for a highly conducting 

material (e.g. metals like Cu, Ag or Ni), only conductivity (σ) and magnetic permeability (μ) 

are important, such that the reflection loss (SER) is dependent upon their ratio (i.e. σ/μ) 

whereas the absorption loss (SEA) is a function of their product (i.e. σ.μ) [Chung, 2001; Joo & 

Epstein, 1994; Ott, 2009, Saini et al, 2011). However, in the case of moderately conducting 

materials permittivity () also plays a significant role (besides σ and μ) in deciding absolute 

values of SER and SEA . Such compounds are capable of displaying dynamic dielectric and/or 

magnetic loss, upon impingement by incident electromagnetic waves (Abbas et al, 2005, 

2006; Joo & Epstein, 1994; Olmedo et al, 1997). Nevertheless, metal based compositions are 

suffered from problems (Ott, 2009; Paul, 2004; Saini et al, 2009a, 2009b) such as high 

reflectivity, corrosion susceptibility, weight penalty and uneconomic processing. Among 

other alternatives, carbon based materials (graphite, expanded graphite, carbon black, 

carbon nanotubes and graphene) have also been widely explored for possible applications in 

EMI shielding (Chung 2000, 2001, Gupta & Choudhary, 2011; Huang et al, 2006; Joo et al 

1999, Makeiff & Huber, 2006; Pandey et al, 2009; Saini et al 2007, 2009a, 2009b, 2010, 2011; 

Singh et al, 2011; Yang, 2005a, 2005b). However, graphite exhibit poor dispersibility and 

high percolation threshold (Friend, 1993; Olmedo, 1997; Saini, 2009a). Similarly, CNTs are 

economically non-viable, difficult to produce at bulk scale and often require purification, 

auxiliary treatment and functionalization steps (Bal, 2007; Olmedo, 1997; Saini, 2009a, 2011). 

In this regard, intrinsically conducting polymers (ICPs) with tunable electrical 

conductivity/dielectric properties, facile processing and compatibility with other polymeric 

matrices can offer an attractive solution over other conducting fillers (Chandrasekhar, 1999; 

Ellis, 1986; Olmedo, 1997; Skotheim, 1986; Trivedi, 1997). Interestingly, due to their inherent 

electrical conductivity and dielectric properties, these ICPs can be used either as conducting 
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filler for various insulating matrices or as an electrically conducting matrix with 

incorporated conducting/dielectric/magnetic inclusions.  

3.4.1. Intrinsically conducting polymers (ICPs) 

Intrinsically conducting polymers (ICPs) combine moderate conductivity, good 

compatibility and ease of processability (as compared with carbons) with low density (~ 1.1–

1.3 g/cm3 compared to metals e.g. ~9.0 g/cm3 for copper) and corrosion resistance (compared 

to metals) (Baeriswyl, 1992;  Chandrasekhar, 1999; Ellis, 1986; Freund & Deore, 2007; Heeger, 

2001a, 2001b; Joo & Epstein, 1994; MacDiarmid, 2001; Nalwa, 1997; Olmedo, 1997; Saini, 

2011, Shirakawa, 2001; Skotheim, 1986; Trivedi, 1997). They possess unique shielding 

mechanism of reflection plus absorption rather than dominated reflection for metals and 

carbons. The ability to regulate their electrical conductivity by controlling parameters such 

as oxidation state, doping level, morphology and chemical structure, makes them powerful 

candidate for various techno-commercial applications. Fig. 6 shows the structure of some of 

the well known conducting polymers in their undoped forms.  

 

Figure 6. Chemical structures of some undoped conjugated polymers 

Since the first ICP, polyacetylene (PA), was successfully synthesized by Shirakawa et al. 

(1977) and Chiang et al (1977, 1978a, 1978b) with conductivity as high as 106 S/cm in doped 

form, great interest has been aroused and a series of ICPs such as polyaniline (PANI), 

polypyrrole (PPY), polythiophene (PTH), poly(p-phenylene-vinylene) (PPV) etc have been 

developed (Carter et al, 1985; Rahman et al, 1989; Saxman et al, 1985; Snow, 1981; Soga et al, 

1983; Thomas et al, 1988; Yamamoto et al, 1988). These undoped polymers display poor 

conducting properties and lies in insulating or semiconducting range (10−10 to 10−5 S/cm) as 
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shown in (Fig. 7). However, the controlled doping can transforms the poorly conducting 

undoped material into a system which displays semiconducting or metallic conductivity  

(10-6 to 105 S/cm). The predicted theoretical value for highly doped PA is about 2 × 107 S/cm, 

which is even higher than that of copper (Chiang et al, 1978a, 1978b). However, the highest 

experimentally recorded conductivity for PA (in highly oriented thin films form) was 

greater than 105 S/cm, which is still the highest value that has been reported for any 

conducting polymer till date. In contrast, conductivity of other conjugated polymers reaches 

a maximum value ~103 S/cm (Baeriswyl, 1992; Cao et al, 1992, 1995; Chaing et al, 1978a, 

1978b; Chandrasekhar, 1999;  Ellis, 1986; Heeger, 2001a; Nalwa, 1997; MacDiarmid, 2001; 

Shirakawa, 2001; Skotheim, 1986). 

The display of metal like electrical and optical properties by the highly doped forms of these 

ICPs (synthetic polymers) also entitled them to be called synthetic metals (Freund & Deore, 

2007; Heeger, 2001a, 2001b; Nalwa, 1997; MacDiarmid, 2001; Shirakawa, 2001; Skotheim, 

1986). The intrinsic conductivity of conjugated polymers in the field of microwave (100 MHz 

– 20 GHz) makes them a viable shielding material. In particular, dependence of their 

conductivity on frequency, has inspired many scientific ideas to adopt these phenomenon to 

microwave applications (Coleman & Petanck, 1986; Karasz et al, 1985; Natta et al, 1958; 

Olmedo, 1995, 1997; Saini et al, 2009a, 2011). 

 

Figure 7. Conductivity of some conjugated polymers in comparison to typical metals, semiconductors 

or insulators.  

The unique properties like tunable conductivity (between insulating and metallic limits), 

adjustable permittivity/permeability via synthetic means, low density, non-corrosiveness, 

nominal cost, facile processing (melt or solution), and controllable electromagnetic 



Microwave Absorption and EMI Shielding Behavior of  
Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes 87 

attributes, further strengthen their candidature as futuristic shielding material for various 

techno-commercial applications. Their utility can also be extended to high-tech areas like 

space, defense (military), or navigation/communication control or as a radar absorbing 

material (RAM) in the stealth technology (Ellis, 1986; Knott et al, 1993; Olmedo, 1997; 

Nalwa, 1977). Especially, conducting polymers appear to be one of the few materials capable 

of displaying dynamic (switchable) microwave absorption behavior, which are called 

“intelligent stealth materials”, due to the reversible electrical properties of conducting 

polymers affected by redox doping/de-doping processes.  

A careful comparison of properties of large number of available shielding materials revealed 

that no single phase material can take care of all the aspects of shield (e.g. absorption 

coefficient, thickness, volume, broadband response) to give desired level of performance 

under different environments and applications. Therefore, several attempts have also been 

made to exploit the worthy property of above materials by making strategic combinations 

e.g. admixtures, blends and composites (Ajayan et al, 2000; Cao et al, 1992, 1995; Chung, 

2000, 2001; Colaneri et al, 1992; Dhawan, 2003; Gangopadhyay et al, 2001; Grimes, 1994; 

Gupta & Choudhary, 2011; Huang et al, 2000; In et al, 2010; Joo et al, 1999; Koul et al, 2000; 

Liang et al, 2009; Pomposo, 1999; Ramanathan et al, 2008; Saini et al, 2009a, 2009b, 2011; 

Sanjai et al, 1997; Shacklette et al, 1992; Shi & Liang, 2008; Singh et al, 2011; Stankovich et al, 

2006; Taka, 1991; Varrla, 2011; Wang & Jing, 2005; Wessling, 1999; Wojkiewicz et al, 2003; 

Zhang et al, 2011). Among these options, composites based on various organic/inorganic 

filler (guests) loaded ICP matrices (hosts) as well as ICP (guest) loaded insulating matrices 

(hosts) have captured maximum attention due to fascinating properties and wealth of 

prevalent applications (Chandrasekhar, 1999; Ellis, 1986; Freund & Deore, 2007; Heeger, 2001a, 

2001b; MacDiarmid, 2001; Nalwa, 1997; Shirakawa, 2001; Skotheim, 1986). Recently, the 

discovery of various nanomaterials (NMs) and ability to design and tailor their electrical and 

electromagnetic properties has lead to scientific surge to identify the best materials for 

shielding and other applications (Ajayan et al, 1994; Alexandre, 2000; Baughman et al, 2002; 

Geim & Novoselov, 2007; Geim, 2009; Ijima, 1991; Meyer et al, 2007; Moniruzzaman & Winey, 

2006; Rozenberga & Tenn, 2008; Stankovich et al, 2006, 2007; Thostenson et al, 2005). 

Especially, nanocomposites have attracted enormous scientific attention due to distinguished 

set of properties as well as promising applications.  

3.4.2. ICP based nanocomposites 

Nature has the astonishing ability to form self-organized functional nanomaterials with 

perfect structures and unusual properties e.g. bacteria, viruses, proteins, cells etc. which 

ordinarily falls in the size range of 1-100 nm (1 nm = 10-9 m). In fact, nature is considered as 

maestro nanotechnologist who has created one of the best known nanocomposites such as 

bones, hairs, shells, and wood. Therefore, in quest of making perfect nanocomposites, 

researches are trying to learn and mimic the natural material synthesis principles. However, 

though high quality bulk composites (e.g. straw reinforced mud, concrete, carbon/glass fiber 

reinforced polymers) were already realized by researchers, formation of perfect 
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nanocomposite remained a biggest scientific challenge. In case of nanocomposites, fillers 

possess nanoscale dimensions (~104 times finer than a human hair) and extend ultra-high 

interfacial area per volume to host polymeric matrices. Consequently, marked differences in 

the properties of nanocomposites are observed compared to their bulk counterparts e.g. 

enhanced strength, better optical or electrical properties etc. (Ajayan et al, 1994; Alexandre, 

2000; Choudhary & Gupta, 2011; Mathur et al, 2010; Moniruzzaman & Winey, 2006; 

Ramasubramaniam, 2003; Rozenberga & Tenn, 2008; Thostenson et al, 2005) even at the 

lower loadings. Polymer is a versatile choice as a matrix material due to advantages like low 

density, mechanical flexibility, facile processing and corrosion resistance. Interestingly, most 

polymeric matrices possess poor electrical, dielectric or magnetic properties and are 

transparent to electromagnetic radiations (Saini et al, 2009a, 2011). Therefore, most of the 

electrical and electromagnetic properties of the conventional nanocomposites are mainly 

contributed by the nanofillers (nature and concentration) and matrix simply plays the role of 

holding the filler particles. In this consideration, utilization of ICPs as host matrix can offer 

an attractive solution over conventional (insulating) polymer based matrices (Ellis, 1986; 

Nalwa, 1997; Olmdo, 1995, 1997; Saini et al, 2011) primarily due to microwave non-

transparency and design flexibility. However, the incorporation of nanofillers within 

polymeric matrices is not a straightforward task because of the ultrahigh surface area and 

agglomeration tendencies. These often resulted in failure to efficiently translate the 

nanoscopic properties of these fillers into macroscopic properties of resultant 

nanocomposites, thereby inability to utilize their full potential. Hence, handling and 

dispersion of nanofiller is the biggest challenge for nanocomposite science and technology.  

3.4.3. Synthesis of ICP based nanocomposites 

i. ICP as filler 

As already mentioned in the previous section, inherent electric conductivity/dielectric 

properties (i.e. without any added conducting additive e.g. metals, graphite or carbon 

nanotubes), design flexibility and good compatibility with various insulating polymer 

matrices (e.g. thermoplastic/thermoset/rubber/elastomer/fiber/fabric etc.), ICPs can be used 

as filler to form composites.  

As shown in Fig. 8, such composites are formed either by solution processing or by melt phase 

mixing/blending (Pud et al, 2003; Cao et al, 1992, 1995; Colaneri & Shacklette, 1992; Taka, 1991; 

Shacklette et al, 1992; Saini, et al, 2011; Wessling, 1999). In the former case both ICP and matrix 

polymer are dissolved/dispersed in a common solvent and stirred/sonicated to achieve the 

final mixing followed by casting (shaping) and drying/curing. In contrast, melt blending 

involves mixing of filler particles with molten matrix polymer followed by molding (shaping) 

and cooling/curing. In some case e.g. thermosts, ICPs are mixed with pre-polymer (resin) by 

solution blending technique. Finally, cross-linkers (curing agents) are added and curing is 

achieved by a combination of heat (not required for room temperature cross-linkers) and 

pressure (not required when no volatiles are expelled during curing process).  
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Figure 8. Schematic representation of steps involved in the formation of ICP (as conducting filler) 

loaded insulating polymer matrix by solution and melt processing techniques  

ii. ICP as matrix polymer 

The utilization of different ICPs as nanocomposite matrix can be attributed to advantages as 

design flexibility, good filler incorporation-ability, specific interactions with fillers and 

microwave non-transparency.  

 

Figure 9. Schematic representation of formation of mechanism of ICP matrix based nano-composites by 

in-situ polymerization route. 

Reactor 
(T, P, Stirring)

Monomer (s)

ICP based nanocomposite

Initiator/OxidantPolymerization

Filler (s) Reaction 
Medium

Dopant/
Catalyst



 
New Polymers for Special Applications 90 

The incorporation of various conducting, dielectric or magnetic nanoparticles within 

conducting polymer matrices can be achieved either by ex-situ physical mixing processes or 

by in-situ polymerization (Abbas et al, 2005, 2006; Das & Mandal, 2012; Dong et al, 2008; 

Fang et al, 2006; Joo et al, 1999; Moniruzzaman & Das, 2010; Pant et al, 2006; Phang et al, 

2007, 2008; Saini et al, 2007, 2009a, 2009b, 2010; Yang et al, 2010, 2011). However, ex-situ 

mixing leads to poor dispersion of filler particles and failure to overcome their 

agglomeration tendencies that results in inferior and non-reproducible electrical and 

electromagnetic attributes. In contrast, the electronic properties of such synthetic metals can 

be strictly controlled by following in-situ incorporation (Fig. 9) approach i.e. carrying out 

the polymerization under the controlled conditions and in the presence of specific dopants 

and fillers (Bredas et al, 1998; Chandrasekhar et al, 2002, Mattosso et al, 1994; Nalwa et al, 

1997; Saini et al, 2007, 2009a, 2009b; Savitha et al, 2005; Skotheim, 1986). In a typical reaction, 

monomer(s), filler and dopant or catalyst are charged into a suitably designed reactor to 

maintain required temperatre (T), pressure (P) and agitation (stirring) conditions. During 

such pre-polymerization process, monomers are generally adsorbed over dispersed nano-

filler particles. The polymerization was initiated by addition of specific initiator/oxidant and 

allowed to proceed till reaction gets completed leading to formation of ICP based 

nanocomposite.  

3.4.4. Electrical properties of ICP based nanocomposites 

As already mentioned and shown in Fig. 1, the primary shielding mechanism is reflection 

for which shield should possess free charge carriers (electrons/holes) that can interact 

with incident EM field. But the organic conjugated polymers are insulators in their 

undoped forms e.g. room temperature electrical conductivity (σdc) of emeraldine base (EB) 

is ~10-9 S/cm (Fig. 10, Gupta et al, 2005). However, controlled doping leads to 

enhancement of conductivity due to formation of charge carriers (Fig. 11) i.e. polarons/ 

bipolarons (Saini et al, 2008; Stafstrom et al, 1987; Trivedi, 1997; Zuo et al, 1989) that can 

move under the influence of external potential and in the Coulmbic field of counter-ions 

distributed along the chain. 

Therefore, increasing dopant concentration leads to increase in concentration and mobility 

of proto-generated charge carriers resulting in enhancement of conductivity. Furthermore, 

such a conductivity enhancement in conductivity is strongly dependent on nature and 

concentration of dopant and in some case conductivity well exceeds the required limit 

(Olmedo et al, 1997; Saini et al, 2011) for exhibiting good shielding effectiveness.  

The addition of ICPs particles (guests) as a conducting filler within insulating polymer 

matrices (hosts) leads to establishment of electrical conductivity (in resultant 

nanocomposites) due to formation of percolation networks (Colaneri & Shacklette, 1992; 

Hsieh, 2012; Lakshmi et al, 2009; Shacklette et al, 1992; Taka, 1991; Wessling, 1999). At 

percolation threshold, ICP particles form a 3D conductive network within host matrix, 

which can be easily estimated by plotting the electrical conductivity as a function of the 

reduced volume fraction of filler (Fig. 9) and performing data fitting with a power law 

function (Saini et al, 2011):  
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t

o cv v  (49) 

where   is the electrical conductivity of the composite,  o  is characteristic conductivity, v

is the volume fraction of filler, cv  is volume fraction at the percolation threshold and t is the 

critical exponent. The log ( ) versus log (  cv v ) plot (Fig. 12) gives a straight line according 

to eqn. 10. The values of scaling law parameters i.e. cv and t can be subsequently obtained 

by least-square analysis of the above double logarithmic plots. When the densities of the 

host polymer and the filler are similar, mass fraction (m) becomes same as volume fraction 

(v) and can be used in above calculations.  

 

 

Figure 10. Variation of electrical conductivity (ln σdc) of hydrochloric acid (HCl) doped Emeraldine 

base (EB) samples as a function of dopant (HCl) concentration (a) 0.0 M (b) 0.001 M, (c) 0.01 M, (d) 0.1 

M, (e) 0.3 M, (f) 0.5 M, (g) 0.7 M, (h) 0.9 M and (i) 1.0 M.  

However, it has been observed that formation of such networks and percolation thresholds 

(minimum loading level at which first continuous network of conducting particles is 

formed) critically depend on nature of ICP, its intrinsic conductivity, particle shape, 

morphology, aspect ratio, its concentration, degree of dispersion and extent of compatibility 

with host matrix. 

Nevertheless, at percolation conductivity (σp) remained too low to exhibit any acceptable 

shielding action and generally higher loadings (>30 wt. %) are required though in most 

cases, σp is sufficient to extend antistatic action. Interestingly, when ICPs are combined with 

other conducting fillers (e.g. Polyaniline with MWCNT, Saini et al, 2011) significant 

reduction in percolation threshold, higher conductivity and better shielding performance is 

observed as compared to pristine (unfilled) ICPs.  

0.0 0.2 0.4 0.6 0.8 1.0
-18

-15

-12

-9

-6

-3

0

3

(i)
(h)(g)(f)(e)

(d)

(c)

(b)

(a)

 

E
le

c
tr

ic
a
l 
C

o
n

d
u

c
ti

v
it

y
 (

ln
 

d
c
) 

(S
/c

m
)

Dopant Concentration (M)



 
New Polymers for Special Applications 92 

 

Figure 11. Protonic acid doping of polyaniline leading to formation of charge carriers polarons (radical 

cations) and bipolarons (dications)  

 

Figure 12. Variation of conductivity (σdc) of PANI-MWCNT nanofiller loaded polystyrene solution 

blends. Inset shows the percolation and scaling details  

In many cases conjugated polymers are used as matrix instead of conventional insulating 

polymers. When conducting fillers (e.g. metal particles, carbon black, graphite or CNTs) are 

incorporated within undoped (poorly conducting) ICP matrices, electrical conductivity 

increases and follows a typical percolation behavior. In contrast, the loading of above 

conducting fillers within microwave non-transparent doped (intrinsically conducting) ICP 

matrices lead to further enhancement (Fig. 13) of electrical conductivity. Such improvement 

can be explained on the basis of granular metal/inhomogeneous doping model (Sheng & 
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Klafter, 1983) which considered that ICPs consists of highly conducting metallic islands 

dispersed within low conductivity amorphous matrix. Therefore, above improvement in 

conductivity can be attributed to bridging of these metallic islands (Saini et al, 2009a) by the 

metallic filler particles facilitating enhanced inter-particle transport. The increase in 

conductivity is strongly dependent on nature, concentration and aspect ratio of filler 

particles as well as type and morphology of host ICP matrix.  

 

Figure 13. Dependence of electrical conductivity of in-situ polymerized PANI-MWCNT 

nanocomposites on MWCNT content 

 

Figure 14. Correlation between electrical conductivity (σ) and shielding effectiveness (SE) showing 

linear dependences of (a) reflection loss (SER) on log σ and (b) absorption loss (SEA) on σ1/2. 

Nevertheless, the establishment and enhancement of electrical conductivity is of paramount 

importance because it leads to parallel enhancement of reflection and absorption loss 

components (Fig. 14, Saini et al, 2009a) leading to enhancement of overall shielding 
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effectiveness. Interestingly, absorption loss (SEA) increases by much larger magnitude (with 

conductivity) compared to corresponding reflection loss (SER) component. For a non-

magnetic material, this can be explained on the basis of logarithmic [i.e. log(σ)] and square 

root [i.e. (σ)1/2] conductivity dependence of SER and SEA respectively as shown in Fig. 14.  

3.4.5. Dielectric and magnetic properties of ICP based nanocomposites 

A secondary mechanism of shielding is absorption for which shield should possess electric 

or magnetic dipoles. These dipoles can interact with transverse electric (E) and magnetic (H) 

vectors of the incident EM waves to introduce losses into the system. It is interesting to note 

that pure (without any external filler loading) conjugated polymers in their undoped (base) 

forms possess poor dielectric and magnetic properties. However, controlled doping leads to 

marked improvement (Fig. 15) in dielectric properties (e.g. dielectric constant/real-

permittivity, dielectric losses/imaginary-permittivity), although even after doping magnetic 

properties (e.g. real and imaginary magnetic permeability) remained poor. 

 

Figure 15. Dependence of (a) real permittivity or dielectric constant (  ' ) and (b) imaginary 

permittivity or dielectric loss (  " ) on the dopant concentration for acrylic acid (AA) doped emeraldine 

base (EB) samples 

As already discussed, doping of ICPs leads to formation of polarons/bipolarons (Fig. 11) that 

produces pronounced polarization/relaxation effects (Olmedo et al, 1995, 1997; Saini et al, 

2008, 2009a, 2011; Stafstrom et al, 1987). Therefore, observed improvement of dielectric 

properties with doping level can be attributed formation and increase in concentration of 

above localized carriers. The correlation between dielectric properties and shielding 

response for various ICPs is presented in Fig.16 which clearly shows that the total shielding 

efficiency (SET) increases as the absolute value of complex dielectric constant increases. 

The increase of both real and imaginary parts of dielectric permittivity contributes (Joo & 

Epstein, 1994) towards enhancement of SET. Furthermore, the complex dielectric constant 
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dependence of absorption loss (SEA) component (inset of Fig. 16) was found to be much 

stronger compared to that due to reflection loss (SER). In some cases, especially for highly 

doped and stretch oriented ICPs; dielectric constant becomes negative (Javadi et al, 1989; Joo 

& Epstein, 1994; Joo et al, 1994; Hsieh et al, 2012; Wang et al, 1991) and ultra-high 

attenuation is observed which suggests the possibility of ICP based left handed materials 

(LHMs) or meta-materials. 

 

Figure 16. Total shielding efficiency (SET) vs absolute value of complex dielectric constant [(  2 2

r i
)1/2] 

of various conducting polymers. Inset: comparison of reflection (◦) and absorption (▪) shielding 

efficiency as a function of absolute value of complex dielectric constant. Solid lines are guides to the eye. 

Reprinted with permission from [J. Joo and A. J. Epstein, Appl. Phys. Lett. 65 (18), 2278-2280, 1994]. 

Copyright [1994], American Institute of Physics. 

 

 

Figure 17. Loss tangent (tan δ) of in-situ synthesized PANI-MWCNT nanocomposites as a function of 

MWCNT loading 
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Interestingly, for ICPs, besides doping induced polarization filler induced interfacial 

polarization may also contribute towards dielectric properties. For example, when 

conducting fillers like metal particles, graphite or carbon nanotubes are introduced into ICP 

matrices; further improvement of dielectric properties was observed. Such a polarization 

occurs due to electrical conductivity differences between ICP and metallic fillers leading to 

charge localization at interfaces via Maxwell-Wagner-Sillars (Kremer & Schönhals, 2003; 

Riande & Diaz-Calleja, 2004; Sillars, 1937; Wagner, 1914) interfacial polarization 

phenomenon. Such polarization and related relaxation phenomenon contribute towards 

energy storage and losses. The actual losses can be computed by normalization of these 

losses with storage terms [i.e. by ratio of dielectric losses/imaginary permittivity (  " ) with 

dielectric constant/real permittivity (  ' )] to quantity loss tangent (tan δ). 

In case of in-situ formed MWCNT-polyaniline nanocomposites, improvement of dielectric 

properties leads to high value of loss tangent (Fig. 17) which further increases (Saini et al, 

2009a) with increase in MWCNT loading. However, though for a given thickness, total 

shielding is dominated by absorption, reflection loss component becomes too high form the 

viewpoint stealth technology. Nevertheless, despite good dielectric properties, magnetic 

properties of ICPs remained poor to extend any significant contribution towards EMI 

regulation. In principle, for highly conducting materials, only conductivity (σ) and magnetic 

permeability (μ) are important, such that the reflection loss (SER) is dependent upon their 

ratio (i.e. σ/μ) whereas the absorption loss (SEA) is a function of their product (i.e. σ.μ) (Saini 

et al, 2011). In contrast, for moderately conducting materials (e.g. ICPs) permittivity () also 

plays a significant role (besides σ and μ) in deciding absolute values of SER and SEA (Joo & 

Epstein, 1994). As most ICPs are non magnetic in nature (μr≈μi≈0), observed attenuations are 

mainly governed by σ and  only. Therefore, it is expected that any improvement in 

magnetic properties will lead to definite improvement of absorption loss alongwith parallel 

reduction of reflection loss. In addition, the incorporation of high dielectric constant 

materials like BaTiO3, ZnO, TiO2 etc. within ICP matrices are expected to further improve 

the microwave absorption response. Consequently, in recent years, lot of work has been 

carried out to formulate composites of polyaniline with the dielectric or magnetic filled 

inclusions, either by in-situ polymerization or by ex-situ physical mixing processes (Abbas 

et al, 2005, 2006, 2007, 2008). Such composites possess moderate polarization or/and 

magnetization alongwith good microwave conductivity so as to introduce absorbing 

properties into the material. They display dynamic dielectric and/or magnetic losses, upon 

impingement by incident electromagnetic waves. As electromagnetic wave consists of an 

pulsating (orthogonal to each other) electric (E) and the magnetic (H) fields; therefore, above 

multi-component composites are expected to yield good attenuation efficiencies, primarily 

due to interaction of conducting/dielectric and conducting/magnetic phases with E and H 

vectors of the incident EM waves (Fig. 5). Furthermore, most insulating polymer matrices 

possess poor electrical, dielectric or magnetic properties and are transparent to radio 

frequency (RF) or microwave (MW) electromagnetic radiations (EMRs). Therefore, only 

fillers contribute towards shielding and leakage of radiation from EMR transparent regions 

tends to degrade shielding effectiveness. However, microwave non-transparency (Olmedo 

et al, 1995, 1997; Saini et al, 2011) of ICPs compared to conventional polymers is an added 
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advantage as both filler and matrix contribute towards shielding. Moreover, the dominant 

shielding characteristic of absorption for above nanocomposites materials other than that of 

reflection for metals render ICPs more useful in applications requiring not only high EMI SE 

but also shielding by absorption, such as in stealth technology.  

When ICPs are exploited as microwave non-transparent matrices, the added dielectric or 

magnetic filler particles result in establishment of properties (e.g. dielectric/magnetic 

character, thermal conductivity etc.), that are extrinsic to these intrinsically conducting 

polymers. Therefore, combination of dielectric or magnetic nanoparticles with conducting 

polymer leads to formation of multi-component composite possessing unique combination 

of electrical, dielectric and magnetic properties useful for suppression of electromagnetic 

noises and reduction of radar signatures (Abbas et al, 2005, 2007; Chan, 1999; 

Chandrasekhar, 1999; Cho & Kim, 1999; Dong et al, 2008; Ellis, 1986; Gairola et al, 2010; 

Huang, 1990; Knott et al, 1993; Kurlyandskaya et al, 2007; Meshram et al, 2004; Nalwa, 1997; 

Ngoma et al, 1990; Pant et al, 2006; Phang et al, 2007, 2008, 2009, 2010; Xiaoling et al, 2006; 

Xu et al, 2007; Yang et al, 2009). The incorporation of magnetic fillers (e.g. ferrites like γ-

Fe2O3 or Fe3O4) within ICP matrices leads to improvement of magnetic properties (Fig. 18) 

without much loss of conductivity. Such a combination is expected to display additional 

magnetic loss leading to enhanced absorption. 

   

Figure 18. Magnetization of polyaniline (PANI), γ–Fe2O3 nanoparticles and nanocomposites formed by 

in-situ polymerization taking different weight ratio of aniline: γ–Fe2O3 (a) 2:1, (b) 1:1 & (c) 1:2 

The magnetization plots (Fig. 18) of polyaniline/γ-Fe2O3 composites revealed that pure γ-

Fe2O3 nanoparticles display pronounced magnetic signatures with narrow hysteresis loop. 

The saturation magnetization (Ms) value of of these particles was found to be 59.3 emu/g (at 

5.0 kG) alongwith very small retentivity (Mr~ 4.3 emu/g) and coercivity (Hc~ 83.8 G), which 

indicate the super-paramagnetic (SPM) nature of these particles. The SPM character imparts 

fast relaxation behaviour and originates due to small size of the ferrite particles i.e. 

approaching towards the single domain limit (Qiao et al, 2009). However, PANI possesses 

weak ferromagnetic behaviour and with increase in ferrite content, enhancement of Ms was 
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observed with as parallel reduction of coercivity (Hc). The initial permeability (i) of 

ferromagnetic materials can be expressed as (Stonier, 1991): 

 


 
    
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s

i
c s

M

akH M b
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where a and b are two constants determined by the material composition,   is the magneto-

striction constant,   is elastic strain parameter of crystal, and k  is a proportionality 

coefficient. The above equation shows that permeability can be enhanced either by 

enhancing Ms or by reducing HC. In the present system, the incorporation of ferrite within 

PANI matrix is expected to affects the surface electron density of γ-Fe2O3 nanoparticles and 

hence the spin-spin or spin-lattice interactions. The results show that Ms value increases 

(5.94 to 16.4 emu/g) with increasing ferrite content (plots a-c) whereas Hc shows a 

simultaneous decrement (35.7 to 57.8 G). Therefore, It can be seen from the eqn. (50) that 

both higher Ms and lower Hc values are favorable to the improvement of i value, which in 

turn is expected to enhance the microwave absorption capability. 

In many cases, highly doped ICP particles are used as conducting fillers (in place of metal or 

carbon based materials) for various insulating polymer host matrices. This not only leads to 

establishment and improvement of electrical conductivity but also contribute towards 

improvement of both real as well as imaginary permittivity (Abbas et al, 2005; Colaneri & 

Shacklette, 1992; Joo et al, 1994; Saini et al, 2011; Shacklette et al, 1992; Taka, 1991; Wessling, 

1999).  

Again the magnetic properties remained poor due to non-magnetic nature of most ICPs. 

However, when magnetic filler loaded ICPs is use hybrid filler, improvement in magnetic 

properties has also been observed besides regular improvement of dielectric attributes. For 

example use of PANI-MWCNT hybrid filler within polystyrene matrix leads to formation of 

composites with magnetic properties due to MWCNT core (containing entrapped 

ferromagnetic iron catalyst phase) and electrical conductivity/dielectric properties due to 

ICP and MWCNTs. As the concentration of PANI-MWCNT filler increases, real and 

imaginary parts of both permittivity and permeability increases as shown in Fig. 19. Most 

importantly, losses due to reflection (SER) and absorption (SEA) follows the permittivity and 

permeability trends and exhibit corresponding increase. However, SEA was more sensitive 

towards electromagnetic attributes compared to SER which may be attributed to their square 

root and logarithmic dependences. Furthermore, two most important parameters that 

decide the relative magnitudes of SER and SEA are microwave conductivity (σT) and skin 

depth (δ). The σT can be related to imaginary permittivity (ε" or εi) as (Saini et al, 2011): 

       T ac dc o(  ) "   (51) 

where σac and σdc are frequency dependent (ac) and independent (dc) components of σT 

respectively, ω is angular frequency and εo is permittivity of free space (8.85 x 10-12 F/m). 

Higher the value of σT more will be reflection for a given absorption. Further, the skin depth 

(δ) of the shield is defined as depth of penetration at which strength of incident EM signal is 
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reduced to ~37% of its original magnitude. For a good conductor (i.e. 
T

>>ωε), it (δ) can be 

expressed in terms of σT real permeability (  ' or i ) and ω as (Joo. et al, 1994):   

 
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  (52) 

Now shallower is the skin depth, higher will be absorption loss for a given thickness of 

material. Fig. 20 shows that as the loading level of PANI-MWCNT filler within PS matrix 

increases, σT increases whereas δ value decreases.  

 

Figure 19. Frequency dependence of (a) dielectric constant (  ' ) & real permeability (  ' ), (b) dielectric 

loss (  " ) & magnetic loss (  " ) of PANI-MWCNT/Polystyrene nanocomposites with increasing 

loading (10, 20 & 30 weight %) of PANI-MWCNT filler. Dependences of losses due to absorption (SEA) 

and reflection (SER) of above composites as a function of absolute value of (c) complex permittivity [(

 2 2

r i
)1/2] , (d) complex permeability [(  2 2

r i
)1/2]. 
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Figure 20. Dependence of (a) 
T

 and (b) δ value of PANI-MWCNT loaded polystyrene composites on 

the loading of PANI-MWCNT 

3.4.6. EMI shielding performance of ICP based nanocomposites 

In the previous section we learned about the importance of parameters such as electrical 

conductivity and dielectric/magnetic attributes in regulating the shielding effectiveness and 

their correlation with reflection and absorption loss components. This section is devoted to 

measurement and interpretation of shielding effectiveness alongwith detailed analysis of 

reflection and absorption sub-components.  

 

Figure 21. Frequency and dopant concentration dependence of total shielding effectiveness (SET) value 

of samples prepared by doping of emeraldine base (EB) with different concentrations of acrylic acid 

(AA) viz. (a) 0.0 M, (b) 0.05 M, (c) 0.1 M, (d) 0.5 M, (e)1.0 M and (f) 2.0 M 

As already discussed doping produces localized defects (polarons/bipolarons) that are 

responsible for polarization and electrical conductivity. With the increase in dopant 

concentration, achieved doping level increases leading to enhancement of polaronic 
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concentration as well as related conductivity/permittivity, which ultimately leads to 

improvement of shielding effectiveness (Fig. 21). Nevertheless, though based on microwave 

dielectric constant and electrical conductivity values many speculations were made about 

the shielding properties of ICPs, the first direct evidence of shielding response of ICP based 

composites alongwith actual shielding effectiveness values was presented by Taka (1991). 

He prepared poly(3-octyl thiophene) composites by melt mixing chemically synthesized 

poly(3-octyl thiophene) with PS, PVC, and EVA in and tested for EMI shielding at frequency 

range from 100 kHz to 1GHz. EMI SE of these composites (3 mm thick) increased with the 

polymer loadings and -45 dB (from 100 kHz to 10 MHz) was achieved with high (i.e. 20%) 

loading in the PVC that was still lower than that of a nickel painted sample (-80 dB). The 

measurements showed that P3OT blends behave as pseudo-homogenous metals (PHM). A 

PHM has no intentional holes or slits but lacks homogeneity. The shielding efficiency 

depends strongly on the amount of conducting polymer mixed in the blends due to 

regulation of conductivity. The authors concluded that composites with 20% or less loading 

of poly(3-octyl thiophene) were not readily applicable as EMI shielding.  

 

Figure 22. EMI shielding effectiveness (at 1.0 GHz frequency) of ICP loaded PVC blends as a function 

of DC electrical conductivity under (a) far field and (b) near field regimes 

Later, systematic study of EMI shielding behavior of conducting polymer (PANI) based 

thermoplastic blends with polyvinyl chloride (PVC) or Nylon was reported (Colaneri & 

Shacklette, 1992; Shacklette et al, 1992). The EMI SE values of these highly conducting 

blends (~0.1-20 S/cm) were measured over a frequency range of 1 MHz to 3 GHz and also 

calculated theoretically under both near and far field regimes. The results are graphically 

presented in Fig. 22 which showed that both near and far filed SE followed the DC electrical 

conductivity and exhibit rapid initial rise followed by slow increment at higher 

conductivity. Far field SE of -70 dB was obtained for the melt blend of polyaniline (again at 

higher loading level of 30 wt. %) with PVC which agreed well with the theoretical 

calculations as per expressions derived by authors. Pomposo et al (1999) have prepared PPY 

based conducting hot melt adhesives by melt mixing appropriate amounts of ethylene-co-
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vinyl acetate (EVA) copolymer and PPY, which was synthesized with oxidant of FeCl3. Both 

near and far field EMI shielding properties of the adhesives were measured at room 

temperature and found to increase with the loading of PPY. Near field SE in excess of -80 dB 

was determined at 1MHz and above -30 dB at 300 MHz, though a decrease with increase of 

frequency. Far field SE values of -22, -27 and -30 dB were determined (in the 1 to 300 MHz 

frequency range) for PPY loadings of 15, 20 and 25% respectively. Similarly, Wessling (1999) 

prepared highly conductive blends of PANI with PVC, polymethylmethacrylate (PMMA) or 

polyester at Ormecon Chemie, with conductivities of ca. 20 S/cm and in some cases up to 100 

S/cm. These blends exhibited EMI SE of -40 to -75 dB for both near and far field conditions. 

However, mechanical properties were not encouraging and demanded considerable 

improvement. In addition the higher necessary thicknesses of 2-3 mm of these blends were 

found to be higher than technically acceptable thickness of 0.5–0.8 mm for practical uses.  

Naishadham & Kadaba (1991), Naishadham & Chandrasekhar (1998) and Chandrasekhar & 

Naishadham (1998) reported the cumulative broadband (4-18 GHz) measurements and 

computations of all microwave parameters (e.g. conductivity, absorption, complex 

permittivity, shielding and reflection) of sulfonate doped PANI. It was found that the total 

SE of -35 to -15 dB was obtained with return loss of -5 to -1 dB and nominal absorption of     -

5 dB for PANI samples of conductivity 1-7 S/cm. Authors also demonstrated that better SE 

value upto -50 dB can be realized by stacking several polymeric sheets of different 

thicknesses or by sandwiching a lossy dielectric between two sheets of the same thickness.  

 

Figure 23. Thickness dependence of total shielding efficiency (SET) of various ‘‘crosslinked’’ polyaniline 

(XPANI-ES) samples. Sample I: highly XPANI-ES [3.5 times (×) stretched, parallel (||)], sample II: 

intermediate XPANI-ES [3.5×,||), sample III: highly XPANI-ES (3.5×,  ), sample IV: highly XPANI-ES 

(unstretched), and sample V: non-XPANI-ES  (12.5×,  ). Inset: comparison of σmw , εr, and tan δ. 

Reprinted with permission from [J. Joo and A. J. Epstein, Appl. Phys. Lett. 65 (18), 2278-2280, 1994]. 

Copyright [1994], American Institute of Physics. 

It has been found that electrical conductivity is not the sole scientific criteria for exhibiting 

high shielding effectiveness (Joo & Epstein, 1994) and good attenuations were also extended 
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by moderate conductors with good dielectric properties. In fact as mentioned in the 

previous section, it has now been established that shielding effectiveness increases (as 

shown previously in Fig. 16) with absolute value of complex dielectric permittivity. 

Furthermore, absorption loss was found to be more sensitive towards permittivity (inset Fig. 

16) than corresponding reflection loss. Figures  23 and 24 show the microwave SE of pure 

ICPs including PANI and PPY (in thin film forms) as a function of their intrinsic properties 

(insets of Fig. 23 and Fig. 24) such as microwave conductivity (σmw) and dielectric constant 

(εr) alongwith its dependence on extrinsic parameters like thickness (t) and temperature (T). 

The role of parameters like degree of crosslinking and parallel (||) or perpendicular (  ) 

stretch orientation which tends to affect σmw, εr or loss tangent (tanδ) has been clear from the 

table data (above insets). 

 

Figure 24. Thickness dependence of total shielding efficiency (SET) of highly conducting polymers. 

Sample A: stretched heavily iodine doped Tsukamoto polyacetylene (dotted line is obtained by using 

approximated α and n), sample B: unstretched heavily iodine doped Tsukamoto polyacetylene, sample 

C: camphor sulfonic acid doped polyaniline in m-cresol solvent, sample D: PF6 doped polypyrrole, and 

sample E: TsO doped polypyrrole. Inset: comparison of σmw , εr, and tan δ. Reprinted with permission 

from [J. Joo and A. J. Epstein, Appl. Phys. Lett. 65 (18), 2278-2280, 1994]. Copyright [1994], American 

Institute of Physics. 

It can be concluded that SE of PANI and PPY films show weak temperature dependence. 

However, pronounced thickness effects were observed with attenuation level of -30 to -90 

dB depending on thickness and conductivity. Different types of shielding mechanisms i.e. 

reflection, absorption and multiple reflections were discussed and corresponding theoretical 

equations were also presented. It has been found that absolute value of tanδ plays a critical 

role in determining the shielding effectiveness. When tanδ >> 1 (e.g. for heavily doped and 

highly conducting ICPs or metals), shielding is solely determined by σ. However, when  

tanδ ~ 1, both σ and εr must be considered when calculating absorption coefficient (α) and 

complex index of refraction (n) which decide overall shielding effectiveness. Therefore, one 

can expect higher shielding efficiency for materials with higher σ and εr.  
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It has been observed that magnetic properties also play a vital role in improving shielding 

response. Kathirgamanathan et al (1993) have demonstrated that PPY impregnation 

microporous membranes such as polyurethane, polyethylene, poly(ethylene terephthalate) 

(PET), poly(propylene) etc., showed higher SE (~ -10 to -50 dB) in the 10 kHz to 1000 MHz 

frequency range as compared to metal (e.g. Al) based membranes. The authors pointed out 

the higher relative magnetic permeability (μr>1) due to the incorporation of paramagnetic Fe 

(III) during the synthesis process provided extra shielding by absorption as compared with 

the μr~1 for aluminum. Furthermore, the microscopic orientation of ICPs is expected to 

improve SE as showed by the fact that higher SE was exhibited by the PPY impregnated 

polyethylene membranes (-40 to -45 dB) than that of the impregnated polyurethane 

membranes (-20 to -25 dB), despite the much lowered thickness (1/5th) which was due to the 

more oriented PPY produced in polyethylene than that in polyurethane.  

 

Figure 25. Frequency dependence of losses due to reflection (SER) and absorption (SEA) for MWCNT 

loaded PANI nanocomposites having different  loadings of MWCNT relative to aniline monomer viz. 

PCNT0 (0.0 wt. %),PCNT5 (5.0 wt. %), PCNT10 (10 wt. %), PCNT20 (20 wt. %) and PCNT25 (25 wt. %). 

Synergistic coupling of fillers can give unique combination of properties (Saini et al 2009a) 

like enhanced conductivity, better dielectric/magnetic traits and improved 

processability/thermal conductivity that can not be achieved by individual fillers. This 

ultimately gets resulted in superior shielding performance (Fig. 25) so that reflection loss 

(SER) increases slightly from -8.0 to -12.0 dB whereas absorption loss (SEA) exhibited rapid 

enhancement from -18.5 to -28.0 dB with the increase in CNT loading. This may be ascribed 

to increase in the conductivity (as well as capacitive coupling effects) of composites leading 

to proportional decrease in skin depth which may be helpful in designing thinner EMI 

shields. The increased conductivity may manifest itself as increase in both long range charge 

transport as well as number of possible relaxation modes, leading to enhanced ohmic losses.  

The well-dispersed PANI NPs within insulating epoxy matrix provides continuous 

conducting networks with higher level of charge delocalization which leads to huge 
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negative permittivity (Hsieh et al, 2012) which is a signature of left handed materials (LHM). 

The observed EMI SE in an electric field at low frequency (100−1000 MHz) range was found 

to be -30 to -60 dB.  

A straight forward solution for handling low conductivity and poor processability (or 

agglomeration tendency) of ICPs and CNTs respectively is combining these two fillers in 

composites. Saini et al (2009a) prepared polyaniline (PANI) coated multiwall carbon 

nanotubes (MWCNTs) which inherit dielectric and magnetic attributes (ferromagnetism due 

to entrapped iron phase) from PANI and MWCNT respectively. 

 

Figure 26. (a) Frequency dependence of SET and (b) variation of SER and SEA with loading of PANI-

MWCNT. Inset shows the theoretical and experimental SER and SEA value of the composite (PCNT30) in 

the 12.4 - 18.0 GHz frequency band.  

This PANI-MWCNT hybrid filler was solution blended with polystyrene (PS) matrix (10-30 

wt % loading) resulting in absorption dominated total shielding effectiveness (SET) of -45.7 

dB (Fig. 26a) in the 12.4–18.0 GHz range and at a sample thickness of ~2.0 mm. The SET was 

found to exhibit strong dependence on shield thickness as well as loading level of hybrid 

filler (PANI-MWCNT).  

The enhanced SET was ascribed to optimization of conductivity, skin-depth, complex 

permittivity and permeability leading to nominal reflection and high absorption (Fig. 26b). 

A good agreement between theoretical and experimental shielding measurements (inset of 

Fig. 26b & Fig. 27) was also observed. Besides, role of highly reflecting planes of PANI-

MWCNTs separated with less conducting matrix regions was also explained to introduce 

multiple reflections resulting in enhancement of absorption loss.  

The above studies suggests that ICPs based nanocomposites may give SE value as high as    -

70 to -80 dB depending on nature of ICP, its loading level and presence of co-fillers. 

However, high loadings (>30-40%) are required which leads to phase segregation and 

extreme disturbance of physical properties of host matrices and consequently poor 

mechanical properties in most cases. Nevertheless, combination of strategies like thin 

film/membrane technologies, porous structures, negative permittivity materials (or left 
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handed materials), multilayered structures and hybrid fillers based on broad range of ICP-

filler combination are expected to provide an effective solution to realize a lightweight, 

mechanically strong, processable and economically viable shielding material suitable for 

commercial and defence sectors.  

 

Figure 27. Variation of (a) SER as function of 
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 and (b) SEA as function of   
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2'T  for PANI-

MWCNT filled polystyrene composites  

Recently, nanoscale materials based on 2-D graphene sheets have attracted much attention 

recently due to unusual properties (Geim, 2009; Geim & Novoselov, 2007; Meyer et al, 2007). 

Like CNTs, here again it is expected that the use of graphene, with large aspect ratio and 

high conductivity would provide a high EMI SE. Although many studies (In et al, 2010; 

Liang et al, 2009; Ramanathan et al, 2008; Stankovich et al, 2006; Varrla et al, 2011, Zhang et 

al, 2011) about the EMI shielding properties of graphene loaded insulating polymer matrix 

composite systems are available, Basavaraja et al (2011) presented the first EMI shielding 

results on ICP/oxidized graphene based nanocomposites i.e. Polyaniline/gold-

nanoparticles/graphene-oxide (PANI-GNP-GO) based composites in the 2.0-12.0 GHz 

frequency range. According to authors, the SE values observed for GO and PANI-GNP and 

PANI-GNP-GO composites were in the ranges -20 to -33 dB, -45 to -69 dB and -90 to -120 dB 

respectively. However, considering the fact that GO is a poor conductor, conclusion from 

the presented thickness dependences of above composites and from our own experience, the 

results seem to be far from realistic. Nevertheless, the graphene nanocomposites research is 

still at very early stage of evolution especially from the view point of EMI shielding material 

development.  

For many applications e.g. radar absorbers or stealth technology, the sample should reflect 

as low energy as possible. However, conducting filler loaded composites gives significant 

reflection (primary shielding mechanism) alongwith absorption which is secondary EMI 

shielding mechanism. For reduction of reflection loss and significant absorption of the 
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radiation, the shield should have electric and/or magnetic dipoles which interact with the 

electromagnetic fields in the incident radiation. Therefore, numerous attempts have also 

been made to introduce dielectric (BaTiO3, TiO2 etc.) or magnetic (γ-Fe2O3, Fe3O4, BaFe12O19 

etc.) materials within various ICP matrices as filled inclusions (Abbas et al, 2005, 2007; Chan, 

1999; Chandrasekhar, 1999; Cho & Kim, 1999; Dong et al, 2008; Ellis, 1986; Gairola et al, 2010; 

Huang, 1990; Knott et al, 1993; Kurlyandskaya et al, 2007; Meshram et al, 2004; Nalwa, 1997; 

Ngoma et al, 1990; Pant et al, 2006; Phang et al, 2007, 2008, 2009, 2010; Xiaoling et al, 2006; 

Xu et al, 2007; Yang et al, 2010, 2011). It has been observed that thickness is an extrinsic 

parameter that can be adjusted to regulate the shielding offered by a shielding with given 

permittivity or permeability which can be tuned by nature and concentration of filler. An 

optimized dielectric particulates filled composite sample based on BaTiO3 and polyaniline in 

polyurethane matrix (Abbas et al 2005) exhibited a maximum reflection loss of -15 dB (>99% 

power absorption) at 10 GHz with a bandwidth of 3.0 GHz for a 2.98 mm thick sample. 

Again the role of thickness and dielectric attributes to modulate absorption was 

demonstrated by theoretical calculations and experimental results. Similarly, they have also 

prepared polyaniline-BaTiO3-carbon based composites (Abbas et al 2006) with maximum 

reflection loss of -25 dB (2.5 mm thick sample) at 11.2 GHz and bandwidth of 2.7 GHz. Many 

attempts were also made to introduce magnetic losses into the system for example, Yang et 

al (2009) produced PANI-Fe3O4 composites with reflection loss of -2 dB at 14.6 GHz for 3 

mm thick sample. Gairola and coworkers (2010) prepared PANI with Mn0.2Ni0.4Zn0.4Fe2O4 

ferrite nanocomposites by mechanical blending with absorption loss of -49.2 dB in the 8.2-

12.4 GHz range. Dong et al (2008) synthesized PANI-Ni core shell composites with reflection 

loss of less than -10 dB in the 4.2–18 GHz range. Phang and coworkers (2009) formulated 

PANI-HA based nanocomposites containing TiO2 and Fe3O4 nanoparticles as dielectric filler 

and magnetic filler, respectively. The resultant composites show good microwave 

absorption response with attenuation of -48.9 dB. Phang et al (2007, 2008) produced PANI 

nanocomposites containing combination of dielectric (TiO2) and conducting (CNTs) fillers 

possessing moderate conductivity and dielectric property with maximum reflection loss of -

31 dB (for PANI-TiO2) at 10 GHz and -21.7 dB (PANI-TiO2-CNT) at 6GHz. In above 

composites, use of conducting fillers such as CNTs is expected to improve thermal 

conductivity (e.g. 0.19 W/mK for PANI and 0.3-0.6 W/mK for PANI-CNT composites) 

besides extending enhanced shielding performance. Such an improvement in thermal 

conductivity is beneficial for fast dissipation of heat which is generated due to interaction of 

shield with high frequency (GHz range) microwave radiations.  

4. Conclusions 

Although, much work has been done to introduce electrical conductivity in various polymer 

matrices but high percolation threshold and lower aspect ratios of ICPs compared to metals 

or carbon based fillers remained a challenging issue. Therefore, considerable work is still 

needed to improve further the SE as well as mechanical properties of conducting polymer 

based composites. Synthesis of hybrid filler materials based on various combination of 

conducting polymers, carbon based materials and dielectric/magnetic nanoparticles seem to 

be a possible solution. Nevertheless, in the light of current scenario it may be stated that 
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there is a lot be done to attain a shielding material that can satisfy all the techno commercial 

specification and maintain the process economics at the same time. 
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