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1. Introduction 

Biomechanical experimentation and computer simulation have been the major tool for 

orthopaedic biomechanics research community for the past few decades. In validation 

experimentations of computer models as well as in vitro experimentations for joint 

biomechanics and implant testing, human cadaver bones have been the material of choice 

due to their close resemblance to the in vivo characteristics of bones. However, the 

challenges in using cadaveric bones such as availability, storage requirements, high cost and 

possibility of infection have made synthetic bone analogs an attractive alternative.  

There are a variety of synthetic bone materials available but polyurethane foam has been 

used more extensively in orthopaedic experiments, especially in fracture fixation testing. 

The foams are produced by a polymerization reaction with a simultaneous generation of 

carbon dioxide by the reaction of water and isocyanate. The resultant product is a closed cell 

structure, which is different from the open porosity of cancellous bone. However the 

uniformity and consistency in their material properties make rigid polyurethane ideal for 

comparative testing of various medical devices and implants.  

Therefore we have extensively used synthetic bones made of polyurethane foam in various 

orthopaedic biomechanical researches from optimization of bone graft harvester design to 

acetabular fractures and the stability of osteosynthesis. We identified important design 

parameters in developing bone graft harvester by performing orthogonal cutting 

experiment with polyurethane foam materials. We also validated the fracture prediction 

capability of our finite element (FE) model of the pelvis with a validation experiment with 

polyurethane foam pelvis. We also performed in vitro experimentation to compare the 

stability of different types of osteosynthesis in acetabular fractures and used this result again 

to validate our fracture fixed pelvis model. These results as well as reports from others that 
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highlight the use of polyurethane in orthopaedic biomechanical experiment will be included 

in this chapter.  

Specifically, there will be three sections in this chapter. The first section will describe the 

basic material properties of rigid polyurethane foam. We will especially highlight the 

similarities and differences between the foam and human bone. The second section will then 

present the review of the literature focusing on the use of polyurethane foam in 

biomechanical experimentations. We will conclude the chapter with our use of polyurethane 

foam in bone grafting harvester design, fracture predictions and stability testing of 

osteosynthesis.  

2. Basic material properties of rigid polyurethane foam 

Polyurethanes are characterized the urethane linkage (-NH-C(=O)-O-) which is formed by 

the reaction of organic isocyanate groups with hydroxyl groups as shown below 

 

Polyurethanes can be turned into foam by means of blowing agents such as water. The cells 

created during the mixing process are filled and expanded with carbon dioxide gas, which is 

generated when water reacts with isocyanate group. The result is a closed foam structure, 

which is a cellular solid structure made up of interconnected network of solid struts or 

plates which form the edges and faces of cells. Thanks to its desirable material properties 

that give versatility and durability to the material, polyurethane has become one of the most 

adaptable materials that it is found everywhere such as carpet, sofa, beds, cars to name a 

few.  

One unlikely place, however, is inside human body, that is human cancellous or spongy 

bone. The macroscopic structure of cancellous bone consists of a network of interconnecting 

rods and plates that forms complex struts and columns. Although this structure has strictly 

speaking open porosity structure, the overall macroscopic structure shows close 

resemblance to the closed foam structure of polyurethane foam (Figure 1) 

 

Figure 1. Microstructures of cancellous bone and polyurethane foam.  

R-NCO+R -OH=R-NH-C(=O)-O-R 

Cancellous bone microscopic structure Polyurethane foam microscopic structure 
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The stress-strain curve of polyurethane foam exhibits similar pattern as cancellous bone. 

Figure 2 shows a schematic compressive stress-strain curve for polyurethane foams which 

shows three regions; firstly they show linear elasticity at low stresses followed by a long 

plateau, truncated by a regime of densification at which the stress rises steeply (Gibson and 

Ashby, 1988). Linear elasticity is controlled by cell wall bending while the plateau is 

associated with collapse of the cells by either elastic buckling or brittle crushing. When the 

cells have almost completely collapsed opposing cell walls touch and further strain 

compresses the solid itself, giving the final region of rapidly increasing stress.  

 

Figure 2. Typical compressive stress-strain curve of polyurethane foam 

The compressive stress-strain curve of cancellous bone has the similar three regimes of 

behaviour (Figure 3). Firstly the small strain, linear elastic region appears which is mainly 

from the elastic bending of the cell walls. Then the linear-elastic region ends when the cells 

begin to collapse and progressive compressive collapse gives the long horizontal plateau of 

the stress-strain curve which continues until opposing cell walls meat and touch, causing 

the stress rise steeply.  

Such similarities have made polyurethane (PU) foams as popular testing substitutes for 

human cancellous bones and many researchers have quantitatively characterized material 

properties of polyurethane foam to investigate the suitability and usefulness of PU foams 

as bone analog. Szivek, Thomas and Benjamin (Szivek et al., 1993)conducted the first 

study on mechanical properties of PU foams with different microstructures. Compression 

testing was done to identify elastic modulus and compressive strength. The same group 

conducted further studies with three compositions of PU foams and evaluated their 

properties as well(Szivek et al., 1995). Thompson and co-workers(Thompson et al., 2003) 

analyzed compressive and shear properties of commercially available PU foams. They 

tested samples of four grades of rigid cellular foam materials and found out that elastic 
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behaviour was similar to cancellous bones and an appropriate density of PU foams can be 

determined for a particular modulus value. However the shear response showed some 

discrepancy and concluded that caution is required when simulating other behaviours 

than elastic behaviour with these foams. Calvert and coworkers (Calvert et al.) evaluated 

cyclic compressive properties of PU foams and examined the mechanical properties in 

terms of microstructural features. They found that microstructural properties such as cell 

size and volume were uniform and increased with decreasing density. And their cyclic 

testing revealed hysteresis in the low density foams but consistent modulus up to 10 

cycles.  

 

Figure 3. Compressive stress-strain curves for several relative densities (ρ*/ρs)of wet cancellous bone 

(modified from Figure 11-5 in Gibson and Ashyby, 1997)  

As the use of PU foams in orthopaedic implant testing and their use as bone analogs 

increased, the American Society for Testing and Materials (ASTM) developed ASTM F1839-

97, “Rigid polyurethane foam for use as a standard material for testing orthopaedic devices 

and instruments.” The aim of this standard is to provide a method for classifying foams as 

graded or ungraded based on the physical and mechanical behaviour with a given density. 

This standard has been revised twice since 1997 when it was originally introduced in order 

to include a wide range of properties and nominal densities(American Society for Testing 

and Materials, 2008a). As such the number of studies that used PU-foam in testing implant 

materials and function has increased dramatically after the introduction of the standard. The 

next section will give review of those studies.  
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3. The use of PU foams in orthopaedic implant testing 

The number and variety of implants for osteosynthesis and joint replacement has increased 

dramatically over the past few decades along with the use of biomechanical testing of these 

implants to evaluate their performance. The most obvious material of choice will be fresh or 

embalmed cadaveric human or animal bones as they have the unique viscoelastic properties 

and internal structures of real bone. However such studies are often beset with a number of 

other problems such as issues in handling biological samples and huge variety in size, shape 

and material properties even in matched pairs to name a few. If reproducibility of 

experiments is important and comparable not absolute results are required, synthetic bones 

made from PU-foam can provide a great alternative to the real bones (Figure 4).  

 

Figure 4. Various synthetic bone material combinations with different types of PU foams and plastics 

(from www.sawbones.com) 

The major use of PU foam blocks is comparatives studies for quantitatively measuring some 

important functional parameters of orthopaedic implants such as pull out strength, stability 

and stiffness. Bredbenner et al. (Bredbenner and Haug, 2000) investigate the suitableness of 

synthetic bone made of PU-foam in testing rigidity of fracture fixations by comparing pull 

out strength from cadaveric bones, epoxy red oak and PU foams. They found out that PU-

foam bone substitutes generated comparable results to cadaveric bones, concluding that PU-

foams can be used in mechanical investigation of human bones.  

Indeed many researchers have used PU-foam in comparative studies measuring pullout 

strength of fixation screws. Calgar et al.(Caglar et al., 2005) performed biomechanical 

comparative studies of different types of screws and cables using Sawbone models and 

found out that the load to failure of screws was significantly greater than that of the cables. 

Farshad et al. (Farshad et al., 2011)used PU foam blocks to test bone tunnels drilled during 

anterior cruciate ligament reconstruction. They found that screw embossed grafts achieved 

higher pull out strengths. Krenn et al. (Krenn et al., 2008)investigated the influence of thread 

design on screw fixation using PU-foam blocks with different densities.  

(c) transparaent 

plastic cortical shell 

with cellular PU-

foam inside 

(d) Solid PU-foam 

throughout 

(a) plastic cortical 

shell with cellular 

PU-foam inside 

(b) rigid PU-foam 

cortical shell with 

cellular PU-foam 

inside 
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PU-foams are also extensively used in biomechanical studies for finding optimal surgical 

parameters in orthopaedic surgeries. For example, osteotomy is a surgical procedure where 

a bone is cut to shorten or lengthen to rectify abnormal alignment. One variation of that 

technique is Weil osteotomy where the knuckle bone in the foot is cut to realign the bones 

and relieve pain. There are two separate independent studies on Weil osteotomy involving 

PU-foams and cadaver bones. Melamed et al. (Melamed et al., 2002) used 40 PU-foams to 

find the optimal angle for the osteotomy and found that an angle of 25° to the metatarsal 

shaft give the best result. This result was confirmed a year later by Trnka et al. (Trnka et al., 

2001)who performed the similar study on fresh frozen cadaver feet. They also found that the 

range between 25°-35° give the optimal results, confirming that the use of PU-foams in such 

studies. Nyska et al. (Nyska et al., 2002) analyzed osteotomy for Bunion deformity using 30 

PU-foams and found that displacement osteotomies provided good correction for middle 

and intermediate deformity. Acevedo et al. (Acevedo et al., 2002) compared five different 

first metatarsal shaft osteotomies by analyzing the relative fatigue endurance. They used 74 

polyurethane foam synthetic bones to determine the two strongest of the five osteotomy 

techniques and they found that Chevron and Ludloff osteotomies showed superior 

endurance than the other techniques.  

Nasson and coworkers (Nasson et al., 2001)used eight foam specimens for tibia and talus to 

evaluate the stiffness and rigidity of two different arthrodesis techniques where artificial 

joint ossification is induced between two bones either with bone graft or synthetic bone 

substitutes. They performed arthrodesis on these artificial bones made up of PU-foams and 

tested rotation and bending strength and recommended that the use of crossed screws for 

the strength, simplicity , speed and minimal tissue dissection.  

Another interesting development in the use of PU foam in orthopaedic biomechanics is the 

development of so called composite bones. Since PU foam closely resembles cancellous bone 

structure and properties, a composite material made up of epoxy resin with fibre glass along 

with PU foam was used to create a synthetic bone where cortical and cancellous bone 

materials are simulated with epoxy resin and PU foam respectively (Figure 5). Zdero et al 

(Zdero et al., 2007, Zdero et al., 2008) tested the performance of these composite bones by 

measuring bone screw pullout forces in such composite bones and comparing them with 

cadaver data from previous literature. They found out that composite bones provide a 

satisfactory biomechanical analog to human bone at the screw-bone interface.  

When such composite bone material is shaped according to the actual bony shapes of 

human bones such as femur and tibia, they can be a great alternative for cadaver bones in 

research and experiment. Since they closely mimic both geometry and material properties of 

actual bones and yet have consistency that is lacking in cadaver bones, they can lower 

variability significantly, offering a more reliable testing bed. Composite replicates of femur 

and tibia were first introduced in 1987 and then have undergone a number of design 

changes over the years. The currently available composite bones are fourth-generation 

composite bones where a solid rigid PU-foam is used as cancellous core material while a 
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mixture of glass fibres and epoxy resin was pressure injected around the foam to mimic 

cortical bone. Chong et al. (Chong et al., 2007a, Chong et al., 2007b) performed extensive 

mechanical testing with these synthetic bones and found out that the fourth-generation 

material has better fatigue behavior and modulus, strength and toughness behaviours a lot 

closer to literature values for fresh-frozen human bones than previous composite bones. 

Heiner (Heiner, 2008) tested stiffness of the composite femurs and tibias under bending, 

axial and torsional loading as well as measuring longitudinal strain distribution along the 

proximal-medial diaphysis of the femur. She found out that the fourth-generation composite 

bones average stiffness and strains that were close to values for natural bones (Table 1). 

Papini et al.(Papini et al., 2007) performed an interesting study where they compared the 

biomechanics of human cadaveric femurs, synthetic composite femurs and FE femur models 

by measuring axial and torsional stiffness. They found that composite femurs represents 

mechanical behaviours of healthy rather than diseased femur (e.g. osteoporosis), hence 

caution is required in interpreting the data from experiment with composite bones.  

 

Figure 5. Various composite bones made up of PU-foam core covered with a cortical shell of short fiber 

filled epoxy (from www.sawbones.com) 

 

Property Bone Type Value 

Anterior flexural rigidity (N m2) 
Natural 317 

Composite 241 

Lateral flexural rigidity (N m2) 
Natural 290 

Composite 273 

Axial stiffness (N/μm) 
Natural 2.48 

Composite 1.86 

Torsional rigidity (N m2/deg) 
Natural 4.41 

Composite 3.21 

Table 1. Structural properties of natural human and 4th generation femurs (modified from Table 2 of 

(Heiner, 2008)) 

(a) Femur (b) Humerus (c) Tibia
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The advert of such biomechanically compatible bone analog greatly widened the use of PU-

foam in orthopaedic biomechanics experiments as more mechanically meaningful 

parameters such as strength and surface strains were possible to be introduced in the design 

of the experiment.  

Agneskirchner et al. (Agneskirchner et al., 2006) investigated primary stability of four 

different implants for high tibial osteotomy with composite bones and found that the length 

and thickness as well as the rigidity of the material strongly influence the load to failure of 

tibial osteotomy. Gulsen et al. (Gulsen et al.) used composite bone in testing biomechanical 

function of different fixation methods for periprosthetic femur fractures and compared the 

yield points of these techniques. Cristofolini et al. (Cristofolini et al., 2003) performed in 

vitro mechanical testing with composite femurs to investigate difference between good 

design and bad design in total hip replacement femoral stems. They placed two different 

implants (one good design and the other bad design) to synthetic femurs and applied one 

million stair climbing loading cycles and measured interface shear between the stem and 

cement mantle to see the result of long term performances. Their set-up involving composite 

bones was sensitive enough to detect the result of design difference and was able to predict 

long term effects of different implant designs. Simoes et al. (Simoes et al., 2000) investigated 

the influence of muscle action on the strain distribution on the femur. They measured strain 

distributions for three loading conditions that involve no muscle force, abductor muscle 

force only and then 3 major muscle forces in the hip. They placed 20 strain gauges on the 

composite femur and applied muscle and joint forces accordingly. They found out that 

strain levels were lower when muscle forces were applied than when only joint reaction 

force was used, indicating that the need to constrain the femoral head to reproduce 

physiological loading conditions with joint reaction force only.  

As discussed up till now, the use of PU-foam based material is almost limitless and the list 

discussed here is by no means an exhaustive survey of the use of PU-foam based materials 

in orthopaedic experiment. However, our group has also been working with the PU-foam 

materials in our orthopaedic biomechanics extensively. The following chapters give 

summary of these works. 

4. Use of PU-foams in device and implant testing for bone grafting and 

acetabular fractures 

4.1. Identification of optimal design parameters in bone grafting tools with PU-

foams 

Bone grafting is a reconstructive orthopaedic procedure in which a bone substitute is used 

to fuse broken bones and to repair skeletal defects (Arrington et al., 1996, Lewandrowski et 

al., 2000). Bone grafting is performed worldwide around 2.2 million times per year, with 

approximately 450 000 procedures in the United States alone (Russell and Block, 2000). Most 

popular method is autograft where the graft material is extracted from the patient itself. The 

graft can be harvested from the patient’s femur, tibia, ribs and the iliac crest of the 
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pelvis(Betz, 2002). Autograft has the advantages of being histocompatible and non-

immunogenic, it eliminates the risk of transferring infectious diseases and has 

osteoinductive and osteoconductive properties (Arrington et al., 1996). However, the 

harvesting procedure often requires a second incision to extract the graft from the donor 

site, which can extend operation time by up to 20 min (Russell and Block, 2000). The ensuing 

donor site morbidity is regarded as “a serious postoperative concern for both patient and 

surgeon” (Silber et al., 2003). Ross et al. (Ross et al., 2000) reported an overall complication 

rate of 3.4–49%, of which 28% suffered persistent pain, which can last as long as 2 years and 

often exceeds the pain from the primary operation. 

The reason for donor site pain remains unclear, however, it might be proportional to the 

amount of dissection needed to obtain the graft (Kurz et al., 1989). Conventional bone 

grafting tools usually require great exposure of the donor site with accompanied trauma to 

nerves and muscles. Damage to nerves and muscles may be reduced by using minimally 

invasive bone grafting techniques (Russell and Block, 2000), which shorten the incision 

length by approximately 60%, reduce the amount of dissection and are roughly two times 

faster than conventional methods (Burstein et al., 2000). Minimally invasive tools are usually 

rotational cutting tools, which include trephines, bone grinders (Burstein et al., 2000) and 

bone graft harvesters as depicted in Figure 6 A. 

 

Figure 6. Bone graft harvester and its major parameters 

The harvester collects the graft, i.e. bone chips consisting of cancellous bone fragments and 

bone marrow, in its barrel as it turns and penetrates deeper into the bone. Despite the 

advantages of using minimally invasive tools such as the bone graft harvester, cell morbidity is 

yet unavoidable, because both fracturing of the bone architecture and heat generation 

accompany every bone cutting process. However, mechanical and thermal damage could be 

reduced by improving tool geometry and by applying appropriate cutting parameters. 

Many researchers have studied various cutting operations, such as orthogonal cutting 

(Jacobs et al., 1974), drilling (Saha et al., 1982, Natali et al., 1996) milling (Shin and Yoon, 

2006) and sawing (Krause et al., 1982), in order to identify some of the critical parameters 

that influence heat generation and to gain an overall understanding of bone cutting 
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mechanisms. For a bone graft harvester, these parameters are the rake and point angles of 

tool, the rotational speed and the feed rate (Figure 6 B).  

The influence of such parameters can be measured by characterizing chip types formed 

when cutting the bone. Smaller chips imply more fracturing per volume of bone material 

collected and due to the linkage between fracturing of the bone architecture and cell 

morbidity, and larger chips are believed to act as “life rafts” for the bone cells and will 

increase the rate of survival for embedded living cells. We have conducted two-part study 

where we identified various chip types during orthogonal cutting process(Malak and 

Anderson, 2008, Malak and Anderson, 2005).  

In Part I (Malak and Anderson, 2005), we used polyurethane foams of various densities and 

cell sizes to investigate chip formation and surface finish. An optical arrangement made up 

of dynamometer, microscope and camera system (Figure 7) was used to visually record the 

cutting process, while horizontal and vertical cutting forces were measured. A total of 239 

measurement were performed using rake angles of 23°, 45° and 60° with depths of cut from 

0.1 to 3 mm (increments of 0.1 and 0.2 mm). Cutting events were observed on the video and 

then linked to simultaneous force events by merging both sets of data into a combined video 

stream, generating force plot images. 

 

Figure 7. Experimental set-up for measuring chip formation during orthogonal cutting procedure  

Three types of cutting response were identified and categorized as 1) surface fragmentation; 

2) continuous chip formation; 3) discontinuous chip formation depending on tool rake 

angle, depth of cut, foam density and cell size (Figure 8). Surface fragmentation was 

associated with cutting depth less than the PU-foam cell size. By cutting an order of 

magnitude of the cell size deeper, continuous chips were produced, which is a desirable 

feature whenever good surface finish after cutting is desired as in the case of bone harvester. 

A large rake angle (60°) was also inductive of continuous chip formation. Discontinuous 

chip formation was associated with 1) foam compaction followed by chevron shaped chip; 

2) crack propagation in front of the tool. Compaction of the foam could be minimized by 

using a tool with a large rake angle and normal cut depth.  
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Figure 8. Various chip types formed during orthogonal cutting of polyurethane foams of various 

densities 

The same experiment was repeated with bovine fresh cancellous bone(Malak and Anderson, 

2008) from the patella, the femur and the iliac crest. Similar orthogonal cutting experiments 

were conducted using the same device used in Part I to identify major parameters that 

influence the formation of chips after cutting. Three groups of experiments were done where 

the effect of the depth of the cut, rake angle and cutting speed. Similar chip types as the 

experiment with PU-foams in Part I were observed which were found to be dependent on 

rake angle and depth of cut (Figure 9).  

 

 

Figure 9. Chip foramtion during orthogonal cut of cancellous bone. 
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When the results from cancellous bone were compared with those from PU-foams, both 

showed surface fragmentation, continuous and discontinuous chip formations. During 

polyurethane foam cutting, chip types were influenced by rake angle and depth of cut. Bone 

cutting showed similar trend, however, resulting chip type were mainly influenced by the 

tool rake angle. We also identified the depth of cut that marked the transition from surface 

fragmentation to continuous or discontinuous chip types. In PU-foams, such a transition is 

indicated by a change in cutting forces. A similar trend was observed in bone; a depth of cut 

of 0.5 mm ~ 0.8 mm led to continuous or discontinuous chips. These values approximately 

correspond to the trabecular separation values. This is in accordance with our findings 

during the cutting of polyurethane foam, where depths of cut had to reach values of the 

foam cell size diameter in order to be either continuous or discontinuous.  

Therefore polyurethane foam was successfully used in identifying optimal parameters for 

designing minimally invasive bone graft harvester. The next section will describe how PU-

foam based synthetic bone was used in FE modeling of hip fracture. 

4.2. Development and validation of finite element fracture predictions with PU-

foam based synthetic bones 

Acetabular fractures are one of the big challenges that trauma surgeons face today. Despite 

the great stride made in treating this fracture in the past few decades, one medical text book 

states that “fractures of the acetabulum remains an enigma to the orthopaedic surgeon(Tile 

et al., 2003).” The main reason for this difficulty lies on the complexity of acetabular 

fractures. Acetabular fractures are usually a result of indirect trauma where the major 

impact is transmitted via the femur after a blow to the greater trochanter, to the flexed knee 

or to the foot with the knee extended (Ruedi et al., 2007). Moreover acetabular fractures are 

dependent on a number of variables such as the type of force that caused the fracture, the 

direction of displacement, the damage to the articular surface as well as the anatomical 

types of the fracture (i.e. the shapes of the fragments). The relative rareness of acetabular 

fractures makes matters worse since general orthopaedic surgeons may not gain wide 

experience with them.  

The past researches on acetabular fracture can be broadly divided into two categories. The 

first is experimental studies where the stability of different acetabular fracture fixation 

techniques was investigated with in-vitro mechanical experiments (Goulet et al., 1994, 

Konrath et al., 1998a, Konrath et al., 1998b, Olson et al., 2007). There are also clinical studies 

that examined the effectiveness and longer-term results of different fracture fixation 

techniques (Borrelli et al., 2005, Cole and Bolhofner, 1994, Giannoudis et al., 2005). Finite 

element (FE) models can enhance greatly the body of knowledge obtained from such 

experimental and clinical studies. FE models can overcome the limitations of in-vitro 

experimental studies because they can be used to simulate the behaviour of the fractured 

acetabulum under physiological loading conditions that include muscle forces. FE models 

can also elevate the results from clinical studies into a new dimension as they can be used to 

predict the outcome of particular fixation techniques after the surgery. If the model 

performance in fracture prediction is validated, it can be used to evaluate various fixation 
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techniques depending on their fracture types. The problem is how to validate the model. If 

cadaver bone is to be used, the issue of sample variability and the requirement of ethics 

approval, special storage and high cost need to be resolved first. Therefore the aim of this 

study is to develop a finite element model of the pelvis that can accurately predict the 

fracture load and locations of acetabular fractures and validate its performance with 

synthetic PU-foam based bones(Shim et al., 2010). 

4.2.1. Fracture experiment with PU-foam synthetic pelvic bones 

Ten synthetic male pelves made with polyurethane foam cortical shell and cellular rigid 

cancellous bone (Full Male Pelvis 1301-1, Sawbones, Pacific Research Laboratories, INC, 

Washington, WA, USA) were used for fracture experiment. A similar set-up as (Shim et al., 

2008) was used where the pelvis was placed upside down in a mounting pane filled with 

acrylic cement. Two different loading conditions – seating (or dashboard) fracture and fall 

from standing fracture – were tested. When the angle (α) between the vertical line and the 

line formed by joining the pubic tubercle and the anterior superior point of the sacrum 

(Figure 10) was 30 °, the whole set-up mimicked the standing position, hence simulating 

standing fracture. When the angle α was raised to 45°, the set-up mimicked the position of 

the pelvis when seated, hence simulating seating fracture. Force was exerted from the 

femoral head attached to the crosshead of the Instron machine (Instron 5800 series, 

Norwood, MA, USA). The femoral head was also from a matching Sawbone femur (Large 

Left femur 1130, Sawbones, Pacific Research Laboratories, INC, Washington, WA, USA) to 

the pelvis used. The femur was first chopped at the neck region and then attached to a 

custom made holding device connected to the crosshead of the Instron machine (Figure 10). 

The femoral head was dipped into liquid latex to ensure a complete and stable seating of the 

femoral head to the acetabulum. The force was applied from the femoral head to the 

acetabulum at a constant speed of 40N/s until failure. Total ten pelves were used for testing. 

Five were tested for standing fracture and the rest was tested for seating fracture. The 

fracture loads and patterns were recorded for comparison with finite element simulations 

 

Figure 10. Photos of the experiment: The photo on the left shows the angle alpha that determined 

seating or standing positions; the center photo shows the close-up of the chopped femoral head 

attached to the holding device that goes into the crosshead of the Instron machine; the photo on the 

right shows the overall set-up. 
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4.2.2. Finite element analysis of PU-foam based synthetic pelvis 

The Sawbone pelvis used in the experiment was CT scanned (Philips Brilliance 64, Philips). 

Each CT image was manually segmented and a finite element model of the hemi pelvis was 

generated using the previously validated procedure (Shim et al., 2007, Shim et al., 

2008)(Figure 11). Our model is both geometrically and materially non-linear. Geometric non-

linearity was achieved by using finite elasticity governing equations rather than linear 

elasticity approximations (Shim et al., 2008). Material non-linearity was incorporated in a 

similar manner as in (Keyak, 2001). In our model, the material behaviour of the synthetic 

PU-foam based pelvis was divided into two regions – 1) an elastic region with a modulus E; 

2) perfectly plastic regions with a plastic strain εAB (Figure 11) according to the material 

behaviour of polyurethane materials(Thompson et al., 2003). The value for εAB was 

obtained from the specifications provided by the manufacturer (Pacific Research 

Laboratories, INC, Washington, WA, USA).  

 

Figure 11. FE model and it nonlinear material behaviour. The polyurethane foam material behavior 

was represented by an elastic region with modulus E until stress S, followed by a perfectly plastic 

region with plastic strain εAB. 

Two materials were incorporated in our model – 1) solid polyurethane foam that mimicked 

the cortical bone property; 2) cellular rigid polyurethane foam for cancellous bone. The 

material properties for the two polyurethane foams are given in Table 2.  

 

 Density (g/cc) Strength (MPa) Modulus (MPa) 

Solid polyurethane foam 0.32 8.8 260 

Cellular polyurethane foam 0.16 2.3 23 

Table 2. Material properties of solid and cellular polyurethane foam 

The previously developed algorithm that determines cortical thickness was used to distinguish 

between solid polyurethane and cellular polyurethane foam regions from CT scans. We used 

Gauss points inside the mesh to assign material properties and those points placed in the solid 

region was given the solid polyurethane foam material properties while those in the cellular 

region was assigned with the cellular polyurethane foam material property(Shim et al., 2008). 

This allowed our model to have location dependent cortical thickness. 
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The contact between the femoral head and the acetabulum was modeled as frictional contact 

(μ = 0.3) and the boundary conditions used in FE simulation were the same as the experiment. 

The nodes on the superior region of the iliac crest were fixed and two different loading 

conditions used in the experiment were used as the boundary condition. As in the experiment, 

the standing and seating positions were differentiated by varying the angle α defined in Figure 

10. A vertically directed force was exerted on the femoral head mesh until failure.  

The failure behaviour was characterized using the distortion energy (DE) theory of failure 

(Keyak et al., 1997). The DE theory is a simplified form of the Hoffman failure theory which 

was proposed for brittle fracture of orthotropic materials (Hoffman, 1967). Assuming 

isotropy, the fracture condition is reduced to the following (Lotz et al., 1991) 

 
2 2 2

1 2 3 2 3 1 3 1 2 4 1 5 2 6 3 1C C C C C C                             (1) 

where 

1 2 3

1

2 t c

C C C
S S

    

4 5 6

1 1

t c

C C C
S S

     

In this equation, σi is the principal stresses and St is the tensile strength and Sc is the 

compressive strength. If St and Sc are equal, Equation (1) becomes the distortion energy (DE) 

theory of failure, which was used in our study as a failure criterion. Since we used Gauss 

points in assigning material properties, we calculated a factor of safety (FOS) for every 

Gauss point (Equation 2) and if the FOS value was predicted to be less than one the Gauss 

point was regarded as in failure (Keyak et al., 1997). The fracture load and location were 

recorded for each loading condition and compared with the experimental results. 

 
Gauss point strength (from CT and material property)

FOS=
Gauss point von Mises stress (from FE simulation)

    (2) 

4.2.3. Finite element model sensitivity analysis 

Sensitivity analysis was performed to find out which material parameters affect the strength 

of the pelvic bone most. The parameters of interest for sensitivity analysis were: 1) cortical 

thickness; 2) cortical modulus; 3) trabecular modulus. Since we used synthetic bones made 

of polyurethane foam, the three corresponding material parameters for the Sawbone FE 

model were 1) solid polyurethane foam thickness; 2) solid polyurethane modulus; 3) cellular 

polyurethane modulus. The values for the parameters were varied to see their effects on the 

predicted fracture load. The following equation (Equation 3) was used to measure the 

sensitivity of the chosen parameters. 

 
%

%

Change in predicted fracture load
S

Change in input parameter
       (3) 
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The range of simulated variation in the input parameters is given in Table 3. Since we used 

Gauss points in assigning material properties, the number of Gauss points in the transverse 

direction was varied from 4 to 6, which had the equivalent effect of varying the solid 

polyurethane thickness by -40% to +50% (Shim et al., 2008). As for the modulus values, the 

values were varied by ±25%, which was the next available value in the manufacturer’s 

specification for material properties (Table 3). Multiple FE simulations were run with these 

values and the change in the predicted fracture load was recorded.  

 

 Simulated of variation 

Solid polyurethane foam 

thickness  

-40% and +50% from the original thickness  

obtained from CT scans 

Solid polyurethane foam 

modulus 
±25 % from the original density value of 0.32g/cc  

Cellular polyurethane foam 

modulus 
±25% from the original density 0.16 g/cc 

Table 3. Sensitivity analysis of polyurethane foam thickness and modulus 

4.2.4. Fracture experiment with PU-foam pelvis and corresponding FE model predictions 

The fracture behaviour of Sawbone pelves was linear elastic fracture of brittle material 

(Figure 12 (a)), which coincides with other studies involving fractures of polyurethane 

(Mcintyre and Anderston, 1979) 

The fracture loads from the mechanical experiments are given in Figure 12 (b). The standing 

case has a slightly higher fracture load (mean 3400N) than the seating case (mean 2600N). 

Our FE model predicted the fracture load for both cases with a good accuracy as the 

predicted values are within the standard deviation of the experimental values for both case 

(Figure 12). The predicted fracture loads from the FE model are 3200N and 2300N for 

standing and seating cases respectively. 

The predicted and actual fracture locations were consistent for both experiments and FE 

simulations and the fractures occurred mainly in the posterior region of the acetabulum. 

Different fracture patterns were obtained from two different loading conditions. For the fall 

from standing experiment, the fracture pattern resembled posterior column fracture 

according to the Letournel’s classification (Letournel, 1980) while the dashboard experiment 

produced posterior wall fractures. Since the main cause of posterior wall fracture is car 

accidents (Spagnolo et al., 2009), our experimental set-up was able to capture the main 

features present in this fracture. The fracture locations predicted by the FE model were 

similar to the actual fracture patterns from the experiment. For the fall from heights fracture 

case, the failed Gauss points were concentrated at the region that extends from the dome of 

the acetabulum to the posterior superior region and then to the posterior column of the 

pelvis. This resembled the posterior column fracture that was observed from the 

experiment. For the seating case, on the other hand, the failed Gauss points were more or 

less limited in the posterior wall region of the acetabular rim, resembling the posterior wall 

fracture (Figure 12 (a)). 



 
Use of Polyurethane Foam in Orthopaedic Biomechanical Experimentation and Simulation 187 

 

Figure 12. Fracture location (a) and load (b) predictions from FE models  

Once the fracture prediction was done, the sensitivity analysis was performed. Three input 

parameters (solid polyurethane thickness and modulus, cellular polyurethane modulus) 

were varied to examine the effect of their variation on the predicted fracture load. Among 

the three input parameters solid polyurethane foam modulus had the greatest impact on the 

resulting fracture load. Solid polyurethane foam thickness also had some effect on the 

predicted fracture load, but the sensitivity of this parameter was not as high as the modulus. 

Cellular polyurethane foam modulus, on the other hand, did not have any significant 

impact on the predicted fracture load as can be seen in Table 4. Since the pelvis has a 

sandwich structure where the outer cortical shell bears most of the load, our results indicate 

that this structural characteristic is also preserved even when the pelvis undergoes fracture. 

 

Type of input 

parameters 

Amount of variations 

in input parameters 

Predicted fracture 

load 
Sensitivity 

Solid polyurethane 

foam thickness 

0.6 3200 0.395 

1.4 4500 0.461 

Solid polyurethane 

foam Modulus 

153 2200 0.858 

400 5000 0.874 

Cellular 

polyurethane foam 

Modulus 

12.4 3200 0.128 

47.5 3500 0.028 

Table 4. Results of sensitivity analysis 

4.2.5. Feasibility of the use of synthetic PU-based bone in validating FE fracture 

predictions 

FE models have been extensively used in predicting fracture load. Our approach to fracture 

mechanics was based on the work by Keyak and co-workers (Keyak et al., 1997, Korn et al., 

(a) Fracture location prediction results (b) Fracture load prediction results 
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2001) which used the DE theory of fracture as well as material non-linearity. However, our 

approach differs from their work in that we simulated acetabular fractures not fractures of 

the proximal femur which are generally more complicated than fractures of the proximal 

femur. Moreover, rather than applying force directly to the bone of interest as done in 

majority of the FE fracture studies, we employed a contact mechanics approach where the 

force was applied to the acetabulum via the femoral head. Another novel approach of our 

study is that we incorporated geometric non-linearity to the model by using full finite 

elasticity governing equations, which has been found to enhance the fracture prediction 

capabilities of FE models (Stˆlken and Kinney, 2003).  

However the most notable feature of our approach is the use of PU-based synthetic bone in 

validating FE fracture predictions. At present, it is not known whether our model can 

predict human bone fractures with the same degree of accuracy as the synthetic bones. 

Therefore caution is required when interpreting the data. However we are confident that 

our result will translate into human bones due to the following reasons. Firstly our 

experimental results with PU-foam pelves showed similar results as other human cadaver 

results as the fracture patterns generated in seating and standing cases correspond well with 

clinical results. Moreover the sensitivity analysis revealed that our model behaves in a 

similar manner as the cadaver bones despite the apparent difference in absolute magnitudes 

in modulus values between PU-foams and bones.  

In fact, PU-foam based synthetic bone served our purpose of model validation very well due 

to their uniformity and consistency (Nabavi et al., 2009). As such, the ASTM standard states 

that it is “an ideal material for comparative testing” of various orthopaedic devices 

(American Society for Testing and Materials, 2008b). Although the fracture load is expected 

to be different from the fracture load of human pelvis, the material behaviour is expected to 

be comparable to human bones, both of which exhibit brittle fracture (Schileo et al., 2008, 

Thompson et al., 2003). Therefore the model’s ability to predict fracture load and location of 

the synthetic bone can be regarded as a positive indication that it will also be applicable to 

human cases. Therefore we continued to use this approach in developing and validating FE 

model predictions for fracture stability with PU-foam based synthetic bones, which will be 

described in the next section(Shim et al., 2011). 

4.3. Development and validation of finite element predictions of the stability of 

fracture fixation with PU-foam based synthetic bones 

The posterior wall fracture is the most common fracture type of the 

acetabulum(Baumgaertner, 1999). Depending on the fragment size, open reduction and 

internal fixation (ORIF) is performed especially when the fracture involves more than 50% 

of the posterior wall. But ORIF requires considerable exposure that often leads to major 

blood loss and significant complications(Shuler et al., 1995). Percutaneous screw fixations, 

on the other hand, have become an attractive treatment option as they minimize exposure, 

blood loss and risk of infection. As such, they have been advocated by some authors 
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(Parker and Copeland, 1997) for the treatment of minimally displaced acetabular fractures 

without comminution or free fragment in the joint. However the biomechanical stability 

of percutaneous fixation has not been studied thoroughly, especially in terms of 

interfragmentary movement. In particular, the stability of percutaneous fixation in 

acetabular fractures has not been compared with the more conventional ORIF involving a 

plate with screws. There have been previous biomechanical studies that compared 

different types of stabilization in posterior wall fractures (Goulet et al., 1994, Zoys et al., 

1999). But the main focus of such studies was to compare the strength of several types of 

osteosynthesis. However it is interfragmentary movement that exerts major influences on 

the primary stability and fracture healing (Klein et al., 2003, Wehner et al., 2010). As 

discussed in Section 3, PU-foam based synthetic bones have been used extensively in 

testing stability of various osteosynthesis techniques. Therefore we have further 

developed our FE model capable of prediction acetabular fractures to simulate stability in 

osteosynthesis. Specifically, we have developed a fast and efficient way of predicting the 

interfragmentary movement in percutaneous fixation of posterior wall fractures of the 

acetabulum and validated with a matching biomechanical experiment using PU-foam 

based synthetic pelves.  

4.3.1. Mechanical experiment with PU-foam based synthetic pelvis 

Seven synthetic pelves (Full Male Pelvis 1301-1, Pacific Research Laboratories Inc) were 

loaded until failure with the loading condition that resembled seating fracture[10], creating 

posterior wall fractures[11]. The fractures were then reduced and fixed with two fixation 

methods –with two screws (3.5mm Titan Screws, Synthes) and then with a 10-12 hole plates 

(3.5mm Titan Reconstruction- or LCDC-Plates, Synthes) by an experienced surgeon (JB) 

(Figure 13 A and B). The maximum remaining crack was 0.7 mm.  

 

Figure 13. Two fixation methods performed on the fractured acetabulum 

(a) Screw fixation (b) Plate fixation 
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The pelves were then loaded in the Instron Machine (Instron 5800 series) with a cyclic load 

that oscillated between 0N to 900N at 40N/s. The force was applied using a synthetic 

femoral head (Large Left Femur, 1129, Pacific Research Laboratories Inc) attached to the 

crosshead of the Instron Machine (Figure 14). At the multiple of 300N the loading was 

paused for 3 seconds to measure the displacement between the fragment and the bone by 

taking photographs of the crack opening (Figure 14 (a)). A digital SLR camera (Nikon D70) 

with a 50mm macro lens (NIKKOR dental lens) was used to accurately measure the amount 

of crack openings (resolution of 10 μm (Figure 14 (b))). A resolution of 10μm was achieved 

(Figure 15). 

 

Figure 14. Interfragmentary movement measuring set-up with a digital single-lens reflex camera and 

an Instron machine 

 

Figure 15. A photo taken with the macro lens. The magnified view shown in the box left has the 

resolution of 10μm 

(a) Measurement set-up (b) Optical set-up with macro 
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The displacement was measured in two different positions – front and side - to obtain the 

fragment movement in three directions – frontal, vertical and lateral directions (Figure 16). 

10 photographs were taken at each angle and load and the mean value was taken. 

 

Figure 16. Getting fragment movements in three directions – horizontal, vertical and lateral – using 

photos taken at two different views. The actual movement of the fragment is from P1 to P2 from no load 

to full load conditions. The front view photo gives the triangle P1P4P3, allowing us to calculate 

horizontal and vertical movement. The side view photo gives the triangle P4P2P3 which allows us to 

calculate the lateral movement.  

4.3.2. Finite element simulation 

The stability of screw fixation was analyzed with finite element models. We developed 

the models of the fractured pelvis, fragment and femoral head in order to perform  

the mechanical testing that we did in silico. Firstly, one of the PU-foam based synthetic 

fractured pelves that had been fixed with two screws was dismantled. The resulting 

fractured pelvis and its fragment were scanned separately with a Faro Arm (Siler Series 

Faro Arm) and a laser scanner (Model Maker H40 Laser Scanner). Two sets of data point 
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clouds, which accurately described the shapes of the fragment and the fractured pelvis, 

were obtained (Figure 17). The fractured pelvis model was developed from our previous 

FE model of the pelvis, which was generated from CT scans of the synthetic pelvis used in 

the experiment (Shim et al., 2010) . Our elements had inhomogeneous location dependent 

material properties despite large element size and different material properties were 

assigned to solid and cellular polyurethane foams which mimic cortical and cancellous 

bone properties separately. The loading and boundary condition that mimics  

the mechanical experiment setup were employed. The FE models of the screws were not 

generated explicitly. Instead tied contact was used to model the bond between the 

fractured pelvis and the fragment from the screws. The locations of the screws on the 

fragment FE model were identified first from the laser scanned data. Then, the tied 

contact condition that ensures a perfect bond between slave and master faces was 

imposed on the identified faces to simulate the bond that screws provide when connecting 

the fragment with the bone. The rest of fragment faces were modeled with frictional 

contact (μ=0.4)(Gordon et al., 1989). The predicted interfragmentary movements from  

the FE model under the same loading and boundary conditions as the experiment  

were then compared with the experimental value to test our hypothesis. Once tested, 

then, the screw positions were varied by changing tied contact faces to simulate all 

possible screw positions in order to identify the positions that achieved the most stable 

fixation. 

 

 
 

Figure 17. The far left column shows clouds of data points obtained from laser scanning. The center 

column shows the meshes for the fragment and fractured pelvis that were generated by geometric 

fitting to laser scanned data points. The red faces on the fragment mesh indicate where tied contact 

conditions were imposed in order to simulate the support provided by the screws. The final mesh is 

shown on the far right column.  

Data clouds obtained 

from laser scanning PU-

foam pelvis  

Model generated from data 

points by geometric fitting 

Model for fracture 

reduced pelvis 
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4.3.3. Interfragmentary movement in acetabular fracture osteosynthesis measured with 

PU- foam based synthetic bones  

The overall amount of displacement between the pelvis and the fragment was relatively small 

and the main direction of the fragment movement was in the lateral posterior direction (in 

body directions). The average displacement was around 0.4 – 0.9 mm for both screw and plate 

fixations. The plates gave higher stability especially in the horizontal and lateral directions 

(Figure 18). However, screw fixations also gave good stability of less than 1mm on average in 

all directions. Therefore, considering the fact that the maximum load of our experiment was 

higher than normally allowed weight bearing (around 20kg after the surgery for 3 months), 

the stability of screw fixation was sufficient for the cyclic loading condition used. 

 

Figure 18. Comparison of interfragmentary movement between plate and screw fixation  

4.3.4. Accuracy of FE model interfragmentary movement predictions validated with PU-

foam based synthetic bones 

The FE model predicted the movement of the fragment in screw fixations with a good 

accuracy. The values predicted by the FE simulation were within one standard deviation of the 

experimental measurements (Figure 19) in the horizontal and lateral directions. The predicted 

vertical direction movement was a little bit greater than the upper limit of the experimental 

measurement (mean + 1 SD) but still very close to it as the difference was 0.05 mm. 

The optimized screw positions were found to be on the two diagonal corners of the 

fragment. When the virtual screws were placed in this manner, the stability of screw 

fixations improved dramatically to the level that is comparable to plate fixation (Figure 20). 

The fragment movements in the horizontal and lateral directions were smaller than the 

average movements in the plate fixation in these directions. Although the movement in the 

vertical direction was bigger than the upper limit of the experimental measurement, the 

difference was small 0.1mm.  
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Figure 19. Comparison between FE prediction and experimental measurement 

 

Figure 20. Comparison between plate fixation and optimized screw fixation predicted from FE model 

4.3.5. Feasibility of the use of synthetic PU-foam based bone in validating FE predictions of 

fracture stability 

We have developed a new and efficient way of simulating interfragmentary movement in 

acetabular fractures using a FE model. We validated our method with a biomechanical 

experiment involving PU-foam based synthetic bones. There are numerous studies that 

employed PU-foam based synthetic bones in measuring fracture stability as discussed in 

Section 3. However this data has not been used in validating FE model predictions of 

fracture stability. The use of FE models in fracture analysis is not new. However, the major 

focus has been to analyze the stress distribution on the implant or the overall stiffness of 

bone/implant composite after fracture fixation (Eberle et al., 2009, Stoffel et al., 2003).  
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Therefore we have performed a biomechanical experiment with PU-foam based synthetic 

bones to measure interfragmentary movements in 3D and used the result to validate our FE 

model.  

The mechanical experiment with synthetic pelves showed that the displacement between 

fragment and bone was relatively small for both plate and screw fixations, indicating that 

screw fixations in single fragment fractures may be a good alternative to the current gold 

standard of plate fixation. In particular the excellent stability displayed by the screw FE 

model with the optimized screw positions indicate that screw fixations along with computer 

navigation should be an option considered by trauma surgeons if available.  

The FE model showed a great potential for use in analyzing fracture fixation techniques. 

Our model was able to predict the movement of the fragment with a reasonable accuracy. 

Although we have not modeled screws explicitly, our modeling approach was able to 

accurately predict the fragment movement, which was the main aim of the model. Moreover 

the computational efficiency of the approach allowed us to perform a parametric study for 

optimization of screw positions.  

Since we have used PU-foam based synthetic pelves in our study it is not known if our 

model predictions will be as accurate when cadaver bones are used. However the use of 

synthetic bones has some advantages due to their uniformity and consistency (Nabavi et al., 

2009). Moreover the main aim was to make comparisons between different osteosynthesis 

techniques and between experimental and FE simulations and the ASTM standard states 

that it is “an ideal material for comparative testing (American Society for Testing and 

Materials, 2008a).” In this regard, the use of PU-foam based synthetic bones in comparative 

studies in orthopaedic biomechanics can provide useful data for FE model validation as well 

as testing hypothesis.  

5. Concluding remarks 

In this chapter we discussed the use of polyurethane in orthopaedic biomechanical 

experiments. Due to the similarity of polyurethane foam with cancellous bone in terms of 

microstructure and material properties, polyurethane has found a unique and important 

position in orthopaedic biomechanics studies. The main use of PU-foams was in 

experimental studies to find optimum values in various surgical procedures and to test 

stability of fracture or joint replacement implants. Due to the uniformity and consistency in 

material properties, PU-foam based synthetic bones are capable of generating reproducible 

results that are so difficult to obtain when using human cadaver bones. Therefore we used 

PU-foam materials in designing bone graft harvesters and obtaining validation data for FE 

model predictions in fracture load and stability. Although material properties of PU-foams 

are not identical to natural bone, they are able to generate comparable results that can 

provide important insight into surgical procedures or function of implants or devices. 

Moreover thanks to the advent of new composite bones made up of PU-foams and other 

relevant materials that mimic the geometry, structure and material properties of human 
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bone, only the imagination of biomechanical engineers is the limit in ways that PU-foam 

based materials can be used in orthopaedic biomechanical studies in the future.  
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