
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000



Chapter 0

Fuzzy c-Means Clustering, Entropy Maximization,

and Deterministic and Simulated Annealing

Makoto Yasuda

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48659

1. Introduction

Many engineering problems can be formulated as optimization problems, and the
deterministic annealing (DA) method [20] is known as an effective optimization method for
such problems. DA is a deterministic variant of simulated annealing (SA) [1, 10]. The DA
characterizes the minimization problem of cost functions as the minimization of Helmholtz
free energy which depends on a (pseudo) temperature, and tracks the minimum of free energy
while decreasing temperature and thus it can deterministically optimize the function at a
given temperature [20]. Hence, the DA is more efficient than the SA, but does not guarantee
a global optimal solution. The study on the DA in [20] addressed avoidance of the poor local
minima of cost function of data clustering. Then it was extensively applied to various subjects
such as combinational optimization problems [21], vector quantization [4], classifier design
[13], pairwise data clustering [9] and so on.

On the other hand, clustering is a method which partitions a given set of data points into
subgroups, and is one of major tools for data analysis. It is supposed that, in the real world,
cluster boundaries are not so clear that fuzzy clustering is more suitable than crisp clustering.
Bezdek[2] proposed the fuzzy c-means (FCM) which is now well known as the standard
technique for fuzzy clustering.

Then, after the work of Li et al.[11] which formulated the regularization of the FCM with
Shannon entropy, Miyamoto et al.[14] discussed the FCM within the framework of the
Shannon entropy based clustering. From the historical point of view, however, it should be
noted that Rose et al.[20] first studied the statistical mechanical analogy of the FCM with the
maximum entropy method, which was basically probabilistic clustering.

To measure the “indefiniteness” of fuzzy set, DeLuca and Termini [6] defined fuzzy entropy
after Shannon. Afterwards, some similar measures from the wider viewpoints of the
indefiniteness were proposed [15, 16]. Fuzzy entropy has been used for knowledge retrieval
from fuzzy database [3] and image processing [31], and proved to be useful.

Tsallis [24] achieved nonextensive extension of the Boltzmann-Gibbs statistics. Tsallis
postulated a generalization form of entropy with a generalization parameter q, which, in a
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unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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limit of q → 1 ,reaches the Shannon entropy. Later on, Menard et.al.[12] derived a membership
function by regularizing FCM with the Tsallis entropy.

In this chapter, by maximizing the various entropies within the framework of FCM, the
membership functions which take the familiar forms of the statitical mechanical distribution
functions are derived. The advantage to use the statistical mechanical membership functions
is that the fuzzy c-means clustering can be interpreted and analyzed from a statistical
mechanical point of view [27, 28]

After that, we focus on the Fermi-Dirac like membership function, because, as compared to the
Maxwell-Boltzmann-like membership function, the Fermi-Dirac-like membership function
has extra parameters αks (αk corresponds to a chemical potential in statistical mechanics[19],
and k denotes a data point), which make it possible to represent various cluster shapes like
former clustering methods based on such as the Gaussian mixture[7], and the degree of
fuzzy entropy[23]. αks strongly affect clustering results and they must be optimized under
a normalization constraint of FCM. On the other hand, the DA method, though it is efficient,
does not give appropriate values of αks by itself and the DA clustering sometimes fails if
αks are improperly given. Accordingly, we introduce SA to optimize αks because, as pointed
above, both of DA and SA contain the parameter corresponding to the system temperature
and can be naturally combined as DASA.

Nevertheless, this approach causes a few problems. (1)How to estimate the initial values of αks
under the normalization constraint ? (2)How to estimate the initial annealing temperature?
(3)SA must optimize a real number αk[5, 26]. (4)SA must optimize many αks[22].

Linear approximations of the Fermi-Dirac-like membership function is useful in guessing the
initial αks and the initial annealing temperature of DA.

In order to perform SA in a many variables domain, αks to be optimized are selected according
to a selection rule. In an early annealing stages, most αks are optimized. In a final annealing
stage, however, only αks of data which locate sufficiently away from all cluster centers are
optimized because their memberships might be fuzzy. Distances between the data and
the cluster centers are measured by using linear approximations of the Fermi-Dirac-like
membership function.

However, DASA suffers a few disadvantages. One of them is that it is not necessarily easy
to interpolate membership functions obtained by DASA, since their values are quite different
each other. The fractal interpolation method [17] is suitable for these rough functions [30].

Numerical experiments show that DASA clusters data which distribute in various shapes
more properly and stably than single DA. Also, the effectiveness of the fractal interpolation is
examined.

2. Fuzzy c-means

Let X = {x1, . . . , xn}(xk = (x1
k , . . . , x

p
k ) ∈ Rp) be a data set in a p-dimensional real space,

which should be divided into c clusters C = {C1, . . . , Cc}. Let V = {v1, . . . , vc}(vi =

(v1
i , . . . , v

p
i )) be the centers of clusters and uik ∈ [0, 1](i = 1, . . . , c; k = 1, . . . , n) be the

membership function. Also let

J =
n

∑
k=1

c

∑
i=1

uik(dik)
m (m > 1) (1)
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be the objective function of the FCM where dik = ‖xk − vi‖2. In the FCM, under the
normalization constraint of

c

∑
i=1

uik = 1 ∀k, (2)

the Lagrange function LFCM is given by

LFCM = J −
n

∑
k=1

ηk

(

c

∑
i=1

uik − 1

)

, (3)

where ηk is the Lagrange multiplier. Bezdek[2] showed that the FCM approaches crisp
clustering as m decreases to +1.

3. Entropy maximization of FCM

3.1. Shannon entropy maximization

First, we introduce the Shannon entropy into the FCM clustering. The Shannon entropy is
given by

S = −
n

∑
k=1

c

∑
i=1

uik log uik. (4)

Under the normalization constraint and setting m to 1, the fuzzy entropy functional is given
by

δS −
n

∑
k=1

αkδ

(

c

∑
i=1

uik − 1

)

− β
n

∑
k=1

c

∑
i=1

δ(uikdik), (5)

where αk and β are the Lagrange multipliers, and αk must be determined so as to satisfy Eq.
(2). The stationary condition for Eq. (5) leads to the following membership function

uik =
e−βdik

∑
c
j=1 e−βdjk

. (6)

and the cluster centers

vi =
∑

n
k=1 uikxk

∑
n
k=1 uik

. (7)

3.2. Fuzzy entropy maximization

We then introduce the fuzzy entropy into the FCM clustering.

The fuzzy entropy is given by

Ŝ = −
n

∑
k=1

c

∑
i=1

{ûik log ûik + (1 − ûik) log(1 − ûik)}. (8)

The fuzzy entropy functional is given by

δŜ −
n

∑
k=1

αkδ

(

c

∑
i=1

ûik − 1

)

− β
n

∑
k=1

c

∑
i=1

δ(ûikdik), (9)
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where αk and β are the Lagrange multipliers[28]. The stationary condition for Eq. (9) leads to
the following membership function

ûik =
1

eαk+βdik + 1
, (10)

and the cluster centers

vi =
∑

n
k=1 ûikxk

∑
n
k=1 ûik

. (11)

In Eq. (10), β defines the extent of the distribution [27]. Equation (10) is formally normalized
as

ûik =
1

eαk+βdik + 1
/

c

∑
j=1

1

eαk+βdjk + 1
. (12)

3.3. Tsallis entropy maximization

Let ṽi and ũik be the centers of clusters and the membership functions, respectively.

The Tsallis entropy is defined as

S̃ = − 1

q − 1

(

n

∑
k=1

c

∑
i=1

ũ
q
i k − 1

)

, (13)

where q ∈ R is any real number. The objective function is rewritten as

Ũ =
n

∑
k=1

c

∑
i=1

ũ
q
ikd̃ik, (14)

where d̃ik = ‖xk − ṽi‖2.

Accordingly, the Tsallis entropy functional is given by

δS̃ −
n

∑
k=1

αkδ

(

c

∑
i=1

ũik − 1

)

− β
n

∑
k=1

c

∑
i=1

δ(ũ
q
ikd̃ik). (15)

The stationary condition for Eq. (15) yields to the following membership function

ũik =
{1 − β(1 − q)d̃ik}

1
1−q

Z̃
, (16)

where

Z̃ =
c

∑
j=1

{1 − β(1 − q)d̃jk}
1

1−q . (17)

In this case, the cluster centers are given by

ṽi =
∑

n
k=1 ũ

q
ikxk

∑
n
k=1 ũ

q
ik

. (18)

In the limit of q → 1, the Tsallis entropy recovers the Shannon entropy [24] and ũik approaches
uik in Eq.(6).

274 Simulated Annealing – Advances, Applications and Hybridizations
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4. Entropy maximization and statistical physics

4.1. Shannon entropy based FCM statistics

In the Shannon entropy based FCM, the sum of the states (the partition function) for the grand
canonical ensemble of fuzzy clustering can be written as

Z =
n

∏
k=1

c

∑
i=1

e−βdik . (19)

By substituting Eq. (19) for F = −(1/β)(log Z)[19], the free energy becomes

F = − 1

β

n

∑
k=1

log

{

c

∑
i=1

e−βdik

}

. (20)

Stable thermal equilibrium requires a minimization of the free energy. By formulating
deterministic annealing as a minimization of the free energy, ∂F/∂vi = 0 yields

vi =
∑

n
k=1 uikxk

∑
n
k=1 uik

. (21)

This cluster center is the same as that in Eq. (7).

4.2. Fuzzy entropy based FCM statistics

In a group of independent particles, the total energy and the total number of particles are
given by E = ∑l ǫlnl and N = ∑l nl , respectively, where ǫl represents the energy level and
nl represents the number of particles that occupy ǫl . We can write the sum of states, or the
partition function, in the form:

ZN = ∑
∑l ǫl nl=E,∑l nl=N

e−β ∑l ǫl nl (22)

where β is the product of the inverse of temperature T and kB (Boltzmann constant). However,
it is difficult to take the sums in (22) counting up all possible divisions. Accordingly, we make
the number of particles nl a variable, and adjust the new parameter α(chemical potential) so
as to make ∑l ǫlnl = E and ∑l nl = N are satisfied. Hence, this becomes the grand canonical
distribution, and the sum of states (the grand partition function) Ξ is given by[8, 19]

Ξ =
∞

∑
N=0

(e−α)NZN = ∏
l

∞

∑
nl=0

(e−α−βǫl)nl . (23)

For particles governed by the Fermi-Dirac distribution, Ξ can be rewritten as

Ξ = ∏
l

(1 + e−α−βǫl ). (24)

Also, nl is averaged as

〈nl〉 =
1

eα+βǫl + 1
(25)

where α is defined by the condition that N = ∑l〈nl〉 [19]. Helmholtz free energy F is, from the
relationship F = −kBT log ZN ,
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F = −kBT

(

log Ξ − α
∂

∂α
log Ξ

)

= − 1

β

{

∑
l

log(1 + e−α−βǫl ) + αN

}

. (26)

Taking that

E = ∑
l

ǫl

eα+βǫl + 1
(27)

into account, the entropy S = (E − F)/T has the form

S = −kB ∑
l

{〈nl〉 log〈nl〉+ (1 − 〈nl〉) log(1 − 〈nl〉)} . (28)

If states are degenerated to the degree of νl , the number of particles which occupy ǫl is

〈Nl〉 = νl〈nl〉, (29)

and we can rewrite the entropy S as

S = −kB ∑
l

{ 〈Nl〉
νl

log
〈Nl〉

νl
+

(

1 − 〈Nl〉
νl

)

log

(

1 − 〈Nl〉
νl

)

}, (30)

which is similar to fuzzy entropy in (8). As a result, uik corresponds to a grain density 〈nl〉
and the inverse of β in (10) represents the system or computational temperature T.

In the FCM clustering, note that any data can belong to any cluster, the grand partition
function can be written as

Ξ =
n

∏
k=1

c

∏
i=1

(1 + e−αk−βdik ), (31)

which, from the relationship F = −(1/β)(log Ξ − αk∂ log Ξ/∂αk), gives the Helmholtz free
energy

F = − 1

β

n

∑
k=1

{

c

∑
i=1

log(1 + e−αk− βdik ) + αk

}

. (32)

The inverse of β represents the system or computational temperature T.

4.3. Correspondence between Fermi-Dirac statistics and fuzzy clustering

In the previous subsection, we have formulated the fuzzy entropy regularized FCM as the
DA clustering and showed that its mechanics was no other than the statistics of a particle
system (the Fermi-Dirac statistics). The correspondences between fuzzy clustering (FC) and
the Fermi-Dirac statistics (FD) are summarized in TABLE 1. The major difference between
fuzzy clustering and statistical mechanics is the fact that data are distinguishable and can
belong to multiple clusters, though particles which occupy a same energy state are not
distinguishable. This causes a summation or a multiplication not only on i but on k as well in
fuzzy clustering. Thus, fuzzy clustering and statistical mechanics described in this paper are
not mathematically equivalent.

• Constraints: (a) Constraint that the sum of all particles N is fixed in FD is correspondent
with the normalization constraint in FC. Energy level l is equivalent to the cluster number

276 Simulated Annealing – Advances, Applications and Hybridizations
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Fermi-Dirac Statistics Fuzzy Clustering

Constraints (a)∑
l

nl = N (b)∑
l

ǫl nl = E (a)
c

∑
i=1

uik = 1

Distribution Function 〈nl〉 =
1

eα+βǫl + 1
uik =

1

eαk+βdik + 1

Entropy S = −kB ∑
l

{ 〈Nl〉
νl

log
〈Nl〉

νl
SFE = −

n

∑
k=1

c

∑
i=1

{uik log uik

{

+

(

1 − 〈Nl〉
νl

)

log

(

1 − 〈Nl〉
νl

)}

+(1− uik) log(1− uik)}
Temperature(T) (given) (given)

Partition Function(Ξ) ∏
l

(

1 + e−α−βǫl

) n

∏
k=1

c

∏
i=1

(

1 + e−αk−βdik

)

Free Energy(F) − 1

β

{

∑
l

log(1+ e−α−βǫl) + αN

}

− 1

β

n

∑
k=1

{

c

∑
i=1

log(1+ e−αk−βdik) + αk

}

Energy(E) ∑
l

ǫl

eα+βǫl + 1

n

∑
k=1

c

∑
i=1

dik

eαk+βdik + 1

Table 1. Correspondence of Fermi-Dirac Statistics and Fuzzy Clustering.

i. In addition, the fact that data can belong to multiple clusters leads to the summation on
k. (b) There is no constraint in FC which corresponds to the constraint that the total energy
equals E in FD. We have to minimize ∑

n
k=1 ∑

c
i=1 dikuik in FC.

• Distribution Function: In FD, 〈nl〉 gives an average particle number which occupies
energy level l, because particles can not be distinguished from each other. In FC, however,
data are distinguishable, and for that reason, uik gives a probability of data belonging to
multiple clusters.

• Entropy: 〈Nl〉 is supposed to correspond to a cluster capacity. The meanings of S and SFE

will be discussed in detail in the next subsection.

• Temperature: Temperature is given in both cases 1.

• Partition Function: The fact that data can belong to multiple clusters simultaneously
causes the product over k for FC.

• Free Energy: Helmholtz free energy F is given by −T(log Ξ − αk∂ log Ξ/∂αk) in FC. Both
S and SFE equal −∂F/∂T as expected from statistical physics.

• Energy: The relationship E = F + TS or E = F + TSFE holds between E, F, T and S or SFE.

4.4. Meanings of Fermi-Dirac distribution function and fuzzy entropy

In the entropy function (28) or (30) for the particle system, we can consider the first term
to be the entropy of electrons and the second to be that of holes. In this case, the physical
limitation that only one particle can occupy an energy level at a time results in the entropy that
formulates the state in which an electron and a hole exist simultaneously and exchanging them
makes no difference. Meanwhile, what correspond to electron and hole in fuzzy clustering
are the probability of fuzzy event that a data belongs to a cluster and the probability of its
complementary event, respectively.

Fig.2 shows a two-dimensional virtual cluster density distribution model. A lattice can have
at most one data. Let Ml be the total number of lattices and ml be the number of lattices which

1 In the FCM, however, temperature is determined as a result of clustering.
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have a data in it (marked by a black box). Then, the number of available divisions of data to
lattices is denoted by

W = ∏
l

Ml !

ml !(Ml − ml)!
(33)

which, from S = kB log W (the Gibbs entropy), gives the form similar to (30)[8]. By
extremizing S, we have the most probable distribution like (25). In this case, as there is no
distinction between data, only the numbers of black and white lattices constitute the entropy.
Fuzzy entropy in (8), on the other hand, gives the amount of information of weather a data
belongs to a fuzzy set (or cluster) or not, averaged over independent data xk.

Changing a viewpoint, the stationary entropy values for the particle system seems to be a
request for giving the stability against the perturbation with collisions between particles. In
fuzzy clustering, data reconfiguration between clusters with the move of cluster centers or the
change of cluster shapes is correspondent to this stability. Let us represent data density by
〈〉. If data transfer from clusters Ca and Cb to Cc and Cd as a magnitude of membership
function, the transition probability from {. . . , Ca, . . . , Cb, . . .} to {. . . , Cc, . . . , Cd, . . .} will
be proportional to 〈Ca〉〈Cb〉(1 − 〈Cc〉)(1 − 〈Cd〉) because a data enters a vacant lattice.
Similarly, the transition probability from {. . . , Cc, . . . , Cd, . . .} to {. . . , Ca, . . . , Cb, . . .} will be
proportional to 〈Cc〉〈Cd〉(1 − 〈Ca〉)(1 − 〈Cb〉). In the equilibrium state, the transitions exhibit
balance (this is known as the principle of detailed balance[19]). This requires

〈Ca〉〈Cb〉
(1 − 〈Ca〉)(1 − 〈Cb〉)

=
〈Cc〉〈Cd〉

(1 − 〈Cc〉)(1 − 〈Cd〉)
. (34)

As a result, if energy di is conserved before and after the transition, 〈Ci〉 must have the form

〈Ci〉
1 − 〈Ci〉

= e−α−βdi (35)

or Fermi-Dirac distribution

〈Ci〉 =
1

eα+βdi + 1
, (36)

where α and β are constants.

Consequently, the entropy like fuzzy entropy is statistically caused by the system that allows
complementary states. Fuzzy clustering handles a data itself, while statistical mechanics
handles a large number of particles and examines the change of macroscopic physical quantity.
Then it is concluded that fuzzy clustering exists in the extreme of Fermi-Dirac statistics, or the
Fermi-Dirac statistics includes fuzzy clustering conceptually.

4.5. Tsallis entropy based FCM statistics

On the other hand, Ũ and S̃ satisfy

S̃ − βŨ =
n

∑
k=1

Z̃1−q − 1

1 − q
, (37)

which leads to
∂S̃

∂Ũ
= β. (38)

278 Simulated Annealing – Advances, Applications and Hybridizations
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M

M

M

1

2

3

Figure 1. Simple lattice model of clusters. M1, M2, . . . represent clusters. Black and white box represent
whether a data exists or not.

Equation (38) makes it possible to regard β−1 as an artificial system temperature T [19]. Then,
the free energy can be defined as

F̃ = Ũ − TS̃ = − 1

β

n

∑
k=1

Z̃1−q − 1

1 − q
. (39)

Ũ can be derived from F̃ as

Ũ = − ∂

∂β

n

∑
k=1

Z̃1−q − 1

1 − q
. (40)

∂F̃/∂ṽi = 0 also gives

ṽi =
∑

n
k=1 ũ

q
ikxk

∑
n
k=1 ũ

q
ik

. (41)

5. Deterministic annealing

The DA method is a deterministic variant of SA. DA characterizes the minimization problem
of the cost function as the minimization of the Helmholtz free energy which depends on
the temperature, and tracks its minimum while decreasing the temperature and thus it can
deterministically optimize the cost function at each temperature.

According to the principle of minimal free energy in statistical mechanics, the minimum of
the Helmholtz free energy determines the distribution at thermal equilibrium [19]. Thus,
formulating the DA clustering as a minimization of (32) leads to ∂F/∂vi = 0 at the current
temperature, and gives (10) and (11) again. Desirable cluster centers are obtained by
calculating (10) and (11) repeatedly.

In this chapter, we focus on application of DA to the Fermi-Dirac-like distribution function
described in the Section 4.2.

5.1. Linear approximation of Fermi-Dirac distribution function

The Fermi-Dirac distribution function can be approximated by linear functions. That is, as
shown in Fig.1, the Fermi-Dirac distribution function of the form:

279Fuzzy c-Means Clustering, Entropy Maximization, and Deterministic and Simulated Annealing
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0

0.5

1.0

√ (-α /β )-α -1

√ (-αβ )

-α +1

√ (-αβ )

f(x)
g(x)

[x]

[f
(x

),
 g

(x
)]

Figure 2. The Fermi-Dirac distribution function f (x) and its linear approximation functions g(x).

0

0.5

1

[f
(x

)]

[x]

T
Tnew

xnew x

Δ x

Figure 3. Decreasing of extent of the Fermi-Dirac distribution function from x to xnew with decreasing
the temperature from T to Tnew.

f (x) =
1

eα+βx2
+ 1

(42)

is approximated by the linear functions

g(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1.0

(

x ≤ −α − 1

κ

)

− κ

2
x − α

2
+

1

2

(−α − 1

κ
≤ x ≤ −α + 1

κ

)

,

0.0

(−α + 1

κ
≤ x

)

(43)
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where κ =
√

−αβ. g(x) satisfies g(
√

−α/β) = 0.5, and requires α to be negative.

In Fig.2, ∆x = x − xnew denotes a reduction of the extent of distribution with decreasing
the temperature from T to Tnew (T > Tnew). The extent of distribution also narrows with
increasing α. αnew (α < αnew) which satisfies g(0.5)α − g(0.5)αnew = ∆x is obtained as

αnew = −
{

√
−α +

√

−αβnew

(

1
√

β
− 1

√

βnew

)}2

,

(44)

where β = 1/T and βnew = 1/Tnew. Thus, taking that T to the temperature at which previous
DA was executed and Tnew to the next temperature, a covariance of αk’s distribution is defined
as

∆α = αnew − α. (45)

5.2. Initial estimation of αk and annealing temperature

Before executing DA, it is very important to estimate the initial values of αks and the initial
annealing temperature in advance.

From Fig.1, distances between a data point and cluster centers are averaged as

Lk =
1

c

c

∑
i=1

‖xk − vi‖, (46)

and this gives

αk = −β(Lk)
2. (47)

With given initial clusters distributing wide enough, (47) overestimates αk, so that αk needs to
be adjusted by decreasing its value gradually.

Still more, Fig.1 gives the width of the Fermi-Dirac distribution function as wide as 2(−α +
1)/(

√

−αβ), which must be equal to or smaller than that of data distribution (=2R). This
condition leads to

2
−α + 1
√

−αβ
= 2R. (48)

As a result, the initial value of β or the initial annealing temperature is roughly determined as

β ≃ 4

R2

(

T ≃ R2

4

)

. (49)

5.3. Deterministic annealing algorithm

The DA algorithm for fuzzy clustering is given as follows:

1 Initialize: Set a rate at which a temperature is lowered Trate, and a threshold of
convergence test δ0. Calculate an initial temperature Thigh(= 1/βlow) by (49) and set a

current temperature T = Thigh(β = βlow). Place c clusters randomly and estimate initial
αks by (47) and adjust them to satisfy the normalization constraint (2).

2 Calculate uik by (12).
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3 Calculate vi by (11).
4 Compare a difference between the current objective value Jm=1 = ∑

n
k=1 ∑

c
i=1 dikuik and

that obtained at the previous iteration Ĵ. If ‖Jm=1 − Ĵ‖/Jm=1 < δ0 · T/Thigh is satisfied,
then return. Otherwise decrease the temperature as T = T ∗ Trate, and go back to 2.

6. Combinatorial algorithm of deterministic and simulated annealing

6.1. Simulated annealing

The cost function for SA is

E(αk) = Jm=1 + SFE + K
n

∑
k=1

(

c

∑
i=1

uik − 1

)2

, (50)

where K is a constant.

In order to optimize each αk by SA, its neighbor αnew
k (a displacement from the current αk) is

generated by assuming a normal distribution with a mean 0 and a covariance ∆αk defined in
(45).

The SA’s initial temperature T0(= 1/β0) is determined so as to make an acceptance probability
becomes

exp [−β0{E(αk)− E(αnew
k )}] = 0.5 (51)

(E(αk)− E(αnew
k ) ≥ 0)

By selecting αks to be optimized from the outside of a transition region in which the
membership function changes form 0 to 1, computational time of SA can be shortened. The
boundary of the transition region can be easily obtained with the linear approximations of the
Fermi-Dirac-like membership function. From Fig.1, data which have distances bigger than
√

−αk/β from each cluster centers are selected.

6.2. Simulated annealing algorithm

The SA algorithm is stated as follows:

1 Initialize: Calculate an initial temperature T0(= 1/β0) from (51). Set a current
temperature T to T0. Set an iteration count t to 1. Calculate a covariance ∆αk for each
αk by (45).

2 Select data to be optimized, if necessary.
3 Calculate neighbors of current αks.
4 Apply the Metropolis algorithm to the selected αks using (50) as the objective function.
5 If max < t is satisfied, then return. Otherwise decrease the temperature as T =

T0/ log(t + 1), increment t, and go back to 2.

6.3. Combinatorial algorithm of deterministic and simulated annealing

The DA and SA algorithms are combined as follows:
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1 Initialize: Set a threshold of convergence test δ1, and an iteration count l to 1. Set
maximum iteration counts max0, max1, and max2.

2 Execute the DA algorithm.
3 Set max = max0, and execute the SA algorithm.
4 Compare a difference between the current objective value e and that obtained at the

previous iteration ê. If ‖e − ê‖/e < δ1 or max2 < l is satisfied, then go to 5. Otherwise
increment l, and go back to 2.

5 Set max = max1, and execute the SA algorithm finally, and then stop.

7. Experiments 1

-5000

 0

 5000

-5000  0  5000

[y
]

[x]

Figure 4. Experimental result 1. (Fuzzy clustering result using DASA. Big circles indicate centers of
clusters.)

To demonstrate effectiveness of the proposed algorithm, numerical experiments were carried
out. DASA’s results were compared with those of DA (single DA).

We set δ0 = 0.5, δ1 = 0.01, Trate = 0.8, max0 = 500, max1 = 20000, and max2 = 10. We also set
R in (48) to 350.0 for experimental data 1∼3, and 250.0 for experimental data 4 2.

In experiment 1, 11,479 data points were generated as ten equally sized normal distributions.
Fig.4 shows a fuzzy clustering result by DASA. Single DA similarly clusters these data.

In experiment 2-1, three differently sized normal distributions consist of 2,249 data points in
Fig.5-1 were used. Fig.5-1(0) shows initial clusters obtained by the initial estimation of αks
and the annealing temperature. Fig.5-1(1)∼(6a) shows a fuzzy clustering process of DASA. At
the high temperature in Fig.5-1(1), as described in 4.3, the membership functions were widely
distributed and clusters to which a data belongs were fuzzy. However, with decreasing of
the temperature (from Fig.5-1(2) to Fig.5-1(5)), the distribution became less and less fuzzy.
After executing DA and SA alternately, the clusters in Fig.5-1(6a) were obtained. Then, data
to be optimized by SA were selected by the criterion stated in the section 4, and SA was
executed. The final result of DASA in Fig.5-1(6b) shows that data were desirably clustered.
On the contrary, because of randomness of the initial cluster positions and hardness of good
estimation of the initial αks, single DA becomes unstable, and sometimes gives satisfactory

2 These parameters have not been optimized particularly for experimental data.
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(3) β=5.1× 10 -5

-500
0

500[x] -500

0

500

[y]

0

0.5

1

[u  ]ik

-500
0

500[x] -500

0

500

[y]

0

0.5

1

[u  ]ik

-500

0
500[x] -500

0

500

[y]

0

0.5

1

[u  ]ik

-500
0

500[x] -500

0

500

[y]

0

0.5

1

[u  ]ik

-500

0
500[x] -500

0

500

[y]

0

0.5

1

[u  ]ik

-500
0

500[x] -500

0

500

[y]

0

0.5

1

[u  ]ik

-500
0

500[x] -500

0

500

[y]

0

0.5

1

[u  ]ik

-500

 0

 500

-500  0  500

[y
]

[x]

Experimental Data (5) β=8.0 ×10 -5
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(6d) β=1.3 ×10 -4
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(4) β=6.4× 10 -5

(6a) β=1.3× 10 -4

(6b) β=1.3× 10 -4
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Selected Data

Figure 5-1. Experimental result 2-1. (Fuzzy clustering result by DASA and single DA. “Experimental
Data” are given data distributions. “Selected Data” are data selected for final SA by the selection rule.
(1)∼(6a) and (6b) are results using DASA. (6c) and (6d) are results using single DA (success and failure,
respectively). Data plotted on the xy plane show the cross sections of uik at 0.2 and 0.8.)

results as shown in Fig.5-1(6c) and sometimes not as shown in Fig.5-1(6d). By comparing
Fig.5-1(6b) to (6c), it is found that, due to the optimization of αks by SA, the resultant cluster
shapes of DASA are far less smooth than those of single DA.
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Changes of the costs of DASA (Jm=1 + SFE for DA stage and (50) for SA stage (K was set to

1 × 1015 in (50)), respectively) are plotted as a function of iteration in Fig.5-2, and the both
costs decreases with increasing iteration. In this experiment, the total iteration of SA stage
was about 12, 500, while that of DA stage was only 7. Accordingly, the amount of simulation
time DASA was mostly consumed in SA stage.

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

10 100 1000 10000 100000

[c
o
s
t]

[iteration]

SA
DA

Figure 5-2. Experimental result 2-1. (Change of the cost of DASA as a function of iteration. Jm=1 + SFE

for DA stage and Jm=1 + SFE + K ∑
n
k=1 (∑

c
i=1 uik − 1)2 for SA stage, respectively.)

In experiment 2-2, in order to examine effectiveness of SA introduced in DASA, experiment 2
was re-conducted ten times as in Table 1, where ratio listed in the first row is a ratio of data
optimized at SA stage. “UP” means to increase ratio as 1.0 − 1.0/t where t is a number of
execution times of SA stage. Also, “DOWN” means to decrease ratio as 1.0/t. Results are

judged “Success” or “Failure” from a human viewpoint 3. From Table 1, it is concluded that
DASA always clusters the data properly if ratio is large enough (0.6 < ratio), whereas, as
listed in the last column, single DA succeeds by 50%.

DASA
DA

ratio 0.3 0.6 1.0 UP DOWN

Success 6 9 10 6 7 5
Failure 4 1 0 4 3 5

Table 2. Experimental result 2-2. (Comparison of numbers of successes and failures of fuzzy clustering
using DASA for ratio = 0.3, 0.6, 1.0, 1.0 − 1.0/t(UP), 1.0/t(DOWN) and single DA. (t is a number of
execution times of SA stage))

In experiments 3 and 4, two elliptic distributions consist of 2,024 data points, and two
horseshoe-shaped distributions consist of 1,380 data points were used, respectively. Fig.5 and
6 show DASA’s clustering results. It is found that DASA can cluster these data properly. In
experiment 3, a percentage of success of DASA is 90%, though that of single DA is 50%. In
experiment 4, a percentage of success of DASA is 80%, though that of single DA is 40%.

3 No close case was observed in this experiment.
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Figure 6. Experimental result 3. (Fuzzy clustering result of elliptic distributions using DASA. Data
plotted on the xy plane show the cross sections of uik at 0.2 and 0.8.)
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Figure 7. Experimental result 4. (Fuzzy clustering result of horseshoe-shaped distributions using DASA.
Data plotted on the xy plane show the cross sections of uik at 0.2 and 0.8.)

These experimental results demonstrate the advantage of DASA over single DA.
Nevertheless, DASA suffers two disadvantages. First, it takes so long to execute SA repeatedly
that, instead of (10), it might be better to use its linear approximation functions as the
membership function. Second, since αks differ each other, it is difficult to interpolate them.

8. Experiments 2

8.1. Interpolation of membership function

DASA suffers a few disadvantages. First, it is not necessarily easy to interpolate αk or uik,
since they differ each other. Second, it takes so long to execute SA repeatedly.

A simple solution for the first problem is to interpolate membership functions. Thus, the
following step was added to the DASA algorithm.

6 When a new data is given, some neighboring membership functions are interpolated at
its position.
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(a)Experimental data.
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(a)Initial distribution.
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(b)Final distribution.

Figure 8. Experimantal data and membership functions obtained by DASA.(Data plotted on the xy
plane show the cross sections of uik at 0.2 and 0.8)
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To examine an effectiveness of interpolation, the proposed algorighm was applied to
experimental data shown in Fig.8(a). For simplicity, the data were placed on rectangular grids
on the xy plane.

First, some regional data were randomly selected from the data. Then, Initial and final
memberhip functions obtained by DASA are shown in Figs.8(b) and (c) respectively.

After that, remaining data in the region were used as test data, and at each data point, they
were interpolated by their four nearest neighboring membership values. Linear, bicubic and
fractal interpolation methods were compared.

Prediction error of linear interpolation was 6.8%, and accuracy was not enough. Bicubic
interpolation[18] also gave a poor result, because its depends on good estimated gradient
values of neighboring points. Accordingly, in this case, fractal interpolation[17] is more
suitable than smooth interpolation methods such as bicubic or spline interpolation, because
the membership functions in Figs.8(c) are very rough.

The well-known InterpolatedFM (Fractal motion via interpolation and variable scaling)
algorithm [17] was used in this experiment. Fractal dimension was estimated by the standard
box-counting method [25]. Figs.9(a) and 3(b) represent both the membership functions and
their interpolation values. Prediction error (averaged over 10 trials) of fractal interpolation
was 2.2%, and a slightly better result was obtained.
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Figure 9. Plotted lines show the membership functions obtained by DASA . The functions are
interpolated by the InterpolatedFM algorithm. Crosses show the interpolated data.

9. Conclusion

In this article, by combining the deterministic and simulated annealing methods, we proposed
the new statistical mechanical fuzzy c-means clustering algorithm (DASA). Numerical
experiments showed the effectiveness and the stability of DASA.

However, as stated at the end of Experiments, DASA has problems to be considered. In
addition, a major problem of the fuzzy c-means methodologies is that they do not give a
number of clusters by themselves. Thus, a method such as [28] which can determine a number
of clusters automatically should be combined with DASA.

288 Simulated Annealing – Advances, Applications and Hybridizations



Fuzzy c-Means Clustering, Entropy Maximization, and Deterministic and Simulated Annealing 19

Our future works also include experiments and examinations of the properties of DASA,
especially on an adjustment of its parameters, its annealing scheduling problem, and its
applications for fuzzy modeling[29].

However, DASA has problems to be considered. One of them is that it is difficult to interpolate
membership functions, since their values are quite different. Accordingly, the fractal
interpolation method (InterpolationFM algorithm) is introduced to DASA and examined its
effectiveness.

Our future works include experiments and examinations of the properties of DASA, a
comparison of results of interpolation methods (linear, bicubic, spline, fractal and so on), an
interpolation of higher dimensional data, an adjustment of DASA’s parameters, and DASA’s
annealing scheduling problem.
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