
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000

Chapter 8

© 2012 Grobelna, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Control Interpreted Petri Nets –

Model Checking and Synthesis

Iwona Grobelna

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/47797

1. Introduction

The chapter presents a novel approach to formal verification of logic controller programs

[2], focusing especially on reconfigurable logic controllers (RLCs). Control Interpreted Petri

Nets [8] are used as formal specification of logic controller behavior. The approach proposes

to use an abstract rule-based logical model presented at RTL-level. A Control Interpreted

Petri Net is written as a logical model, and then processed further. Proposed logical model

(Figure 1) is suitable both for formal verification [14] (model checking in the NuSMV tool

[19]) and for logical synthesis (using hardware description language VHDL).

Figure 1. Logical model for model checking and synthesis purposes

Model checking [7, 10] of prepared logical model allows to validate the primary

specification of logic controller. It is possible to verify some user-defined properties, which

are supposed to be satisfied in designed system.

Logical model derived from a Control Interpreted Petri Nets presented at RTL-level (Register

Transfer Level) in such a way, that it is easily synthesizable as reconfigurable logic controller

or PLC (Programmable Logic Controller) without additional changes.

Design methodology at RTL-level allows to convert an algorithm into hardware realization

and to use the conception of variables and sequential operation performing. Project

Petri Nets – Manufacturing and Computer Science 178

description in VHDL language is a specification accepted by synthesis tools at RTL-level

[23]. Therefore, logical model is transformed into synthesizable code in VHDL language.

Presented approach to formal verification of reconfigurable logic controllers was tested on

several examples of industrial specifications by means of Control Interpreted Petri Nets.

Specifications were firstly written as logical models, then transformed into appropriate

formats, and finally formally verified (with some properties added) and synthesized.

As a support for testing, a tool has been developed, which allows automatic transformation

of logical model into model description in the NuSMV format and into synthesizable code in

hardware description language VHDL.

Rules for definition of rule-based logical model and model description in the NuSMV tool

are described in section 3, while rules for synthesizable model definition in VHDL are given

in section 4.

2. Description and illustration of proposed RLCs design system

Logic controller development process usually starts with specification, further goes through

verification [16] and simulation, finally ending with implementation. Schema of proposed

system for designing of logic controllers is presented in Figure 2.

Figure 2. Schema of proposed system for designing of logic controllers

Formal specification is prepared by means of Control Interpreted Petri Nets [8]. They specify

and model the behaviour of concurrent logic controllers and take into account properties of

controlled objects. Local states, as in typical P/T Petri nets, may change after firing of

transitions, if some events occur. Additionally, transition guards are associated with input

signals of controller, while places are associated with its output signals.

Control Interpreted Petri Nets – Model Checking and Synthesis 179

Formally, a Control Interpreted Petri Net can be defined as a six-tuple:

 CIPN = (PN, X, Y, ρ, λ, γ) (1)

where:

- PN is an alive and safe Petri net,

- X is a set of input states,

- Y is a set of output states,

- ρ is a function T → 2X, that each transition assigns the subset of input states X(T);

2X states for the set of all possible subsets of X,

- λ is a function of Moore outputs M → Y, that each marking M assigns the subset of

output states Y(M),

- γ is a function of Mealy outputs (M x X) → Y, that each marking M and input states X

assigns the subset of output states Y.

3. Novel approach to formal verification of logic controller specification

Control Interpreted Petri Net is first written as an abstract rule-based logical model. Then,

basing on that model two other models are built – a verifiable model for the NuSMV model

checker (described in details in section 3.2, together with requirements list definition

expressed in temporal logic) and a synthesizable model in VHDL (for reconfigurable logic

controllers, discussed in section 4). Thanks to proposed methodology, synthesized model is

formally verified before the implementation and the two models are fully consistent with

each other.

3.1. Rule-based logical model of a Control Interpreted Petri Net

Proposed rule-based logical model used for synthesis and verification purposes is an

intermediate format describing desired behaviour of designed logic controller [13, 14].

Model includes variables definition and their initial values, rules describing net

functionality, changes of logic controller output and input signal values.

Proposed logical model reflects the behaviour of Moore digital automaton with inputs

register (optionally) and outputs register (Figure 3). Combinational circuit (CC) controls

system behaviour and operates on internal system states.

Figure 3. Moore digital automaton with inputs and outputs register

Petri Nets – Manufacturing and Computer Science 180

Formally, rule-based logical model can be defined as a seven-tuple:

 LM = {P, X, Y, S, T, O, I} (2)

where:

- P stands for places of a Control Interpreted Petri Net (internal local states),

- X stands for inputs of a Control Interpreted Petri Net (input signals to logic

controller),

- Y stands for outputs of a Control Interpreted Petri Net (output signals to logic

controller),

- S stands for initial values of places, inputs and outputs,

- T stands for rules describing transitions (indicating changes of local states),

- O stands for active outputs corresponding to appropriate places,

- I stands for inputs supposed to be active in appropriate places (for formal

verification simplification).

As an example to demonstrate proposed solution a sample control process was chosen,

described by means of Control Interpreted Petri Nets, then formally verified for behavioral

properties and synthesized. Control process example was taken from. It was verified using

CTL temporal logic and the NuSMV model checker in 2.5.2 version [19].

A simple embedded system for drink production is considered (Figure 4).

Figure 4. Real model of process for drink production

Control Interpreted Petri Nets – Model Checking and Synthesis 181

Logic controller schema with input and output signals (Table 1) is presented in Figure 5.

A Control Interpreted Petri Net for drink production process is presented in Figure 6. It has

20 local states and initial marking involves two places – P1 and P14.

Figure 5. Logic controller schema

Initially, both tanks are empty and process can be started. After pressing the x1 button,

drink production process starts. Valves y10 and y11 are opened and target containers are

loaded on the carriage (y3). Filling tanks process (active signals y1 and y2) is a concurrent

process. When a tank is already full (signalized by sensor x5 or x7 respectively), the

appropriate valve for filling tank is closed. Meanwhile, loaded containers and transported

(y12) to a proper location (sensor x13). When the ingredients are ready, it is signalized by

sensors x2, x3 and x4. Then, ingredients from both tanks are dropped into the main tank

(signals y5 and y6), where they are mixed (signal y4). Emptying of small tanks is signalized

by sensors x6 and x8. When the drink is well mixed, it is indicated by sensor x9. Then, ready

drink is filled into containers (y7, y8). When containers filling process ends (sensors x10,

x11), they are transported (signal y9) to their starting location (sensor x12).

A Control Interpreted Petri Net is written formally using temporal logic [15]. Logic

representation well corresponds to net structure and behavior, and at the same time is easy

to formally verify and to synthesize.

Logical model includes variables definition and their initial values. The following elements

of Control Interpreted Petri Net are interpreted as model variables: places, input and output

signals. Logical model involves also set of rules, which describe how defined variables

change over time. Set of rules influences the system behaviour. Each rule (transition) is

presented in a separate row and starts with transition name (a label for particular rule).

Petri Nets – Manufacturing and Computer Science 182

 Signal Description
In

p
u

ts

x1 Signal to start the process

x2 Ingredients preparation in the first tank is finished

x3 Ingredients preparation in the second tank is finished

x4 Containers preparation is finished

x5 Maximal fluid level in the first tank

x6 Minimal fluid level in the first tank

x7 Maximal fluid level in the second tank

x8 Minimal fluid level in the second tank

x9 Drink preparation is finished

x10 Filling of the first container is finished

x11 Filling of the second container is finished

x12 The carriage is in its starting location (the right side)

x13 The carriage is in its target location (the left side)

O
u

tp
u

ts

y1 Preparation of the first ingredient

y2 Preparation of the second ingredient

y3 Loading containers

y4 Mixing ingredients

y5 Valve for emptying the first tank

y6 Valve for emptying the second tank

y7 Valve for filling the first container

y8 Valve for filling the second container

y9 Carriage movement to the right

y10 Valve for filling the first tank

y11 Valve for filling the second tank

y12 Carriage movement to the left

Table 1. Logic controller input and output signals

A rule consists of two separated parts. The first part contains conditions for transition firing,

namely names of active places and input signals (if required) needed to fire the transition. If

the condition involves more than one variable, variables are usually connected with a logical

operator and (written as &). It is also possible to connect the variables with logical operator

or (written as |), what can be used by transition activation with one of many input signals.

Similar as by initial values of variables, a variable can take the TRUE value (active place /

input signal) or the FALSE value (inactive input signal). The second part describes marking

changing of Petri net places. Usage of a temporal logic operator X indicates that marking

changing will take place in the next system state. Analogously to previous possible variable

values, after transition firing some places can become active (transition output places) or

inactive (transition input places, names of these variables are preceded by an exclamation

mark). Proposed solution is focused on transitions. Here, transition input places, firing

conditions (corresponding to appropriate combinations of input signals) and transition

output places are taken into account.

Control Interpreted Petri Nets – Model Checking and Synthesis 183

Figure 6. Control Interpreted Petri Net

Petri Nets – Manufacturing and Computer Science 184

Transitions from net from Figure 6 are described as separate rules (Figure 7). Firing of each

transition changes marking of its input and output places. For example, firing of the t1

transition removes token from the p1 place (expressed by !p1) and adds a token into three

places staring three concurrent processes: p2, p3 and p4 (expressed by p2 & p3 & p4).

Figure 7. Set of rules in logical model

Places not mentioned in particular rule do not change marking after firing of the

(considered) transition. It means that the particular rule does not change marking of not

mentioned places. Rules correspond therefore to Petri net transitions firings, and ipso facto

marking changing of places. Situations, when a transition cannot be realized are not

considered, supposing that active places hold then their marking. Proposed approach is an

inertial description oriented on transitions (based on publications [1]. In the paper [11],

because of the presence of Mealy outputs (where output signals values depend on input

signal values and current internal system state), additionally output signals connected with

particular transition firing are taken into account, besides places and input signals.

Output signals are considered for successive Petri net places. If the activity of particular

output signal is connected with more than one place, this signal occurs multiple times on the

right side of an arrow, by different places. Proposed notation concerns Moore outputs,

where output state depends only from internal state of the system.

Output signals from the net in Figure 6 are therefore assigned to places, in which they are

active (Figure 8). For example, the y10 output signal is active only by active marking of the

p2 place, and active marking of the p10 place implies the activity of output signals y4, y5 and

y6. The other output signals, which are not present on the right side of particular rule (for

particular places) remain default inactive. It is also possible to evidently indicate the activity

or inactivity of output signal, as in [1], proposed solutions seems however to be intuitive

and does not enforce additional information, which could negative influence its readability.

Figure 8. Output signals in logical model

Input signals changes are also defined in logical model. However, the definition is only used

by model checking process (model description preparation). In the HDL (Hardware

Description Language) file, input signals are not concerned as they are inputs to the logic

controller. Input signals coming from different objects, supervising system or system

operator are considered analogously like output signals for successive Petri net places.

p2 -> y10;

p3 -> y11;

p4 -> y3;

...

p10 -> y4 & y5 & y6;

...

t1: p1 & x1 & !x4 -> X (!p1 & p2 & p3 & p4);

t2: p2 & x5 -> X (!p2 & p5);

t3: p3 & x7 -> X (!p3 & p6);

...

Control Interpreted Petri Nets – Model Checking and Synthesis 185

Input signals from the net in Figure 6 are assigned to places, where they are essential and

may become active (Figure 9). In each other state, the signals remains by default inactive.

For example, input signal x5 can be activated, when Petri net marking involves the place p2.

Figure 9. Input signals in logical model

3.2. Model checking of rule-based logical model

Model checking technique [7, 10] is one of formal verification methods among others like e.g.

theorem proving or equivalence checking and is currently used in the industry in software and

hardware production [12]. System model is compared with defined properties and an

answer whether they are satisfied or not is given. In case of any detected errors, appropriate

counterexamples are generated which allow to localize error source.

Model checking process can be performed on the whole system or just on a part of it (so-

called partial verification), what has an important meaning especially by complex systems

which can be divided into subsystems.

Logical model derived from Control Interpreted Petri Net is transformed into format of the

NuSMV model checker according to some strictly specified rules [13, 14]:

a. Each place p ϵ P is a variable of Boolean type,

b. Each input signal x ϵ X is a variable of Boolean type,

c. Each output signal y ϵ Y is a variable of Boolean type,

d. Defined variable take some initial values. Each variable takes any of two values (TRUE

or FALSE),

e. Each place changes according to the rules defined in the transitions T and the function

ρ: T → 2X; conditions of changes between places (token flow) occur in pairs (groups) –

in the previous place(s) and in the next place(s),

f. Each output signal changes according to the rules defined in the function λ: M → Y,

g. Each input signal changes randomly, but can take the expected values connected with

Petri net places or change adequately to the situation.

Logical model into NuSMV model description translation is done automatically using

implemented software application.

Similar like in logical model, model description for verification starts with variables

definition, which correspond to places, input and output signals. Then, initial values are

assigned to the variables. Rules describing net behaviour and token flow correspond to

values changes of appropriate places (active/inactive marking of places, Figure 10). Input

signals change their value only in expected situations (Figure 11). Output signals are in turn

active when appropriate places include token (Figure 12).

p1 -> (!x1 | x1) & (!x4 | x4);

p2 -> !x5 | x5;

p3 -> !x7 | x7;

...

Petri Nets – Manufacturing and Computer Science 186

Figure 10. Rules in verifiable model (assignment of next values to places)

Figure 11. Assignment of next values to input signals in verifiable model

Figure 12. Assignment of next values to output signals in verifiable model

Model description is the first part needed for model checking. Additionally, it is necessary

to specify some requirements, which are supposed (expected) to be true in defined model.

Structural properties can also be checked on the Petri net level (and do not require model

checking technique). However, the most important are here behavioural properties, which

describe system functionality, impact of input signals and output signals activity.

Properties to be checked are defined using temporal logic [6, 15, 20] – either LTL (Linear

Temporal Logic) or CTL (Computation Tree Logic). Properties describe safety requirements

(something bad will never happen), as well as liveness requirements (something good will

eventually happen). Safety and liveness requirements are the most frequently specified

requirements to be verified.

next(y1) := case

 p5 : TRUE;

 TRUE : FALSE;

esac;

next(y2) := case

 p6 : TRUE;

 TRUE : FALSE;

esac;

...

next(x1) := case

 p1 : {FALSE, TRUE};

 TRUE : FALSE;

esac;

next(x2) := case

 p5 : {FALSE, TRUE};

 TRUE : FALSE;

esac;

...

next(p1) := case

 p1 & x1 & !x4 : FALSE;

 p20 & x12 : TRUE;

 TRUE : p1;

esac;

next(p2) := case

 p2 & x5 : FALSE;

 p1 & x1 & !x4 : TRUE;

 TRUE : p2;

esac;

...

Control Interpreted Petri Nets – Model Checking and Synthesis 187

The requirements list should include as much desired properties as possible, as only they

will be checked. It is often written basing on an informal specification. In the best practices,

it is specified by customer (in textual form) or by engineers not involved in design process

(in more or less formalized way).

Using CTL temporal logic the requirements list for considered case study was defined

(properties are listed in Figure 13 and described in details in Table 2). All specified

requirements are satisfied in the corresponding model description. Some properties concern

Petri net structure itself (properties 1 – 20). It is checked, whether particular places are

reachable. Next properties describe output signals, which cannot be active at the same time

(properties 21 – 23). The last part of properties regards the correlation of input and output

signals.

Figure 13. Requirements list

Property Description

1 It is possible to reach the p1 place

... ...

20 It is possible to reach the p20 place

21 The y5 and y10 output signals can never be active at the same time

22 The y6 and y11 output signals can never be active at the same time

23 The y9 and y12 output signals can never be active at the same time

24

Always, when the x5 input signal is active (maximal fluid level in the first

tank), finally the y10 output signal (controlling valve for filling the first tank)

becomes inactive

25

Always, when the x7 input signal is active (maximal fluid level in the second

tank), finally the y11 output signal (controlling valve for filling the second

tank) becomes inactive

26
Always, when the x13 input signal is active (carriage location on the left),

finally the y12 output signal (carriage movement to the left) becomes inactive

27
Always, when the x12 input signal is active (carriage location on the right),

finally the y9 output signal (carriage movement to the right) becomes inactive

Table 2. Requirements list description

CTLSPEC EF p1; --1

... ...

CTLSPEC EF p20; --20

CTLSPEC AG !(y5 & y10); --21

CTLSPEC AG !(y6 & y11); --22

CTLSPEC AG !(y9 & y12); --23

CTLSPEC AG (x5 -> AF !y10); --24

CTLSPEC AG (x7 -> AF !y11); --25

CTLSPEC AG (x13 -> AF !y12); --26

CTLSPEC AG (x12 -> AF !y9); --27

Petri Nets – Manufacturing and Computer Science 188

By introducing a subtle modification into Control Interpreted Petri Net, which regards initial

marking removing from place p14 (initial marking involves then only the p1 place), the

corresponding part of logical model and NuSMV model description is also changed. However,

such a subtle change dramatically changes net behavior, and thereby designed logic controller

behavior. Model checking of the same properties shows now another results. User receives

multiple generated counterexamples indicating unsatisfied requirements. Places p1 to p12 are

reachable, but it is not possible to reach active marking of further places. Next to last requirement

is also not satisfied (CTLSPEC AG (x13 -> AF !y12)). Summarizing the report – an error occurs

starting from transitions t7 and t13, what confirms the fact, that it is indeed correlated with

additional initial marking (and actually the lack of it) of Control Interpreted Petri Net.

When model checking process does not indicate any errors, it is then possible and advisable

to focus on synthesizable code. Basing on logical model, model in hardware description

language VHDL is built. The model is fully synthesizable and may be then implemented in

FPGA for a reconfigurable logic controller.

4. Synthesis of rule-based logical model

Combining FPGA [18] as a target hardware platform with hardware description language

VHDL ensures high reliability, speed and safety. Additionally, it is possible to modify

anytime the already running system, what has a practical sense. Direct implementation of

concurrent logic controllers in FPGA is similar to rule-based realization based on classical

sequence diagrams. Transition firings are synchronized with clock rising edge.

Control Interpreted Petri Net, which is the core for logical model, is a safe net. Places can be

then implemented using simple flip-flops, as their marking is expressed by a binary value.

Flip-flops amount (for places) using one-hot encoding is equal to the amount of places (and

so to the amount of local states).

Logical model can be easy synthesized as reconfigurable logic controller. Logical model,

derived from Control Interpreted Petri Net, is transformed into VHDL language according

to some strictly defined rules [13]:

a. Each place is an internal signal of std_logic type,

b. Each input signal is an input port of std_logic type,

c. Each output signal is an output port of std_logic type,

d. Each defined internal signal (Petri net place) takes an initial value, set by clock rising

edge and active reset signal,

e. Each place changes its marking according to defined rules; fired transition changes

marking of its input and output places,

f. Input signals are not considered, as they are inputs to the logic controller,

g. Each output signal changes its value according to active places; output signals are

active by active marking of corresponding places.

Model in VHDL is oriented on places and transitions. It can be simulated and synthesized.

Synthesis is performed in form of rapid prototyping [5], what in modern methodology for

Control Interpreted Petri Nets – Model Checking and Synthesis 189

digital circuits design allows for frequent verification (simulation, analysis) of developed

system. Its main goal is to check, whether designed system works at all, but the circuit might

be not optimized. Circuit optimization and minimization of resources usage are here out of

scope, however they may be important in some fields [9, 18].

Logical model into VHDL model translation is done automatically using implemented

software application. Generated VHDL file for considered drink production process is fully

synthesizable.

Model for synthesis starts with input and output signals definition. Petri net places are

defined as internal signals. By clock rising edge and active reset signal, some initial values

are assigned to places, which correspond to initial marking of a Control Interpreted Petri

Net. Additionally, by each clock rising edge places hold their heretofore marking.

For places the one-hot encoding was used (called also isomorphic places encoding), which is

the most accurate (and the simplest) representation of logical model, however it can cause

bigger resources usage. For each place one flip-flop is generated, which label corresponds to

particular place etiquette. Flip-flop sets the 1 value, if a place contains token, otherwise it

holds the 0 value. Additionally, one-hot encoding is recommended by implementation in

FPGA circuits, and even seen as the most effective method for states encoding [23], i.e. in

FPGA circuits of Xilinx [21], especially for small automata. It is also possible to extend the

work to any other encoding.

Places marking can change after transitions firing. Conditions connected with transitions

correspond to values of input signals and active marking of particular places. If a condition

is satisfied, Petri net transition is realized, and thereby its input and output places change

their marking (Figure 14).

Figure 14. The t1 transition firing in VHDL model

Output signals are active by active marking of appropriate places, what is denoted as shown

in Figure 15.

Figure 15. Outputs assignment in VHDL model

y1 <= p5;

y2 <= p6;

y3 <= p4;

...

if p1 = ‘1’ and x1 = ‘1’ and x4 = ‘0’ then

 p1 <= ‘0’;

 p2 <= ‘1’;

 p3 <= ‘1’;

 p4 <= ‘1’;

end if;

Petri Nets – Manufacturing and Computer Science 190

Input signals value changes come from outside and are not modified inside VHDL model

file. Their values are just read out by conditions related to transition firings.

VHDL file can also be simulated i.e. in Active-HDL environment [4]. Simulation confirms the

proper functionality of designed logic controller (simulation results are presented in Figure 16).

It is then possible to perform logic synthesis and implementation, i.e. in Xilinx PlanAhead

environment, in version 13.1 [21]. Sample resources usage for the xa6slx4csg225-2 circuit

from Spartan6 family of XILINX [22] is listed in Table 3.

Resource Utilization Available Utilization

Register 18 4800 1%

LUT 18 2400 1%

Slice 6 600 1%

IO 27 132 20%

Global Clock Buffer 1 16 6%

Table 3. Resources usage

Figure 16. Simulation results in Active-HDL

It is also possible to transform logical model into synthesizable code in Verilog language [9,

17], this aspect is however not discussed further in this chapter.

Control Interpreted Petri Nets – Model Checking and Synthesis 191

5. Summary and conclusions

Proposed novel approach to verification of reconfigurable logic controller programs and

specification by means of Control Interpreted Petri Nets allows to detect even subtle errors

on an early stage of system development. Rule-based representation of Control Interpreted

Petri Nets in temporal logic is presented at RTL-level and is easy to formally verify using

model checking technique and to synthesize using hardware description languages.

Results of the work include the assurance that verified behavioural specification in temporal

logic will be an abstract program of matrix reconfigurable logic controller. Hence, logic

controller program (its implementation) will be valid according to its primary specification.

This may shorten the duration time of logic controllers development process (as early

discovered errors are faster corrected) and, consequently, save money (as project budgets

will not be exceeded).

Furthermore, formal verification can improve the quality of final products, making them work

more reliable. And even if a logic controller, already delivered to customer, will not work

properly (it can always happen that some subtle error was overseen or that the specification

was incomplete), it is possible to find error source using available techniques (verification,

simulation, etc.). Then, some part of corrected system (or the whole system) may be one more

time formally verified using extended requirements list and modified logical model.

Future research directions include i.e. (but are not limited to) model checking of other forms

of logic controllers specification and mechanisms for behavioural properties specification.

Author details

Iwona Grobelna

University of Zielona Góra, Poland

6. Acknowledgement

The author is a scholar within Sub-measure 8.2.2 Regional Innovation Strategies, Measure

8.2 Transfer of knowledge, Priority VIII Regional human resources for the economy Human

Capital Operational Programme co-financed by European Social Fund and state budget.

7. References

[1] Adamski, M & Monteiro, J. L., From Interpreted Petri net specification to

Reprogrammable Logic Controller Design, In: Proceedings of the IEEE International

Symposium on Industrial Electronics, 2000, Vol. 1, pp. 13 – 19.

Petri Nets – Manufacturing and Computer Science 192

[2] Adamski, M.A.; Karatkevich, A. & Węgrzyn, M.. Design of embedded control systems,

Springer Verlag ; 2005.

[3] Adamski, M.; Kołopieńczyk, M. & Mielcarek, K.. Perfect Petri Net in parallel control circuits

(in Polish), Measurement Automation and Monitoring, 2011, Vol. 57, No. 6, pp. 656 – 660.

[4] Aldec home page. The producer of Active-HLD environment.

http://www.aldec.com/ (access 15.04.2012)

[5] Andreu, D.; Souquet, G. & Gil, T.. Petri Net based rapid prototyping of digital complex

system, IEEE Computer Society Annual Symposium on VLSI 2008, pp. 405 – 410.

[6] Ben-Ari, M., Mathematical logic for computer science, Springer Verlag ; 2001.

[7] Clarke, E.M.; Grumberg, O. &Peled, D.A., Model checking, The MIT Press ; 1999.

[8] David, R. & Alla, H., Discrete, Continuous, and Hybrid Petri Nets, Springer Verlag ; 2010.

[9] De Micheli, G., Synthesis and Optimization of Digital Circuits, McGraw-Hill Higher

Education; 1994.

[10] Emerson, E.A., The Beginning of Model Checking: A Personal Perspective, In: 25 Years

of Model Checking: History, Achievements, Perspectives, O. Grumberg, H. Veith (Ed.),

Springer Verlag ; 2008, pp. 27 – 45.

[11] Fernandes, J.M. ; Adamski, M. & Proenca, A.J., VHDL generation from hierarchical Petri

net specifications of parallel controllers, IEE Proceedings – Computers and Digital

Techniques, 1997, Vol. 144, No. 2, pp. 127 – 137.

[12] Fix, L., Fifteen years of formal property verification in Intel, In: O. Grumberg, H. Veith

(Ed.), 25 Years of Model Checking: History, Achievements, Perspectives, Springer Verlag ;

2008, pp. 139 – 144.

[13] Grobelna, I., Formal verification of embedded logic controller specification with

computer deduction in temporal logic, Electrical Review, 2011, nr 12a, 2011, pp. 47 – 50.

[14] Grobelna, I. & Adamski, M., Model Checking of Control Interpreted Petri Nets,

Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and

Systems 2011, pp. 621 – 626 (available in IEEE Xplore).

[15] Huth, M. & Ryan, M., Logic in Computer Science. Modelling and Reasoning about Systems,

Cambridge University Press ; 2004.

[16] Kropf, T., Introduction to Formal Hardware Verification, Springer Verlag ; 1999.

[17] Minns, P. & Elliott, I., FSM based Digital Design using Verilog HDL, Wiley ; 2008.

[18] Nemec, J., Stoke the fires of FPGA design, Electronic design, 1994, Vol. 42, Issue 22, pp.

97 – 105.

[19] NuSMV model checker homepage: http://nusmv.fbk.eu/ (access 15.04.2012)

[20] Rice, M.V. & Vardi, M.Y., Branching vs. Linear Time: Final Showdown, Proceedings of the

2001 Conference on Tools and Algorithms for the Construction and Analysis of Systems,

Lecture Notes in Computer Science, Vol. 2031, Springer Verlag; 2001, pp. 1 – 22.

[21] Xilinx homepage. The producer of XILINX ISE and XILINX PlanAhead software.

http://www.xilinx.com (access 15.04.2012)

[22] Xilinx FPGA Spartan6 family home page.

http://www.xilinx.com/products/silicon-devices/fpga/spartan-6/index.htm(access 15.04.2012)

[23] Zwoliński, M., Digital System Design with VHDL, Prentice Hall; 2004.

