
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000



Chapter 6

Foods or Bioactive Constituents of Foods as
Chemopreventives in Cell Lines After Simulated
Gastrointestinal Digestion: A Review

Antonio Cilla, Amparo Alegría, Reyes Barberá and
María Jesús Lagarda

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51504

1. Introduction

Epidemiological studies on the relationship between dietary habits and disease risk have
shown that food has a direct impact on health. Indeed, our diet plays a significant role in
health and well-being, since unbalanced nutrition or an inadequate diet is known to be a key
risk factor for chronic age-related diseases [1]. An example that illustrates this fact is the pro‐
tective effect of the so-called Mediterranean diet. The lower occurrence of cancer and cardio‐
vascular disease in the population located around the Mediterranean sea has been linked to
the dietary habits of the region, in which the components of the diet contain a wide array of
molecules with antioxidant and antiinflammatory actions [2].

Many diseases with a strong dietary influence include oxidative damage as an initial event
or in an early stage of disease progression [3]. In fact, Western diets (typically dense in fat
and energy and low in fiber) are associated with disease risk [4]. Therefore, dietary modifi‐
cation, with a major focus on chronic age-related disease prevention through antioxidant in‐
tervention, could be a good and cost-effective strategy [5]. The intake of whole foods and/or
new brand developed functional foods rich in antioxidants would be suitable for this pur‐
pose. In this sense, dietary antioxidants such as polyphenols, carotenoids and peptides, as
well as other bioactive chemopreventive components such as fiber and phytosterols have
been regarded to have low potency as bioactive compounds when compared to pharmaceut‐
ical drugs, but since they are ingested regularly and in significant amounts as part of the di‐
et, they may have noticeable long-term physiological effects [6].
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For decades, the beneficial role of antioxidants was related to the reduction of unwanted
and uncontrolled production of reactive oxygen species (ROS), leading to a situation refer‐
red to as oxidative stress [7]. Nowadays, the term “antioxidant” has become ambiguous,
since it has different connotations for distinct audiences. For instance, for biochemists and
nutritionists, the term is related to the scavenging of metabolically generated ROS, while for
food scientists the term implies use in retarding food oxidation or for the categorization of
foods or substances according to in vitro assays of antioxidant capacity, such as the ORAC
and TEAC tests [8]. The antioxidant values provided by these assays sometimes have been
misinterpreted by both food producers and consumers due to the fact that health claims ad‐
vertised on the package labeling are directly associated with benefits that include slowing of
the aging process and decreasing the risk of chronic disease. Nevertheless, contemporary
scientific evidence indicates that total antioxidant capacity measured by currently popular
chemical assays may not reflect the actual activity in vivo, since none of them take biological
processes such as bioavailability, uptake and metabolism into account [9]. Therefore, no in
vitro assay that determines the antioxidant capacity of a nutritional product describes in vivo
outcomes, and such testing should not be used to suggest such a connection. In this sense, it
is currently recognized that the mechanisms of action of antioxidants in vivo might be far
more complex than mere radical scavenging - involving interactions with specific proteins
central to intracellular signaling cascades [10], and in the specific case of cancer cells there
might be a direct antioxidant effect, antiproliferation and anti-survival action, the induction
of cell cycle arrest, the induction of apoptosis, antiinflammatory effects and the inhibition of
angiogenesis and metastasis [11].

In order to determine and verify the action of these bioactive compounds, it is clear that data
from human intervention studies offer the reference standard and the highest scientific evi‐
dence considering the bioavailability and bioactivity of a food component, while in vitro
methods are used as surrogates for prediction [12]. From a physiological perspective, food
after consumption undergoes a gastrointestinal digestion process that may affect the native
antioxidant potential of the complex mixture of bioactive compounds present in the food
matrix before reaching the proximal intestine. In vitro methods which apply human simulat‐
ed digestion models (including or not including colonic fermentation) are considered valua‐
ble and useful tools for the estimation of pre-absorptive events (i.e., stability,
bioaccessibility) of different food components from distinct food sources, and also for deter‐
mining the effect which processing may have upon food components bioavailability [13]. In
addition, in vitro assays combining a simulated gastrointestinal digestion process and cell
cultures as pre-clinical models can be useful for unraveling mechanisms of action and for
projecting further in vivo assays [9]. Nevertheless, in most cases these in vitro studies are un‐
realistic, because they involve single compounds used at high concentrations (pharmacolog‐
ical and not dietary concentrations) far from the low micromolar or nanomolar
concentrations detected in vivo, or use the bioactive compounds “as they are in food” versus
the metabolites or derivatives considered to be the true bioactive compounds, over an ex‐
tended period of time (up to 120 h). As a result, biological activity may be overestimated,
since no account is taken of the possible transformation of these compounds during gastro‐
intestinal digestion with or without colonic fermentation [6]. Likewise, the use of single or
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crude compounds instead of whole foods impedes the detection of synergistic and/or antag‐
onistic actions among bioactive chemopreventive compounds [14, 15].

Taking this background together, and in order to obtain a more precise view of the in vivo
situation, we propose the use of whole foods or related target bioactive constituents subject‐
ed to a human simulated gastrointestinal digestion including or not including colonic fer‐
mentation, depending on the nature of the studied compounds, in order to gain better
insight from a nutritional/functional point of view of the chemopreventive action derived
from foods and bioactive compounds in cell models of disease.

This review introduces the main features of the different in vitro gastrointestinal digestion
(solubility and dialysis) and colonic fermentation procedures (batch, continuous and contin‐
uous with immobilized feces) for studying the bioaccessibility and further bioavailability
and bioactivity of nutrients and bioactive compounds. It also includes a definition of the
terms: bioavailability including bioaccessibility and bioactivity. Likewise, the main advan‐
tages and disadvantages of these in vitro methods versus in vivo approaches, the improve‐
ment of these models with the inclusion of cell lines, and a short comment on the main
effects that digestion and/or fermentation have on bioactive compounds are included. On
the other hand, a short description is provided of the studies involving the use of human
simulated gastrointestinal digestion and/or colonic fermentation procedures, and of the sub‐
sequent bioactivity-guided assays with cell line models.

2. Simulated gastrointestinal digestion assays

Bioavailability is a key concept for nutritional effectiveness, irrespective of the type of food
considered (functional or otherwise). Only certain amounts of all nutrients or bioactive com‐
pounds are available for use in physiological functions or for storage.

The term bioavailability has several working conditions. From the nutritional point of view,
bioavailability is defined as the proportion of a nutrient or bioactive compound can be used for
normal physiological functions [16]. This term in turn includes two additional terms: bioacces‐
sibility and bioactivity. Bioaccessibility has been defined as the fraction of a compound that is
released from its food matrix in the gastrointestinal tract and thus becomes available for intes‐
tinal absorption. Bioaccessibility includes the sequence of events that take place during food
digestion for transformation into potentially bioaccessible material, absorption/assimilation
through epithelial tissue and pre-systemic metabolism. Bioactivity in turn includes events
linked to how the bioactive compound is transported and reaches the target tissue, how it in‐
teracts with biomolecules, the metabolism or biotransformation it may undergo, and the gen‐
eration of biomarkers and the physiologic responses it causes [12]. Depending on the in vitro
method used, evaluation is made of bioaccessibility and/or bioactivity.

In vitro methods have been developed to simulate the physiological conditions and the se‐
quence of events that occur during digestion in the human gastrointestinal tract. In a first
step, simulated gastrointestinal digestion (gastric and intestinal stages, and in some cases a
salivary stage) is applied to homogenized foods or isolated bioactive compounds in a closed
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system, with determination of the soluble component fraction obtained by centrifugation or
dialysis of soluble components across a semipermeable membrane (bioaccessible fraction).
Simulated gastrointestinal digestion can be performed with static models where the prod‐
ucts of digestion remain largely immobile and do not mimic physical processes such as
shear, mixing, hydration. Dynamic models can also be used, with gradual modifications in
pH and enzymes, and removal of the dialyzed components – thereby better simulating the
actual in vivo situation. All these systems evaluate the aforementioned term “bioaccessibili‐
ty”, and can be used to establish trends in relative bioaccessibility.

The principal requirement for successfully conducting experimental studies of this kind is to
achieve conditions which are similar to the in vivo conditions. Temperature, shaking or agi‐
tation, and the chemical and enzymatic composition of saliva, gastric juice, duodenal and
bile juice are all relevant aspects in these studies. Interactions with other food components
must also be taken into account, since they can influence the efficiency of digestion [12, 17].
A recent overview of the different in vitro digestion models, sample conditions and enzymes
used has been published by Hur et al. [13]. En lipophilic compounds such as carotenoids
and phytosterols, it is necessary to form mixed micelles in the duodenal stage through the
action of bile salts, phospholipases and colipase. This allows the compounds to form part of
the micelles, where they remain until uptake by the enterocytes [18]. In the case of lycopene,
during digestion isomerization of trans-lycopene may occur with the disadvantage that
trans-isomers are less soluble in bile acid micelles [19]. Salivary and gastric digestion exert
no substantial effect on major phenolic compounds. However, polyphenols are highly sensi‐
tivity to the mild alkaline conditions in pancreatic digestion, and a good proportion of these
compounds can be transformed into other unknown and/or undetected forms [20].

Bioactive compounds such as dietary fiber, carotenoids, polyphenols and phytosterols un‐
dergo very limited absorption, and may experience important modifications as a result of
actions on the part of the intestinal microbiota. Small intestine in vitro models are devoid of
intestinal microbes, and are designed to only replicate digestion and absorption processes;
as a result, they are unable to provide information on intestinal fermentation processes. The
incorporation of colonic/large intestine fermentation offers a better approximation to the in
vivo situation, and allows us to study the effect/interaction between these compounds and
the intestinal microbiota.

In vitro colonic fermentation models are characterized by the inoculation of single or mul‐
tiple chemostats with fecal microbiota (of rat or human origin) and operated under phys‐
iological  temperature,  pH  and  anaerobic  conditions.  There  are  two  types  of  colonic
fermentation models:  batch culture  and continuous cultures.  Batch culture  describes  the
growth  of  pure  or  mixed  bacterial  suspensions  in  a  carefully  selected  medium with‐
out  the  further  addition  of  nutrients  in  closed  systems  using  sealed  bottles  or  reactors
containing  suspensions  of  fecal  material  under  anaerobic  conditions.  The  advantages  of
batch  fermentation  are  that  the  technique  is  inexpensive,  easy  to  set  up,  and  allows
large  number  of  substrates  of  fecal  samples  to  be  tested.  However,  these  models  have
their  weakness  in  microbiological  control  and  the  need  to  be  of  short  duration  in  or‐
der  to  avoid the selection of  non-representative microbial  populations.  The technique is
useful for fermentation studies,  for the investigation of metabolic profiles of short chain
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fatty  acids  arising from the  active  metabolism of  dietary  compounds by the  gut  micro‐
biota, and especially for substrate digestion evaluation studies [21, 22]. Several of the pub‐
lications  in  this  field  are  based  on  a  European  interlaboratory  study  for  estimation  of
the  fermentability  of  dietary  fiber  in  vitro  [23].

Continuous cultures allow us to control the rate and composition of nutrient feed, bacterial
metabolism and the environmental conditions. These models simulate proximal (single-state
models) or proximal, transverse and distal colonic regions (multistage models). Continuous
cultures are used for performing long-term studies, and substrate replenishment and toxic
product removal are facilitated - thereby mimicking the conditions found in vivo. The most
variable factor in these models is the technique used for fecal inoculation. The use of liquid
fecal suspension as inoculum, where the bacterial populations are in the free-cell state, pro‐
duces rapid washout of less competitive bacteria; as a result, the operation time is less than
four weeks. The formation of fecal beads from the immobilization of fecal microbiota in a
porous polysaccharide matrix allows release of the microbiota into the culture medium,
with better reproduction of the in vivo flora and longer fermentation times [21, 22].

Artificial continuous models including host functions/human digestive functions have been
developed. Models of this kind control peristaltic movement, pH and gastrointestinal secre‐
tions. The SHIME model (Simulated Human Intestinal Microbial Ecosystem) comprises a 5-
step multi-chamber reactor simulating the duodenum and jejunum, ileum, cecum and the
ascending colon, transverse colon and descending colon [24]. In turn, TIM-1 is an intestinal
model of the stomach and small intestine, while TIM-2 is a proximal colon simulator model de‐
veloped by TNO (Netherlands Organization for Applied Scientific Research). These models have
been validated based on human and animal data [25]. They incorporate some host functions;
however, they do not reproduce immune modulating and neuroendocrine responses. A re‐
maining challenge is the difficulty of establishing a representative human gut microbiota in vi‐
tro. Other difficulties are the availability of the system, its cost, the prolonged time involved, its
laboriousness, the use of large working volumes, and long residence times.

Combined systems that include the fractions obtained from simulated human digestion
(gastrointestinal and/or colonic fermentation) and the incorporation of cell culture-based
models allow us to evaluate bioaccessibility (estimate the amount of bioactive compounds
assimilated from the bioaccessible fraction by cell culture) and to conduct bioactivity stud‐
ies. The Caco-2 cell model is the most widely used and validated intestinal epithelium or hu‐
man colon carcinoma cell model. Although colonic in origin, Caco-2 cells undergo
spontaneous differentiation in cell culture to form a monolayer of well-polarized cells at
confluence, showing many of the functional and morphological properties of mature human
enterocytes (with the formation of microvilli on the brush border membrane, tight intercel‐
lular junctions and the excretion of brush border-associated enzymes) [26]. However it must
be mentioned that this cell line differs in some aspects from in vivo conditions. For example,
it does not reproduce the different populations of cells in the gut, such as goblet, Paneth and
crypt cells, which are less organized and therefore leakier. Likewise, the model lacks regula‐
tory control by neuroendocrine cells and through the blood [27].
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The advantage of these systems versus those which only evaluate the influence of digestion
is their greater similarity to the in vivo conditions. The combination of in vitro human intesti‐
nal cell models with in vitro digestion models in turn creates an advanced in vitro model sys‐
tem where samples obtained from host responses lacking in in vitro digestion models can be
directly applied to monolayer cell models for host function studies [21].

3. Bioactivity of digested/fermented foods or related target bioactive
compounds in cell lines

The chemopreventive properties of bioactive compounds have been investigated in cultured
cells exposed to individual compounds. However, gut epithelial cells are more likely to be
exposed to complex food matrixes containing mixtures of bioactive and antioxidant in vivo
compounds [6]. In addition, food matrixes undergo a digestion process that may affect the
structure and properties of the bioactive compounds. Therefore, the in vitro protective ef‐
fects of antioxidant bioactive compounds do not necessarily reflect in vivo chemoprotection,
which is more likely due to the combined effects of all the bioactive components present in
the food [28].

A potential cell culture model for cancer or cardiovascular chemoprevention research in‐
volving dietary antioxidants (polyphenols, carotenoids and peptides) and other bioactive
chemopreventive components such as phytosterols, should include some of the proposed
mechanisms of action: inhibition of cell proliferation, induction of tumor suppressor gene
expression, induction of cell cycle arrest, induction of apoptosis, antioxidant enzyme induc‐
tion, and enhanced detoxification, antiinflammatory activities and the inhibition of choles‐
terol absorption [9, 15, 29, 30]. In addition, other mechanisms of chemoprevention could
involve protection against genotoxic compounds or reactive oxygen species [31].

It recently has been stated that the measurement of cellular bioactivity of food samples cou‐
pled to in vitro digestion can provide information close to the real-life physiological situation
[32]. In this sense, we surveyed more than 30 studies conducted in the past 10 years, involv‐
ing human simulated gastrointestinal digestion and/or colonic fermentation procedures and
subsequent bioactivity-guided assays with cell line models. These studies are presented in
Tables 1, 2 and 3, which correspond to the mechanism of action related to chemoprevention
of digested, fermented or digested plus fermented foods or bioactive constituents in cell
lines, respectively.

The chemopreventive effect of digested foods or bioactive constituents in cell lines is sum‐
marized in Table 1. From the 22 studies surveyed, and according to the digestion meth‐
od used, it can be seen that most of them involve solubility (n = 17) versus dialysis (n =
5). Samples used are preferably of vegetal origin (n = 15), the target compounds respon‐
sible for the chemopreventive action being polyphenols, antioxidants (in general), antiox‐
idant peptides, lycopene and phytosterols. Furthermore, these compounds are mainly
studied in colon-derived cells (as a cancer model when not differentiated, or as an intes‐
tinal epithelial model when differentiated). Concentrations tested are physiologically ach‐
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ievable in colon cells, since the bioaccessible fractions obtained after digestion are considered
to be fractions that can pass through the stomach and small intestine reaching the co‐
lon, where they can exert antioxidant activity in situ [33]. In addition, polyphenols are stud‐
ied in neuronal cells, liver-derived cells and lymphocytes. In the case of neuronal cells,
the concentrations used (0-6 µM polyphenols) are similar to those reported for dietary pol‐
yphenolic-derived metabolites found in plasma (0-4 µM) [34], but for lymphocytes and liv‐
er, the concentrations are unknown or higher than expected in vivo, respectively. Another
aspect to bear in mind is the time of cell exposure to the digested food or bioactive con‐
stituents. The range found in these studies is from 30 min to 120 h (this latter time‐
point not being expectable from a physiological standpoint).

Bioactive compounds of digested foods present four different but in some cases comple‐
mentary  modes  of  action:  (1)  inhibition of  cholesterol  absorption (phytosterols),  and (2)
antiproliferative,  (3)  cytoprotective  and (4)  antiinflammatory  activities  (polyphenols  and
general  antioxidants).

1. The inhibition of cholesterol absorption has been reported to be mainly due to competi‐
tion between phytosterols and cholesterol for incorporation to the micelles as a previ‐
ous step before absorption by the intestinal epithelial cells [35].

2. Antiproliferative activity has been linked to cell growth inhibition associated to pol‐
yphenols [28, 32, 36-38] and lycopene [39], which is mainly regulated by two mech‐
anisms:  cell-cycle  arrest  and  apoptosis  induction.  The  cell  cycle  can  be  halted  at
different phases:  G0/G1  with down-regulation of cyclin D1  [39],  S with down-regula‐
tion  of  cyclins  D1  and  B1  [28,  37]  and  G2/M [36].  Apoptosis  induction  in  turn  oc‐
curs  as  a  result  of  caspase-3  induction  and  down-regulation  of  the  anti-apoptotic
proteins  Bcl-2  and  Bcl-xL  [39].

3. The cytoprotective effect of polyphenols, peptides and antioxidants against induced ox‐
idative stress is related to the preservation of cell viability [40-47], an increase in the ac‐
tivity of antioxidant enzymes (such as catalase, glutathione reductase or glutathione
peroxidase) [41, 43, 47, 48], the prevention of reduced glutathione (GSH) depletion [46,
47, 49], a decrease in intracellular ROS content [46, 50, 51], the maintenance of correct
cell cycle progression [41, 43, 47, 52], the prevention of apoptosis [43], and the preven‐
tion of DNA damage [42, 51, 52].

4. The antiinflammatory action of peptides and polyphenols is derived from the decrease
in the release of proinflammatory cytokines such as IL-8 when cells are stimulated with
stressors such as H202 or TNFα [53, 54].

Studies on the chemopreventive effect of foods or isolated bioactive constituents following
colonic fermentation or gastrointestinal digestion plus colonic fermentation in cell lines are
shown in Tables 2 and 3, respectively. The colonic fermentation procedure used in these as‐
says has always been a batch model, except for one study combining batch and dynamic fer‐
mentation. In turn, when gastrointestinal digestion is involved, dialysis has been the
method used. Foods of plant origin rich in fiber, and short chain fatty acids (mainly buty‐
rate) and polyphenols as the target compounds have been used in such studies. The use of
colon-derived cell lines is common in these assays, which have been performed using phys‐
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iologically relevant concentrations and time periods of exposure of samples to cells ranging
between 24 h and 72 h.

The mechanism of action underlying the treatment of cells with colonic fermented foods or
isolated bioactive constituents (see Table 2) mainly comprises antiproliferative activity (i)
and/or cytoprotective action (ii). In the first case, antiproliferative activity (i) has been attrib‐
uted to cell growth inhibition [55-59], mainly due to apoptosis induction [58-59] and/or the
up-regulation of genes involved in cell cycle arrest (p21) and apoptosis (WNT2B) [59]. Stud‐
ies referred to a cytoprotective effect against oxidative damage (ii) in turn have been linked
to the prevention of DNA damage [55, 56] and to the induction of antioxidant enzymes such
as glutathione-S-transferase (GST) [56].

The bioactivity observed with the incubation of cells lines with foods or isolated bioactive
constituents following gastrointestinal digestion plus colonic fermentation (see Table 3) is
derived from antiproliferative activity (i) regulated by cell growth inhibition [60-62], cell cy‐
cle arrest [60] and/or apoptosis induction [60, 62], or by a cytoprotective effect against in‐
duced oxidative stress (ii) as a result of preservation of cell viability [63], protection against
DNA damage [31, 61, 63] and/or induction of antioxidant enzymes such as CAT, GST and
sulfotransferase (SULT2B1) [31].

4. Conclusions and future perspectives

From the data here reviewed in disease cell models, it can be concluded that gastrointestinal
digestion/colonic fermentation applied to whole foods or isolated bioactive constituents may
have potential health benefits derived from cell growth inhibition through the induction of
cell-cycle arrest and/or apoptosis, cytoprotection against induced oxidative stress, antiin‐
flammatory activity and the reduction of cholesterol absorption.

Studies conducted with single bioactive compounds are unrealistic from a nutritional and
physiological point of view, since they do not take into account physicochemical changes
during digestion and possible synergistic activities. Thus, a combined model of human si‐
mulated digestion including or not including colonic fermentation (depending on the nature
of the studied compounds) with cell lines should be carried out if in vitro bioactivity assays
with whole foods or bioactive chemopreventive compounds for the prevention of oxidative
stress-related diseases are planned.

Although digested/fermented bioactive compounds appear as promising chemopreventive
agents, our understanding of the molecular and biochemical pathways behind their mecha‐
nism of action is still limited, and further studies are warranted. In addition, the need for
harmonization of the in vitro methods: (i) conditions of the gastrointestinal procedure, (ii)
cell line used, (iii) concentrations of bioactive compounds used (usually much higher than
those achievable in the human body when the digestion process is not considered), and (iv)
time of cell exposure to the bioactive compounds (more than 24 h is unlikely to occur in
vivo), should be considered for improved study designs more similar to the in vivo situation
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and for allowing comparisons of results among laboratories. This task is currently being car‐
ried out at European level within the project “Improving health properties of food by shar‐
ing our knowledge on the digestive process (INFOGEST) (2011-2015) (FAO COST Action FA
1005) (http://www.cost-infogest.eu/ABOUT-Infogest)”.

Sample

(Target

compound/s)

Cell type

Cell treatment

(Concentrations

and time)

Cellular mechanism References

Gastrointestinal digestion (dialysis)

(Polyphenols)

Chokeberry

juice

Caco-2

(human

colon

carcinoma)

85 to 220 (µM

total polyphenols)

2 h a day for a 4-

day period

Cell growth inhibition

Viability decrease

Cell cycle arrest at G2/M phase

Up-regulation of tumor suppression gene

CEACAM1

Bermúdez-Soto et al.

(2007)

[36]

Raspberries

HT29,

Caco-2 and

HT115

(human

colon

carcinoma)

3.125 to 50

(µg/mL)

24 h

Prevention of H2O2 (75µM/5min)-induced

DNA damage and decrease in G1 phase

of cell cycle (HT29 cells)

No effect on epithelial integrity (Caco-2

cells)

Inhibition of colon cancer cell invasion

(HT115 cells)

Coates et al.

(2007)

[52]

Green tea

Differentiate

d PC12

(model of

neuronal

cells)

0.3-10 µg/mL (for

H2O2) and

0.03-0.125 µg/mL

(for Aβ(1-42))

Pretreatment 24 h

and stressed 24 h

Protection against H2O2 and Aβ(1-42)

induced cytotoxicity (only at low

concentrations)

Okello et al.

(2011)

[44]

Blackberry

(Rubus sp.)

SK-N-MC

(neuroblast

oma cells)

1.5-6 µM total

polyphenols

24 h

Preservation of cell viability against H2O2

(300 µM- 24 h) –induced oxidative stress

(not related to modulation of ROS nor

GSH levels)

Tavares et al.

(2012a)

[45]

CECAM1: Carcinoembryonic antigen-related cell adhesion molecule 1. Aβ(1-42): β-amyloid peptide 1-42. ROS: reac‐
tive oxygen species. GSH: reduced glutathione.

Table 1. Mechanisms involved in the chemopreventive effect of in vitro digested foods or bioactive constituents in cell
lines.

The in vitro simulation of the conditions of gastrointestinal digestion represents an alterna‐
tive to in vivo studies for evaluating the bioavailability and/or functionality of bioactive com‐
ponents of foods. In vitro studies do not replace in vivo studies; rather, both complement
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each other. In vitro methods need to be improved and validated with more in vivo studies.

Thus, caution is mandatory when attempting to extrapolate observations obtained in vitro in

cell line studies to humans.

Sample

(Target

compound/s)

Cell type

Cell treatment

(Concentration

s and time)

Cellular mechanism References

Wild blackberry

species

SK-N-MC

(neuroblast

oma cells)

0-6 µM total

polyphenols

24 h

Preservation of cell viability and

mitochondrial membrane potential against

H2O2 (300 µM -24 h)-induced oxidative stress

Decrease of intracellular ROS against H2O2

(200 µM -1 h)-induced oxidative stress (only

R. brigantines)

Prevention of GSH depletion against H2O2

(300 µM -24 h)-induced oxidative stress

Induction of caspase 3/7 activity against

H2O2 (300 µM -24 h)-induced oxidative stress

(preconditioning effect)

Tavares et al.

(2012b)

[46]

Gastrointestinal digestion (solubility)

(Polyphenols)

Fruit beverages

with/without

milk and/or

iron

Caco-2

(human

colon

carcinoma)

2%, 5% and

7.5% (v/v) in

culture medium

(3.4-22.7

mg/mL total

polyphenols)

4 hours-4 days

or 24 h

Cell growth inhibition (no clear dose-

response)

Cell cycle arrest at S phase (7.5%)

Down-regulation of cyclins D1 and B1

No apoptosis (cytostatic effect)

Cilla et al.

(2009)

[28]

Zinc-fortified

fruit beverages

with/without

iron and/or

milk

Caco-2 and

HT-29

(human

colon

carcinoma)

7.5% (v/v) in

culture medium

(~50 µM total

polyphenols)

24 h

Cell growth inhibition (without citotoxicity)

Cell cycle arrest at S phase

No apoptosis and resumption of cell cycle

after digest removal (cytostatic effect)

Cilla et al.

(2010)

[37]

Fruit juices

enriched with

pine bark

extract

Caco-2

(human

colon

carcinoma)

4% (v/v) in

culture medium

24-120 h

Cell growth inhibition

Frontela-Saseta et al.

(2011)

[38]

ROS: reactive oxygen species. GSH: Reduced glutathione.

Table 1. (continued-I).
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Sample

(Target

compound/s)

Cell type

Cell treatment

(Concentration

s and time)

Cellular mechanism References

Feijoada-

traditional

Brazilian meal

HepG2

(human liver

cancer cells)

10-100 mg/mL

72 h

(antiproliferatio

n) and 1 h

(antioxidant)

Antiproliferative activity ("/ 80 mg/mL)

Increase in cellular antioxidant activity (0.6

µM quercetin equivalents)

Kremer-Faller et al.

(2012)

[32]

Culinary herbs:

rosemary, sage

and thyme

PBL

(peripheral

blood

lymphocytes

) and

Differentitat

ed Caco-2

(model of

intestinal

epithelium)

1:10 (v/v) in

culture

medium.

Stressors (H2O2

2 mM and TNFα

100 µg/mL)

Co-incubation

24 h or pre-

incubation 3h

then stress 24 h

PBL: significant decrease in IL-8 release

when co-incubation with H2O2 and pre-

incubation prior H202 and TNFα

Caco-2: significant decrease in IL-8 release

only when co-incubation with TNFα

Chohan et al.

(2012)

[54]

(Antioxidants)

Fruit beverages

with/without

milk and/or

iron/zinc

Differentiate

d Caco-2

(model of

intestinal

epithelia)

1:1 (v/v) in

culture medium

Preservation of cell viability

No alteration of SOD

Cilla et al.

(2008)

[40]

Fruit beverages

with/without

milk or CPPs

Differentiate

d Caco-2

(model of

intestinal

epithelia)

1:1 (v/v) in

culture medium

or CPPs (1.4

mg/mL)

Preservation of cell viability (only fruit

beverages)

Laparra et al.

(2008)

[41]

Beef patties

enriched with

sage and

oregano

Caco-2

(human

colon

carcinoma)

10-100% (v/v)

24 h

Increase in cell viability at low

concentrations (20-40%) but slight decrease

at high concentrations (80-100%)

Increase in GSH (only sage-enriched samples

at 10%)

Protection against H202 (200 µM/1h)-

induced GSH depletion (at 10%)

Ryan et al.

(2009)

[49]

IL-8: Proinflammatory interleukin-8. TNFα: tumor necrosis factor α. SOD: Superoxide dismutase. CPPs: caseinophos‐
phopeptides. GSH-Rd. glutathione reductase. GSH: reduced glutathione.

Table 1. (continued-II).
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Sample

(Target

compound/s)

Cell type

Cell treatment

(Concentration

s and time)

Cellular mechanism References

Ellagic acid-,

lutein- or

sesamol-

enriched meat

patties

Caco-2

(human

colon

carcinoma)

0-20% (v/v) in

culture medium

24 h

Viability maintenance against H202 (500 µM/

1h)-induced stress

Prevention of H202 (50 µM/30 min)-induced

DNA damage

Daly et al.

(2010)

[42]

Pacific hake fish

protein

hydrolysates

Caco-2

(human

colon

carcinoma)

0.625-5 mg/mL

2 h

Inhibition (at non cytotoxic doses) of

intracellular oxidation induced by AAPH (50

µM/1-2 h)

Samaranayaka et al.

(2010)

[50]

Human breast

milk

Co-culture

of Caco-2

BBE and

HT29-MTX

(model of

human

intestinal

mucosa)

1:3 (v/v) in

culture medium

30 min

Decrease of H202 (1 mM/30 min)-induced

ROS

Prevention of H202 (500 µM/30 min)-

induced DNA damage

Yao et al.

(2010)

[51]

Fruit beverages

with/without

milk and/or

iron/zinc

Differentiate

d Caco-2

(model of

intestinal

epithelia)

1:1 (v/v) in

culture medium

Pre-incubation

24 h then

stressed 2h

with H202 5 mM

Preservation of cell viability

Increase in GSH-Rd activity (only Fe or Zn

with/without milk samples)

Prevention of G1 cell cycle phase decrease

induced by H202

Prevention of apoptosis (caspase-3) induced

by H202

Cilla et al.

(2011)

[43]

Purified milk

hydrolysate

peptide

fraction from

digested

human milk

Caco-2 and

FHs 74 int

(human

colon

carcinoma

and primary

fetal

enterocytes)

0.31-1.25 g/L

(peptide) and

150 µM

(tryptophan)

2 h (peptide)

and 1-12 h

(tryptophan)

Exacerbation of AAPH (50 µM/1-2 h)-

induced oxidative stress (peptide)

Up-regulation of Nrf-2 and subsequent up-

regulation of GSH-Px2 gene as adaptive

response to stress (tryptophan)

Elisia et al.

(2011)

[48]

AAPH: 2,2’-azobis (2-amidinopropane) dihydrochloride. ROS: reactive oxygen species. GSH-Rd: glutathione reduc‐
tase. Nrf-2: nuclear response factor 2. GSH-Px2: glutathione peroxidase.

Table 1. (continued-III).
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Sample

(Target

compound/s)

Cell type

Cell treatment

(Concentration

s and time)

Cellular mechanism References

CPPs from

digested cow’s

skimmed milk

Differentiate

d Caco-2

(model of

intestinal

epithelia)

1, 2 and 3

mg/mL

Pre-incubation

24 h then

stressed 2h

with H202 5 mM

Preservation of cell viability

Increase in GSH content and induction of

CAT activity

Decrease in lipid peroxidation

Maintenance of correct cell cycle

progression

García-Nebot et al.

(2011)

[47]

Purified hen

egg yolk-

derived

phosvitin

phosphopeptid

es

Differentiate

d Caco-2

(model of

intestinal

epithelia)

0.05-0.5

mg/mL

2 h

Reduced IL-8 secretion in H202 (1 mM/6 h)-

induced oxidative stress

Young et al.

(2011)

[53]

(Lycopene)

Tomatoes

HT29 and

HCT-116

(human

colon

carcinoma)

20-100 mL/L

24 h

Cell growth inhibition

Cell cycle arrest at G0-G1 phase and

apoptosis induction (caspase-3)

Down-regulation of cyclin D1 and anti-

apoptotic proteins Bcl-2 and Bcl-xL

Palozza et al.

(2011)

[39]

(Phytosterols)

Orange juice

enriched with

fat-free

phytosterols

Differentiate

d Caco-2

(model of

intestinal

epithelia)

2 mL test

medium/well

4 h

Reduced micellarization of cholesterol

Decrease in cholesterol accumulation by

Caco-2 cells

Bohn et al.

(2007)

[35]

GSH: reduced glutathione. CAT: catalase. IL-8: proinflammatory interleukin-8.

Table 1. (continued-IV).

Sample

(Target

compound/s)

Cell type

Cell treatment

(Concentration

s and time)

Cellular mechanism References

(SCFA)

Fibre sources:

linseed,

watercress,

kale,

tomato.soya

HT29

(human

colon

carcinoma)

2.5-25% (v/v) in

culture medium

72 h

Cell growth inhibition (all samples except

watercress)

Prevention of HNE (150µM/30 min)-induced

DNA damage (only soya flour)

Beyer-Sehlmeyer et al.

(2003)

[55]
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Sample

(Target

compound/s)

Cell type

Cell treatment

(Concentration

s and time)

Cellular mechanism References

flour, chicory

inulin and

wheat

Wheat bran-

derived

arabinoxylans

HT29

(human

colon

carcinoma)

0.01-50% (v/v)

in culture

medium

24-72 h

Cell growth inhibition

Prevention of HNE (200µM/30 min)-induced

DNA damage (at 25-50%)

Induction of GST activity (at 10%)

Glei et al.

(2006)

[56]

Inulin-type

fructans

LT97 and

HT29

(human

colon

adenoma

and

carcinoma)

1.25-20% (v/v)

in culture

medium

24-72 h

Cell growth inhibition (at 5-10%)

Apoptosis induction (cleavage of PARP) only

in LT97 cells (at 5-10%)

Munjal et al.

(2009)

[58]

Wheat

aleurone

LT97 and

HT29

(human

colon

adenoma

and

carcinoma)

5-10% (v/v) in

culture medium

24-72 h

Cell growth inhibition

Apoptosis induction (caspase-3)

Up-regulation of genes p21 (cell cycle arrest)

and WNT2B (apoptosis)

Borowicki et al.

(2010a)

[59]

(polyphenols)

Apples

LT97 and

HT29

(human

colon

adenoma

and

carcinoma)

100-900 µg/mL

24-48 h

Cell growth inhibition (LT97 more sensitive

than HT29 cells)

Veeriah et al.

(2007)

[57]

SCFA: short chain fatty acids. GST: Glutathione-S-Transferase. HNE: 4-Hydroxynonenal. PARP: Poly (ADP-ribose) pol‐
ymerase. WNT2B: Wingless-type MMTV integration site family member 2.

Table 2. Mechanisms involved in the chemopreventive effect of in vitro colonic fermented (in batch) of foods or
bioactive constituents in cell lines.
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Sample

(Target

compound/s)

Cell type

Cell treatment

(Concentration

s and time)

Cellular mechanism References

(SCFA)

Resistant

starches

Differentiate

d Caco-2

(model of

intestinal

epithelia)

10% (v/v) in

culture medium

24 h

Preservation of cell viability

Prevention of H202 (75 µM/5 min)-induced

DNA damage

Maintenance of barrier function integrity

(TEER)

Fässler et al.

(2007)

[63]

Wheat

aleurone

HT29

(human

colon

carcinoma)

10% (v/v) in

culture medium

24-72 h

Cell growth inhibition

Cell cycle arrest in G0-G1 phase

Apoptosis induction (caspase-3)

Borowicki et al.

(2010b)

[60]

Wheat

aleurone

HT29

(human

colon

carcinoma)

5-10% (v/v) in

culture medium

24-72 h

Induction of antioxidant enzymes (CAT and

GST)

Up-regulation of genes CAT, GSTP1 and

SULT2B1

Prevention of H202 (75 µM/5 min)-induced

DNA damage

Stein et al.

(2010)

[31]

(SCFA and polyphenols)

Bread

HT29

(human

colon

carcinoma)

2.5-5% (v/v) in

culture medium

24-72 h

Cell growth inhibition

Prevention of H202 (75 µM/5 min)-induced

DNA damage

Lux et al.

(2011)

[61]

(butyrate)

Bread

LT97

(human

colon

adenoma)

5-20% (v/v) in

culture medium

24-72 h

Up-regulation of genes from DNA repair,

biotransformation, differentiation and

apoptosis

Increase in GST activity, GSH content and AP

activity (differentiation)

Cell growth inhibition

Apoptosis induction (caspase-3)

Schölrmann et al.

(2011)

[62]

SCFA: Shot chain fatty acids. TEER: Trans Epithelial Electrical Resistance. GST: Glutathione-S-Transferase. GSH: Gluta‐
thione. CAT: catalase. SULT: Sulfotransferase. AP: Alkaline phosphatase.

Table 3. Mechanisms involved in the chemopreventive effect of in vitro digested (dialysis) plus colonic fermented
(batch) foods or bioactive constituents in cell lines.
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