
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 1

© 2012 Pedrielli et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Distributed Modeling of Discrete Event Systems

Giulia Pedrielli, Tullio Tolio, Walter Terkaj and Marco Sacco

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50350

1. Introduction

Computer simulation is widely used to support the design of any kind of complex system

and to create computer-generated "virtual worlds" where humans and/or physical devices

are embedded (e.g. aircraft flight simulators [20]). However, both the generation of

simulation models and the execution of simulations can be time and cost expensive. While

there are already several ways to increase the speed of a simulation run, the scientific

challenge for the simulation of complex systems still resides in the ability to model

(simulate) those systems in a parallel/distributed way [35].

A computer simulation is a computation that emulates the behavior of some real or

conceptual systems over time. There are three main simulation techniques [23]:

 Continuous simulation. Given the discrete nature of the key parameters of a digital

computer, including the number of memory locations, the data structures, and the data

representation, continuous simulation may be best approximated on a digital computer

through time-based discrete simulation where the time steps are sufficiently small

relative to the process being modeled.

 Time-based discrete simulation. In this case the universal time is organized into a discrete

set of monotonically increasing timesteps where the choice of the duration of the

timestep interval changes as a result of the external stimuli, any change between two

subsequent timesteps must occur atomically within the corresponding timestep

interval. Regardless of whether its state incurs and changes, a process and all its

parameters may be examined at every time step.

 Discrete event simulation [5]. The difference between discrete event simulation and time-

based simulation is twofold. Firstly, the process being modeled is understood to

advance through events under discrete event conditions. Second, an event (i.e. an

activity of the process as determined by the model developer) carries with it the

potential for affecting the state of the model and is not necessarily related to the

Discrete Event Simulations – Development and Applications 4

progress of time. In this case, the executable model must necessarily be run

corresponding to every event to accurately reflect the reality of the process.

Since continuous simulation is simply academic and cannot be reproduced on real

computers, it is important to comment the difference between time-based simulation and

discrete event simulation.

Under time-based simulation, the duration of the timestep interval is determined based on

the nature of the specific activity or activities of the process that the model developer

considers important and worth modeling and simulating. Similarly, under discrete event

simulation, events for a given process are also identified on the basis of the activity or

activities the model developer views as important. Whereas time-based simulation

constitutes the logical choice for processes in which the activity is distributed over every

timestep, discrete event simulation is more efficient when the activity of a process being

modeled is sparsely distributed over time. The overhead in discrete event simulation,

arising from the additional need to detect and record the events, is higher than in the

simpler time-based technique and must be more than compensated by the savings not to

have to execute the model at every time step.

A fundamental difference between time-based and discrete event simulations lies in their

relationship to the principle of causality. In the time-based approach, while a cause may

refer to a process state at a specific timestep, the fact that the state of the process is observed

at every subsequent time step reflects the assumption that the effect of the cause is expected.

Thus both the cause and the effect refer to the observed state of the process in time-based

simulation. In discrete event simulation, both cause and effects refer to events. However,

upon execution due to an event, a model may not generate an output event thus appearing

to imply that a cause will not necessary be accompanied by corresponding observed facts.

Discrete Event Simulation (DES) has been widely adopted to support system analysis,

education and training, organizational change [43] in a range of diverse areas such as

commerce [13], manufacturing ([14],[38], [79]), supply chains [24], health services and bio-

medicine ([3], [18]), simulation in environmental and ecological systems [6], city planning

and engineering [45], aerospace vehicle and air traffic simulation [40], business

administration and management [16], military applications [17].

All the aforementioned areas are usually characterized by the presence of complex systems.

Indeed, a system represented by a simulation model is defined as complex when it is

extremely large, i.e. a large number of components characterize it, or a large number of

interactions describes the relationships between objects within the system, or it is

geographically dispersed. In all cases the dynamics can be hard to describe. The complexity

is reflected in the system simulation model that can be characterized according to the

following concepts [23]:

1. Presence of entity elements that are dynamically created and moved during a

simulation [62]

2. Asynchronous behavior of the entities

Distributed Modeling of Discrete Event Systems 5

3. Asynchronous interactions between the entities

4. Entities which concur for the use of shared resources

5. Connectivity between the entities

The simulation of complex systems through the use of traditional simulation tools presents

several drawbacks, e.g. the long time required to develop the unique monolithic simulation

model, the computational effort required for running the simulation, the impossibility to

run the simulation model on a set of geographically distributed computers, the absence of

fault tolerance (i.e. the work done is lost if one processor goes down), the impossibility to

realize a realistic model of the entire system in the case several subsystems are included and

the owners of each subsystem do not want to share the information.

Most of the aforementioned problems can be effectively addressed by the distributed

simulation (DS) approach which will be the focus of this chapter.

The chapter will be organized as follows: Section 2 presents the main concepts and

definitions together with a literature review on applications and open issues related to

distributed simulation. Section 3 delves into the High Level Architecture [1], i.e. the

reference standard supporting the distributed simulation. Section 4 shows an application of

distributed simulation on a real industrial case in the manufacturing domain [77]. Finally,

Section 5 presents the conclusions and the main topics for future research in the field of

distributed simulation.

2. Distributed simulation

Traditional stand alone simulation is based on a simulation clock and an event list. The

interaction of the event list and the simulation clock generates the sequence of the events

that have to be simulated.

The execution of any event might cause an update of the value of the state variables, a

modification to the event list and (or) the collection of the statistics. Each event is executed

based on the simulation time assigned to it, i.e. the simulation is sequential.

The idea underlying the distributed simulation is to minimize the sequential aspect of

traditional simulation. Distributed simulation can be classified into two major categories: (1)

parallel and distributed computing, and (2) distributed modeling.

Parallel and distributed computing refers to technologies that enable a simulation program

to be executed on a computing system containing multiple processors, such as personal

computers, interconnected by a communication network [20].

The main benefits resulting from the adoption of distributed computing technologies are

[20]:

 Reduced execution time. By decomposing a large simulation computation into many sub-

computations and executing the sub-computations concurrently across different

processors, one can reduce the global execution time.

Discrete Event Simulations – Development and Applications 6

 Geographical distribution. Executing the simulation program on a set of geographically

distributed computers enables one to create virtual worlds with multiple participants

that are physically located at different sites.

 Integration of simulators that execute on machines from different manufacturers.

 Fault tolerance. If one processor goes down, it may be possible for other processors to

pick up the work of the failed machine allowing the simulation to proceed despite the

failure.

The definition of distributed modeling can be given by highlighting the differences

compared to the concept of parallel and distributed computing as presented by Fujimoto

[20]. If a single simulator is developed and the simulation is executed on multiple processors

we talk about parallel and distributed computing. Whereas if several simulators are combined

into a distributed architecture we talk about distributed modeling; in this case, the simulation

execution requires the synchronization between the different simulators.

The distributed computing can be still applied to each simulator in a distributed simulation

model [60], but the complexity related to the synchronization of the different models can be

such that the performance of the simulation (in terms of speed) can be worse than when a

single simulation model is developed. This drawback related to the decrease in the

efficiency in terms of speed of simulation leads to the following question: "Why is it useful

to develop a distributed simulation model?". The following benefits represent an answer to

this question ([57], [77]):

 Complexity management. If the complexity of the system to be simulated grows and the

modeling of each sub-system requires various and specific expertise, then the

realization of a single monolithic simulation model is not feasible [65]. Under the

distributed modeling approach the problem is decomposed in several sub-problems

easier to cope with.

 Overcoming the lack of shared information. The developer of a simulation model can hardly

access all the information characterizing the whole system to model, again hindering

the feasibility of developing a unique and monolithic simulation model.

 Reusability. The development of a simulation model always represents a costly activity,

thus the distributed modeling can be seen as a possibility to integrate pre-existing

simulators and to avoid the realization of new models.

The feasibility of the distributed simulation concept was demonstrated by the SIMNET

project (SIMulator NETworking [73]), which ran from 1983 to 1990. As consequence of this

project, a set of protocols were developed for interconnecting simulations and the

Distributed Interactive Simulation (DIS) standard was the first one. Afterwards, the High

Level Architecture (HLA) standard ([1], [15], [27]) was developed by the U.S. Department of

Defense (DoD) under the leadership of the Defense Modeling and Simulation Office

(DMSO). The next sub-section presents a general overview of the HLA standard for

distributed simulation, whereas Section 2.2 gives an overview of distributed simulation in

civilian applications.

Distributed Modeling of Discrete Event Systems 7

2.1. HLA-standard: An overview

HLA (IEEE standard 1516) is a software architecture designed to promote the use and

interoperation of simulators. HLA was based on the premise that no single simulator could

satisfy all uses and applications in the defense industry and it aimed at reducing the time

and cost required to create a synthetic environment for a new purpose.

The HLA architecture (Figure1) defines a Federation as a collection of interacting simulators

(federates), whose communication is orchestrated by a Runtime Infrastructure (RTI) and an

interface. Federates can be either simulations, surrogates for live players, or tools for

distributed simulation. They are defined as having a single point of attachment to the RTI

and might consist of several processes, perhaps running on several computers.

HLA can combine the following types of simulators (following the taxonomy developed by

the DoD):

 Live - real people operating real systems (e.g. a field test)

 Virtual - real people operating simulated systems (e.g. flight simulations)

 Constructive - simulated people operating simulated systems (e.g. a discrete event

simulation)

Figure 1. HLA Reference Architecture

Figure 2. RTIAmbassador and FederateAmbassador

Discrete Event Simulations – Development and Applications 8

The HLA standard provides four main components for the realization and management of a

federation:

 HLA rules (IEEE 1516.0, 2000) representing a set of 10 rules that the simulators

(federates) have to follow in order to be defined HLA-compliant.

 Federate Interface Specification (FIS) (IEEE 1516.2, 2000) defining how simulators are

supposed to interact with the RTI.

 Object Model Template (OMT) (IEEE 1516.1, 2000) specifying what kind of information

is communicated between simulators and how simulations are documented. Following

the OMT each federate defines the data that it is willing to share (publish) with other

federates and the data it requires from other federates (subscribe). The resulting object

models related to each federate are called simulation object models (SOMs). The

federation object model (FOM) combines the federate SOMs into a single object model for

the federation to define the overall data to be exchanged within the federation.

 Federate Development Process (FEDEP) (IEEE 1516.3, 2004) defining the recommended

practice processes and procedures that should be followed by users of the HLA to

develop and execute their federations.

The federates cannot directly exchange information throughout the federation, instead the

RTI plays the role of the operating system of the distributed simulation, providing a set of

general-purpose services for federation management and enabling the federates in carrying

out federate-to-federate interactions. In particular interactions represent an explicit action

taken by a federate that may have some effect on another federate within a federation

execution, such action can be tied with a specific time defined as interactionTime, when the

action takes place.

Each federate is endowed with an RTIAmbassador and a FederateAmbassador (Figure 2) to

access the services offered by the RTI. Operations on the RTIAmbassador are called by the

federate whenever it needs an RTI service (e.g. a request to advance simulation time). In the

reverse direction, the RTI invokes an operation on the FederateAmbassador whenever it needs

to pass data to the federate (e.g. to inform the federate that the request to advance

simulation time has been granted). Six classes of services (Figure 1) have to be provided by

the RTI to be defined HLA-compliant. These classes are specified within the FIS and they

can be summarized as follows:

 Federation Management. These services allow federates to create and destroy

federation execution and join or resign from an existing federation.

 Declaration Management. These services allow federates to publish federate data and

subscribe to updated data produced by other federates.

 Object Management. These services allow federate to create and delete object instances,

and produce and receive data.

 Ownership Management. These services allow federates to transfer the ownership of

object data during the federation execution.

 Time Management. These services coordinate the advancement of simulation time of

the federates.

Distributed Modeling of Discrete Event Systems 9

 Data Distribution Management. These services can reduce unnecessary information

transfer between federates by filtering out irrelevant data.

HLA overcame the shortcomings of the DIS standard by being simulation-domain neutral (it

was not developed referred to any specific language, therefore HLA provides means to

describe any data exchange format as required and specifying functionalities for time

management and bandwidth control (see the FIS module).

HLA provides Application Programming Interfaces (APIs) for all the classes of services just

mentioned, but the RTI software and algorithms are not defined by HLA. Also the

operations in the FederateAmbassador need to be implemented at the federate level, as part of

the federate code or some interface service (adapter).

These facts have caused the growth of multiple HLA-RTI implementations (e.g. [80], [81])

and the development of ad-hoc solutions for the adapters on the federate side [25]. In

particular the last aspect represents one of the most relevant criticalities in applying HLA for

distributed simulation: the lack of a standardized approach to adapt a simulator within an

HLA-based distributed architecture, makes a distributed simulation project time expensive

since a lot of implementation is required in addition to the effort to build the simulation

model.

This consideration represents one of the leading arguments for the research community in

the direction of the development of additional complementary standards (Section 3) to ease

the creation and management of an HLA-based distributed simulation.

It is the objective of the next section to analyze the state of the art on the adoption and

advancements in the use of HLA-based distributed simulation technique.

2.2. Distributed simulation in civilian applications

Herein the attention is focused on distributed modeling of complex systems in civilian

domain.

HLA constitutes an enabler for implementing the distributed simulation. The standard,

though, was conceived for military applications and several problems arise when trying to

interoperate heterogeneous simulators in civilian applications (the terminology Commercial

off-the-shelf discrete-event simulation packages CSPs [62] will be used to describe

commercially available simulators for the analysis of Discrete Event Systems).

Boer [12] investigated the main benefits and criticalities related to the industrial application

of HLA by interviewing the actors involved in the problem (e.g. simulation model

developers, software houses, HLA experts, [9]-[11]). The results of the survey showed that

CSPs vendors do not see direct benefits in using distributed simulation, whereas in industry

HLA is considered troublesome because of the lack of experienced users and the complexity

of the standard. In addition, as suggested in [49], although the approaches and general

methods used in military and civilian simulation communities have similarities, the

Discrete Event Simulations – Development and Applications 10

terminology turns out to be completely different [36]. For instance, terms like live simulation

and virtual emulator are rarely used in civilian applications although equivalent techniques

are commonly applied.

The major difference between military and civilian domain resides in the way simulation

models are developed and what are the goals to meet when starting a simulation

development process. In the military community where time and budget constraints are not

the key elements leading the building process of a simulation tool, languages such as C++

and Java are usually adopted because of their flexibility. On the other hand, in the civilian

simulation community, the use of commercial simulation tools (e.g. Arena, Automod, Simio,

ProModel, Simple++, SLX, etc.) is the common practice. These tools satisfy the need of

rapidly and cost-effectively developing the simulation models.

The use of commercial simulation tools hinders the applicability of the HLA standard for

the realization of a distributed simulation model, because the direct access to the HLA APIs

(Section 2.1.) from the commercial simulation software tools is not usually possible.

Therefore, the enhancement of HLA with additional complementary standards [51] and the

definition of a standard language for CSPs represent relevant and not yet solved technical and

scientific challenges ([25], [49], [50]). Recently, the COTS Simulation Package Interoperability-

Product Development Group (CSPI-PDG), within the Simulation Interoperability Standards

Organization (SISO), worked on the definition of the CSP interoperability problem

(Interoperability Reference Models, IRMs) [74] and on a draft proposal for a standard to

support the CSPs interoperability (Entity Transfer Specification, ETS) [61].

2.2.1. Literature review

The application of distributed simulation in the civilian domain has been studied by

reviewing the available literature with the purpose to individuate which civilian domain

distributed simulation is generally called, which motivations underlie the adoption of the

distributed technique, which technical and scientific challenges have been faced and which

solutions have been proposed so far. More than 100 papers have been analyzed and

classified according to three criteria:

 Domain of application, i.e. the specific civilian sector where the distributed simulation

was applied (e.g. manufacturing domain, health care, emergency, etc.).

 Motivation underlying the adoption of the distributed simulation, i.e. the main problem

leading to the adoption of the distributed simulation architecture.

 Technical issue faced, i.e. the solutions to integration issue or enhancement to services of

the HLA architecture proposed within the considered article.

Most of the articles can be classified according to more than one criterion and Figure 3

shows the percentage of articles falling in each category.

The bibliographic search was carried out by considering the following keywords:

Distributed Simulation, Operations Research and Management, Commercial Simulation

Packages, Interoperability Reference Models, High Level Architecture, Manufacturing

Distributed Modeling of Discrete Event Systems 11

Systems, Discrete Event Simulation, Manufacturing Applications, Industrial Application

and Civilian Applications. These keywords brought to the identification of 26 core papers

based on the number of citations ([4], [12], [8], [11], [9], [10], [20], [28], [29], [30], [33], [74],

[75] , [48], [50], [47], [49], [58], [53], [59], [56], [68], [70], [68], [73] and [71]). These papers can

be considered as introductory to the topic of distributed simulation in civilian domain.

Starting from these articles the bibliographic search followed the path of the citations, i.e.

works cited by the core papers and papers citing the core ones were considered. This search

brought to the selection of 83 further articles. The overall 109 papers were published mainly

in the following journals and conference proceedings: Advanced Simulation Technologies

Conference, European Simulation Interoperability Workshop, European Simulation

Symposium, Information Sciences, International Journal of Production Research, Journal of

the Operational Society, Journal of Simulation, Workshop on Principles of Advanced and

Distributed Simulation and Winter Simulation Conference.

Figure 3. Overall Classification Criteria

2.2.2. Domain of application

More than 60% (Figure 3) of the analyzed papers propose an application in a specific field of

the civilian domain (e.g. [72], [42]). As stated in [46], transportation and logistics are typical

application areas of simulation and also the first areas where HLA has been tested by the

civilian simulation community. Manufacturing and health care are acquiring increasing

importance because of the growth of the extended enterprise and the increase in attention

for bio-pharmaceutical supply chains respectively.

The main fields of application of DS (Figure 4) are Supply Chain Management (33% of the

papers stating the domain of interest) (e.g. [64], [22], [42]), Manufacturing (29% of the

papers) (e.g. [69], [77]), Health Care (e.g. [34]) and Production Scheduling & Maintenance

(e.g. [72]), 17% of the articles are related to Health Care.

A further analysis was carried out by considering only the articles related to the

manufacturing domain, aiming at evaluating whether the contributions addressed real

industrial case applications or test cases applications. Only 22% of the articles address a real

case, thus confirming the outcomes obtained by Boer [8] in the analysis of the adoption of

Discrete Event Simulations – Development and Applications 12

distributed simulation in the manufacturing environment. Although solutions have been

developed for the manufacturing domain, this technique is still far from being adopted as an

evaluation tool by industrial companies because the end-users perceive HLA and

distributed simulation as an additional trouble rather than a promising approach [10]. As a

consequence, a lot of effort is put in the development of decision support systems that hide

the complexity of a distributed environment to the end user [41].

Figure 4. Distributed Simulation Main fields of application

2.2.3. Motivations underlying the adoption of the distributed simulation

As Boer stated in [8], if a problem can be solved by a monolithic simulation model created in

a single COTS simulation package and a distributed approach is not explicitly required the

simulation practitioner should certainly choose the monolithic solution in the selected CSP.

Similarly, Strassburger [49] suggests that if a maintainable and reusable monolithic

application can be built, then there is no point in building it in a distributed platform.

However, there are simulation projects where the distributed solution seems more

advantageous and straightforward [38] because it enables to cope with:

1. Demand for reusability of the simulator output of the simulation project. Here the word

reusability is adopted both in terms of the possibility to reuse simulators already

developed and of building new simulators that can be readopted in the future.

2. Lack of Shared information. This is the case when no one modeler has enough information

to develop the simulator. This condition holds when the whole system to be modeled is

divided into subsystems owned by different actors that do not want to share data

related to their subsystems.

3. System complexity. In this case no one modeler has enough knowledge to realize the

whole simulation model.

All the papers stating a motivation for using DS mention the system complexity (e.g. [22],

[72], [30], [32]), whereas 44% of the papers the demand for reuse [78]. The low percentage

(around 5%) of papers using DS to cope with lack of shared information can be partially

traced back to the lack of real industrial applications that still characterizes DS in civilian

environment [76].

Distributed Modeling of Discrete Event Systems 13

2.2.4. Technical issue faced

Over 70% of the articles deal with technical issues, thus showing that HLA and DS experts

are putting a lot of effort in the enhancement and extensions of HLA-based DS to face

civilian application problems. Indeed, the application of distributed simulation to civilian

domain still presents several technical issues. In particular four main research areas can be

identified:

1. Integration of commercial discrete event simulators (CSP). Several CSPs are put together and

synchronized by means of the services offered by the HLA infrastructure.

2. Interoperability reference models and entity transfer. The papers in this category work in the

standardization of the communication between federates within an HLA-compliant

federation (Section 3.).

3. Time management enhancement. The issues related to the time synchronization of

federates are faced.

4. RTI-services extension. In this case the services listed in Section 2.1. are enhanced for

specific applications [82].

Figure 5. CSP adopted

The outcome of the review was that the integration of CSPs is the most addressed technical

issue, (45% of the papers) nonetheless the integration of real CSPs (i.e. not general purpose

programming languages) still represents a challenging topic. Figure 5 gives a picture of the

main CSP solutions that have been adopted in the literature. In particular, the y-axis reports

the percentage of articles that use one of the listed CSPs (e.g. [37], [21], [67]) within the

papers that deal with the interoperation of simulators. It can be noticed that CSP Emulators

(e.g. [68], [38]) are still one of the most used solutions because of the problems related to

interoperating real CSPs. These problems are mainly caused by the lack of data and

information mapping between simulators and the difficulty in interacting (e.g. send and

receive information, share the internal event list) while the simulation is running.

The enhancement of the Run Time Infrastructure services is another key research topic ([2],

[19]). In particular, the scientific articles deal with two open issues: (1) Time management

(e.g. [39], [31]), (2) Data Distribution Management (e.g. [66], [73]). Time Management has

Discrete Event Simulations – Development and Applications 14

received more attention (91% of the papers dealing with enhancement of RTI services)

because it strongly influences the computational performance of the distributed simulation.

The following conclusions can be drawn from the literature analysis:

 There is a lack of distributed simulation applications in real manufacturing

environments.

 The interoperability of CSPs still represents a technical challenging problem.

 The HLA architecture components (in particular RTI services) must be extended and

adapted to civilian applications.

The issues faced to model complex systems give raise to problems in the distributed

simulation realization that are strongly dependent on the specific application case [57] and

the solutions to those needs can be implemented through an RTI in many different

(incompatible) ways. Each way can be promising in its own context, but the lack of a

standardized approach means it is difficult for end users and CSP vendors to choose a

solution thus slowing down the spreading of the distributed simulation technique.

3. A standard based approach for distributed simulation

The main contribution in standardization of distributed modeling has to be credited to

Simulation Interoperability Standard Organization (SISO) and in particular to the High

Level Architecture Simulation Package Interoperability Forum (HLA-CSPIF). HLA-CSPIF

and, then, COTS Simulation Package Interoperability Product Development Group (CSPI-

PDG) were created in an attempt to produce a generalizable solution to the problem of

integrating distributed heterogeneous CSPs.

As highlighted at the end of Section 2.2., a standardized approach is fundamental to increase

the use of distributed simulation in civilian applications. This led to formalize the problem

of the interaction between simulators in civilian applications and to standardize the way

data are exchanged between federates within the federation.

The main results of the standardization effort are the Interoperability Reference Models

(IRMs) and the Entity Transfer Specification (ETS), that will be presented in Section 3.1 and

3.2, respectively. Section 3.3 shows the distributed simulation communication protocol

presented in [77], based on IRMs and the extended ETS proposed in [38].

3.1. Interoperability reference model

An interoperability problem type is meant to capture a general class of interoperability

problems, whereas an IRM is meant to capture a specific problem within that class.

The creation of the IRMs has proved to be a powerful tool in the development of standards

in the distributed simulation research community, as it is now possible to create solutions

for specific integration problems.

Distributed Modeling of Discrete Event Systems 15

An initial set of interoperability problems identified by the CSPI-PDG have been divided into a

series of problem types that are represented by IRMs. The purpose of an IRM can be to [54]:

 Clearly identify the CSP/model interoperability capabilities of an existing distributed

simulation.

 Clearly specify the CSP/model interoperability requirements of a proposed distributed

simulation.

There are four types of IRM:

 Type A - Entity Transfer (Section 3.1.1.)

 Type B - Shared Resource (Section 3.1.2.)

 Type C - Shared Events (Section 3.1.3.)

 Type D - Shared Data Structure (Section 3.1.4)

The literature review showed that around 21% of the articles dealing with technical issues

(Section 2.2.1.) taken into consideration deal with IRMs (e.g., [39], [56], [51], [63], [55] and

[34]).

3.1.1. IRm type A: Entity transfer

IRM Type A Entity Transfer represents interoperability problems that can occur when

transferring an entity from one simulation model to another. This IRM type is the most

formalized at the present moment, since the need to transfer entities between simulators has

been the most popular feature requested from the distributed simulation users so far.

Figure 6 shows an illustrative example of the problem of Entity Transfer where an entity e1

leaves activity A1 in model M1 at time T1 and arrives at queue Q2 in model M2 at time T2.

For example, if M1 is a car production line and M2 is a paint shop, then the entity transfer

happens when a car leaves M1 at T1 and arrives in a buffer in M2 at T2 to wait for painting.

There are three subtypes of IRM Type A:

 IRM Type A.1 General Entity Transfer is defined as the transfer of entities from one

model to another such that an entity e1 leaves model M1 at T1 from a given place and

arrives at model M2 at T2 at a given place and T1 ≤ T2 or T1 < T2. The place of

departure and arrival will be a queue, workstation, etc.

 IRM Type A.2 Bounded Receiving Element. The IRM Type A.2 is defined as the

relationship between an activity A in a model M1 and a bounded queue Q2 in a model

M2 such that if an entity e is ready to leave activity A at T1 and attempts to arrive at the

bounded queue Q2 at T2 then:

 If the bounded queue Q2 is empty, the entity e can leave activity A at T1 and arrive

at Q2 at T2

 If the bounded queue Q2 is full, the entity e cannot leave activity A at T1; activity A

may then block if appropriate and must not accept any more entities.

 When the bounded queue Q2 becomes not full at T3, entity e must leave A at T3 and

arrive at Q2 at T4, activity A becomes unblocked and may receive new entities at T3.

Discrete Event Simulations – Development and Applications 16

 T1 ≤ T2 and T3 ≤ T4.

 If activity A is blocked then the simulation of model M1 must continue.

 IRM Type A.3 Multiple Input Prioritization. As shown in Figure 7, the IRM Type A.3

Multiple Input Prioritization represents the case where a model element such as queue

Q1 (or workstation) can receive entities from multiple places. Let us assume that there

are two models M2 and M3 which are capable of sending entities to Q1 and that Q1 has

a First-In-First-Out (FIFO) queuing discipline. If an entity e1 is sent from M2 at T1 and

arrives at Q1 at T2 and an entity e2 is sent from M3 at T3 and arrives at Q1 at T4, then if

T2 < T4 we would expect the order of entities in Q1 would be e1, e2. A problem arises

when both entities arrive at the same time, i.e. when T2 = T4. Depending on

implementation, the order of entities would either be e1, e2 or e2, e1. In some modeling

situations it is possible to specify the priority order if such a conflict arises, e.g. it can be

specified that model M1 entities will always have a higher priority than model M2 (and

therefore require the entity order e1, e2 if T2 = T4). Furthermore, it is possible that this

priority ordering is dynamic or specialized.

Note that the IRM sub-types are intended to be cumulative, i.e. a distributed simulation that

correctly transfers entities from one model to a bounded buffer in another model should be

compliant with both IRM Type A.1 General Entity Transfer and IRM Type A.2 Bounded

Receiving Element.

The largest part of the papers analyzed in the literature review deal with the basic IRM that

is the general entity transfer (85% of the papers dealing with IRMs), since most of the

applications are related to Supply Chain Management and queues can often be modeled as

infinite capacity as they represent inventory, production or distribution centers.

The situation is slightly different if the manufacturing domain is considered. Indeed, IRM

Type A.2 (70% of the articles dealing with IRMs), is largely adopted when a production

system is modeled, because the decoupling buffers between workstations must be usually

represented as finite capacity queues.

Figure 6. Typr A.1 IRM

Figure 7. Type A.3 IRM

Distributed Modeling of Discrete Event Systems 17

3.1.2. IRM type B: Shared resource

IRM Type B deals with the problem of sharing resources across two or more models in a

distributed simulation. A modeler can specify if an activity requires a resource (such as

machine operators, conveyor, pallets, etc.) of a particular type to begin. If an activity does

require a resource, when an entity is ready to start that activity, it must therefore be

determined if there is a resource available. If it is available then the resource is secured by

the activity and held until the activity ends. A resource shared by two or more models leads

to a problem of maintaining the consistency change the deleted part with: related to the

status of the resource..

Currently there is only one IRM Type B subtype. The IRM Type B.1 General Shared

Resources is defined as the maintenance of consistency of all copies of a shared resource

such that:

 if a model M1 wishes to change its copy of the resource at time T1 then the value of all

other copies of the same resource present in other models will be guaranteed to be the

same at T1.

 if two or more models wish to change their copies of the resource at the same time T1,

then all copies will be guaranteed to be the same at T1.

3.1.3. Type C: Shared event

IRM Type C deals with the problem of sharing events (such as an emergency signal,

explosion, etc.) across two or more models in a distributed simulation.

There is currently one IRM Type C sub-type. The IRM Type C.1 General Shared Event is

defined as the guaranteed execution of all local copies of a shared event E such that:

 if a model M1 wishes to schedule a shared event E at T1, then its local copies (i.e. the

events scheduled within each simulator) will be guaranteed to be executed at the same

time

 if two or more models wish to schedule shared events E1, E2, etc. at T1, then all local

copies of all shared events will be guaranteed to be executed at the same time T1.

3.1.4. Type D: Shared data structures

IRM Type D Shared Data Structure deals with the sharing of variables and data structures

across simulation models that are semantically different to resources (e.g. while referring to

the supply chain environment, this is the case with bill of material information management

or shared inventory). There is currently one IRM Type D sub-type.

3.2. Entity transfer specification

CSPI-PDG proposed the Entity Transfer Specification (ETS) Protocol ([51], [52], [62]) which

refers to the architecture shown in Figure 8.

Each federate consists of a COTS simulation package (CSP), a model that is executed by the

CSP, and the middleware that is a sort of adaptor interfacing the CSP with the Run Time

Discrete Event Simulations – Development and Applications 18

Infrastructure (RTI) (Figure 8). The relationship between CSP, the middleware and the RTI

consists of two communication flows: (1) middleware-RTI, (2) CSP-middleware. The

middleware translates the simulation information into a common format so that the RTI can

share it with the federation. In addition, the middleware receives and sends information

from/to the CSP. The CSP communicates with its middleware by means of Simulation

Messages (Section 3.3.1.) [77]. The presence of Simulation Messages is the main difference

between the reference architecture in Figure 8 and the architecture proposed by Taylor et al

[51].

ETS defines the communication between the sending model and the receiving model

(ModelA and ModelB in Figure 8, respectively) at RTI level. In particular the way the

middleware of each federate and the RTI exchange information is formalized by means of a

special hierarchy of interaction classes. An interaction class is defined as a template for a set

of characteristics (parameters) that are shared by a group of interactions (refer to IEEE HLA

standard, 2000). The middleware of the sending model instantiates a specific interaction

class and sends it to the RTI whenever an entity has to be transferred.

Figure 8. ETS refrence Architecture

Two main issues arise when the simulation information is translated for the RTI:

 A common time definition and resolution is necessary. For example, the time should be

defined as being the time when an entity exits a source model and then instantaneously

arrives at the destination model (i.e. the definition of time implies zero transit time) [62].

Alternatively, it should be defined including the notion of travel time and the entity

would arrive at destination with a delay equal to the transfer time.

Distributed Modeling of Discrete Event Systems 19

 The representation of an entity depends on how the simulation model is designed and

implemented in a CSP. Indeed, the names that the modelers use to represent the same

entity might be different. A similar problem can arise for the definition of simple

datatypes. For example, some CSPs use 32-bit real numbers while others use 64-bit [62].

Straburger [50] highlighted some relevant drawbacks in the ETS standard proposal:

 It is not possible to differentiate multiple connections between any two models.

 ETS suggested interaction hierarchy does not work: a federate subscribing to the

superclass will never receive the values transmitted in the interaction parameters.

 The specification of user defined attributes is placed into a complex datatype, this

introduces new room for interoperability challenges as all participating federates have

to be able to interpret all of the attributes.

 There are some possibilities for misinterpretation in the definition of Entity and

EntityType introducing changes in FOMs whenever a new entity type is talked about.

Furthermore, the ETS was not designed to manage the Type A.2. IRM and the interaction

class hierarchy refers to the entity transfer without taking into account any information on

the state of the receiving buffer (e.g. Q2 in Figure 6).

One of the most recent contributions in ETS was presented by Pedrielli et al. [77] and

consists in the proposal of a new class hierarchy. In particular, different subclasses of the

transferEntity class were defined to enable the differentiation of multiple connections

between models and the Type A.2. IRM management. After developing the interaction class

hierarchy, following the HLA standard, the Simulation Object Model (SOM) and Federation

Object Model (FOM) were developed to include the novel interactions and their parameters.

In particular, extensions were proposed to the Interaction Class Table (part of the OMT,

Section 2.1) to include the novel interaction classes and define them as publish and/or

subscribe. The Parameter Table (part of the OMT, Section 2.1) was modified to include the

proposed parameters for the interactions and the Datatype table was also modified.

The resulting class hierarchy consists of the following classes [38]:

 transferEntity, as already defined in the ETS protocol. This superclass allows the

federate subscribing to all the instances of entity transfer. The instantiation of this class

is related to visualization and monitoring tasks.

 transferEntityFromFedSourceEx is a novel subclass defined for every exit point, where

FedSourceEx stands for the name or abbreviation of a specific exit point in the sending

model. This class is useful to group the instances of the transferEntity that are related to

the source federate, so that the FedSourceEx can subscribe to all these instances without

explicitly naming them.

 transferEntityFromFedSourceExToFedDestEn is a novel subclass defined for each pair of

exit point (Ex) of the source federate (FedSource) and entry point (En) of the receiving

federate (FedDest). This class is instantiated both when a sending model needs to

transfer a part to a specific entry point in the receiving model, and when a receiving

model needs to share information about a buffer state or about the receipt of a part from

Discrete Event Simulations – Development and Applications 20

a specific exit point in a sending model. The models both publish and subscribe to this

subclass that was designed to create a private communication channel between the

sending and the receiving model. Therefore, if an entry point in the receiving model is

connected with multiple federates/exit points, then the receiving federate has to inform

about the state of the entry point by means of multiple interactions, each dedicated to a

specific federate/exit point. This communication strategy is not the most efficient in a

generic case, but it offers the possibility to deliver customized information and adopt

different priorities for the various federates/exit points. This becomes fundamental in real

industrial applications where information sharing among different subsystems is seen as a

threat, thus rising the need to design a protocol that creates a one to one communication

between each pair of exit/entry point inside the corresponding sending/receiving model.

The ETS Interaction class table was modified to represent the transferEntityFromFedSourceEx

and transferEntityFromFedSourceExToFedDestEn subclasses. The Parameter Table was

modified to include the parameters of the novel interaction class transferEntity

FromFedSourceExToFedDestEn. The introduced parameters are presented below. The

similarities with the parameters included in the ETS Parameter Table are highlighted where

present.

 Entity. It is a parameter of complex datatype containing the EntityName that is used to

communicate the type of the entity, and the EntityNumber that is used to communicate

the number of entities to be transferred. The EntityName and EntityNumber play the role

of the EntityName and EntitySize defined in ETS, respectively [51], [62].

 ReceivedEntity. It refers to the entity received by the receiving federate and has the same

type of the parameter Entity.

 Buffer_Availability. It was designed to enable the communication about the buffer

availability.

 SourcePriority. This parameter was designed to communicate the priority assigned to

the entity source, so that the infrastructure can be further extended to manage Type A.3

IRM (Section 3.1)

 EntityTransferTime. It defines the simulation time when the entity is transferred to the

destination point, i.e. the arrival time. Herein the entity leaves the source node and

reaches the destination node at the same time, since it is assumed that the transferred

entity instantaneously arrives at destination.

The resulting tables are shown in Tables 1, 2 and 3.

HLAinteractionRoo

t(N)

TransferEntity

(N/S)

TransferEntityFrom

FromFedSourceExA

(N/S)

TransferEntity

FromFedSourceExAToFedDestE

nC(PS)

 TransferEntity

FromFedSourceExBToFedDestE

nC(PS)

Table 1. Table 1. Interaction Class Table

Distributed Modeling of Discrete Event Systems 21

Interaction Parameter DataType Transportation Order

TransferEnti

tyFromFedS

ourceExAtoF

edDestEnC

(P/S)

Entity EntityType HLAreliable TimeStamp

ReceivedEntity EntityType HLAreliable TimeStamp

Buffer_Availability HLAInteger32BE HLAreliable TimeStamp

SourcePriority HLAInteger32BE HLAreliable TimeStamp

EntityTransferTime HLAFloat32BE HLAreliable TimeStamp

Table 2. Parameter Table

Record Name Field Encoding

 Name Type HLAfixedRecord

EntityType EntityName HLAASCIIString

 EntityNumber HLAInteger32BE

Table 3. Fixed Record Datatype table

3.3. Communication within the HLA-based integration infrastructure

Pedrielli et al. [77] proposed a communication protocol (see Section 3.3.2) based on messages

to manage the communication between a CSP and its middleware (or adapter). The

communication protocol was conceived for the distributed simulation of network of

Discrete Event Manufacturing Systems characterized by the transfer of parts in the presence

of buffers with finite capacity, with the objective to minimize the use of zero-lookahead [62]

for the synchronization of federates.

Before illustrating the communication protocol, Section 3.3.1. presents the concept and

functioning of Simulation Messages created to support the communication between a CSP

and the middleware. The communication protocol between federates is then explained in

Section 3.3.2., whereas Section 3.3.3. defines the hypotheses needed to minimize the zero

lookahead when applying the proposed protocol.

3.3.1. Simulation messages

The function of the simulation messages depends on the role played by the federate. The

sending federate uses the message for communications concerning the need of sending an

entity to another model (outgoing communication) and/or information on the availability of

the target receiving federate (incoming communication). The receiving federate uses the

message for communications concerning the buffer state and/or the acceptance of an entity

(outgoing communication) and/or the receipt of an entity from other models (incoming

communication). Simulation Messages are implemented as a class that is characterized by

the following attributes:

 time referring to the simulation time when the message is sent to the middleware from

the CSP. This attribute is used by the middleware to determine the TimeStamp of the

interaction that will be sent to the RTI.

Discrete Event Simulations – Development and Applications 22

 BoundedBuffer containing the information about the availability of the bounded buffer

in the receiving model.

 TransferEntityEvent representing the entity transfer event scheduled in the sending

model event list and contains the information about the entity to be transferred and the

scheduled time for the event.

 ExternalArrivalEvent representing the external arrival event that is scheduled in the

receiving model. It contains the information about the entity to be received and the

scheduled time for the event.

 ReceivedEntity representing the information about the entity that was eventually

accepted by the receiving model.

3.3.2. Communication protocol

Herein, the behavior of the sending federate will be analyzed at first, then the receiving

federate will be taken under consideration. Finally an example will be described to clarify

how the protocol works.

Sending Federate. The CSP of the sending federate sends a message to its middleware

whenever a TransferEntityEvent is scheduled, i.e. the departure event of an entity from the

last workstation of the sending model is added to the simulation event list. Then, the

middleware uses the attributes time and TransferEntityEvent to inform the RTI about the

need of passing an entity, while the simulation keeps on running (the TransferEntityEvent

time corresponds to the EntityTransferTime presented in Section 3.2.).

The request to advance to EntityTransferTime is sent by the middleware to the RTI as soon as

all local events scheduled for that time instant have been simulated.

After the time has advanced, the middleware can inform the CSP of the sending model

about the state of the receiving buffer in the receiving model. If the receiving buffer is not

full, then the workstation can simulate the TransferEntityEvent, otherwise it becomes

blocked. From the blocking instant until when the middleware informs the sending model

that the receiving buffer is not full, the model keeps on sending requests for time advance at

the lookahead value.

Receiving Federate. The CSP of the receiving federate sends a message to its middleware

whenever a change in the buffer availability occurs. This message contains the updated

value of the attribute boundedBuffer representing the availability of the buffer, i.e. the number

of available slots. Then, the middleware communicates this information to the RTI via

interactions. In particular the information on the availability of the buffer represents a field of

the timestamped interaction transferEntityFromFedSourceExToFedDestEn (Section 3.2.).

If the change in the buffer availability is due to the arrival of an entity from another model,

then the update of the information does not imply zero lookahead and the communication is

characterized by defining the entity that has been accepted (i.e. the ReceivedEntity attribute).

If the buffer state change is not related to an external arrival, then the update of the buffer

information may imply a zero lookahead whenever it is not possible to determine an

advisable a-priori lookahead for the federation (Section 3.3.3) [62]. After being informed by

Distributed Modeling of Discrete Event Systems 23

the middleware that another federate needs to transfer an entity, the receiving model

actually simulates the arrival of the entity only if the buffer is not full, otherwise the arrival

is not simulated and the workstation in the sending model becomes blocked.

Example. The application of the Simulation Messages can be better appreciated by

presenting an example (see Figure 9) that is characterized as follows: (1) the reference

production system is represented in Figure 10, (2) the buffer Q2a at time t accommodates a

number of parts that is greater than zero and less than the buffer capacity and an entity

enters workstation W1a, (3) a departure event from workstation W1a is scheduled for time t’

= t + p, where p represents the processing time of the leaving entity at station W1a, (4)

during the time interval (t; t’), no event happening in the federate M2 (local event)

influences the state of the buffer Q2a. Since W1a is the last machine in model M1, the

departure event is also a TransferEntityEvent. Therefore, the CSP sends a message to its

middleware containing time (t) and the TransferEntityEvent attributes. After receiving the

message, the middleware of the sending model informs the RTI via interaction.

Figure 9. Communication Protocol

Figure 10. Reference Production System

Once the RTI time advances to time t, the middleware of the receiving model receives the

information about the need of the sending model to transfer an entity at time t’. Then, the

middleware sends to the receiving model a simulation message containing the

ExternalArrivalEvent. The receiving model simulates the external arrival as soon as the

simulation time advances to t’ and all local events for that time have been simulated (since

Discrete Event Simulations – Development and Applications 24

the buffer Q2a is not full according to the example settings). A message is sent to the

middleware of the receiving model containing the updated level of Q2a (attribute

BoundedBuffer) together with the information concerning the recently accommodated part

(attribute ReceivedEntity).

Afterwards, the middleware sends two interactions to the RTI: one is with a TimeStamp

equal to t’ and contains the updated state of the buffer Q2a and the receipt of the entity, the

other contains the request of time advance to time t’. Once the RTI reaches time t’, the

middleware of the sending model receives the information regarding the state of Q2a and

the received entity by means of the RTI. Since the entity has been delivered to the receiving

model, the station W1a is not blocked by the middleware.

3.3.3. Formal characterization of the communication protocol

This section defines which hypotheses are needed to minimize the occurrence of zero

lookahead if the communication protocol afore presented is adopted.

Let represent an external event scheduled in the i-th federate j-th exit (entry) point at

simulation time t, where t can be, in general, smaller or equal to t’ that represents the

simulation time when the event is supposed to be simulated. An event scheduled into the

event list of a simulator is defined as external if one of the three following conditions holds:

 The realization of the event depends on the state of a federate that is, in general,

different from the one that scheduled the event. One example of external event is when

the sending federate (model M1) wants to transfer a part to the receiving federate

(model M2), the possibility for the leaving event to be simulated depends on the state of

the queue of the receiving federate.

 The simulation of the event leads to changes into the state of other federates in the

federation. This is the case when the downstream machine to the first buffer in the

receiving model takes a part from the buffer thus changing its availability, this

information must be delivered to sending models that are willing to transfer an entity,

the state of the sending federate(s) will change depending on the information delivered

(W1a can be idle or blocked).

 The event is not scheduled by the simulator that will simulate it, but is put into the

simulation event list by the middleware associated with the simulator. This is the case

of the External Arrival Event (Section 3.3.1.).

Herein three types of external events are taken into consideration:

 Entity transfer event, this event happens when a sending federate wants to transfer a part

to a receiving federate.

 Buffer_availability change event, this is a departure event from the workstation

downstream the buffer representing the entry point of the receiving model.

 External Arrival event, this event is scheduled by the middleware inside the simulation

event list of the receiving federate every time a part has to be transferred.

If t < t’ it means that the simulation message can be sent by the sending (receiving) model

and received by the target federate before the event contained in the message has to be

Distributed Modeling of Discrete Event Systems 25

executed. When this happens it is possible to minimize the use of the zero lookahead for the

communication between federates.

The federate sending the message can communicate with t < t’ under the following

conditions:

 The Entity transfer event is scheduled when the part enters the machine in the sending

model. In this case the event is put into the event list a number of time units before it

must be simulated that is at least equal to the processing time of the workstation under

analysis. In the case the event is scheduled when the part leaves the workstation, then

the condition holds if there exists a transfer time between the sending and the receiving

model that is larger than zero and no events affect the arrival of the part once the

transfer has started. The conditions aforementioned are not unrealistic when a

manufacturing plant is simulated: both in the case the event is scheduled before or after

the processing activity, the time between the departure from the exit point and the

arrival to the entry point is in general not negligible. Nonetheless, in both the

aforementioned cases, it is required that no other external events are scheduled by the

same exit point during the interval (t; t’). This can happen when, after a leaving event

has been scheduled, a failure affects the machine. In this case the information related to

the part to be transferred has already been delivered and cannot be updated. As a

consequence an external arrival event will be scheduled in the receiving model

although the sending model will not be able to deliver the part because of the machine

failure. A solution to this issue is part of present research.

 It is possible to communicate in advance the Buffer availability change event if the

workstation processing the part schedules the leave event in advance to its realization

and no other events are scheduled by the same workstation during the interval (t; t’).

However, the zero lookahead cannot be avoided by the sending federate which cannot

be aware of the downstream buffer changes and then it will send update request at the

lookahead value.

 The zero lookahead can be avoided if the middleware of the receiving model can

schedule the External Arrival event in advance and then inform the target federate(s) on

the availability of the buffer in advance. This condition can be satisfied based on the

entity transfer event characteristics.

In the case one or more of the conditions aforementioned do not hold than the

communication protocol shown in the Section 3.3.2. implies the use of zero lookahead. If the

hypothesis that no additional external events must be scheduled by the same exit (entry)

point in a federate (sending or receiving) within the time interval (t; t’) is relaxed, then the

middleware should be able to arrange incoming events in a queue and wait before

delivering the information to the simulator until when the most updated information has

been received. However it is quite straightforward to show that, in the worst case, the

middleware should wait until when the simulation time reaches t’, and therefore all the time

advance requests would be performed at the zero lookahead. This relaxation is under

analysis.

Discrete Event Simulations – Development and Applications 26

4. Distributed simulation in industry: A case study

This section presents an application of the architecture and communication protocol

proposed in Section 3.3. The aim is to evaluate whether the use of distributed simulation can

help to better analyze the dynamics of complex manufacturing systems, whereas the

comparison between the HLA-based distributed simulation and a monolithic simulation in

terms of computational efficiency is out of scope.

Herein the attention is focused on the industrial field represented by sheet metal

production. In this industrial field, the production systems are characterized by the presence

of at least two subsystems interacting with each other: the Roll Milling System and the Roll

Shop. The Roll Milling System produces sheet metal using milling rolls that are subject to

wearing out process. The rolls must be replaced when worn out to avoid defects in the

laminates. Then the Roll Shop performs the grinding process to recondition the worn out

rolls.

The following types of rolls have been considered in the case study:

 Intermediate Rolls (IMR) representing back-up rolls that are not in contact with the

laminate. Depending on the size of the roll, the IMR roll will be referred to as IMR1 (the

bigger roll type) and IMR2.

 Work Roll (WR) representing the rolls directly in contact with the laminate. Also in this

case there are two subtypes that will be referred to as WR1 (the bigger roll type) and

WR2.

If the attention is focused on the rolls, then the resulting production system is a closed loop:

the Roll Milling System sends batches of worn out rolls to the Roll Shop following a given

policy and receives reconditioned rolls back. Both the Roll Milling System and the Roll Shop

have finite capacity buffers, therefore it is necessary to check whether the buffer in the

system receiving the rolls has enough free slots. The deadlock in the closed loop is avoided

because the number of rolls circulating in the system is less than the number of available

slots (taking into account also the machines) and it is constant.

The two subsystems forming a closed loop are strongly related and their reciprocal

influence should be considered to properly evaluate the performance of the whole factory

by means of a comprehensive simulation model. However, both the Roll Shop designer and

the Roll Milling System owner usually develop their own detailed simulator to evaluate the

performance of their subsystem, because of the lack of shared information between the

owner of the Roll Milling System and the Roll Shop designer. Indeed, the owner of the Roll

Milling System usually provides the Roll Shop designer only with aggregated data about the

yearly average demand of worn out rolls to be reconditioned. Moreover, the Roll Milling

System works according to specific roll changing policies that are not shared with the Roll

Shop designer even if they play a key role in the dynamics of the whole factory. For

instance, when a roll is worn out, also the other rolls are checked and if their remaining

duration is under a predefined threshold, then they are sent to the Roll Shop together with

the completely worn out rolls. The presence of roll changing policies determines a relation

Distributed Modeling of Discrete Event Systems 27

between different roll types, since a roll can be sent to the Roll Shop depending on the

behavior of other roll types.

Even if separate simulators are developed, the Roll Shop designer still has to evaluate the

performance of the whole system while taking into account the influence of the Roll Milling

System related to (1) the arrival rate of worn out rolls from the Roll Milling System that is

estimated from the yearly aggregate demand of reconditioned rolls and (2) the acceptance of

the reconditioned rolls sent by the Roll Shop (closed loop model).

In addition to this the Roll Shop designer has to guarantee that the Roll Milling System the

Roll Shop is being designed for, never waits for reconditioned rolls interrupting the

production of sheet metal.

Hence, even if simulation models are available, usually the Roll Shop designer over-

dimensions the number of rolls that have to populate the whole system to avoid any

waiting time at the Roll Milling System. For this reason we focused our first analysis on the

effect of the number of rolls over the performance of the whole system (Roll Milling System

and Roll Shop).

Sections 4.1 and 4.2 will give the main details characterizing the simulation models, whereas

Section 4.3 will present (Section 4.3.1 and Section 4.3.2) and compare (Section 4.3.3) two

approaches for the system analysis.

4.1. The Roll Shop simulator

In this section the simulator of the Roll Shop developed for the case of interest will be

explained in detail.

The Roll Shop simulator has been developed in C++ language using the object oriented

paradigm. The C++ based simulator emulates a COTS, following the approach showed in

Wang et al. [67], [68]. Figure 11 gives a pictorial representation of the simulation model for

the Roll Shop under analysis.

Figure 11. The Roll Shop System representation

The Roll Shop is composed by the following elements (Figure 11).

 Buffer areas where the rolls are kept while waiting to be transferred to the Roll Shop or

the Milling system. The buffer areas can be:

Discrete Event Simulations – Development and Applications 28

 Stand-by Area, represents the entry/exit point of the Roll Shop and only the

overhead crane can access it. The batches of rolls coming from the Roll Milling

System and the batches of grinded rolls to send back to the Roll Milling System are

placed here.

 Exchange Area 1, represents the interface between the part of the system managed

by the overhead-crane and the grinding system served by the loader

 Exchange Area 2, represents the interface between the exit of the grinding system

and the exit from the roll shop system managed by the overhead-crane.

 Workstations where the rolls are reconditioned;

 Grinder Machine Work (Grinder WR), i.e. grinding machine dedicated to work roll

type.

 Grinder Machine Intermediate (Grinder IMR), i.e. grinding machine dedicated to

intermediate roll type.

 Electro-Discharge Texturing Machine (EDT), i.e. machine executing a surface finishing

process on the rolls.

 Two types of conveyors:

 Loader, i.e. an automatic conveyor that transfers rolls to the grinding machines

 Overhead crane, i.e. a semi-automatic handling system to transfer rolls from the

arrival point in the roll shop (Stand by area) to the exchange areas of the system

 All the workstations, but the EDT, have two buffer positions (grey rectangles in Figure 11)

within the working area.

The main parameters needed to configure the simulator are:

 Size of the roll batches

 Type of rolls (e.g. WR1 and WR2, IMR1 and IMR2 as described in Section 4)

 Process Sequence for every roll, i.e. the process plan and the assignment of operations to

the production resources in the Roll Shop. The process sequence depends on the roll

type.

 Processing time of each operation. Those processing time have been considered

deterministic for the experiments presented in this section (i.e. no failures affect the

workstations).

 Transfer time, i.e. the time to move the roll within the Roll Shop. This is a deterministic

quantity as a function of the path.

 Number of workstations of each type. We have dedicated machines, in particular we have

one grinding machine dedicated to WR type (i.e. WR1 and WR2) and one grinding

machine dedicated to IMR type roll (i.e. IMR1 and IMR2). We have one EDT machine

(processing only WR type rolls). In case the WR type roll finds the dedicated grinding

machine occupied and the IMR machine is idle, then it can be processed also on the

IMR machine. However the time required for the process increases.

Table 4 summarizes the output statistics that can be gathered from the Roll Shop simulator.

The minimum, maximum average values are supplied for every statistic, and the variance is

computed as well.

Distributed Modeling of Discrete Event Systems 29

Component Statistics Unit of Measurement

Roll Number of rolls in the Roll

Shop system for every roll

type

-

System Time for every roll

type

[min/roll]

Grinding time for every roll

type

[min/roll]

Transfer time for every roll

type

[min/roll]

Machine Utilization [%]

Processing Time [min/roll]

Number of processed rolls -

Number of rolls in the buffer

area

-

Conveyor Transfer time [min/transfer]

Idle time [min]

Utilization [%]

Buffer Number of rolls in the buffer -

Waiting time in the buffer [min/roll]

Table 4. Roll Shop Statistics

4.2. The Roll Milling System simulator

In this section the simulator of the Roll Milling System developed for the case of interest will

be explained in detail.

The Roll Milling System simulator has been developed in C++ language. The C++ based

simulator emulates a COTS, following the approach showed by Wang et al. [67], [68].

A generic milling system can be represented as shown in Figure 12, whereas the simulation

model realized for the case presented is graphically represented in Figure 13.

Figure 12. Roll Milling System [87]

Discrete Event Simulations – Development and Applications 30

Figure 13. Milling System Simulation Model

The Roll Milling System considered for the industrial case is composed of 5 stands (refer to

Figure 12 for the definition of stand) each characterized by a milling station and a buffer for

rolls (Figure 13). It is important to highlight that more rolls are needed with respect to those

in use to process the metal sheet in order to minimize the waiting time of the milling system

when the rolls are changed.

Once the rolls worn out, the Roll Milling System interrupts the process and the rolls must be

replaced. The rolls are then replaced with the rolls of the same type available at the rolls

buffer (Figure 13) close to the station. In the case the rolls required are not available the Roll

Milling System stops producing. The worn out rolls are sent to the Roll Shop System as soon

as a batch of rolls is ready (the size of the batch is usually fixed and represents a parameter

of the simulation model). The batches are then transferred to the Roll Shop by means of a

special conveyor, the Transfer Car.

The interval between roll changes (interchange time) is the interval between two consecutive

sending of the same roll to the Roll Shop. This interval is fundamental to the correct sizing

of the Roll Shop Plant (i.e. the number of grinding machines for every type, the size of the

buffer areas) and of the number of rolls, for every type, populating the system.

This interval is mainly related to the life duration and the roll changing policies adopted

within the system. For the industrial case considered, these policies can be brought back to

two main criteria:

1. If an IMR roll has to be changed, since this requires high setup time, also the WR rolls

from the same station are sent to the Roll Shop even if they have not reached their end

on life.

2. If more batches have almost reached their life duration, they are sent together to

grinding process to avoid multiple sending.

The main parameters to configure the simulation model are:

 Number of stands

 Capacity of the buffers at every stand

 Number of rolls in the system

 Size of roll batches and types of rolls

 Life duration for each roll type

The Roll Milling System simulator supplies the following output statistics (Table 5):

Distributed Modeling of Discrete Event Systems 31

Component Statistics Unit of Measurement

Roll Number of rolls in the Roll

Milling system for every roll

type

-

Interchange Time [min]

Station Utilization [%]

Waiting Time [min]

Busy Time [min]

Number of rolls in the buffer

area

-

Buffer Number of rolls in the buffer -

Waiting time in the buffer [min/roll]

Service Level Busy Time/Simulation Time [%]

Table 5. Roll Milling System Simulator Statistics

The Service Level (SL) is the typical key performance indicator (KPI) for analyzing the Roll

Milling System. It is defined as the time the Roll Milling System produces sheet metal over

the time it is operative (the total simulation time in the case of the computer experiment). It

must be highlighted that the system cannot produce if all the required rolls are not present

at each station. For this reason every station will have the same “Busy Time”, i.e. the same

time period during which it produces. The service level of a system can be increased

managing the plant in a way such that we always have an available batch of rolls to change

the worn out ones that have to be sent to the Roll Shop.

It is then clear that the Service Level would be reduced if the Roll Milling System had to

wait too long for reconditioned rolls coming from the Roll Shop.

4.3. Sheet metal production system analysis: Approach A, approach B

The Roll Shop designer may choose two possible approaches to estimate the effects of the

Roll Shop design choices over the performance of the Roll Milling System:

 Approach A. The Roll Milling System is represented by a simplified model inside the

detailed simulation model of the Roll Shop (Section 4.1). This simplified model roughly

reproduces the Roll Milling System by generating the arrival of worn out rolls and

accepting the reconditioned ones.

 Approach B. The performance of the whole factory is evaluated by adopting the HLA-

based Infrastructure integrating the simulators of the Roll Milling System and of the

Roll Shop.

4.3.1. Approach A

The simulator of the whole system is realized introducing within the detailed simulation

model of the Roll Shop a simplified model of the Roll Milling System. Also this simulator is

developed in C++ language.

Discrete Event Simulations – Development and Applications 32

More specifically, the Roll Milling System is modeled as an oracle sending (receiving)

batches of worn out (reconditioned) rolls to the Roll Shop based on the information on the

wearing out time of every roll type.

It must be stressed that the simulator of Approach A cannot be considered as a proper

monolithic simulator of the whole factory, since the Roll Milling System is only poorly

modeled.

The input parameters needed to initialize the oracle are:

 Number of rolls present in the system, when the simulation starts, for every type. In this

case the number of rolls represents the total number of rolls in the Roll Milling System.

The only initial condition we can set using this simulation model is that all the rolls at

the simulation start are at the beginning of their life and are all in the Roll Milling

System, whereas the Roll Shop is empty.

 Life duration of every roll type.

 Size of the batch of rolls for every roll type (the rolls are moved in batches as explained

in Section 4.1 and Section 4.2).

Table 6 defines the life duration of the rolls (for every type) given as input for Approach A..

Roll Type WR1 WR2 IMR1 IMR2

Batch Size [#Rolls/batch] 8 2 8 2

Duration [min/batch] 438 288 3228 1452

Table 6. Rolls parameters

Table 7 reports the results in terms of average intervals between rolls change, estimated

running the simulation model of the Roll Milling System (Section 4.2) as standalone. The life

duration given as input to the Roll Milling System simulator was the same given in Table 6.

Although the life duration used is the same the resulting intervals between rolls change are

different because of the effect of the roll changing policies which are not taken into account

in the simplified model of the Roll Milling System (Section 4.2).

Time to change rolls batch

[min/batch]
Detailed Model

WR1 432

WR2 288

IMR1 3024.04

IMR2 1440

Table 7. Rolls interarrival time estimated running the MS simulation model

In particular the intervals between rolls change result decreased because the WR2 type,

characterized by the shorter life duration, draws the change of all other roll types. This

result represents a first motivation towards the distributed approach. Indeed it shows that

the aggregated information related to the interchange time is not enough to represent the

Distributed Modeling of Discrete Event Systems 33

dynamics of the Roll Milling System. A possible idea to increase the accuracy of Approach A

could be to replace data in Table 6 with the estimated information in Table 7, thus taking

into account, at least on average, the behavior of the Roll Milling System.

However, the missing feature of this approach is that in any case, even updating the life

duration, we will not be able to reproduce the dynamics over time of the Roll Milling System

which is what really affects the estimation of the performance of the whole system more

than the average behavior captured by data in Table 7.

In addition, the only statistics of the Roll Milling System that can be gathered if Approach A

is adopted are:

 Average Number of Rolls at every stand

 Average Waiting Time for grinded rolls

 Service Level. In particular, the utilization time (Section 4.2) is estimated as the

difference between the total simulation time and the computed sum of time intervals

during which the number of rolls for at least one type are equal to 0. If this condition is

verified then the Roll Milling System cannot produce and has to wait for reconditioned

rolls. As defined in Section 4.2, the ratio between this time and the total simulation time

gives the estimate of the service level.

Summarizing, Approach A supplies an approximate estimate of the whole system

performance:

 The real behavior of the Roll Milling System cannot be precisely modeled since it is

reduced to a black box sending and receiving rolls (e.g. the roll changing policies are

not modeled).

 The performance of the Roll Milling System cannot be evaluated in detail (e.g. mean

starvation time for every station, mean level of roll buffers, etc).

4.3.2. Approach B

In Approach B, the detailed models of the two subsystems are directly adopted. Indeed the

two simulators described in Section 4.1 and 4.2 are linked together thanks to the HLA-based

developed infrastructure (Figure 15).

The HLA-based architecture was implemented as follows:

 MAK-RTI 3.3.2 (www.mak.com) was used as the RTI component implementation.

 The middleware was developed in C++ language following the specifications defined in

Section 3.3 and was named SimulationMiddleware.

The FederateAmbassador and RTIAmbassador were provided by MAK-RTI as C++ classes and

were linked to the SimulationMiddleware. Further extensions were needed to implement the

proposed modification to ETS (Section 3.2) and the Simulation Messages (Section 3.3.1). The

former required a modification to FederateAmbassador class, whereas the latter led to the

development of a new C++ class. The SimulationMiddleware was implemented to manage the

information contained in Simulation Messages.

Discrete Event Simulations – Development and Applications 34

The interaction tables (Section 3.2) developed for this case are shown in Tables 10,11,12 and

13.

Figure 14. Distributed Simulation of Roll Shop and Roll Milling System

4.3.3. Comparison between approach A and approach B

The two approaches have been compared by designing a set of experiments characterized as

follows:

 Three experimental conditions were designed with reference to the total number of rolls

circulating in the whole system. These three conditions were defined as Low, Medium,

High level.

 The simulation run length was set to six months (4 weeks of transitory period). The roll

changing policy adopted for the Approach B simulator has been kept fixed throughout

the experimentation.

The results of the experiments are shown in Table 8. Approach A and Approach B are

compared in terms of the estimated Service Level (refer to Section 4.2 for the definition). The

results show that the difference between the two approaches is larger for the High and

Medium level conditions.

When the level of rolls is Low the roll changing policy does not affect the overall

performance of the production system because the Roll Milling System is frequently starved

and therefore the estimations are similar (consider also that the Low level condition has no

industrial meaning, but was considered to study the service level response). In case of

Medium and High level conditions the workload of the rolls in the Roll Shop can be strongly

influenced by the roll changing policy, thus generating a higher difference in the estimation

between the two approaches.

Approach B generates more accurate estimates of the whole system performance because

the Roll Milling System is represented with high level of detail and the roll changing policies

are modeled. In addition to this if Approach B is used, detailed information related to the

Roll Milling System performance are available. Table 9 shows an example of output for the

Distributed Modeling of Discrete Event Systems 35

average statistics related to the Roll Milling System from the simulation of the High level

condition in Table 8.

Experimental

Conditions

Approach A Approach B Percentage

difference

High Level 0.995 0.872 12.3

Medium Level 0.946 0.682 27.7

Low Level 0.308 0.273 3.5

Table 8. Service Level Results

Output Statistic Value

Busy Time 5.2[months]

Waiting Time 0.8[months]

Utilization 87.2[%]

Number of Rolls

Stand 1:

1.177 WR

1.470 IMR

Stand 2:

1.177 WR

1.470 IMR

Stand 3:

1.177 WR

1.470 IMR

Stand 4:

1.177 WR

1.470 IMR

Stand 5:

3.401 WR

1.740 IMR

Service Level 87.2[%]

Table 9. Roll Milling System simulator. Output Statistics

The number of rolls in the system together with the roll changing policy have a strong

impact on the workload conditions of the Roll Shop. This aspect can only be taken into

account under Approach B and the results show the dramatic difference in performance

estimation due to this additional information that characterizes the model.

Approach A is overestimating the performance of the system, thus decreasing its

effectiveness as supporting tool for decision making.

Based on the analysis carried out so far, it was decided to design further experiments to

analyze the behavior of the whole system with different starting workload conditions, i.e.

Discrete Event Simulations – Development and Applications 36

the number of rolls that are present in the Roll Milling System when the simulation starts.

These experiments can be useful to analyze the ramp-up period and select the roll changing

policy that avoids the arising of critical workload conditions. These additional experiments

can be carried out only adopting Approach B, since the starting workload conditions cannot

be modeled with Approach A (Section 4.3.1). Indeed, the simplified model generates rolls for

the Roll Shop independently from the starting workload conditions. Therefore, the

simplified model would generate roll arrivals even if all the rolls are already located in the

Roll Shop, thus incorrectly increasing the number of rolls in the whole system.

The second set of experiments was designed as follows:

 Two types of roll circulate in the factory (WR and IMR). The roll of type IMR has a longer

roll life than WR

 For each type of roll three levels of the Starting Workload (i.e. number of rolls) in the Roll

Milling System are considered

 Three simulation run lengths are considered, i.e. 1 week, 2 weeks and 4 weeks

 The roll changing policy is fixed for all experiments

 total number of rolls is equal to the High level of the previous experimentation and is

fixed for all the experiments.

Fig. 15 shows the main effects plot for the Service Level evaluated by simulating the 27

resulting experimental conditions with Approach B. The plot suggests a significant influence

of the factor Starting Workload for WR. This roll type assumes a key role because of its short

roll life (Section 4.3.1). If the Starting Workload For WR is Low, the Roll Shop can hardly

follow the frequent roll requests of WR from the Roll Milling System and low values of SL

are observed. This phenomenon occurs in all conditions of the simulation lengths, however

it mitigates when the simulation length increases. Indeed the SL tends to a stationary value

that is independent from the starting conditions. Nonetheless this analysis can be useful for

the Roll Milling System owner that can individuate critical conditions, thus designing roll

changing policies that avoid the occurrence of these situations during the ramp-up period.

HighMediumLow

0,9

0,8

0,7

0,6

0,5

HighMediumLow

4[weeks]2[weeks]1[week]

0,9

0,8

0,7

0,6

0,5

IMR

M
e

a
n

 S
e

r
v

ic
e

 L
e

v
e

ls

WR

Simulation Run Length

Main Effects Plot for Service Level

Figure 15. Main Effects Plot of Service Lovel, Approach B

Distributed Modeling of Discrete Event Systems 37

HLAinter

action

Root(N)

Transfer

Entity

(N/S)

TransferEntityFromFedSource

Milling(N/S)

TransferEntityFromFedSourceExMillingtoFe

dDestEnRollShop(P/S)

 Entity

(N/S)

TransferEntityFromFedSource

RollShop(N/S)

Table 10. Interaction Class Table

Interaction Parameter DataType Transportation Order

TransferEntityFromF

edSourceExMillingto

FedDestEnRollShop(

P/S)

RollEntity RollType HLAreliable TimeStamp

ReceivedRollEntity RollType HLAreliable TimeStamp

RollShopBuffer HLAInteger32BE HLAreliable TimeStamp

SourcePriority HLAInteger32BE HLAreliable TimeStamp

EntityTransferTime HLAFloat32BE HLAreliable TimeStamp

Table 11. Parameter Table for Roll Shop SOM

Interaction Parameter DataType Transportation Order

TransferEntityFromFe

dSourceExRollMillingt

oFedDestEnRollShop

(P/S)

RollEntity RollType HLAreliable TimeStamp

ReceivedRollEntity RollType HLAreliable TimeStamp

MillingBuffer HLAInteger32B

E

HLAreliable TimeStamp

SourcePriority HLAInteger32B

E

HLAreliable TimeStamp

EntityTransferTime HLAFloat32BE HLAreliable TimeStamp

Table 12. Parameter Table for Milling System SOM

Record Name Field Encoding

 Name Type HLAfixedRecord

RollType Roll HLAASCIIString

 BatchSize HLAInteger32BE

Table 13. Fixed Record Datatype Table (SOM) for Roll Shop and Milling Systems

Discrete Event Simulations – Development and Applications 38

5. Conclusions

This chapter has presented an overview of distributed simulation and the contemporary

innovations in the use of distributed modeling to support the analysis of complex systems.

The attention has been focused on CSP-based distributed simulation in civilian applications

and especially in manufacturing domain. The literature review showed the need of a general

standard solution to the distributed simulation of systems within the civilian domain to

increase the use of distributed techniques for the analysis of complex systems. The

Interoperability Reference Model standard released by SISO CSPI-PDG has been analyzed.

Furthermore, the latest advancements in ETS standard proposal and Communication

Protocol between federates within HLA-based distributed environment have been shown.

In the end the industrial application of an HLA-based infrastructure proved the benefits of

the distributed approach to effectively analyze the behavior of complex industrial systems.

The distribute simulation is acquiring more and more interest also because the need to

interoperate several simulators leads to the need to improve the methodologies and the

tools developed so far for the simulation of Discrete Event Systems. In other words the

issues arising when trying to make several simulators interoperate are those issues the

simulation community has been dealing with in the last years.

Further effort is needed in the formalization of the IRMs. In particular the presence of

shared resources and the modeling of the control policies characterizing the system

represent challenging issues not yet solved.

The communication protocols need to be enhanced and the zero-lookahead issue represents

one of the main bottlenecks against the increase of efficiency of distributed simulations.

Research effort is necessary to come up with new algorithms enabling the avoidance of zero-

lookahead. In this area the research on protocols that do not force to send interaction at

every time unit to communicate the state of the federates, but enable the interaction

depending on the system state (Adaptive Communication Protocols) look promising.

The need of a shared data model ([26], [7]) and of a common definition of the objects which

are input and output of the simulation and a common simulation language, are all scientific

and technical challenging topics that make research in distributed simulation always up to

date.

In particular the definition of a common reference model to describe information generated

by each simulator while it is running will be a key factor for the success of the distributed

simulation technique. A fundamental contribution in this field was given by the Core

Manufacturing Simulation Data CMSD [7], but the interoperability between simulators is

still far from being reached. The data modeling research topic is wider than what just stated

and covers several areas and simulation is just one of those. For example proposals to

standardize the information modeling for manufacturing systems have been done in [83-84].

The European project Virtual Factory Framework VFF ([38] [85-86]) represents one of the

latest proposals from the research community in terms of framework supporting the

Distributed Modeling of Discrete Event Systems 39

interoperability between digital tools. Future research will evaluate if the VFF approach can

be exploited by distributed simulation applications.

Author details

Giulia Pedrielli and Tullio Tolio

Politecnico di Milano, Dipartimento di Ingegneria Meccanica, Milano (MI), Italy

Walter Terkaj and Marco Sacco

Istituto Tecnologie Industriali e Automazione (ITIA), Consiglio Nazionale delle Ricerche (CNR),

Milano (MI) Italy

Acknowledgement

The research reported in this chapter has received funding from the European Union

Seventh Framework Programme (FP7/2007-2013) under grant agreement No: NMP2 2010-

228595, Virtual Factory Framework (VFF). Sections of this chapter are based on the paper:

Pedrielli, G., Sacco, M., Terkaj, W., Tolio, T., Simulation of complex manufacturing systems

via HLA-based infrastructure. Journal Of Simulation, to be published. Authors would like to

acknowledge Professor Taylor S.J.E and Professor Starssburger S. for their ongoing support

and their work the in developing current range of standards for distributed simulation.

Authors acknowledge Tenova Pomini Company for providing the support to build the

industrial case.

6. References

[1] Ieee standard for modeling and simulation (m amp;s) high level architecture (hla) -

framework and rules. IEEE Std. 1516-2000, pages i-22, 2000.

[2] Khaldoon Al-Zoubi and Gabriel A. Wainer. Performing distributed simulation with

restful web services approach.

[3] James G. Anderson. Simulation in the health services and biomedicine, pages 275{293.

Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[4] J. Banks, J.C. Hugan, P. Lendermann, C. McLean, E.H. Page, C.D. Pegden, O. Ulgen,

and J.R. Wilson. The future of the simulation industry. In Simulation Conference, 2003.

Proceedings of the 2003 Winter, volume 2, pages 2033-2043 vol.2, dec. 2003.

[5] J. Banks and B.L. Nelson. Discrete-event system simulation. Prentice Hall, 2010.

[6] Lee A. Belfore, II. Simulation in environmental and ecological systems, pages 295-314.

Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[7] S. Bergmann, S. Stelzer, and S Strassburger. Initialization of simulation models using

cmsd. In Simulation Conference (WSC), Proceedings of the 2011 Winter, WSC '11, pages

594-602. IEEE Press, 2011.

[8] C.A. Boer. Distributed Simulation in Industry. PhD thesis, Erasmus University

Rotterdam, Rotterdam, The Netherlands, October 2005.

Discrete Event Simulations – Development and Applications 40

[9] C.A. Boer, A. de Bruin, and A. Verbraeck. Distributed simulation in industry - a survey

part 1 - the cots vendors. volume 0, pages 1053-1060, Los Alamitos, CA, USA, 2006.

IEEE Computer Society.

[10] C.A. Boer, A. de Bruin, and A. Verbraeck. Distributed simulation in industry - a survey

part 3 - the hla standard in industry. In Simulation Conference, 2008. WSC 2008. Winter,

pages 1094-1102, dec. 2008.

[11] Csaba Attila Boer, Arie de Bruin, and Alexander Verbraeck. Distributed simulation in

industry - a survey: part 2 - experts on distributed simulation. In Proceedings of the

38th conference on Winter simulation, WSC '06, pages 1061-1068. Winter Simulation

Conference, 2006.

[12] Csaba Attila Boer and Alexander Verbraeck. Distributed simulation and manufacturing:

distributed simulation with cots simulation packages. In Proceedings of the 35th

conference on Winter simulation: driving innovation, WSC '03, pages 829-837. Winter

Simulation Conference, 2003.

[13] Vesna Bosilj-Vuksic, Mojca Indihar Stemberger, Jurij Jaklic, and Andrej Kovacic.

Assessment of e-business transformation using simulation modeling. Simulation.

[14] Agostino G. Bruzzone. Preface to modeling and simulation methodologies for logistics

and manufacturing optimization. Simulation, 80(3):119-120, 2004.

[15] Judith S. Dahmann, Frederick Kuhl, and Richard Weatherly. Standards for simulation:

As simple as possible but not simpler the high level architecture for simulation.

SIMULATION, 71(6):378- 387, 1998.

[16] Wilhelm Dangelmaier and Bengt Mueck. Simulation in business administration and

management, pages 391-406. Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[17] Paul K. Davis. Military applications of simulation, pages 407-435. Kluwer Academic

Publishers, Norwell, MA, USA, 2003.

[18] T. Eldabi and R.J. Paul. A proposed approach for modeling healthcare systems for

understanding. In Simulation Conference, 2001. Proceedings of the Winter, volume 2,

pages 1412 -1420 vol.2, 2001.

[19] Richard Fujimoto, Michael Hunter, Jason Sirichoke, Mahesh Palekar, Hoe Kim, and

Wonho Suh. Ad hoc distributed simulations. In Proceedings of the 21st International

Workshop on Principles of Advanced and Distributed Simulation, PADS '07, pages 15-

24, Washington, DC, USA, 2007. IEEE Computer Society.

[20] R.M. Fujimoto. Parallel and distributed simulation systems. Wiley series on parallel and

distributed computing. Wiley, 2000.

[21] Boon Ping Gan, Peter Lendermann, Malcolm Yoke Hean Low, Stephen J. Turner,

Xiaoguang Wang, and Simon J. E. Taylor. Interoperating autosched ap using the high

level architecture. In Proceedings of the 37th conference on Winter simulation, WSC '05,

pages 394-401. Winter Simulation Conference, 2005.

[22] Boon Ping Gan, Peter Lendermann, Malcolm Yoke Hean Low, Stephen J. Turner,

Xiaoguang Wang, and Simon J. E. Taylor. Architecture and performance of an hla-based

Distributed Modeling of Discrete Event Systems 41

distributed decision support system for a semiconductor supply chain. SimTech

technical reports, 7(4):220-226, 2007.

[23] Sumit Ghosh and Tony Lee. Modeling and Asynchronous Distributed Simulation

Analyzing Complex Systems. Wiley-IEEE Press, 1st edition, 2000.

[24] Strong D.R. Richards N. Goel N.C. Goel, S. A simulation-based method for the process

to allow continuous tracking of quality, cost, and time. Simulation, 78(5):330-337, 2001.

[25] Hironori Hibino, Yoshiyuki Yura, Yoshiro Fukuda, Keiji Mitsuyuki, and Kiyoshi

Kaneda. Manufacturing modeling architectures: manufacturing adapter of distributed

simulation systems using hla. In Proceedings of the 34th conference on Winter

simulation: exploring new frontiers, WSC '02, pages 1099-1107. Winter Simulation

Conference, 2002.

[26] Marcus Johansson, Bjorn Johansson, Anders Skoogh, Swee Leong, Frank Riddick, Y.

Tina Lee, Guodong Shao, and Par Klingstam. A test implementation of the core

manufacturing simulation data specification. In Proceedings of the 39th conference on

Winter simulation: 40 years! The best is yet to come, WSC '07, pages 1673-1681,

Piscataway, NJ, USA, 2007. IEEE Press.

[27] Frederick Kuhl, Richard Weatherly, and Judith Dahmann. Creating computer

simulation systems: an introduction to the high level architecture. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 1999.

[28] P. Lendermann. About the need for distributed simulation technology for the resolution

of realworld manufacturing and logistics problems. In Simulation Conference, 2006.

WSC 06. Proceedings of the Winter, pages 1119 -1128, dec. 2006.

[29] P. Lendermann, M.U. Heinicke, L.F. McGinnis, C. McLean, S. Strassburger, and S.J.E.

Taylor. Panel: distributed simulation in industry - a real-world necessity or ivory tower

fancy? In Simulation Conference, 2007 Winter, pages 1053-1062, dec. 2007.

[30] Richard J. Linn, Chin-Sheng Chen, and Jorge A. Lozan. Manufacturing supply chain

applications 2: development of distributed simulation model for the transporter

entity in a supply chain process. In Proceedings of the 34th conference on Winter

simulation: exploring new frontiers, WSC '02, pages 1319-1326. Winter Simulation

Conference, 2002.

[31] A. W. Malik. An optimistic parallel simulation for cloud computing environments. SCS

M&S Magazine, 6:1-9, 2010.

[32] Charles McLean and Swee Leong. The expanding role of simulation in future

manufacturing. In Proceedings of the 33nd conference on Winter simulation, WSC '01,

pages 1478-1486, Washington, DC, USA, 2001. IEEE Computer Society.

[33] Charles McLean, Swee Leong, Charley Harrell, Philomena M. Zimmerman, and Roberto

F. Lu. Simulation standards: current status, needs, future directions, panel: simulation

standards: current status, needs, and future directions. In Proceedings of the 35th

conference on Winter simulation: driving innovation, WSC '03, pages 2019-2026. Winter

Simulation Conference, 2003.

Discrete Event Simulations – Development and Applications 42

[34] Navonil Mustafee, Simon J.E. Taylor, Korina Katsaliaki, and Sally Brailsford.

Facilitating the analysis of a uk national blood service supply chain using distributed

simulation. SIMULATION, 85(2):113-128, 2009.

[35] Brian Unger, and David Jefferson. Distributed simulation, 1988 : proceedings of the SCS

Multiconference on Distributed Simulation, 3-5 February, 1988, San Diego, California /

edited by Brian Unger and David Jefierson. Society for Computer Simulation

International, San Diego, Calif. 1988.

[36] Ernest H. Page and Roger Smith. Introduction to military training simulation: A guide

for discrete event simulations, 1998.

[37] Jaebok Park, R. Moraga, L. Rabelo, J. Dawson, M.N. Marin, and J. Sepulveda.

Addressing complexity using distributed simulation: a case study in spaceport

modeling. In Simulation Conference, 2005 Proceedings of the Winter, page 9 pp., dec.

2005.

[38] G. Pedrielli, P. Scavardone, T. Tolio, M. Sacco, and W. Terkaj. Simulation of complex

manufacturing systems via hla-based infrastructure. In Principles of Advanced and

Distributed Simulation (PADS), 2011 IEEE Workshop on, pages 1 -9, june 2011.

[39] P. Peschlow and P. Martini. Eficient analysis of simultaneous events in distributed

simulation. In Distributed Simulation and Real-Time Applications, 2007. DS-RT 2007.

11th IEEE International Symposium, pages 244-251, oct. 2007.

[40] A. R. Pritchett, M. M. van Paassen, F. P. Wieland, and E. N. Johnson. Aerospace vehicle

and air traffic simulation, pages 365-389. Kluwer Academic Publishers, Norwell, MA,

USA, 2003.

[41] M. Raab, S. Masik, and T. Schulze. Support system for distributed hla simulations in

industrial applications. In Principles of Advanced and Distributed Simulation (PADS),

2011 IEEE Workshop on, pages 1 -7, june 2011.

[42] M. Rabe, F.W. Jkel, and H. Weinaug. Supply chain demonstrator based on federated

models and hla application. 2006.

[43] Stewart Robinson. Distributed simulation and simulation practice. SIMULATION,

81(1):5-13, 2005.

[44] Marco Sacco, Giovanni Dal Maso, Ferdinando Milella, Paolo Pedrazzoli, Diego Rovere,

and Walter Terkaj. Virtual Factory Manager, volume 6774 of Lecture Notes in

Computer Science, pages 397- 406. Springer Berlin, Heidelberg, 2011.

[45] B. Sadoun. Simulation in city planning and engineering, pages 315{341. Kluwer

Academic Publishers, Norwell, MA, USA, 2003.

[46] Thomas Schulze, Steffen Strassburger, and Ulrich Klein. Migration of hla into civil

domains: Solutions and prototypes for transportation applications. SIMULATION,

73(5):296-303, 1999.

[47] S. Straburger. Overview about the high level architecture for modeling and simulation

and recent developments. Simulation News Europe, 16(2):5-14, 2006.

Distributed Modeling of Discrete Event Systems 43

[48] S. Straburger, G. Schmidgall, and S. Haasis. Distributed manufacturing simulation as an

enabling technology for the digital factory. Journal of Advanced ManufacturingSystem,

2(1):111 -126, 2003.

[49] S. Strassburger. Distributed Simulation Based on the High Level Architecture in

Civilian Application Domains. PhD thesis, Computer Science Faculty, University Otto

von Guericke, Magdeburg, 2001.

[50] Steffen Strassburger. The road to cots-interoperability: from generic hla-interfaces

towards plug and play capabilities. In Proceedings of the 38th conference on Winter

simulation, WSC '06, pages 1111-1118. Winter Simulation Conference, 2006.

[51] Taylor, Strassburger, S.J. Turner, M.Y.H. Low, Xiaoguang Wang, and J. Ladbrook.

Developing interoperability standards for distributed simulaton and cots simulation

packages with the cspi pdg. In Simulation Conference, 2006. WSC 06. Proceedings of the

Winter, pages 1101 -1110, dec. 2006.

[52] S J E Taylor and N Mustafee. An analysis of internal/external event ordering strategies

for cots distributed simulation. pages 193-198. Proceedings of the 15th European

Simulation Symposium (ESS2003), Delft, 2003.

[53] Simon J. E. Taylor, Navonil Mustafee, Steffen Strassburger, Stephen J. Turner, Malcolm

Y. H. Low, and John Ladbrook. The siso cspi pdg standard for commercial off-the-shelf

simulation package interoperability reference models. In Proceedings of the 39th

conference on Winter simulation: 40 years! The best is yet to come, WSC '07, pages 594-

602, Piscataway, NJ, USA, 2007. IEEE Press.

[54] Simon J. E. Taylor, Stephen J. Turner, and Steffen Strassburger. Guidelines for

commercial-off-the-shelf simulation package interoperability. In Proceedings of the 40th

Conference on Winter Simulation, WSC '08, pages 193-204. Winter Simulation

Conference, 2008.

[55] Simon J.E. Taylor. A proposal for an entity transfer specification standard for cots

simulation package interoperation. In Proceedings of the 2004 European Simulation

Interoperability Workshop, 2004.

[56] Simon J.E. Taylor. Distributed Modeling, pages 9:1-9:19. Chapman & Hall/CRC, 2007.

[57] S.J.E. Taylor. Realising parallel and distributed simulation in industry: A roadmap. In

Principles of Advanced and Distributed Simulation (PADS), 2011 IEEE Workshop on,

page 1, june 2011.

[58] S.J.E. Taylor, A. Bruzzone, R. Fujimoto, Boon Ping Gan, S. Strassburger, and R.J. Paul.

Distributed simulation and industry: potentials and pitfalls. In Simulation Conference,

2002. Proceedings of the Winter, volume 1, pages 688- 694 vol.1, dec. 2002.

[59] S.J.E Taylor, M. Ghorbani, N. Mustafee, S. J. Turner, T. Kiss, D. Farkas, S. Kite, and S.

Strassburger. Distributed computing and modeling & simulation: speeding up

simulations and creating large models. In Proceedings of the 2011 Winter Simulation

Conference, pages 1-15, December 2011.

[60] S.J.E. Taylor, M. Ghorbani, N. Mustafee, S.J. Turner, T. Kiss, D. Farkas, S. Kite, and S.

Strassburger. Distributed computing and modeling amp; simulation: Speeding up

Discrete Event Simulations – Development and Applications 44

simulations and creating large models. In Simulation Conference (WSC), Proceedings of

the 2011 Winter, pages 161-175, dec. 2011.

[61] S.J.E. Taylor, Xiaoguang Wang, S.J. Turner, and M.Y.H. Low. Integrating heterogeneous

distributed cots discrete-event simulation packages: an emerging standards-based

approach. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on, 36(1):109- 122, jan. 2006.

[62] S.J.E. Taylor, Xiaoguang Wang, S.J. Turner, and M.Y.H. Low. Integrating heterogeneous

distributed cots discrete-event simulation packages: an emerging standards-based

approach. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on, 36(1):109- 122, jan 2006.

[63] Sergio Terzi and Sergio Cavalieri. Simulation in the supply chain context: a survey.

Computers in Industry, 53(1):3-16, 2004.

[64] J. Vancza, P. Egri, and L. Monostori. A coordination mechanism for rolling horizon

planning in supply networks. CIRP Annals - Manufacturing Technology, 57(1):455- 458,

2008.

[65] Gabriel A. Wainer, Olivier Khaldoon, Al-Zoub Dalle, David R.C. Hill Hill, Saurabh

Mittal, Jos L. Risco Martn, Hessam Sarjoughian, Luc Touraille, Mamadou K. Traor, and

Zeigler Bernard P. Standardizing DEVS model representation. 2010.

[66] Gang Wang, Chun Jin, and Peng Gao. Adapting arena into hla: Approach and

experiment. In Automation and Logistics, 2007 IEEE International Conference on, pages

1709-1713, aug. 2007.

[67] Xiaoguang Wang, Stephen John Turner, and Simon J. E. Taylor. Cots simulation

package (csp) interoperability -a solution to synchronous entity passing. In Proceedings

of the 20th Workshop on Principles of Advanced and Distributed Simulation, PADS '06,

pages 201-210, Washington, DC, USA, 2006. IEEE Computer Society.

[68] Xiaoguang Wang, Stephen John Turner, Simon J. E. Taylor, Malcolm Yoke Hean Low,

and Boon Ping Gan. A cots simulation package emulator (cspe) for investigating cots

simulation package interoperability. In Proceedings of the 37th conference on Winter

simulation, WSC '05, pages 402-411. Winter Simulation Conference, 2005.

[69] Xiaoguang Wang, Sthephen John Turner, Malcolm Yoke Hean Low, and Boon Ping

Gan. A generic architecture for the integration of cots packages with the hla. In

Proceedings of the 2004 Operational Research Society Simulation Workshop, Special

Interest Group for Simulation, pages 225-233. Association for Computing Machinery's,

2005.

[70] Gregory Zacharewicz, Claudia Frydman, and Norbert Giambiasi. G-devs/hla

environment for distributed simulations of workows. Simulation, 84:197-213, May

2008.

[71] zer Uygun, Ercan ztemel, and Cemalettin Kubat. Scenario based distributed

manufacturing simulation using hla technologies. Information Sciences, 179(10):1533-

1541, 2009. <ce:title>Including Special Issue on Artificial Imune Systems</ce:title>.

Distributed Modeling of Discrete Event Systems 45

[72] Y. Zhang and L. M. Zhang. The Viewable Distributed Simulation Linkage Development

Tool Based on Factory Mechanism. Applied Mechanics and Materials, 58:1813-1818,

June 2011.

[73] Cosby, L.N. SIMNET: An Insider's Perspective. Ida documenT D-1661, Institute for

Defense Analyses 1801 N. Beauregard Street, Alexandria, Virginia 22311-1772. pp: 1-19.

March 1995

[74] SISO CSPI-PDG www.sisostds.org.

[75] SISO COTS Simulation Package Interoperability Product Development Group, (2010).

Standard for Commercial - off - the - shelf Simulation Package Interoperability

Referenve Models. SISO-STD-006-2010.

[76] Kubat, C., Uygun O. (2007). HLA Based Distributed Simulation Model for Integrated

Maintenance and Production Scheduling System in Textile Industry. P.T. Pham, E.E.

Eldukhri, A. Soroka (Eds.), Proceedings of 3rd I*PROMS Virtual International Conference, 2–

13 July 2007: 413–418.

[77] Pedrielli, G., Sacco, M, Terkaj, W., Tolio, T. (2012). Simulation of complex

manufacturing systems via HLA-based infrastructure. Journal Of Simulation. To be

published.

[78] Kewley, R., Cook, J., Goerger, N., Henderson, D., Teague, E., (2008). "Federated

simulations for systems of systems integration," Simulation Conference, 2008. WSC 2008.

Winter , vol., no., pp.1121-1129, 7-10 Dec. 2008.

[79] Bruccoleri M, Capello C, Costa A, Nucci F, Terkaj W, Valente A (2009) Testing. In: Tolio T

(ed) Design of Flexible Production Systems. Springer: 239-293. ISBN 978-3-540-85413-5.

[80] http://www.pitch.se/

[81] MAK RTI, www.mak.com

[82] Ke Pan; Turner, S.J.; Wentong Cai; Zengxiang Li; , "Implementation of Data Distribution

Management services in a Service Oriented HLA RTI," Simulation Conference (WSC),

Proceedings of the 2009 Winter , vol., no., pp.1027-1038, 13-16 Dec. 2009

doi: 10.1109/WSC.2009.5429557

[83] Colledani M, Terkaj W, Tolio T, Tomasella M (2008) Development of a Conceptual

Reference Framework to manage manufacturing knowledge related to Products,

Processes and Production Systems. In Bernard A, Tichkiewitch S (eds) Methods and

Tools for Effective Knowledge Life-Cycle-Management. Springer: 259-284. ISBN 978-3-

540-78430-2.

[84] Colledani M, Terkaj W, Tolio T (2009) Product-Process-System Information

Formalization. In: Tolio T (ed) Design of Flexible Production Systems. Springer: 63-86.

ISBN 978-3-540-85413-5.

[85] Pedrazzoli, P, Sacco, M, Jönsson, A, Boër, C (2007) Virtual Factory Framework: Key

Enabler For Future Manufacturing. In Cunha, PF, Maropoulos, PG (eds) Digital

Enterprise Technology, Springer US, pp 83-90

Discrete Event Simulations – Development and Applications 46

[86] Sacco M, Pedrazzoli P, Terkaj W (2010) VFF: Virtual Factory Framework. Proceedings of

16th International Conference on Concurrent Enterprising, Lugano, Switzerland, 21-23

June 2010.

[87] Kalpakjian Serope; Schmid Steven R. Book title: Tecnologia Meccanica, Editor: Pearon

Education Year: 2008 The Figure 12 picture was inspired by the book

