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1. Introduction 

Computer simulation is widely used to support the design of any kind of complex system 

and to  create computer-generated "virtual worlds" where humans and/or physical devices 

are embedded (e.g. aircraft flight simulators [20]). However, both the generation of 

simulation models and the  execution of simulations can be time and cost expensive. While 

there are already several ways to increase the speed of a simulation run, the scientific 

challenge for the simulation of complex systems still resides in the ability to model 

(simulate) those systems in a parallel/distributed way [35].  

A computer simulation is a computation that emulates the behavior of some real or 

conceptual systems over time. There are three main simulation techniques [23]: 

 Continuous simulation. Given the discrete nature of the key parameters of a digital 

computer, including the number of memory locations, the data structures, and the data 

representation, continuous simulation may be best approximated on a digital computer 

through time-based discrete simulation where the time steps are sufficiently small 

relative to the process being modeled. 

 Time-based discrete simulation. In this case the universal time is organized into a discrete 

set of monotonically increasing timesteps where the choice of the duration of the 

timestep interval changes as a result of the external stimuli, any change between two 

subsequent timesteps must occur atomically within the corresponding timestep 

interval. Regardless of whether its state incurs and changes, a process and all its 

parameters may be examined at every time step. 

 Discrete event simulation [5]. The difference between discrete event simulation and time-

based simulation is twofold. Firstly, the process being modeled is understood to 

advance through events under discrete event conditions. Second, an event (i.e. an 

activity of the process as determined by the model developer) carries with it the 

potential for affecting the state of the model and is not necessarily related to the 
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progress of time. In this case, the executable model must necessarily be run 

corresponding to every event to accurately reflect the reality of the process. 

Since continuous simulation is simply academic and cannot be reproduced on real 

computers, it is important to comment the difference between time-based simulation and 

discrete event simulation. 

Under time-based simulation, the duration of the timestep interval is determined based on 

the nature of the specific activity or activities of the process that the model developer 

considers important and worth modeling and simulating. Similarly, under discrete event 

simulation, events for a given process are also identified on the basis of the activity or 

activities the model developer views as important. Whereas time-based simulation 

constitutes the logical choice for processes in which the activity is distributed over every 

timestep, discrete event simulation is more efficient when the activity of a process being 

modeled is sparsely distributed over time. The overhead in discrete event simulation, 

arising from the additional need to detect and record the events, is higher than in the 

simpler time-based technique and must be more than compensated by the savings not to 

have to execute the model at every time step. 

A fundamental difference between time-based and discrete event simulations lies in their 

relationship to the principle of causality. In the time-based approach, while a cause may 

refer to a process state at a specific timestep, the fact that the state of the process is observed 

at every subsequent time step reflects the assumption that the effect of the cause is expected. 

Thus both the cause and the effect refer to the observed state of the process in time-based 

simulation. In discrete event simulation, both cause and effects refer to events. However, 

upon execution due to an event, a model may not generate an output event thus appearing 

to imply that a cause will not necessary be accompanied by corresponding observed facts. 

Discrete Event Simulation (DES) has been widely adopted to support system analysis, 

education and training, organizational change [43] in a range of diverse areas such as 

commerce [13], manufacturing ([14],[38], [79]), supply chains [24], health services and bio-

medicine ([3], [18]), simulation in environmental and ecological systems [6], city planning 

and engineering [45], aerospace vehicle and air traffic simulation [40], business 

administration and management [16], military applications [17]. 

All the aforementioned areas are usually characterized by the presence of complex systems. 

Indeed, a system represented by a simulation model is defined as complex when it is 

extremely large, i.e. a large number of components characterize it, or a large number of 

interactions describes the relationships between objects within the system, or it is 

geographically dispersed. In all cases the dynamics can be hard to describe. The complexity 

is reflected in the system simulation model that can be characterized according to the 

following concepts [23]: 

1. Presence of entity elements that are dynamically created and moved during a 

simulation [62] 

2. Asynchronous behavior of the entities 
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3. Asynchronous interactions between the entities 

4. Entities which concur for the use of shared resources 

5. Connectivity between the entities 

The simulation of complex systems through the use of traditional simulation tools presents 

several drawbacks, e.g. the long time required to develop the unique monolithic simulation 

model, the computational effort required for running the simulation, the impossibility to 

run the simulation model on a set of geographically distributed computers, the absence of 

fault tolerance (i.e. the work done is lost if one processor goes down), the impossibility to 

realize a realistic model of the entire system in the case several subsystems are included and 

the owners of each subsystem do not want to share the information.  

Most of the aforementioned problems can be effectively addressed by the distributed 

simulation (DS) approach which will be the focus of this chapter. 

The chapter will be organized as follows: Section 2 presents the main concepts and 

definitions together with a literature review on applications and open issues related to 

distributed simulation. Section 3 delves into the High Level Architecture [1], i.e. the 

reference standard supporting the distributed simulation. Section 4 shows an application of 

distributed simulation on a real industrial case in the manufacturing domain [77]. Finally, 

Section 5 presents the conclusions and the main topics for future research in the field of 

distributed simulation. 

2. Distributed simulation 

Traditional stand alone simulation is based on a simulation clock and an event list. The 

interaction of the event list and the simulation clock generates the sequence of the events 

that have to be simulated. 

The execution of any event might cause an update of the value of the state variables, a 

modification to the event list and (or) the collection of the statistics. Each event is executed 

based on the simulation time assigned to it, i.e. the simulation is sequential. 

The idea underlying the distributed simulation is to minimize the sequential aspect of 

traditional simulation. Distributed simulation can be classified into two major categories: (1) 

parallel and distributed computing, and (2) distributed modeling.  

Parallel and distributed computing refers to technologies that enable a simulation program 

to be executed on a computing system containing multiple processors, such as personal 

computers, interconnected by a communication network [20]. 

The main benefits resulting from the adoption of distributed computing technologies are 

[20]: 

 Reduced execution time. By decomposing a large simulation computation into many sub-

computations and executing the sub-computations concurrently across different 

processors, one can reduce the global execution time. 
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 Geographical distribution. Executing the simulation program on a set of geographically 

distributed computers enables one to create virtual worlds with multiple participants 

that are physically located at different sites. 

 Integration of simulators that execute on machines from different manufacturers. 

 Fault tolerance. If one processor goes down, it may be possible for other processors to 

pick up the work of the failed machine allowing the simulation to proceed despite the 

failure. 

The definition of distributed modeling can be given by highlighting the differences 

compared to the concept of parallel and distributed computing as presented by Fujimoto 

[20]. If a single simulator is developed and the simulation is executed on multiple processors 

we talk about parallel and distributed computing. Whereas if several simulators are combined 

into a distributed architecture we talk about distributed modeling; in this case, the simulation 

execution requires the synchronization between the different simulators. 

The distributed computing can be still applied to each simulator in a distributed simulation 

model [60], but the complexity related to the synchronization of the different models can be 

such that the performance of the simulation (in terms of speed) can be worse than when a 

single simulation model is developed. This drawback related to the decrease in the 

efficiency in terms of speed of simulation leads to the following question: "Why is it useful 

to develop a distributed simulation model?". The following benefits represent an answer to 

this question ([57], [77]): 

 Complexity management. If the complexity of the system to be simulated grows and the 

modeling of each sub-system requires various and specific expertise, then the 

realization of a single monolithic simulation model is not feasible [65]. Under the 

distributed modeling approach the problem is decomposed in several sub-problems 

easier to cope with. 

 Overcoming the lack of shared information. The developer of a simulation model can hardly 

access all the information characterizing the whole system to model, again hindering 

the feasibility of developing a unique and monolithic simulation model. 

 Reusability. The development of a simulation model always represents a costly activity, 

thus the distributed modeling can be seen as a possibility to integrate pre-existing 

simulators and to avoid the realization of new models. 

The feasibility of the distributed simulation concept was demonstrated by the SIMNET 

project (SIMulator NETworking [73]), which ran from 1983 to 1990. As consequence of this 

project, a set of protocols were developed for interconnecting simulations and the 

Distributed Interactive Simulation (DIS) standard was the first one. Afterwards, the High 

Level Architecture (HLA) standard ([1], [15], [27]) was developed by the U.S. Department of 

Defense (DoD) under the leadership of the Defense Modeling and Simulation Office 

(DMSO). The next sub-section presents a general overview of the HLA standard for 

distributed simulation, whereas Section 2.2 gives an overview of distributed simulation in 

civilian applications. 
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2.1. HLA-standard: An overview 

HLA (IEEE standard 1516) is a software architecture designed to promote the use and 

interoperation of simulators. HLA was based on the premise that no single simulator could 

satisfy all uses and applications in the defense industry and it aimed at reducing the time 

and cost required to create a synthetic environment for a new purpose.  

The HLA architecture (Figure1)  defines a Federation as a collection of interacting simulators 

(federates), whose communication is orchestrated by a Runtime Infrastructure (RTI) and an 

interface. Federates can be either simulations, surrogates for live players, or tools for 

distributed simulation. They are defined as having a single point of attachment to the RTI 

and might consist of several processes, perhaps running on several computers.  

HLA can combine the following types of simulators (following the taxonomy developed by 

the DoD): 

 Live - real people operating real systems (e.g. a field test) 

 Virtual - real people operating simulated systems (e.g. flight simulations) 

 Constructive - simulated people operating simulated systems (e.g. a discrete event 

simulation) 

 

Figure 1. HLA Reference Architecture 

 

Figure 2. RTIAmbassador and FederateAmbassador 
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The HLA standard provides four main components for the realization and management of a 

federation: 

 HLA rules (IEEE 1516.0, 2000) representing a set of 10 rules that the simulators 

(federates) have to follow in order to be defined HLA-compliant. 

 Federate Interface Specification (FIS) (IEEE 1516.2, 2000) defining how simulators are 

supposed to interact with the RTI. 

 Object Model Template (OMT) (IEEE 1516.1, 2000) specifying what kind of information 

is communicated between simulators and how simulations are documented.   Following 

the OMT each federate defines the data that it is willing to share (publish) with other 

federates and the data it requires from other federates (subscribe). The resulting object 

models related to each federate are called simulation object models (SOMs). The 

federation object model (FOM) combines the federate SOMs into a single object model for 

the federation to define the overall data to be exchanged within the federation. 

 Federate Development Process (FEDEP) (IEEE 1516.3, 2004) defining the recommended 

practice processes and procedures that should be followed by users of the HLA to 

develop and execute their federations. 

The federates cannot directly exchange information throughout the federation, instead the 

RTI plays the role of  the operating system of the distributed simulation, providing a set of 

general-purpose services for federation management and enabling the federates in carrying 

out federate-to-federate interactions. In particular interactions represent an explicit action 

taken by a federate that may have some effect on another federate within a federation 

execution, such action can be tied with a specific time defined as interactionTime, when the 

action takes place. 

Each federate is endowed with an RTIAmbassador and a FederateAmbassador (Figure 2) to 

access the services offered by the RTI.  Operations on the RTIAmbassador are called by the 

federate whenever it needs an RTI service (e.g. a request to advance simulation time). In the 

reverse direction, the RTI invokes an operation on the FederateAmbassador whenever it needs 

to pass data to the federate (e.g. to inform the federate that the request to advance 

simulation time has been granted). Six classes of services (Figure 1) have to be provided by 

the RTI to be defined HLA-compliant. These classes are specified within the FIS and they 

can be summarized as follows: 

 Federation Management. These services allow federates to create and destroy 

federation execution and join or resign from an existing federation. 

 Declaration Management. These services allow federates to publish federate data and 

subscribe to updated data produced by other federates. 

 Object Management. These services allow federate to create and delete object instances, 

and produce and receive data. 

 Ownership Management. These services allow federates to transfer the ownership of 

object data during the federation execution. 

 Time Management. These services coordinate the advancement of simulation time of 

the federates. 
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 Data Distribution Management. These services can reduce unnecessary information 

transfer between federates by filtering out irrelevant data. 

HLA overcame the shortcomings of the DIS standard by being simulation-domain neutral (it 

was not developed referred to any specific language, therefore HLA provides means to 

describe any data exchange format as required and specifying functionalities for time 

management and bandwidth control (see the FIS module).  

HLA provides Application Programming Interfaces (APIs) for all the classes of services just 

mentioned, but the RTI software and algorithms are not defined by HLA. Also the 

operations in the FederateAmbassador need to be implemented at the federate level, as part of 

the federate code or some interface service (adapter). 

These facts have caused the growth of multiple HLA-RTI implementations (e.g. [80], [81]) 

and the development of ad-hoc solutions for the adapters on the federate side [25]. In 

particular the last aspect represents one of the most relevant criticalities in applying HLA for 

distributed simulation: the lack of a standardized approach to adapt a simulator within an 

HLA-based distributed architecture, makes a distributed simulation project time expensive 

since a lot of implementation is required in addition to the effort to build the simulation 

model. 

This consideration represents one of the leading arguments for the research community in 

the direction of the development of additional complementary standards (Section 3) to ease 

the creation and management of an HLA-based distributed simulation. 

It is the objective of the next section to analyze the state of the art on the adoption and 

advancements in the use of HLA-based distributed simulation technique. 

2.2. Distributed simulation in civilian applications 

Herein the attention is focused on distributed modeling of complex systems in civilian 

domain. 

HLA constitutes an enabler for implementing the distributed simulation. The standard, 

though, was conceived for military applications and several problems arise when trying to 

interoperate heterogeneous simulators in civilian applications (the terminology Commercial 

off-the-shelf discrete-event simulation packages CSPs [62] will be used to describe 

commercially available simulators for the analysis of Discrete Event Systems). 

Boer [12] investigated the main benefits and criticalities related to the industrial application 

of HLA by interviewing the actors involved in the problem (e.g. simulation model 

developers, software houses, HLA experts, [9]-[11]). The results of the survey showed that 

CSPs vendors do not see direct benefits in using distributed simulation, whereas in industry 

HLA is considered troublesome because of the lack of experienced users and the complexity 

of the standard. In addition, as suggested in [49], although the approaches and general 

methods used in military and civilian simulation communities have similarities, the 
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terminology turns out to be completely different [36]. For instance, terms like live simulation 

and virtual emulator are rarely used in civilian applications although equivalent techniques 

are commonly applied. 

The major difference between military and civilian domain resides in the way simulation 

models are developed and what are the goals to meet when starting a simulation 

development process. In the military community where time and budget constraints are not 

the key elements leading the building process of a simulation tool, languages such as C++ 

and Java are usually adopted because of their flexibility. On the other hand, in the civilian 

simulation community, the use of commercial simulation tools (e.g. Arena, Automod, Simio, 

ProModel, Simple++, SLX, etc.) is the common practice. These tools satisfy the need of 

rapidly and cost-effectively developing the simulation models.  

The use of commercial simulation tools hinders the applicability of the HLA standard for 

the realization of a distributed simulation model, because the direct access to the HLA APIs  

(Section 2.1.) from the commercial simulation software tools is not usually possible. 

Therefore, the enhancement of HLA with additional complementary standards [51] and the 

definition of a standard language for CSPs represent relevant and not yet solved technical and 

scientific challenges ([25], [49], [50]). Recently, the COTS Simulation Package Interoperability-

Product Development Group (CSPI-PDG), within the Simulation Interoperability Standards 

Organization (SISO), worked on the definition of the CSP interoperability problem 

(Interoperability Reference Models, IRMs) [74] and on a draft proposal for a standard to 

support the CSPs interoperability (Entity Transfer Specification, ETS) [61]. 

2.2.1. Literature review 

The application of distributed simulation in the civilian domain has been studied by 

reviewing the available literature with the purpose to individuate which civilian domain 

distributed simulation is generally called, which motivations underlie the adoption of the 

distributed technique, which technical and scientific challenges have been faced and which 

solutions have been proposed so far. More than 100 papers have been analyzed and 

classified according to three criteria: 

 Domain of application, i.e. the specific civilian sector where the distributed simulation 

was applied (e.g. manufacturing domain, health care, emergency, etc.). 

 Motivation underlying the adoption of the distributed simulation, i.e. the main problem 

leading to the adoption of the distributed simulation architecture. 

 Technical issue faced, i.e. the solutions to integration issue or enhancement to services of 

the HLA architecture proposed within the considered article. 

Most of the articles can be classified according to more than one criterion and Figure 3 

shows the percentage of articles falling in each category.  

The bibliographic search was carried out by considering the following keywords: 

Distributed Simulation, Operations Research and Management, Commercial Simulation 

Packages, Interoperability Reference Models, High Level Architecture, Manufacturing 
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Systems, Discrete Event Simulation, Manufacturing Applications, Industrial Application 

and Civilian Applications. These keywords brought to the identification of 26 core papers 

based on the number of citations ([4], [12], [8], [11], [9], [10], [20], [28], [29], [30], [33], [74], 

[75] , [48], [50], [47], [49], [58], [53], [59], [56], [68], [70], [68], [73] and [71]). These papers can 

be considered as introductory to the topic of distributed simulation in civilian domain. 

Starting from these articles the bibliographic search followed the path of the citations, i.e. 

works cited by the core papers and papers citing the core ones were considered. This search 

brought to the selection of 83 further articles. The overall 109 papers were published mainly 

in the following journals and conference proceedings: Advanced Simulation Technologies 

Conference, European Simulation Interoperability Workshop, European Simulation 

Symposium,  Information Sciences, International Journal of Production Research, Journal of 

the Operational Society, Journal of Simulation, Workshop on Principles of Advanced and 

Distributed Simulation and Winter Simulation Conference. 

 

Figure 3. Overall Classification Criteria 

2.2.2. Domain of application  

More than 60% (Figure 3) of the analyzed papers propose an application in a specific field of 

the civilian domain (e.g. [72], [42]). As stated in [46], transportation and logistics are typical 

application areas of simulation and also the first areas where HLA has been tested by the 

civilian simulation community. Manufacturing and health care are acquiring increasing 

importance because of the growth of the extended enterprise and the increase in attention 

for bio-pharmaceutical supply chains respectively. 

The main fields of application of DS (Figure 4) are Supply Chain Management (33% of the 

papers stating the domain of interest) (e.g. [64], [22], [42]), Manufacturing (29% of the 

papers) (e.g. [69], [77]), Health Care (e.g. [34]) and Production Scheduling & Maintenance 

(e.g. [72]), 17% of the articles are related to Health Care.  

A further analysis was carried out by considering only the articles related to the 

manufacturing domain, aiming at evaluating whether the contributions addressed real 

industrial case applications or test cases applications. Only 22% of the articles address a real 

case, thus confirming the outcomes obtained by Boer [8] in the analysis of the adoption of 
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distributed simulation in the manufacturing environment. Although solutions have been 

developed for the manufacturing domain, this technique is still far from being adopted as an 

evaluation tool by industrial companies because the end-users perceive HLA and 

distributed simulation as an additional trouble rather than a promising approach [10]. As a 

consequence, a lot of effort is put in the development of decision support systems that hide 

the complexity of a distributed environment to the end user [41]. 

 

Figure 4. Distributed Simulation Main fields of application 

2.2.3. Motivations underlying the adoption of the distributed simulation 

As Boer stated in [8], if a problem can be solved by a monolithic simulation model created in 

a single COTS simulation package and a distributed approach is not explicitly required the 

simulation practitioner should certainly choose the monolithic solution in the selected CSP. 

Similarly, Strassburger [49] suggests that if a maintainable and reusable monolithic 

application can be built, then there is no point in building it in a distributed platform. 

However, there are simulation projects where the distributed solution seems more 

advantageous and straightforward [38] because it enables to cope with: 

1. Demand for reusability of the simulator output of the simulation project. Here the word 

reusability is adopted both in terms of the possibility to reuse simulators already 

developed and of building new simulators that can be readopted in the future. 

2. Lack of Shared information. This is the case when no one modeler has enough information 

to develop the simulator. This condition holds when the whole system to be modeled is 

divided into subsystems owned by different actors that do not want to share data 

related to their subsystems. 

3. System complexity. In this case no one modeler has enough knowledge to realize the 

whole simulation model. 

All the papers stating a motivation for using DS mention the system complexity (e.g. [22], 

[72], [30], [32]), whereas 44% of the papers the demand for reuse [78]. The low percentage 

(around 5%) of papers using DS to cope with lack of shared information can be partially 

traced back to the lack of real industrial applications that still characterizes DS in civilian 

environment [76]. 
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2.2.4. Technical issue faced  

Over 70% of the articles deal with technical issues, thus showing that HLA and DS experts 

are putting a lot of effort in the enhancement and extensions of HLA-based DS to face 

civilian application problems. Indeed, the application of distributed simulation to civilian 

domain still presents several technical issues. In particular four main research areas can be 

identified: 

1. Integration of commercial discrete event simulators (CSP). Several CSPs are put together and 

synchronized by means of the services offered by the HLA infrastructure. 

2. Interoperability reference models and entity transfer. The papers in this category work in the 

standardization of  the communication between federates within an HLA-compliant 

federation (Section 3.). 

3. Time management enhancement. The issues related to the time synchronization of 

federates are faced. 

4. RTI-services extension. In this case the services listed in Section 2.1. are enhanced for 

specific applications [82]. 

 

Figure 5. CSP adopted 

The outcome of the review was that the integration of CSPs is the most addressed technical 

issue, (45% of the papers) nonetheless the integration of real CSPs (i.e. not general purpose 

programming languages) still represents a challenging topic. Figure 5 gives a picture of the 

main CSP solutions that have been adopted in the literature. In particular, the y-axis reports 

the percentage of articles that use one of the listed CSPs (e.g. [37], [21], [67]) within the 

papers that deal with the interoperation of simulators. It can be noticed that CSP Emulators 

(e.g. [68], [38]) are still one of the most used solutions because of the problems related to 

interoperating real CSPs. These problems are mainly caused by the lack of data and 

information mapping between simulators and the difficulty in interacting (e.g. send and 

receive information, share the internal event list) while the simulation is running. 

The enhancement of the Run Time Infrastructure services is another key research topic ([2], 

[19]). In particular, the scientific articles deal with two open issues: (1) Time management 

(e.g. [39], [31]), (2) Data Distribution Management (e.g. [66], [73]). Time Management has 
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received more attention (91% of the papers dealing with enhancement of RTI services) 

because it strongly influences the computational performance of the distributed simulation. 

The following conclusions can be drawn from the literature analysis: 

 There is a lack of distributed simulation applications in real manufacturing 

environments. 

 The interoperability of CSPs still represents a technical challenging problem. 

 The HLA architecture components (in particular RTI services) must be extended and 

adapted to civilian applications. 

The issues faced to model complex systems give raise to problems in the distributed 

simulation realization that are strongly dependent on the specific application case [57] and 

the solutions to those needs can be implemented through an RTI in many different 

(incompatible) ways. Each way can be promising in its own context, but the lack of a 

standardized approach means it is difficult for end users and CSP vendors to choose a 

solution thus slowing down the spreading of the distributed simulation technique.  

3. A standard based approach for distributed simulation 

The main contribution in standardization of distributed modeling has to be credited to 

Simulation Interoperability Standard Organization (SISO) and in particular to the High 

Level Architecture Simulation Package Interoperability Forum (HLA-CSPIF). HLA-CSPIF 

and, then, COTS Simulation Package Interoperability Product Development Group (CSPI-

PDG) were created in an attempt to produce a generalizable solution to the problem of 

integrating distributed heterogeneous CSPs. 

As highlighted at the end of Section 2.2., a standardized approach is fundamental to increase 

the use of distributed simulation in civilian applications. This led to formalize the problem 

of the interaction between simulators in civilian applications and to standardize the way 

data are exchanged between federates within the federation. 

The main results of the standardization effort are the Interoperability Reference Models 

(IRMs) and the Entity Transfer Specification (ETS), that will be presented in Section 3.1 and 

3.2, respectively. Section 3.3 shows the distributed simulation communication protocol 

presented in [77], based on IRMs and the extended ETS proposed in [38]. 

3.1. Interoperability reference model 

An interoperability problem type is meant to capture a general class of interoperability 

problems, whereas an IRM is meant to capture a specific problem within that class. 

The creation of the IRMs has proved to be a powerful tool in the development of standards 

in the distributed simulation research community, as it is now possible to create solutions 

for specific integration problems.  
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An initial set of interoperability problems identified by the CSPI-PDG have been divided into a 

series of problem types that are represented by IRMs. The purpose of an IRM can be to [54]: 

 Clearly identify the CSP/model interoperability capabilities of an existing distributed 

simulation. 

 Clearly specify the CSP/model interoperability requirements of a proposed distributed 

simulation. 

There are four types of IRM: 

 Type A - Entity Transfer (Section 3.1.1.) 

 Type B - Shared Resource (Section 3.1.2.) 

 Type C - Shared Events (Section 3.1.3.) 

 Type D - Shared Data Structure (Section 3.1.4) 

The literature review showed that around 21% of the articles dealing with technical issues 

(Section 2.2.1.) taken into consideration deal with IRMs (e.g., [39], [56], [51], [63], [55] and 

[34]).  

3.1.1. IRm type A: Entity transfer 

IRM Type A Entity Transfer represents interoperability problems that can occur when 

transferring an entity from one simulation model to another. This IRM type is the most 

formalized at the present moment, since the need to transfer entities between simulators has 

been the most popular feature requested from the distributed simulation users so far. 

Figure 6 shows an illustrative example of the problem of Entity Transfer where an entity e1 

leaves activity A1 in model M1 at time T1 and arrives at queue Q2 in model M2 at time T2. 

For example, if M1 is a car production line and M2 is a paint shop, then the entity transfer 

happens when a car leaves M1 at T1 and arrives in a buffer in M2 at T2 to wait for painting. 

There are three subtypes of IRM Type A: 

 IRM Type A.1 General Entity Transfer is defined as the transfer of entities from one 

model to another such that an entity e1 leaves model M1 at T1 from a given place and 

arrives at model M2 at T2 at a given place and T1 ≤ T2 or T1 < T2. The place of 

departure and arrival will be a queue, workstation, etc. 

 IRM Type A.2 Bounded Receiving Element. The IRM Type A.2 is defined as the 

relationship between an activity A in a model M1 and a bounded queue Q2 in a model 

M2 such that if an entity e is ready to leave activity A at T1 and attempts to arrive at the 

bounded queue Q2 at T2 then: 

 If the bounded queue Q2 is empty, the entity e can leave activity A at T1 and arrive 

at Q2 at T2 

 If the bounded queue Q2 is full, the entity e cannot leave activity A at T1; activity A 

may then block if appropriate and must not accept any more entities. 

 When the bounded queue Q2 becomes not full at T3, entity e must leave A at T3 and 

arrive at Q2 at T4, activity A becomes unblocked and may receive new entities at T3. 
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 T1 ≤ T2 and T3 ≤ T4. 

 If activity A is blocked then the simulation of model M1 must continue. 

 IRM Type A.3 Multiple Input Prioritization. As shown in Figure 7, the IRM Type A.3 

Multiple Input Prioritization represents the case where a model element such as queue 

Q1 (or workstation) can receive entities from multiple places. Let us assume that there 

are two models M2 and M3 which are capable of sending entities to Q1 and that Q1 has 

a First-In-First-Out (FIFO) queuing discipline. If an entity e1 is sent from M2 at T1 and 

arrives at Q1 at T2 and an entity e2 is sent from M3 at T3 and arrives at Q1 at T4, then if 

T2 < T4 we would expect the order of entities in Q1 would be e1, e2. A problem arises 

when both entities arrive at the same time, i.e. when T2 = T4. Depending on 

implementation, the order of entities would either be e1, e2 or e2, e1. In some modeling 

situations it is possible to specify the priority order if such a conflict arises, e.g. it can be 

specified that model M1 entities will always have a higher priority than model M2 (and 

therefore require the entity order e1, e2 if T2 = T4). Furthermore, it is possible that this 

priority ordering is dynamic or specialized. 

Note that the IRM sub-types are intended to be cumulative, i.e. a distributed simulation that 

correctly transfers entities from one model to a bounded buffer in another model should be 

compliant with both IRM Type A.1 General Entity Transfer and IRM Type A.2 Bounded 

Receiving Element. 

The largest part of the papers analyzed in the literature review deal with the basic IRM that 

is the general entity transfer (85% of the papers dealing with IRMs), since most of the 

applications are related to Supply Chain Management and queues can often be modeled as 

infinite capacity as they represent inventory, production or distribution centers. 

The situation is slightly different if the manufacturing domain is considered. Indeed, IRM 

Type A.2 (70% of the articles dealing with IRMs), is largely adopted when a production 

system is modeled, because the decoupling buffers between workstations must be usually 

represented as finite capacity queues. 

 

Figure 6. Typr A.1 IRM 

 

Figure 7. Type A.3 IRM 
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3.1.2. IRM type B: Shared resource 

IRM Type B deals with the problem of sharing resources across two or more models in a 

distributed simulation. A modeler can specify if an activity requires a resource (such as 

machine operators, conveyor, pallets, etc.) of a particular type to begin. If an activity does 

require a resource, when an entity is ready to start that activity, it must therefore be 

determined if there is a resource available. If it is available then the resource is secured by 

the activity and held until the activity ends. A resource shared by two or more models leads 

to a problem of maintaining the consistency change the deleted part with: related to the 

status of the resource.. 

Currently there is only one IRM Type B subtype. The IRM Type B.1 General Shared 

Resources is defined as the maintenance of consistency of all copies of a shared resource 

such that: 

 if a model M1 wishes to change its copy of the resource at time T1 then the value of all 

other copies of the same resource present in other models will be guaranteed to be the 

same at T1. 

 if two or more models wish to change their copies of the resource at the same time T1, 

then all copies will be guaranteed to be the same at T1. 

3.1.3. Type C: Shared event 

IRM Type C deals with the problem of sharing events (such as an emergency signal, 

explosion, etc.) across two or more models in a distributed simulation.  

There is currently one IRM Type C sub-type. The IRM Type C.1 General Shared Event is 

defined as the guaranteed execution of all local copies of a shared event E such that: 

 if a model M1 wishes to schedule a shared event E at T1, then its local copies (i.e. the 

events scheduled within each simulator) will be guaranteed to be executed at the same 

time 

 if two or more models wish to schedule shared events E1, E2, etc. at T1, then all local 

copies of all shared events will be guaranteed to be executed at the same time T1. 

3.1.4. Type D: Shared data structures 

IRM Type D Shared Data Structure deals with the sharing of variables and data structures 

across simulation models that are semantically different to resources (e.g. while referring to 

the supply chain environment, this is the case with bill of material information management 

or shared inventory). There is currently one IRM Type D sub-type. 

3.2. Entity transfer specification 

CSPI-PDG proposed the Entity Transfer Specification (ETS) Protocol ([51], [52], [62]) which 

refers to the architecture shown in Figure 8. 

Each federate consists of a COTS simulation package (CSP), a model that is executed by the 

CSP, and the middleware that is a sort of adaptor interfacing the CSP with the Run Time 
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Infrastructure (RTI) (Figure 8). The relationship between CSP, the middleware and the RTI 

consists of two communication flows: (1) middleware-RTI, (2) CSP-middleware. The 

middleware translates the simulation information into a common format so that the RTI can 

share it with the federation. In addition, the middleware receives and sends information 

from/to the CSP. The CSP communicates with its middleware by means of Simulation 

Messages (Section 3.3.1.) [77]. The presence of Simulation Messages is the main difference 

between the reference architecture in Figure 8 and the architecture proposed by Taylor et al 

[51]. 

ETS defines  the communication between the sending model and the receiving model 

(ModelA and ModelB in Figure 8, respectively) at RTI level. In particular the way the 

middleware of each federate and the RTI exchange information is formalized by means of a 

special hierarchy of interaction classes. An interaction class is defined as a template for a set 

of characteristics (parameters) that are shared by a group of interactions (refer to IEEE HLA 

standard, 2000). The middleware of the sending model instantiates a specific interaction 

class and sends it to the RTI whenever an entity has to be transferred. 

 

Figure 8. ETS refrence Architecture 

Two main issues arise when the simulation information is translated for the RTI: 

 A common time definition and resolution is necessary. For example, the time should be 

defined as being the time when an entity exits a source model and then instantaneously 

arrives at the destination model (i.e. the definition of time implies zero transit time) [62]. 

Alternatively, it should be defined including the notion of travel time and the entity 

would arrive at destination with a delay equal to the transfer time. 
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 The representation of an entity depends on how the simulation model is designed and 

implemented in a CSP. Indeed, the names that the modelers use to represent the same 

entity might be different. A similar problem can arise for the definition of simple 

datatypes. For example, some CSPs use 32-bit real numbers while others use 64-bit [62]. 

Straburger [50] highlighted some relevant drawbacks in the ETS standard proposal: 

 It is not possible to differentiate multiple connections between any two models. 

 ETS suggested interaction hierarchy does not work: a federate subscribing to the 

superclass will never receive the values transmitted in the interaction parameters. 

 The specification of user defined attributes is placed into a complex datatype, this 

introduces new room for interoperability challenges as all participating federates have 

to be able to interpret all of the attributes. 

 There are some possibilities for misinterpretation in the definition of Entity and 

EntityType introducing changes in FOMs whenever a new entity type is talked about. 

Furthermore, the ETS was not designed to manage the Type A.2. IRM and the interaction 

class hierarchy refers to the entity transfer without taking into account any information on 

the state of the receiving buffer (e.g. Q2 in Figure 6). 

One of the most recent contributions in ETS was presented by Pedrielli et al. [77] and 

consists in the proposal of a new class hierarchy. In particular, different subclasses of the 

transferEntity class were defined to enable the differentiation of multiple connections 

between models and the Type A.2. IRM management. After developing the interaction class 

hierarchy, following the HLA standard, the Simulation Object Model (SOM) and Federation 

Object Model (FOM) were developed to include the novel interactions and their parameters. 

In particular, extensions were proposed to the Interaction Class Table (part of the OMT, 

Section 2.1) to include the novel interaction classes and define them as publish and/or 

subscribe. The Parameter Table (part of the OMT, Section 2.1)  was modified to include the 

proposed parameters for the interactions and the Datatype table was also modified. 

The resulting class hierarchy consists of the following classes [38]: 

 transferEntity, as already defined in the ETS protocol. This superclass allows the 

federate subscribing to all the instances of entity transfer. The instantiation of this class 

is related to visualization and monitoring tasks. 

 transferEntityFromFedSourceEx is a novel subclass defined for every exit point, where 

FedSourceEx stands for the name or abbreviation of a specific exit point in the sending 

model. This class is useful to group the instances of the transferEntity that are related to 

the source federate, so that the FedSourceEx can subscribe to all these instances without 

explicitly naming them. 

 transferEntityFromFedSourceExToFedDestEn is a novel subclass defined for each pair of 

exit point (Ex) of the source federate (FedSource) and entry point (En) of the receiving 

federate (FedDest). This class is instantiated both when a sending model needs to 

transfer a part to a specific entry point in the receiving model, and when a receiving 

model needs to share information about a buffer state or about the receipt of a part from 
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a specific exit point in a sending model. The models both publish and subscribe to this 

subclass that was designed to create a private communication channel between the 

sending and the receiving model. Therefore, if an entry point in the receiving model is 

connected with multiple federates/exit points, then the receiving federate has to inform 

about the state of the entry point by means of multiple interactions, each dedicated to a 

specific federate/exit point. This communication strategy is not the most efficient in a 

generic case, but it offers the possibility to deliver customized information and adopt 

different priorities for the various federates/exit points. This becomes fundamental in real 

industrial applications where information sharing among different subsystems is seen as a 

threat, thus rising the need to design a protocol that creates a one to one communication 

between each pair of exit/entry point inside the corresponding sending/receiving model. 

The ETS Interaction class table was modified to represent the transferEntityFromFedSourceEx 

and transferEntityFromFedSourceExToFedDestEn subclasses. The Parameter Table was 

modified to include the parameters of the novel interaction class transferEntity 

FromFedSourceExToFedDestEn. The introduced parameters are presented below. The 

similarities with the parameters included in the ETS Parameter Table are highlighted where 

present. 

 Entity. It is a parameter of complex datatype containing the EntityName that is used to 

communicate the type of the entity, and the EntityNumber that is used to communicate 

the number of entities to be transferred. The EntityName and EntityNumber play the role 

of the EntityName and EntitySize defined in ETS, respectively [51], [62]. 

 ReceivedEntity. It refers to the entity received by the receiving federate and has the same 

type of the parameter Entity. 

 Buffer_Availability. It was designed to enable the communication about the buffer 

availability. 

 SourcePriority. This parameter was designed to communicate the priority assigned to 

the entity source, so that the infrastructure can be further extended to manage Type A.3 

IRM (Section 3.1) 

 EntityTransferTime. It defines the simulation time when the entity is transferred to the 

destination point, i.e. the arrival time. Herein the entity leaves the source node and 

reaches the destination node at the same time, since it is assumed that the transferred 

entity instantaneously arrives at destination. 

The resulting tables are shown in Tables 1, 2 and 3. 

 

HLAinteractionRoo

t(N) 

TransferEntity 

(N/S) 

TransferEntityFrom 

FromFedSourceExA

(N/S) 

TransferEntity 

FromFedSourceExAToFedDestE

nC(PS) 

   TransferEntity 

FromFedSourceExBToFedDestE

nC(PS) 

Table 1. Table 1. Interaction Class Table 
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Interaction Parameter DataType Transportation Order 

TransferEnti

tyFromFedS

ourceExAtoF

edDestEnC 

(P/S)  

Entity EntityType HLAreliable TimeStamp 

ReceivedEntity EntityType HLAreliable TimeStamp 

Buffer_Availability HLAInteger32BE HLAreliable TimeStamp 

SourcePriority HLAInteger32BE HLAreliable TimeStamp 

EntityTransferTime HLAFloat32BE HLAreliable TimeStamp 

Table 2. Parameter Table 

 

Record Name Field   Encoding 

  Name Type HLAfixedRecord 

EntityType EntityName HLAASCIIString 

  EntityNumber HLAInteger32BE 

Table 3. Fixed Record Datatype table 

3.3. Communication within the HLA-based integration infrastructure 

Pedrielli et al. [77] proposed a communication protocol (see Section 3.3.2) based on messages 

to manage the communication between a CSP and its middleware (or adapter). The 

communication protocol was conceived for the distributed simulation of network of 

Discrete Event Manufacturing Systems characterized by the transfer of parts in the presence 

of buffers with finite capacity, with the objective to minimize the use of zero-lookahead [62] 

for the synchronization of federates. 

Before illustrating the communication protocol, Section 3.3.1. presents the concept and 

functioning of Simulation Messages created to support the communication between a CSP 

and the middleware. The communication protocol between federates is then explained in 

Section 3.3.2., whereas Section 3.3.3. defines the hypotheses needed to minimize the zero 

lookahead when applying the proposed protocol. 

3.3.1. Simulation messages 

The function of the simulation messages depends on the role played by the federate. The 

sending federate uses the message for communications concerning the need of sending an 

entity to another model (outgoing communication) and/or information on the availability of 

the target receiving federate (incoming communication). The receiving federate uses the 

message for communications concerning the buffer state and/or the acceptance of an entity 

(outgoing communication) and/or the receipt of an entity from other models (incoming 

communication). Simulation Messages are implemented as a class that is characterized by 

the following attributes: 

 time referring to the simulation time when the message is sent to the middleware from 

the CSP. This attribute is used by the middleware to determine the TimeStamp of the 

interaction that will be sent to the RTI. 
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 BoundedBuffer containing the information about the availability of the bounded buffer 

in the receiving model. 

 TransferEntityEvent representing the entity transfer event scheduled in the sending 

model event list and contains the information about the entity to be transferred and the 

scheduled time for the event. 

 ExternalArrivalEvent representing the external arrival event that is scheduled in the 

receiving model. It contains the information about the entity to be received and the 

scheduled time for the event. 

 ReceivedEntity representing the information about the entity that was eventually 

accepted by the receiving model. 

3.3.2. Communication protocol 

Herein, the behavior of the sending federate will be analyzed at first, then the receiving 

federate will be taken under consideration. Finally an example will be described to clarify 

how the protocol works. 

Sending Federate. The CSP of the sending federate sends a message to its middleware 

whenever a TransferEntityEvent is scheduled, i.e. the departure event of an entity from the 

last workstation of the sending model is added to the simulation event list. Then, the 

middleware uses the attributes time and TransferEntityEvent to inform the RTI about the 

need of passing an entity, while the simulation keeps on running (the TransferEntityEvent 

time corresponds to the EntityTransferTime presented in Section 3.2.). 

The request to advance to EntityTransferTime is sent by the middleware to the RTI as soon as 

all local events scheduled for that time instant have been simulated. 

After the time has advanced, the middleware can inform the CSP of the sending model 

about the state of the receiving buffer in the receiving model. If the receiving buffer is not 

full, then the workstation can simulate the TransferEntityEvent, otherwise it becomes 

blocked. From the blocking instant until when the middleware informs the sending model 

that the receiving buffer is not full, the model keeps on sending requests for time advance at 

the lookahead value. 

Receiving Federate. The CSP of the receiving federate sends a message to its middleware 

whenever a change in the buffer availability occurs. This message contains the updated 

value of the attribute boundedBuffer representing the availability of the buffer, i.e. the number 

of available slots. Then, the middleware communicates this information to the RTI via 

interactions. In particular the information on the availability of the buffer represents a field of 

the timestamped interaction transferEntityFromFedSourceExToFedDestEn (Section 3.2.). 

If the change in the buffer availability is due to the arrival of an entity from another model, 

then the update of the information does not imply zero lookahead and the communication is 

characterized by defining the entity that has been accepted (i.e. the ReceivedEntity attribute). 

If the buffer state change is not related to an external arrival, then the update of the buffer 

information may imply a zero lookahead whenever it is not possible to determine an 

advisable a-priori lookahead for the federation (Section 3.3.3) [62]. After being informed by 



 
Distributed Modeling of Discrete Event Systems 23 

the middleware that another federate needs to transfer an entity, the receiving model 

actually simulates the arrival of the entity only if the buffer is not full, otherwise the arrival 

is not simulated and the workstation in the sending model becomes blocked. 

Example. The application of the Simulation Messages can be better appreciated by 

presenting an example (see Figure 9) that is characterized as follows: (1) the reference 

production system is represented in Figure 10, (2) the buffer Q2a at time t accommodates a 

number of parts that is greater than zero and less than the buffer capacity and an entity 

enters workstation W1a, (3) a departure event from workstation W1a is scheduled for time t’ 

= t + p, where p represents the processing time of the leaving entity at station W1a, (4) 

during the time interval (t; t’), no event happening in the federate M2 (local event) 

influences the state of the buffer Q2a. Since W1a is the last machine in model M1, the 

departure event is also a TransferEntityEvent. Therefore, the CSP sends a message to its 

middleware containing time (t) and the TransferEntityEvent attributes. After receiving the 

message, the middleware of the sending model informs the RTI via interaction. 

 

Figure 9. Communication Protocol 

 

Figure 10. Reference Production System 

Once the RTI time advances to time t, the middleware of the receiving model receives the 

information about the need of the sending model to transfer an entity at time t’. Then, the 

middleware sends to the receiving model a simulation message containing the 

ExternalArrivalEvent. The receiving model simulates the external arrival as soon as the 

simulation time advances to t’ and all local events for that time have been simulated (since 
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the buffer Q2a is not full according to the example settings). A message is sent to the 

middleware of the receiving model containing the updated level of Q2a (attribute 

BoundedBuffer) together with the information concerning the recently accommodated part 

(attribute ReceivedEntity). 

Afterwards, the middleware sends two interactions to the RTI: one is with a TimeStamp 

equal to t’ and contains the updated state of the buffer Q2a and the receipt of the entity, the 

other contains the request of time advance to time t’. Once the RTI reaches time t’, the 

middleware of the sending model receives the information regarding the state of Q2a and 

the received entity by means of the RTI. Since the entity has been delivered to the receiving 

model, the station W1a is not blocked by the middleware. 

3.3.3. Formal characterization of the communication protocol 

This section defines which hypotheses are needed to minimize the occurrence of zero 

lookahead if the communication protocol afore presented is adopted. 

Let represent an external event scheduled in the i-th federate j-th exit (entry) point at 

simulation time t, where t can be, in general, smaller or equal to t’ that represents the 

simulation time when the event is supposed to be simulated. An event scheduled into the 

event list of a simulator is defined as external if one of the three following conditions holds: 

 The realization of the event depends on the state of a federate that is, in general, 

different from the one that scheduled the event. One example of external event is when 

the sending federate (model M1) wants to transfer a part to the receiving federate 

(model M2), the possibility for the leaving event to be simulated depends on the state of 

the queue of the receiving federate. 

  The simulation of the event leads to changes into the state of other federates in the 

federation. This is the case when the downstream machine to the first buffer in the 

receiving model takes a part from the buffer thus changing its availability, this 

information must be delivered to sending models that are willing to transfer an entity, 

the state of the sending federate(s) will change depending on the information delivered 

(W1a can be idle or blocked). 

 The event is not scheduled by the simulator that will simulate it, but is put into the 

simulation event list by the middleware associated with the simulator. This is the case 

of the External Arrival Event (Section 3.3.1.). 

Herein three types of external events are taken into consideration: 

 Entity transfer event, this event happens when a sending federate wants to transfer a part 

to a receiving federate. 

 Buffer_availability change event, this is a departure event from the workstation 

downstream the buffer representing the entry point of the receiving model.  

 External Arrival event, this event is scheduled by the middleware inside the simulation 

event list of the receiving federate every time a part has to be transferred. 

If t < t’ it means that the simulation message can be sent by the sending (receiving) model 

and received by the target federate before the event contained in the message has to be 
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executed. When this happens it is possible to minimize the use of the zero lookahead for the 

communication between federates. 

The federate sending the message can communicate with t < t’ under the following 

conditions: 

 The Entity transfer event is scheduled when the part enters the machine in the sending 

model. In this case the event is put into the event list a number of time units before it 

must be simulated that is at least equal to the processing time of the workstation under 

analysis. In the case the event is scheduled when the part leaves the workstation, then 

the condition holds if there exists a transfer time between the sending and the receiving 

model that is larger than zero and no events affect the arrival of the part once the 

transfer has started. The conditions aforementioned are not unrealistic when a 

manufacturing plant is simulated: both in the case the event is scheduled before or after 

the processing activity, the time between the departure from the exit point and the 

arrival to the entry point is in general not negligible. Nonetheless, in both the 

aforementioned cases, it is required that no other external events are scheduled by the 

same exit point during the interval (t; t’). This can happen when, after a leaving event 

has been scheduled, a failure affects the machine. In this case the information related to 

the part to be transferred has already been delivered and cannot be updated. As a 

consequence an external arrival event will be scheduled in the receiving model 

although the sending model will not be able to deliver the part because of the machine 

failure. A solution to this issue is part of present research. 

 It is possible to communicate in advance the Buffer availability change event if the 

workstation processing the part schedules the leave event in advance to its realization 

and no other events are scheduled by the same workstation during the interval (t; t’). 

However, the zero lookahead cannot be avoided by the sending federate which cannot 

be aware of the downstream buffer changes and then it will send update request at the 

lookahead value. 

 The zero lookahead can be avoided if the middleware of the receiving model can 

schedule the External Arrival event in advance and then inform the target federate(s) on 

the availability of the buffer in advance. This condition can be satisfied based on the 

entity transfer event characteristics.  

In the case one or more of the conditions aforementioned do not hold than the 

communication protocol shown in the Section 3.3.2. implies the use of zero lookahead. If the 

hypothesis that no additional external events must be scheduled by the same exit (entry) 

point in a federate (sending or receiving) within the time interval (t; t’) is relaxed, then the 

middleware should be able to arrange incoming events in a queue and wait before 

delivering the information to the simulator until when the most updated information has 

been received. However it is quite straightforward to show that, in the worst case, the 

middleware should wait until when the simulation time reaches t’, and therefore all the time 

advance requests would be performed at the zero lookahead. This relaxation is under 

analysis. 
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4. Distributed simulation in industry: A case study 

This section presents an application of the architecture and communication protocol 

proposed in Section 3.3. The aim is to evaluate whether the use of distributed simulation can 

help to better analyze the dynamics of complex manufacturing systems, whereas the 

comparison between the HLA-based distributed simulation and a monolithic simulation in 

terms of computational efficiency is out of scope.  

Herein the attention is focused on the industrial field represented by sheet metal 

production. In this industrial field, the production systems are characterized by the presence 

of at least two subsystems interacting with each other: the Roll Milling System and the Roll 

Shop. The Roll Milling System produces sheet metal using milling rolls that are subject to 

wearing out process. The rolls must be replaced when worn out to avoid defects in the 

laminates. Then the Roll Shop performs the grinding process to recondition the worn out 

rolls.   

The following types of rolls have been considered in the case study: 

 Intermediate Rolls (IMR) representing back-up rolls that are not in contact with the 

laminate. Depending on the size of the roll, the IMR roll will be referred to as IMR1 (the 

bigger roll type) and IMR2. 

 Work Roll (WR) representing the rolls directly in contact with the laminate. Also in this 

case there are two subtypes that will be referred to as WR1 (the bigger roll type) and 

WR2. 

If the attention is focused on the rolls, then the resulting production system is a closed loop: 

the Roll Milling System sends batches of worn out rolls to the Roll Shop following a given 

policy and receives reconditioned rolls back. Both the Roll Milling System and the Roll Shop 

have finite capacity buffers, therefore it is necessary to check whether the buffer in the 

system receiving the rolls has enough free slots. The deadlock in the closed loop is avoided 

because the number of rolls circulating in the system is less than the number of available 

slots (taking into account also the machines) and it is constant. 

The two subsystems forming a closed loop are strongly related and their reciprocal 

influence should be considered to properly evaluate the performance of the whole factory 

by means of a comprehensive simulation model. However, both the Roll Shop designer and 

the Roll Milling System owner usually develop their own detailed simulator to evaluate the 

performance of their subsystem, because of the lack of shared information between the 

owner of the Roll Milling System and the Roll Shop designer. Indeed, the owner of the Roll 

Milling System usually provides the Roll Shop designer only with aggregated data about the 

yearly average demand of worn out rolls to be reconditioned. Moreover, the Roll Milling 

System works according to specific roll changing policies that are not shared with the Roll 

Shop designer even if they play a key role in the dynamics of the whole factory. For 

instance, when a roll is worn out, also the other rolls are checked and if their remaining 

duration is under a predefined threshold, then they are sent to the Roll Shop together with 

the completely worn out rolls. The presence of roll changing policies determines a relation 
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between different roll types, since a roll can be sent to the Roll Shop depending on the 

behavior of other roll types. 

Even if separate simulators are developed, the Roll Shop designer still has to evaluate the 

performance of the whole system while taking into account the influence of the Roll Milling 

System related to (1) the arrival rate of worn out rolls from the Roll Milling System that is 

estimated from the yearly aggregate demand of reconditioned rolls and (2) the acceptance of 

the reconditioned rolls sent by the Roll Shop (closed loop model).   

In addition to this the Roll Shop designer has to guarantee that the Roll Milling System the 

Roll Shop is being designed for, never waits for reconditioned rolls interrupting the 

production of sheet metal. 

Hence, even if simulation models are available, usually the Roll Shop designer over-

dimensions the number of rolls that have to populate the whole system  to avoid any 

waiting time at the Roll Milling System. For this reason we focused our first analysis on the 

effect of the number of rolls over the performance of the whole system (Roll Milling System 

and Roll Shop). 

Sections 4.1 and 4.2 will give the main details characterizing the simulation models, whereas 

Section 4.3 will present (Section 4.3.1 and Section 4.3.2) and compare (Section 4.3.3) two 

approaches for the system analysis. 

4.1. The Roll Shop simulator 

In this section the simulator of the Roll Shop developed for the case of interest will be 

explained in detail. 

The Roll Shop simulator has been developed in C++ language using the object oriented 

paradigm. The C++ based simulator emulates a COTS, following the approach showed in 

Wang et al. [67], [68].  Figure 11 gives a pictorial representation of the simulation model for 

the Roll Shop under analysis. 

 

Figure 11. The Roll Shop System representation 

The Roll Shop is composed by the following elements (Figure 11). 

 Buffer areas where the rolls are kept while waiting to be transferred to the Roll Shop or 

the Milling system. The buffer areas can be: 
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 Stand-by Area, represents the entry/exit point of the Roll Shop and only the 

overhead crane can access it. The batches of rolls coming from the Roll Milling 

System and the batches of grinded rolls to send back to the Roll Milling System are 

placed here. 

 Exchange Area 1, represents the interface between the part of the system managed 

by the overhead-crane and the grinding system served by the loader 

 Exchange Area 2, represents the interface between the exit of the grinding system 

and the exit from the roll shop system managed by the overhead-crane. 

 Workstations where the rolls are reconditioned; 

 Grinder Machine Work (Grinder WR), i.e. grinding machine dedicated to work roll 

type. 

 Grinder Machine Intermediate (Grinder IMR), i.e. grinding machine dedicated to 

intermediate roll type. 

 Electro-Discharge Texturing Machine (EDT), i.e. machine executing a surface finishing 

process on the rolls. 

 Two types of conveyors: 

 Loader, i.e. an automatic conveyor that transfers rolls to the grinding machines  

 Overhead crane, i.e. a semi-automatic handling system to transfer rolls from the 

arrival point in the roll shop (Stand by area) to the exchange areas of the system 

 All the workstations, but the EDT, have two buffer positions (grey rectangles in Figure 11) 

within the working area.  

The main parameters needed to configure the simulator are: 

 Size of the roll batches 

 Type of rolls (e.g. WR1 and WR2,  IMR1 and IMR2 as described in Section 4) 

 Process Sequence for every roll, i.e. the process plan and the assignment of operations to 

the production resources in the Roll Shop. The process sequence depends on the roll 

type. 

 Processing time of each operation. Those processing time have been considered 

deterministic for the experiments presented in this section (i.e. no failures affect the 

workstations). 

 Transfer time, i.e. the time to move the roll within the Roll Shop. This is a deterministic 

quantity as a function of the path. 

 Number of workstations of each type. We have dedicated machines, in particular we have 

one grinding machine dedicated to WR type (i.e. WR1 and WR2) and one grinding 

machine dedicated to IMR type roll (i.e. IMR1 and IMR2). We have one EDT machine 

(processing only WR type rolls). In case the WR type roll finds the dedicated grinding 

machine occupied and the IMR machine is idle, then it can be processed also on the 

IMR machine. However the time required for the process increases. 

Table 4 summarizes the output statistics that can be gathered from the Roll Shop simulator. 

The minimum, maximum average values are supplied for every statistic, and the variance is 

computed as well. 
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Component Statistics Unit of Measurement 

Roll Number of rolls in the Roll 

Shop system for every roll 

type 

- 

System Time for every roll 

type 

[min/roll] 

Grinding time for every roll 

type 

[min/roll] 

Transfer time for every roll 

type 

[min/roll] 

Machine Utilization [%] 

Processing Time [min/roll] 

Number of processed rolls - 

Number of rolls in the buffer 

area 

- 

Conveyor Transfer time [min/transfer] 

Idle time [min] 

Utilization [%] 

Buffer Number of rolls in the buffer - 

Waiting time in the buffer [min/roll] 

Table 4. Roll Shop Statistics 

4.2. The Roll Milling System simulator 

In this section the simulator of the Roll Milling System developed for the case of interest will 

be explained in detail. 

The Roll Milling System simulator has been developed in C++ language. The C++ based 

simulator emulates a COTS, following the approach showed by Wang et al. [67], [68]. 

A generic milling system can be represented as shown in Figure 12, whereas the simulation 

model realized for the case presented is graphically represented in Figure 13. 

 

Figure 12. Roll Milling System [87] 



 
Discrete Event Simulations – Development and Applications 30 

 

Figure 13. Milling System Simulation Model 

The Roll Milling System considered for the industrial case is composed of 5 stands (refer to 

Figure 12 for the definition of stand) each characterized by a milling station and a buffer for 

rolls (Figure 13). It is important to highlight that more rolls are needed with respect to those 

in use to process the metal sheet in order to minimize the waiting time of the milling system 

when the rolls are changed. 

Once the rolls worn out, the Roll Milling System interrupts the process and the rolls must be 

replaced. The rolls are then replaced with the rolls of the same type available at the rolls 

buffer (Figure 13) close to the station. In the case the rolls required are not available the Roll 

Milling System stops producing. The worn out rolls are sent to the Roll Shop System as soon 

as a batch of rolls is ready (the size of the batch is usually fixed and represents a parameter 

of the simulation model). The batches are then transferred to the Roll Shop by means of a 

special conveyor, the Transfer Car.  

The interval between roll changes (interchange time) is the interval between two consecutive 

sending of the same roll to the Roll Shop. This interval is fundamental to the correct sizing 

of the Roll Shop Plant (i.e. the number of grinding machines for every type, the size of the 

buffer areas) and of the number of rolls, for every type, populating the system. 

This interval is mainly related to the life duration and the roll changing policies adopted 

within the system. For the industrial case considered, these policies can be brought back to 

two main criteria: 

1. If an IMR roll has to be changed, since this requires high setup time, also the WR rolls 

from the same station are sent to the Roll Shop even if they have not reached their end 

on life. 

2. If more batches have almost reached their life duration, they are sent together to 

grinding process to avoid multiple sending. 

The main parameters to configure the simulation model are: 

 Number of stands 

 Capacity of the buffers at every stand 

 Number of rolls in the system 

 Size of roll batches and types of rolls 

 Life duration for each roll type 

The Roll Milling System simulator supplies the following output statistics (Table 5): 
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Component Statistics Unit of Measurement 

Roll Number of rolls in the Roll 

Milling system for every roll 

type 

- 

Interchange Time [min] 

Station Utilization [%] 

Waiting Time [min] 

Busy Time [min] 

Number of rolls in the buffer 

area 

- 

Buffer Number of rolls in the buffer - 

Waiting time in the buffer [min/roll] 

Service Level Busy Time/Simulation Time [%] 

Table 5. Roll Milling System Simulator Statistics 

The Service Level (SL) is the typical key performance indicator (KPI) for analyzing the Roll 

Milling System. It is defined as the time the Roll Milling System produces sheet metal over 

the time it is operative (the total simulation time in the case of the computer experiment). It 

must be highlighted that the system cannot produce if all the required rolls are not present 

at each station. For this reason every station will have the same “Busy Time”, i.e. the same 

time period during which it produces. The service level of a system can be increased 

managing the plant in a way such that we always have an available batch of rolls to change 

the worn out ones that have to be sent to the Roll Shop. 

It is then clear that the Service Level would be reduced if the Roll Milling System had to 

wait too long for reconditioned rolls coming from the Roll Shop. 

4.3. Sheet metal production system analysis: Approach A, approach B 

The Roll Shop designer may choose two possible approaches to estimate the effects of the 

Roll Shop design choices over the performance of the Roll Milling System: 

 Approach A. The Roll Milling System is represented by a simplified model inside the 

detailed simulation model of the Roll Shop (Section 4.1). This simplified model roughly 

reproduces the Roll Milling System by generating the arrival of worn out rolls and 

accepting the reconditioned ones. 

 Approach B. The performance of the whole factory is evaluated by adopting the  HLA-

based Infrastructure integrating the simulators of the Roll Milling System and of the 

Roll Shop. 

4.3.1. Approach A 

The simulator of the whole system is realized introducing within the detailed simulation 

model of the Roll Shop a simplified model of the Roll Milling System. Also this simulator is 

developed in C++ language. 
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More specifically, the Roll Milling System is modeled as an oracle sending (receiving) 

batches of worn out (reconditioned) rolls to the Roll Shop based on the information on the 

wearing out time of every roll type.  

It must be stressed that the simulator of Approach A cannot be considered as a proper 

monolithic simulator of the whole factory, since the Roll Milling System is only poorly 

modeled. 

The input parameters needed to initialize the oracle are: 

 Number of rolls present in the system, when the simulation starts, for every type. In this 

case the number of rolls represents the total number of rolls in the Roll Milling System. 

The only initial condition we can set using this simulation model is that all the rolls at 

the simulation start are at the beginning of their life and are all in the Roll Milling 

System, whereas the Roll Shop is empty. 

 Life duration of every roll type. 

 Size of the batch of rolls for every roll type (the rolls are moved in batches as explained 

in Section 4.1 and Section 4.2). 

Table 6 defines the life duration of the rolls (for every type) given as input for Approach A..  

 

Roll Type WR1 WR2 IMR1 IMR2 

Batch Size [#Rolls/batch] 8 2 8 2 

Duration [min/batch] 438 288 3228 1452 

Table 6. Rolls parameters 

Table 7 reports the results in terms of average intervals between rolls change, estimated 

running the simulation model of the Roll Milling System (Section 4.2) as standalone. The life 

duration given as input to the Roll Milling System simulator was the same given in Table 6. 

Although the life duration used is the same the resulting intervals between rolls change are 

different because of the effect of the roll changing policies which are not taken into account 

in the simplified model of the Roll Milling System (Section 4.2).  

 

Time to change rolls batch 

[min/batch] 
Detailed Model 

WR1 432 

WR2 288 

IMR1 3024.04 

IMR2 1440 

Table 7. Rolls interarrival time estimated running the MS simulation model 

In particular the intervals between rolls change result decreased because the WR2 type, 

characterized by the shorter life duration, draws the change of all other roll types. This 

result represents a first motivation towards the distributed approach. Indeed it shows that 

the aggregated information related to the interchange time is not enough to represent the 
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dynamics of the Roll Milling System. A possible idea to increase the accuracy of Approach A 

could be to replace data in Table 6 with the estimated information in Table 7, thus taking 

into account, at least on average, the behavior of the Roll Milling System. 

However, the missing feature of this approach is that in any case, even updating the life 

duration, we will not be able to reproduce the dynamics over time of the Roll Milling System 

which is what really affects the estimation of the performance of the whole system more 

than the average behavior captured by data in Table 7. 

In addition, the only statistics of the Roll Milling System that can be gathered if Approach A 

is adopted are: 

 Average Number of Rolls at every stand 

 Average Waiting Time for grinded rolls 

 Service Level. In particular, the utilization time (Section 4.2) is estimated as the 

difference between the total simulation time and the computed sum of time intervals 

during which the number of rolls for at least one type are equal to 0. If this condition is 

verified then the Roll Milling System cannot produce and has to wait for reconditioned 

rolls. As defined in Section 4.2, the ratio between this time and the total simulation time 

gives the estimate of the service level. 

Summarizing, Approach A supplies an approximate estimate of the whole system 

performance: 

 The real behavior of the Roll Milling System cannot be precisely modeled since it is 

reduced to a black box sending and receiving rolls (e.g. the roll changing policies are 

not modeled). 

 The performance of the Roll Milling System cannot be evaluated in detail (e.g. mean 

starvation time for every station, mean level of roll buffers, etc). 

4.3.2. Approach B 

In Approach B, the detailed models of the two subsystems are directly adopted. Indeed the 

two simulators described in Section 4.1 and 4.2 are linked together thanks to the HLA-based 

developed infrastructure (Figure 15). 

The HLA-based architecture was implemented as follows: 

 MAK-RTI 3.3.2 (www.mak.com) was used as the RTI component implementation. 

 The middleware was developed in C++ language following the specifications defined in 

Section 3.3  and was named SimulationMiddleware.  

The FederateAmbassador and RTIAmbassador were provided by MAK-RTI as C++ classes and 

were linked to the SimulationMiddleware. Further extensions were needed to implement the 

proposed modification to ETS (Section 3.2) and the Simulation Messages (Section 3.3.1). The 

former required a modification to FederateAmbassador class, whereas the latter led to the 

development of a new C++ class. The SimulationMiddleware was implemented to manage the 

information contained in Simulation Messages. 
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The interaction tables  (Section 3.2) developed for this case are shown in Tables 10,11,12 and 

13. 

 

Figure 14. Distributed Simulation of Roll Shop and Roll Milling System 

4.3.3. Comparison between approach A and approach B 

The two approaches have been compared by designing a set of experiments characterized as 

follows: 

 Three experimental conditions were designed with reference to the total number of rolls 

circulating in the whole system. These three conditions were defined as Low, Medium, 

High level. 

 The simulation run length was set to six months (4 weeks of transitory period). The roll 

changing policy adopted for the Approach B simulator has been kept fixed throughout 

the experimentation. 

The results of the experiments are shown in Table 8. Approach A and Approach B are 

compared in terms of the estimated Service Level (refer to Section 4.2 for the definition). The 

results show that the difference between the two approaches is larger for the High and 

Medium level conditions.  

When the level of rolls is Low the roll changing policy does not affect the overall 

performance of the production system because the Roll Milling System is frequently starved 

and therefore the estimations are similar (consider also that the Low level condition has no 

industrial meaning, but was considered to study the service level response). In case of 

Medium and High level conditions the workload of the rolls in the Roll Shop can be strongly 

influenced by the roll changing policy, thus generating a higher difference in the estimation 

between the two approaches. 

Approach B generates more accurate estimates of the whole system performance because 

the Roll Milling System is represented with high level of detail and the roll changing policies 

are modeled. In addition to this if Approach B is used,  detailed information related to the 

Roll Milling System performance are available. Table 9 shows an example of output for the 
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average statistics related to the Roll Milling System from the simulation of the High level 

condition in Table 8. 

 

Experimental 

Conditions 

Approach A Approach B Percentage 

difference 

High Level 0.995 0.872 12.3 

Medium Level 0.946 0.682 27.7 

Low Level 0.308 0.273 3.5 

Table 8.  Service Level Results 

 

Output Statistic Value

Busy Time 5.2[months] 

Waiting Time 0.8[months] 

Utilization 87.2[%] 

Number of Rolls 

Stand 1:  

1.177 WR 

1.470 IMR 

Stand 2:  

1.177 WR 

1.470 IMR 

Stand 3:  

1.177 WR 

1.470 IMR 

Stand 4:  

1.177 WR 

1.470 IMR 

Stand 5:  

3.401 WR 

1.740 IMR 

Service Level 87.2[%] 

Table 9. Roll Milling System simulator.  Output Statistics 

The number of rolls in the system together with the roll changing policy have a strong 

impact on the workload conditions of the Roll Shop. This aspect can only be taken into 

account under Approach B and the results show the dramatic difference in performance 

estimation due to this additional information that characterizes the model.  

Approach A is overestimating the performance of the system, thus decreasing its 

effectiveness as supporting tool for decision making. 

Based on the analysis carried out so far, it was decided to design further experiments to 

analyze the behavior of the whole system with different starting workload conditions, i.e. 
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the number of rolls that are present in the Roll Milling System when the simulation starts. 

These experiments can be useful to analyze the ramp-up period and select the roll changing 

policy that avoids the arising of critical workload conditions. These additional experiments 

can be carried out only adopting Approach B, since the starting workload conditions cannot 

be modeled with Approach A (Section 4.3.1). Indeed, the simplified model generates rolls for 

the Roll Shop independently from the starting workload conditions. Therefore, the 

simplified model would generate roll arrivals even if all the rolls are already located in the 

Roll Shop, thus incorrectly increasing the number of rolls in the whole system. 

The second set of experiments was designed as follows:  

 Two types of roll circulate in the factory (WR and IMR). The roll of type IMR has a longer 

roll life than WR 

 For each type of roll three levels of the Starting Workload (i.e. number of rolls) in the Roll 

Milling System are considered 

 Three simulation run lengths are considered, i.e. 1 week, 2 weeks and 4 weeks 

 The roll changing policy is fixed for all experiments 

 total number of rolls is equal to the High level of the previous experimentation and is 

fixed for all the experiments. 

Fig. 15 shows the main effects plot for the Service Level evaluated by simulating the 27 

resulting experimental conditions with Approach B. The plot suggests a significant influence 

of the factor Starting Workload for WR. This roll type assumes a key role because of its short 

roll life (Section 4.3.1). If the Starting Workload For WR is Low, the Roll Shop can hardly 

follow the frequent roll requests of WR from the Roll Milling System and low values of SL 

are observed. This phenomenon occurs in all conditions of the simulation lengths, however 

it mitigates when the simulation length increases. Indeed the SL tends to a stationary value 

that is independent from the starting conditions. Nonetheless this analysis can be useful for 

the Roll Milling System owner that can individuate critical conditions, thus designing roll 

changing policies that avoid the occurrence of these situations during the ramp-up period. 
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Figure 15. Main Effects Plot of Service Lovel, Approach B 
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HLAinter

action 

Root(N) 

Transfer

Entity 

(N/S) 

TransferEntityFromFedSource

Milling(N/S) 

TransferEntityFromFedSourceExMillingtoFe

dDestEnRollShop(P/S)  

  Entity 

(N/S)  

TransferEntityFromFedSource

RollShop(N/S) 

  

Table 10. Interaction Class Table 

 

Interaction Parameter DataType Transportation Order 

TransferEntityFromF

edSourceExMillingto

FedDestEnRollShop(

P/S)  

RollEntity RollType HLAreliable TimeStamp 

ReceivedRollEntity RollType HLAreliable TimeStamp 

RollShopBuffer HLAInteger32BE HLAreliable TimeStamp 

SourcePriority HLAInteger32BE HLAreliable TimeStamp 

EntityTransferTime HLAFloat32BE HLAreliable TimeStamp 

Table 11. Parameter Table for Roll Shop SOM 

 

Interaction Parameter DataType Transportation Order 

TransferEntityFromFe

dSourceExRollMillingt

oFedDestEnRollShop 

(P/S)  

RollEntity RollType HLAreliable TimeStamp 

ReceivedRollEntity RollType HLAreliable TimeStamp 

MillingBuffer HLAInteger32B

E 

HLAreliable TimeStamp 

SourcePriority HLAInteger32B

E 

HLAreliable TimeStamp 

EntityTransferTime HLAFloat32BE HLAreliable TimeStamp 

Table 12. Parameter Table for Milling System SOM 

 

Record Name Field   Encoding 

  Name Type HLAfixedRecord 

RollType Roll HLAASCIIString 

  BatchSize HLAInteger32BE 

Table 13. Fixed Record Datatype Table (SOM) for Roll Shop and Milling Systems 
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5. Conclusions 

This chapter has presented an overview of distributed simulation and the contemporary 

innovations in the use of distributed modeling to support the analysis of complex systems. 

The attention has been focused on CSP-based distributed simulation in civilian applications 

and especially in manufacturing domain. The literature review showed the need of a general 

standard solution to the distributed simulation of systems within the civilian domain to 

increase the use of distributed techniques for the analysis of complex systems. The 

Interoperability Reference Model standard released by SISO CSPI-PDG has been   analyzed. 

Furthermore, the latest advancements in ETS standard proposal and Communication 

Protocol between federates within HLA-based distributed environment have been shown. 

In the end the industrial application of an HLA-based infrastructure proved the benefits of 

the distributed approach to effectively analyze the behavior of complex industrial systems. 

The distribute simulation is acquiring more and more interest also because the need to 

interoperate several simulators leads to the need to improve the methodologies and the 

tools developed so far for the simulation of Discrete Event Systems. In other words the 

issues arising when trying to make several simulators interoperate are those issues the 

simulation community has been dealing with in the last years. 

Further effort is needed in the formalization of the IRMs. In particular the presence of 

shared resources and the modeling of the control policies characterizing the system 

represent challenging issues not yet solved. 

The communication protocols need to be enhanced and the zero-lookahead issue  represents 

one of the main bottlenecks against the increase of efficiency of distributed simulations. 

Research effort is necessary to come up with new algorithms enabling the avoidance of zero-

lookahead. In this area the research on protocols that do not force to send interaction at 

every time unit to communicate the state of the federates, but enable the interaction 

depending on the system state (Adaptive Communication Protocols) look promising.  

The need of a shared data model ([26], [7]) and of a common definition of the objects which 

are input and output of the simulation and a common simulation language, are all scientific 

and technical challenging topics that make research in distributed simulation always up to 

date.  

In particular  the definition of a common reference model to describe information generated 

by each simulator while it is running will be a key factor for the success of the distributed 

simulation technique. A fundamental contribution in this field was given by the Core 

Manufacturing Simulation Data CMSD [7], but the interoperability between simulators is 

still far from being reached. The data modeling research topic is wider than what just stated 

and covers several areas and simulation is just one of those. For example proposals to 

standardize the information modeling for manufacturing systems have been done in [83-84]. 

The European project Virtual Factory Framework VFF ([38] [85-86]) represents one of the 

latest proposals from the research community in terms of framework supporting the 
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interoperability between digital tools. Future research will evaluate if the VFF approach can 

be exploited by distributed simulation applications. 
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