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1. Introduction 

The chapter presents a novel approach to formal verification of logic controller programs 

[2], focusing especially on reconfigurable logic controllers (RLCs). Control Interpreted Petri 

Nets [8] are used as formal specification of logic controller behavior. The approach proposes 

to use an abstract rule-based logical model presented at RTL-level. A Control Interpreted 

Petri Net is written as a logical model, and then processed further. Proposed logical model 

(Figure 1) is suitable both for formal verification [14] (model checking in the NuSMV tool 

[19]) and for logical synthesis (using hardware description language VHDL).  

 

Figure 1. Logical model for model checking and synthesis purposes 

Model checking [7, 10] of prepared logical model allows to validate the primary 

specification of logic controller. It is possible to verify some user-defined properties, which 

are supposed to be satisfied in designed system. 

Logical model derived from a Control Interpreted Petri Nets presented at RTL-level (Register 

Transfer Level) in such a way, that it is easily synthesizable as reconfigurable logic controller 

or PLC (Programmable Logic Controller) without additional changes. 

Design methodology at RTL-level allows to convert an algorithm into hardware realization 

and to use the conception of variables and sequential operation performing. Project 
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description in VHDL language is a specification accepted by synthesis tools at RTL-level 

[23]. Therefore, logical model is transformed into synthesizable code in VHDL language. 

Presented approach to formal verification of reconfigurable logic controllers was tested on 

several examples of industrial specifications by means of Control Interpreted Petri Nets. 

Specifications were firstly written as logical models, then transformed into appropriate 

formats, and finally formally verified (with some properties added) and synthesized. 

As a support for testing, a tool has been developed, which allows automatic transformation 

of logical model into model description in the NuSMV format and into synthesizable code in 

hardware description language VHDL. 

Rules for definition of rule-based logical model and model description in the NuSMV tool 

are described in section 3, while rules for synthesizable model definition in VHDL are given 

in section 4.  

2. Description and illustration of proposed RLCs design system 

Logic controller development process usually starts with specification, further goes through 

verification [16] and simulation, finally ending with implementation. Schema of proposed 

system for designing of logic controllers is presented in Figure 2. 

 

Figure 2. Schema of proposed system for designing of logic controllers 

Formal specification is prepared by means of Control Interpreted Petri Nets [8]. They specify 

and model the behaviour of concurrent logic controllers and take into account properties of 

controlled objects. Local states, as in typical P/T Petri nets, may change after firing of 

transitions, if some events occur. Additionally, transition guards are associated with input 

signals of controller, while places are associated with its output signals. 
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Formally, a Control Interpreted Petri Net can be defined as a six-tuple: 

 CIPN = (PN, X, Y, ρ, λ, γ) (1) 

where: 

- PN is an alive and safe Petri net, 

- X is a set of input states, 

- Y is a set of output states, 

- ρ is a function T → 2X, that each transition assigns the subset of input states X(T);  

2X states for the set of all possible subsets of X, 

- λ is a function of Moore outputs M → Y, that each marking M assigns the subset of 

output states Y(M), 

- γ is a function of Mealy outputs (M x X) → Y, that each marking M and input states X 

assigns the subset of output states Y. 

3. Novel approach to formal verification of logic controller specification 

Control Interpreted Petri Net is first written as an abstract rule-based logical model. Then, 

basing on that model two other models are built – a verifiable model for the NuSMV model 

checker (described in details in section 3.2, together with requirements list definition 

expressed in temporal logic) and a synthesizable model in VHDL (for reconfigurable logic 

controllers, discussed in section 4). Thanks to proposed methodology, synthesized model is 

formally verified before the implementation and the two models are fully consistent with 

each other. 

3.1. Rule-based logical model of a Control Interpreted Petri Net 

Proposed rule-based logical model used for synthesis and verification purposes is an 

intermediate format describing desired behaviour of designed logic controller [13, 14]. 

Model includes variables definition and their initial values, rules describing net 

functionality, changes of logic controller output and input signal values. 

Proposed logical model reflects the behaviour of Moore digital automaton with inputs 

register (optionally) and outputs register (Figure 3). Combinational circuit (CC) controls 

system behaviour and operates on internal system states. 

 

Figure 3. Moore digital automaton with inputs and outputs register 
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Formally, rule-based logical model can be defined as a seven-tuple: 

 LM = {P, X, Y, S, T, O, I} (2) 

where: 

- P  stands for places of a Control Interpreted Petri Net (internal local states), 

- X  stands for inputs of a Control Interpreted Petri Net (input signals to logic 

controller), 

- Y  stands for outputs of a Control Interpreted Petri Net (output signals to logic 

controller), 

- S  stands for initial values of places, inputs and outputs, 

- T  stands for rules describing transitions (indicating changes of local states), 

- O  stands for active outputs corresponding to appropriate places, 

- I  stands for inputs supposed to be active in appropriate places (for formal 

verification simplification). 

As an example to demonstrate proposed solution a sample control process was chosen, 

described by means of Control Interpreted Petri Nets, then formally verified for behavioral 

properties and synthesized. Control process example was taken from. It was verified using 

CTL temporal logic and the NuSMV model checker in 2.5.2 version [19].  

A simple embedded system for drink production is considered (Figure 4). 

 

Figure 4. Real model of process for drink production 



 
Control Interpreted Petri Nets – Model Checking and Synthesis 181 

Logic controller schema with input and output signals (Table 1) is presented in Figure 5. 

A Control Interpreted Petri Net for drink production process is presented in Figure 6. It has 

20 local states and initial marking involves two places – P1 and P14. 

 

Figure 5. Logic controller schema 

Initially, both tanks are empty and process can be started. After pressing the x1 button, 

drink production process starts. Valves y10 and y11 are opened and target containers are 

loaded on the carriage (y3). Filling tanks process (active signals y1 and y2) is a concurrent 

process. When a tank is already full (signalized by sensor x5 or x7 respectively), the 

appropriate valve for filling tank is closed. Meanwhile, loaded containers and transported 

(y12) to a proper location (sensor x13). When the ingredients are ready, it is signalized by 

sensors x2, x3 and x4. Then, ingredients from both tanks are dropped into the main tank 

(signals y5 and y6), where they are mixed (signal y4). Emptying of small tanks is signalized 

by sensors x6 and x8. When the drink is well mixed, it is indicated by sensor x9. Then, ready 

drink is filled into containers (y7, y8). When containers filling process ends (sensors x10, 

x11), they are transported (signal y9) to their starting location (sensor x12). 

A Control Interpreted Petri Net is written formally using temporal logic [15]. Logic 

representation well corresponds to net structure and behavior, and at the same time is easy 

to formally verify and to synthesize. 

Logical model includes variables definition and their initial values. The following elements 

of Control Interpreted Petri Net are interpreted as model variables: places, input and output 

signals. Logical model involves also set of rules, which describe how defined variables 

change over time. Set of rules influences the system behaviour. Each rule (transition) is 

presented in a separate row and starts with transition name (a label for particular rule).  
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 Signal Description 
In

p
u

ts
 

x1 Signal to start the process 

x2 Ingredients preparation in the first tank is finished 

x3 Ingredients preparation in the second tank is finished 

x4 Containers preparation is finished 

x5 Maximal fluid level in the first tank 

x6 Minimal fluid level in the first tank 

x7 Maximal fluid level in the second tank 

x8 Minimal fluid level in the second tank 

x9 Drink preparation is finished 

x10 Filling of the first container is finished 

x11 Filling of the second container is finished 

x12 The carriage is in its starting location (the right side) 

x13 The carriage is in its target location (the left side) 

O
u

tp
u

ts
 

y1 Preparation of the first ingredient 

y2 Preparation of the second ingredient 

y3 Loading containers 

y4 Mixing ingredients 

y5 Valve for emptying the first tank 

y6 Valve for emptying the second tank 

y7 Valve for filling the first container 

y8 Valve for filling the second container 

y9 Carriage movement to the right 

y10 Valve for filling the first tank 

y11 Valve for filling the second tank 

y12 Carriage movement to the left 

Table 1. Logic controller input and output signals 

A rule consists of two separated parts. The first part contains conditions for transition firing, 

namely names of active places and input signals (if required) needed to fire the transition. If 

the condition involves more than one variable, variables are usually connected with a logical 

operator and (written as &). It is also possible to connect the variables with logical operator 

or (written as |), what can be used by transition activation with one of many input signals. 

Similar as by initial values of variables, a variable can take the TRUE value (active place / 

input signal) or the FALSE value (inactive input signal). The second part describes marking 

changing of Petri net places. Usage of a temporal logic operator X indicates that marking 

changing will take place in the next system state. Analogously to previous possible variable 

values, after transition firing some places can become active (transition output places) or 

inactive (transition input places, names of these variables are preceded by an exclamation 

mark). Proposed solution is focused on transitions. Here, transition input places, firing 

conditions (corresponding to appropriate combinations of input signals) and transition 

output places are taken into account. 
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Figure 6. Control Interpreted Petri Net 
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Transitions from net from Figure 6 are described as separate rules (Figure 7). Firing of each 

transition changes marking of its input and output places. For example, firing of the t1 

transition removes token from the p1 place (expressed by !p1) and adds a token into three 

places staring three concurrent processes: p2, p3 and p4 (expressed by p2 & p3 & p4). 

 

Figure 7. Set of rules in logical model 

Places not mentioned in particular rule do not change marking after firing of the 

(considered) transition. It means that the particular rule does not change marking of not 

mentioned places. Rules correspond therefore to Petri net transitions firings, and ipso facto 

marking changing of places. Situations, when a transition cannot be realized are not 

considered, supposing that active places hold then their marking. Proposed approach is an 

inertial description oriented on transitions (based on publications [1]. In the paper [11], 

because of the presence of Mealy outputs (where output signals values depend on input 

signal values and current internal system state), additionally output signals connected with 

particular transition firing are taken into account, besides places and input signals. 

Output signals are considered for successive Petri net places. If the activity of particular 

output signal is connected with more than one place, this signal occurs multiple times on the 

right side of an arrow, by different places. Proposed notation concerns Moore outputs, 

where output state depends only from internal state of the system. 

Output signals from the net in Figure 6 are therefore assigned to places, in which they are 

active (Figure 8). For example, the y10 output signal is active only by active marking of the 

p2 place, and active marking of the p10 place implies the activity of output signals y4, y5 and 

y6. The other output signals, which are not present on the right side of particular rule (for 

particular places) remain default inactive. It is also possible to evidently indicate the activity 

or inactivity of output signal, as in [1], proposed solutions seems however to be intuitive 

and does not enforce additional information, which could negative influence its readability. 

 

Figure 8.  Output signals in logical model 

Input signals changes are also defined in logical model. However, the definition is only used 

by model checking process (model description preparation). In the HDL (Hardware 

Description Language) file, input signals are not concerned as they are inputs to the logic 

controller. Input signals coming from different objects, supervising system or system 

operator are considered analogously like output signals for successive Petri net places. 

p2 -> y10; 

p3 -> y11; 

p4 -> y3; 

... 

p10 -> y4 & y5 & y6; 

... 

t1: p1 & x1 & !x4 -> X (!p1 & p2 & p3 & p4); 

t2: p2 & x5 -> X (!p2 & p5); 

t3: p3 & x7 -> X (!p3 & p6); 

... 
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Input signals from the net in Figure 6 are assigned to places, where they are essential and 

may become active (Figure 9). In each other state, the signals remains by default inactive. 

For example, input signal x5 can be activated, when Petri net marking involves the place p2.  

 

Figure 9. Input signals in logical model 

3.2. Model checking of rule-based logical model  

Model checking technique [7, 10] is one of formal verification methods among others like e.g. 

theorem proving or equivalence checking and is currently used in the industry in software and 

hardware production [12]. System model is compared with defined properties and an 

answer whether they are satisfied or not is given. In case of any detected errors, appropriate 

counterexamples are generated which allow to localize error source.  

Model checking process can be performed on the whole system or just on a part of it (so-

called partial verification), what has an important meaning especially by complex systems 

which can be divided into subsystems. 

Logical model derived from Control Interpreted Petri Net is transformed into format of the 

NuSMV model checker according to some strictly specified rules [13, 14]: 

a. Each place p ϵ P is a variable of Boolean type, 

b. Each input signal x ϵ X is a variable of Boolean type, 

c. Each output signal y ϵ Y is a variable of Boolean type, 

d. Defined variable take some initial values. Each variable takes any of two values (TRUE 

or FALSE), 

e. Each place changes according to the rules defined in the transitions T and the function 

ρ: T → 2X; conditions of changes between places (token flow) occur in pairs (groups) – 

in the previous place(s) and in the next place(s), 

f. Each output signal changes according to the rules defined in the function λ: M → Y, 

g. Each input signal changes randomly, but can take the expected values connected with 

Petri net places or change adequately to the situation. 

Logical model into NuSMV model description translation is done automatically using 

implemented software application.  

Similar like in logical model, model description for verification starts with variables 

definition, which correspond to places, input and output signals. Then, initial values are 

assigned to the variables. Rules describing net behaviour and token flow correspond to 

values changes of appropriate places (active/inactive marking of places, Figure 10). Input 

signals change their value only in expected situations (Figure 11). Output signals are in turn 

active when appropriate places include token (Figure 12). 

p1 -> (!x1 | x1) & (!x4 | x4); 

p2 -> !x5 | x5; 

p3 -> !x7 | x7; 

... 
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Figure 10. Rules in verifiable model (assignment of next values to places) 

 

Figure 11. Assignment of next values to input signals in verifiable model 

 

Figure 12. Assignment of next values to output signals in verifiable model 

Model description is the first part needed for model checking. Additionally, it is necessary 

to specify some requirements, which are supposed (expected) to be true in defined model. 

Structural properties can also be checked on the Petri net level (and do not require model 

checking technique). However, the most important are here behavioural properties, which 

describe system functionality, impact of input signals and output signals activity. 

Properties to be checked are defined using temporal logic [6, 15, 20] – either LTL (Linear 

Temporal Logic) or CTL (Computation Tree Logic). Properties describe safety requirements 

(something bad will never happen), as well as liveness requirements (something good will 

eventually happen). Safety and liveness requirements are the most frequently specified 

requirements to be verified.  

next(y1) := case 

   p5    : TRUE;  

   TRUE  : FALSE; 

esac; 

next(y2) := case 

   p6    : TRUE; 

   TRUE  : FALSE; 

esac; 

... 

next(x1) := case 

   p1    : {FALSE, TRUE}; 

   TRUE  : FALSE; 

esac; 

next(x2) := case 

   p5    : {FALSE, TRUE}; 

   TRUE  : FALSE; 

esac; 

... 

next(p1) := case 

   p1 & x1 & !x4  : FALSE; 

   p20 & x12      : TRUE; 

   TRUE           : p1; 

esac; 

next(p2) := case 

   p2 & x5        : FALSE; 

   p1 & x1 & !x4  : TRUE; 

   TRUE           : p2; 

esac; 

... 
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The requirements list should include as much desired properties as possible, as only they 

will be checked. It is often written basing on an informal specification. In the best practices, 

it is specified by customer (in textual form) or by engineers not involved in design process 

(in more or less formalized way). 

Using CTL temporal logic the requirements list for considered case study was defined 

(properties are listed in Figure 13 and described in details in Table 2). All specified 

requirements are satisfied in the corresponding model description. Some properties concern 

Petri net structure itself (properties 1 – 20). It is checked, whether particular places are 

reachable. Next properties describe output signals, which cannot be active at the same time 

(properties 21 – 23). The last part of properties regards the correlation of input and output 

signals. 

 

Figure 13. Requirements list 

 

Property Description

1 It is possible to reach the p1 place 

... ... 

20 It is possible to reach the p20 place 

21 The y5 and y10 output signals can never be active at the same time 

22 The y6 and y11 output signals can never be active at the same time 

23 The y9 and y12 output signals can never be active at the same time 

24 

Always, when the x5 input signal is active (maximal fluid level in the first 

tank), finally the y10 output signal (controlling valve for filling the first tank) 

becomes inactive 

25 

Always, when the x7 input signal is active (maximal fluid level in the second 

tank), finally the y11 output signal (controlling valve for filling the second 

tank) becomes inactive 

26 
Always, when the x13 input signal is active (carriage location on the left), 

finally the y12 output signal (carriage movement to the left) becomes inactive 

27 
Always, when the x12 input signal is active (carriage location on the right), 

finally the y9 output signal (carriage movement to the right) becomes inactive 

Table 2. Requirements list description 

CTLSPEC EF p1;                --1 

...                           ...  

CTLSPEC EF p20;               --20 

CTLSPEC AG !(y5 & y10);       --21 

CTLSPEC AG !(y6 & y11);       --22 

CTLSPEC AG !(y9 & y12);       --23 

CTLSPEC AG (x5 -> AF !y10);   --24 

CTLSPEC AG (x7 -> AF !y11);   --25 

CTLSPEC AG (x13 -> AF !y12);  --26 

CTLSPEC AG (x12 -> AF !y9);   --27 
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By introducing a subtle modification into Control Interpreted Petri Net, which regards initial 

marking removing from place p14 (initial marking involves then only the p1 place), the 

corresponding part of logical model and NuSMV model description is also changed. However, 

such a subtle change dramatically changes net behavior, and thereby designed logic controller 

behavior. Model checking of the same properties shows now another results. User receives 

multiple generated counterexamples indicating unsatisfied requirements. Places p1 to p12 are 

reachable, but it is not possible to reach active marking of further places. Next to last requirement 

is also not satisfied (CTLSPEC AG (x13 -> AF !y12)). Summarizing the report – an error occurs 

starting from transitions t7 and t13, what confirms the fact, that it is indeed correlated with 

additional initial marking (and actually the lack of it) of Control Interpreted Petri Net. 

When model checking process does not indicate any errors, it is then possible and advisable 

to focus on synthesizable code. Basing on logical model, model in hardware description 

language VHDL is built. The model is fully synthesizable and may be then implemented in 

FPGA for a reconfigurable logic controller. 

4. Synthesis of rule-based logical model 

Combining FPGA [18] as a target hardware platform with hardware description language 

VHDL ensures high reliability, speed and safety. Additionally, it is possible to modify 

anytime the already running system, what has a practical sense. Direct implementation of 

concurrent logic controllers in FPGA is similar to rule-based realization based on classical 

sequence diagrams. Transition firings are synchronized with clock rising edge.  

Control Interpreted Petri Net, which is the core for logical model, is a safe net. Places can be 

then implemented using simple flip-flops, as their marking is expressed by a binary value. 

Flip-flops amount (for places) using one-hot encoding is equal to the amount of places (and 

so to the amount of local states). 

Logical model can be easy synthesized as reconfigurable logic controller. Logical model, 

derived from Control Interpreted Petri Net, is transformed into VHDL language according 

to some strictly defined rules [13]: 

a. Each place is an internal signal of std_logic type, 

b. Each input signal is an input port of std_logic type, 

c. Each output signal is an output port of std_logic type, 

d. Each defined internal signal (Petri net place) takes an initial value, set by clock rising 

edge and active reset signal, 

e. Each place changes its marking according to defined rules; fired transition changes 

marking of its input and output places, 

f. Input signals are not considered, as they are inputs to the logic controller, 

g. Each output signal changes its value according to active places; output signals are 

active by active marking of corresponding places. 

Model in VHDL is oriented on places and transitions. It can be simulated and synthesized. 

Synthesis is performed in form of rapid prototyping [5], what in modern methodology for 
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digital circuits design allows for frequent verification (simulation, analysis) of developed 

system. Its main goal is to check, whether designed system works at all, but the circuit might 

be not optimized. Circuit optimization and minimization of resources usage are here out of 

scope, however they may be important in some fields [9, 18]. 

Logical model into VHDL model translation is done automatically using implemented 

software application. Generated VHDL file for considered drink production process is fully 

synthesizable. 

Model for synthesis starts with input and output signals definition. Petri net places are 

defined as internal signals. By clock rising edge and active reset signal, some initial values 

are assigned to places, which correspond to initial marking of a Control Interpreted Petri 

Net. Additionally, by each clock rising edge places hold their heretofore marking. 

For places the one-hot encoding was used (called also isomorphic places encoding), which is 

the most accurate (and the simplest) representation of logical model, however it can cause 

bigger resources usage. For each place one flip-flop is generated, which label corresponds to 

particular place etiquette. Flip-flop sets the 1 value, if a place contains token, otherwise it 

holds the 0 value. Additionally, one-hot encoding is recommended by implementation in 

FPGA circuits, and even seen as the most effective method for states encoding [23], i.e. in 

FPGA circuits of Xilinx [21], especially for small automata. It is also possible to extend the 

work to any other encoding. 

Places marking can change after transitions firing. Conditions connected with transitions 

correspond to values of input signals and active marking of particular places. If a condition 

is satisfied, Petri net transition is realized, and thereby its input and output places change 

their marking (Figure 14). 

 

Figure 14. The t1 transition firing in VHDL model 

Output signals are active by active marking of appropriate places, what is denoted as shown 

in Figure 15. 

 

Figure 15. Outputs assignment in VHDL model 

y1 <= p5; 

y2 <= p6; 

y3 <= p4; 

... 
 

if p1 = ‘1’ and x1 = ‘1’ and x4 = ‘0’ then 

   p1 <= ‘0’; 

   p2 <= ‘1’; 

   p3 <= ‘1’; 

   p4 <= ‘1’; 

end if; 
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Input signals value changes come from outside and are not modified inside VHDL model 

file. Their values are just read out by conditions related to transition firings. 

VHDL file can also be simulated i.e. in Active-HDL environment [4]. Simulation confirms the 

proper functionality of designed logic controller (simulation results are presented in Figure 16).  

It is then possible to perform logic synthesis and implementation, i.e. in Xilinx PlanAhead 

environment, in version 13.1 [21]. Sample resources usage for the xa6slx4csg225-2 circuit 

from Spartan6 family of XILINX [22] is listed in Table 3.  

Resource Utilization Available Utilization 

Register 18 4800 1% 

LUT 18 2400 1% 

Slice 6 600 1% 

IO 27 132 20% 

Global Clock Buffer 1 16 6% 

Table 3. Resources usage 

 

Figure 16. Simulation results in Active-HDL 

It is also possible to transform logical model into synthesizable code in Verilog language [9, 

17], this aspect is however not discussed further in this chapter. 
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5. Summary and conclusions 

Proposed novel approach to verification of reconfigurable logic controller programs and 

specification by means of Control Interpreted Petri Nets allows to detect even subtle errors 

on an early stage of system development. Rule-based representation of Control Interpreted 

Petri Nets in temporal logic is presented at RTL-level and is easy to formally verify using 

model checking technique and to synthesize using hardware description languages. 

Results of the work include the assurance that verified behavioural specification in temporal 

logic will be an abstract program of matrix reconfigurable logic controller. Hence, logic 

controller program (its implementation) will be valid according to its primary specification. 

This may shorten the duration time of logic controllers development process (as early 

discovered errors are faster corrected) and, consequently, save money (as project budgets 

will not be exceeded).  

Furthermore, formal verification can improve the quality of final products, making them work 

more reliable. And even if a logic controller, already delivered to customer, will not work 

properly (it can always happen that some subtle error was overseen or that the specification 

was incomplete), it is possible to find error source using available techniques (verification, 

simulation, etc.). Then, some part of corrected system (or the whole system) may be one more 

time formally verified using extended requirements list and modified logical model. 

Future research directions include i.e. (but are not limited to) model checking of other forms 

of logic controllers specification and mechanisms for behavioural properties specification. 
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