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1. Introduction 

Petri nets are excellent networks which have great characteristics of combining a well-

defined mathematical theory with a graphical representation of the dynamic behavior of 

systems. The theoretical aspect of Petri nets allows precise modeling and analysis of 

system behavior, at the same time, the graphical representation of Petri nets enable 

visualization of state changes of the modeled system [32]. Therefore, Petri nets are 

recognized as one of the most adequate and sound tool for description and analysis of 

concurrent, asynchronous and distributed dynamical system. However, the traditional 

Petri nets do not have learning capability. Therefore, all the parameters which describe 

the characteristics of the system need to be set individually and empirically when the 

dynamic system is modeled. Fuzzy Petri net (FPN) combined Petri nets approach with 

fuzzy theory is a powerful modeling tool for fuzzy production rules-based knowledge 

systems. However, it is lack of learning mechanism. That is the significant weakness while 

modeling uncertain knowledge systems. 

At the same time, intelligent computing is taken to achieve the development and 

application of artificial intelligence (AI) methods, i.e. tools that exhibit characteristics 

associated with intelligence in human behaviour. Reinforcement Learning (RL) and 

artificial neural networks have been widely used in pattern recognition, decision making, 

data clustering, and so on. Thus, if intelligent computing methods are introduced into 

Petri nets, this may make Petri nets have the learning capability, and also performance 

and the applicable areas of Petri nets models will be widely expanded. The dynamic 

system can be modeled by Petri nets with the learning capability and then the 

parameters of the system can be adjusted by online (data-driven) learning. At the same 

way, if the generalized FPNs are expanded by adding neural networks and their leaning 
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capability, then FPNs are able to realize self-adapting and self-learning functions. 

Consequently, it achieves automatic knowledge reasoning and fuzzy production rules 

learning. 

Recently, there are some researches for making the Petri net have learning capability and 

making it optimize itself. The global variables are used to record all state of colored Petri net 

when it is running [22]. The global variables are optimized and colored Petri net is updated 

according to these global variables. A learning Petri net model which combines Petri net 

with a neural network is proposed by Hirasawa et al., and it was applied to nonlinear 

system control [10]. In our former work [5, 6], a learning Petri net model has been proposed 

based on reinforcement learning (RL). RL is applied to optimize the parameters of Petri net. 

And, this learning Petri net model has been applied to robot system control. Konar gave an 

algorithm to adjust thresholds of a FPN through training instances [1]. In [1], the FPN 

architecture is built on the connectionism, just like a neural network, and the model 

provides semantic justification of its hidden layer. It is capable of approximate reasoning 

and learning from noisy training instances. A generalized FPN model was proposed by 

Pedrycz et al., which can be transformed into neural networks with OR/AND logic neuron, 

thus, parameters of the corresponding neural networks can be learned (trained) [24]. Victor 

and Shen have developed a reinforcement learning algorithm for the high-level fuzzy Petri 

net models [23]. 

This chapter focuses on combining the Petri net and fuzzy Petri net with intelligent learning 

method for construction of learning Petri net and learning fuzzy Petri net (LFPN), 

respectively. These are applied to dynamic system controls and a system optimization. The 

rest of this paper is organized as follow. Section 2 elaborates on the Learning Petri net 

construction and Learning algorithm. Section 3 describes how to use the Learning Petri net 

model in the robots systems. Section 4 constructs a LFPN. Section 5 shows the LFPN is used 

in Web service discovery problem. Section 6 summarizes the models of Petri net described 

in the chapter and results of their applications and demonstrates the future trends 

concerned with Learning Petri nets. 

2. The learning Petri net model 

The Learning Petri net (LPN) model is constructed based on high-level time Petri net 

(HLTPN). The definition of HLTPN is given firstly. 

2.1. Definition of HLTPN  

HLTPN is one of expanded Petri nets. 

Definition 1: HLTPN has a 5-tuple structure, HLTPN= (NG, C, W, DT, M0) [9], where 

i. NG= (P, Tr, F) is called “net graph” with P which called “Places”. P is a finite set of 

nodes. ID: PN is a function marking P, N = (1, 2, …) is the set of natural number. p1, 

p2, …, pn represents the elements of P and n is the cardinality of set P; 
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Tr is a finite set of nodes, called “Transitions”, which disjoints from P, PTr= 
ID:TrN is a function marking Tr. tr1, tr2, …, trm represents the elements of Tr, m is the 

cardinality of set Tr; 

F  (P×Tr)∪(Tr×P) is a finite set of directional arcs, known as the flow relation; 

ii. C is a finite and non-empty color set for describing different type of data; 

iii. W: F C is a weight function on F. If F  (P×Tr), the weight function W is Win that 

decides which colored Token can go through the arc and enable T fire. This color tokens 

will be consumed when transition is fired. If F  (Tr×P), the weight function W is Wout 

that decides which colored Token will be generated by T and be input to P. 

iv. DT: TrR is a delay time function of a transition which has a Time delay for an enable 

transition fired or the fire of a transition lasting time. 

v. M0: PUpPμC(p) such thatpP, M0(p)μC(p) is the initial marking function which 

associates a multi-set of tokens of correct type with each place. 

2.2. Definition of LPN 

In HLTPN, the weight functions of input and output arc for a transition decide the input 

and output token of a transition. These weight functions express the input-output mapping 

of transitions. If these weight functions are able to be updated according to the change of 

system, modeling ability of Petri net will be expanded. The delay time of HLTPN expresses 

the pre-state lasting time. If the delay time is able to be learnt while system is running, 

representing ability of Petri net will be enhanced. RL is a learning method interacting with a 

complex, uncertain environment to achieve an optimal policy for the selection of actions of 

the learner. RL suits to update dynamic system parameters through interaction with 

environment [18]. Hence, we consider using the RL to update the weight function and 

transition’s delay time of Petri net for constructing the LPN. In another word, LPN is an 

expanded HLTPN, in which some transition’s input arc weight function and transition delay 

time have a value item which records the reward from the environment.  

Definition 2: LPN has a 3-tuple structure, LPN= (HLTPN, VW, VT), where 

i. HLTPN= (NG, C, W, DT, M0) is a High-Level Time Petri Net and NG= (P, Tr, F).  

ii. VW (value of weight function): WinR, is a function marking on Win. An arc F  (P×Tr) 

has a set of weight function Win and each Win has a reward value item VW ∈real number.  

iii. VT (value of delay time): DTR, is a function marking on DT. A transition has a set of 

DT and each DT has a reward value item VT ∈real number. 

 

Figure 1. An example of LPN model 
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An example of LPN model is shown in Figure 1 Using LPN, a mapping of input-output 

tokens is gotten. For example, in Figure 1, colored tokens Cij (i=1;j=1, 2, …, n) are input to P1 

by Trinput. There are n weight functions W(<C1j>, VWC1j,1,j) on a same arc F1,j. it is according to 

the value VWCij,i,j that token C1j obeys what weight functions in W(<Cij>, VWCij,i,j) to fire a 

transition. After token C1j passed through arc Fi,j (i=1; j=1, 2, …, n), one of Tri,j (i=1; j=1, 2, …, 

n) fires and generates Tokens Cij (i=2; j=1, 2, …, n) in P2. After P2 has color Token Cij (i=2; j=1, 

2, …, n), Tri,j (i=2; j=1, 2, …, n) fires and different colored Token Cij (i=3; j=1, 2, …, n) is 

generated. Then, a mapping of C1j – C3j is gotten. At the same time, a reward will be gotten 

from environment according to whether it accords with system rule that C3j generated by C1j. 

These rewards are propagated to every VWCij,i,j and adjust the VWCij,i,j. After training, the 

LPN is able to express a correct mapping of input-output tokens. 

Using LPN to model a dynamic system, the system state is modeled as Petri net marking 

which is marked for a set of colored token in all places of Petri net, and the change of the 

system state (i.e. the system action) is modeled as fired of transitions. Some parameters of 

system can be expressed as token number and color, arc weight function, transition delay 

time, and so on. For example, different system signals are expressed as different colored 

of token. When the system is modeled, some parameters are unknown or uncertain. So, 

these parameters are set randomly. When system runs, the system parameters are gotten 

gradually and appropriately through system acting with environment and the effect of 

RL.  

2.3. Learning algorithm for LPN 

In LPN, there are two kinds of parameters. One is discrete parameter −− the arc’s weight 

function which describes the input and output colored tokens for transition. The other is 

continuous parameter −− the delay time for the transition firing. Now, we will discuss two 

kinds of parameters which are learnt using RL.  

2.3.1. Discrete parameter learning 

In LPN, RL is used to adjust VW and VT through interacting with environment. RL could 

learn the optimal policy of the dynamic system through environment state observation and 

improvement of its behavior through trial and error with the environment. RL agent senses 

the environment and takes actions. It receives numeric award and punishments from some 

reward function. The agent learns to choose actions to maximize a long term sum or average 

of the future reward it will receive. 

The arc weight function learning algorithm is based on Q-learning – a kind of RL [18]. In arc 

weight function learning algorithm, VWCij,i,j is randomly set firstly. So, the weight function 

on the arc is arbitrary. When the system runs, formula (1) is used to update VWCij,i,j.  

 VWCij,i,j = VWCij,i,jj +α[r+ 1 , 1,( )ci j i jVW   - VWCij,i,j]      (1) 

where,  
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i. á is the step-size,is a discount rate. 

ii. r is reward which W(<Cij>, VWCij,i,j) gets when Tri,j is fired by <Cij>. Here, because 

environment gives system reward at only last step, so a feedback learning method is 

used. If W(<Cij>, VWCij,i,j) through Tri,j generates Token <Ci+1,j> and W(<Ci+1j>, VWCi+1j,i+1,j) 

through Tri+1,j generates Token <Ci+2,j>, VWCi+1j,i+1,j gets an update value, and this value is 

feedback as W(<Cij>, VWCij,i,j) next time reward r. 

iii. 1 , 1,( )ci j i jVW   is calculated from feedback value of all W(<Ci+1j>, VWCi+1j,i+1,j) as formula 

(2). 

 1 , 1,( )ci j i jVW   t= 1 , 1,( )ci j i jVW   t-1+rt       (2) 

where t is time for that <Ci+1j> is generated by W(<Cij>, VWCij,i,j). 

When every weight function of input arc of the transition has gotten the value, each 

transition has a value of its action. The policy of the action selection needs to be considered. 

The simplest action selection rule is to select the service with the highest estimated state-

action value, i.e. the transition corresponding to the maximum VWCij,i,j. This action is called a 

greedy action. If a greedy action is selected, the learner (agent) exploits the current 

knowledge. If selecting one of the non-greedy actions instead, agent intends to explore to 

improve its policy. Exploitation is to do the right thing to maximize the expected reward on 

the one play; meanwhile exploration may produce the greater total reward in the long run. 

Here, a method using near-greedy selection rule called ε-greedy method is used in action 

selection; i.e., the action is randomly selected at a small probability ε and selected the action 

which has the biggest VW cij,i,j at probability 1−ε. Now, we show the algorithm of LPN which 

is listed in Table 1. 

 

Algorithm 1. Weight function learning algorithm 

Step 1. Initialization: Set all VWij and r of all input arc’s weight function to zero. 

Step 2. Initialize the learning Petri net. i.e. make the Petri net state as M0. 

Repeat i) and ii) until system becomes end state.  

i. When a place gets a colored Token Cij, there is a choice that which arc weight function is obeyed if 

the functions include this Token. This choice is according to selection policy which is ε greedy (ε 
is set according to execution environment by user, usually 0<ε<<1). 

A: Select the function which has the biggest VW cij,i,j  at probability1-ε; 
B: Select the function randomly at probability ε. 

ii. The transition which the function correlates fires and reward is observed. Adjust the weight 

function value using VWCij,i,j = VWCij,i,jj +α[r+ 1 , 1,( )ci j i jVW   - VWCij,i,j]. At the same time, α[r+

1 , 1,( )ci j i jVW   - VWCij,i,j] is fed back to the weight function with generated Cij as its reward for 

next time. 

Table 1. Weight function learning algorithm in LPN 
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2.3.2. Continuous parameter learning 

The delay time of transition is a continuous variable. So, the delay time learning is a 

problem of RL in continuous action spaces. Now, there are several methods of RL in 

continuous spaces: discretization method, function approximation method, and so on [4]. 

Here, discretization method and function approximation method are used in the delay time 

learning in LPN. 

Discretization method 

As shown in Figure 2 (i), the transition tr1 has a delay time t1. When p1 has a token <tokenn>, 

the system is at a state that p1 has a Token. This time transition tr1 is enabled. Because tr1 has 

a delay time t1, tr1 doesn’t fire immediately. After passing time t1 and tr1 fires, the token in p1 

is taken out and this state is terminated. Then, during the delay time of tr1, the state that p1 

has a token continues.  

Because the delay time is a continuous variable, the different delay time is discretized for 

using RL to optimize the delay time. For example, tr1 in Figure 2 (i) has an undefined delay 

time t1. Tr1 is discretized into several different transitions which have different delay times 

(shown in Figure 2 (ii)) and every delay time has a value item Q. After Tr1 fired at delay time 

t1i, it gets a reward r immediately or after its subsequence gets rewards. The value of Q is 

updated by formula (3). 

 Q(P,Tr) ←Q(P,Tr ) +α[r + γQ(P',Tr' ) - Q(P,Tr)]     (3) 

where, Q(P, Tr) is value of transition Tr at Petri net state P. Q(P',Tr' ) is value of transition T' 

at next state P' of P. α is a step-size, γ is a discount rate.  

      

p1

p2
:
:
:

(t11,Q11)

(t1n,Q1n)

tr11

tr1n

 
               (i) The high-level time Petri net model   (ii) The discretization learning model for the delay time 

Figure 2. Transformation form from high-level Petri net to the learning model 

After renewing of Q, the optimal delay time will be selected. In Figure 2 (ii), when tr11,…,tr1n 

get value Q11,…,Q1n ,respectively, the transition is selected by the soft-max method according 

to a probability of Gibbs distribution.  

 Pr{tt=t|pt=p} =
( , )

( , )

Q p t

Q p b

b A

e

e






       (4) 

where, Pr{tt=t|pt=p} is a probability selecting of transition t at state p, â is a positive inverse 

temperature constant and A is a set of available transitions.  
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Now, we found the learning algorithm of delay time of LPN using the discretization 

method. And it is listed in Table 2. 

 

Transition’s delay time learning algorithm 1 (Discretization method): 

Step 1. Initialization: discretize the delay time and set Q(p,t) of every transition’s delay time to zero. 

Step 2. Initialize Petri net, i.e. make the Petri net state as P1. 

       Repeat (i) and (ii) until system becomes end state.  

i. Select a transition using formula (4). 

ii. After transition fired and reward is observed, value of Q(p,t) is adjusted using formula (3). 

Step 3. Step 3. Repeat Step2 until t is optimal as required. 

Table 2. Delay time learning algorithm using the discretization method 

Function approximation method 

First, the transition delay time is selected randomly and executed. The value of the delay 

time is obtained using formula (3). When the system is executed m times, the data (ti, Qi(p,ti)) 

(i = 1, 2, …, m) is yielded. The relation of value of delay time Q and delay time t is supposed 

as Q = F(t). Using the least squares method, F(t) will be obtained as follows. It is supposed 

that F is a function class which is constituted by a polynomial. And it is supposed that 

formula (5) hold. 

 f(t) =
0

n
k

k
k

a t F


   (5) 

The data (ti, Qi(p,ti)) are substituted in formula (5). Then: 

 f(ti) =
0

n
k

k i
k

a t

  (i = 1, 2, …, m ; m ≥ n)  (6) 

Here, the degree m of data (ti, Qi(p,ti)) is not less than data number n of formula (5). 

According to the least squares method, we have (2.7). 

 2 2 2

1 1 0

|| || [ ] min
m m n

k
i k i i

i i k

a t Q 
  

         (7) 

In fact, (7) is a problem which evaluates the minimum solution of function (8). 

 2 2

1 0

|| || [ ]
m n

k
k i i

i k

a t Q
 

     (8) 

So, function (9), (10) are gotten from (8). 

 
2

1 0

|| ||
2 ( ) 0

m n
jk

k i i i
i kj

a t Q t
a



 


  

     (j =0, 1, …, n)   (9) 
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1 0 1

( )
m n m

j k j
i k i i

i k i

t a t Q

  
      (j = 0, 1, …, n).   (10) 

Solution of Equation (10) a0, a1, …, an can be deduced and Q = f(t) is attained. The solution 

t*opt of Q = f(t) which makes maximum Q is the expected optimal delay time.  

 
( )

0
f t

t





   (11) 

The multi-solution of (11) t = topt (opt = 1, 2, …, n-1) is checked by function (5) and a t*opt ∈topt 

which makes f(t*opt)= max f(topt) (opt = 1, 2, …, n-1) is the expected optimal delay time. t*opt is 

used as delay time and the system is executed and new Q(p, t*opt) is gotten. This (t*opt, Q(p, 

t*opt)) is used as the new and the least squares method can be used again to acquire more 

precise delay time. 

After the values of actions are gotten, the soft-max method is selected as the actions selection 

policy. And then, we found the learning algorithm of delay time of Learning Petri net using 

the function approximation method. And it is listed in Table 3. 

 

Transition’s delay time learning algorithm 2 ( Function approximation method): 

Step 1. Step 1. Initialization: Set Q(p, t) of every transition’s delay time to zero. 

Step 2. Step 2. Initialize Petri net, i.e. make the Petri net state as P1. 

     Repeat (i) and (ii) until system becomes end state.  

i. Randomly select the transition delay time t. 

ii. After transition fires and reward is observed, the value of Q(p, t) is adjusted using formula (3). 

Step 3. Step 3. Repeat Step 2 until adequacy data are gotten. Then, evaluate the optimal t using the 

function approximation method. 

Table 3. Delay time learning algorithm using the function approximation method 

3. Applying LPN to robotic system control 

3.1. Application for discrete event dynamic robotic system control 

A discrete event dynamic system is a discrete-state, event-driven system in which the state 

evolution depends entirely on the occurrence of asynchronous discrete events over time [2]. 

Petri nets have been used to model various kinds of dynamic event-driven systems like 

computers networks, communication systems, and so on. In this Section, it is used to model 

Sony AIBO learning control system for the purpose of certification of the effectiveness of the 

proposed LPN. 

AIBO voice command recognition system 

AIBO (Artificial Intelligence roBOt) is a type of robotic pets designed and manufactured by 

Sony Co., Inc. AIBO is able to execute different actions, such as go ahead, move back, sit 

down, stand up and cry, and so on. And it can "listens" voice via microphone. A command 
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and control system will be constructed for making AIBO understand several human voice 

commands by Japanese and English and take corresponding action. The simulation system 

is developed on Sony AIBO’s OPEN-R (Open Architecture for Entertainment Robot) [19]. 

The architecture of the simulation system is showed in Figure 3. Because there are English 

and Japanese voice commands for same AIBO action, the partnerships of voice and action 

are established in part (4). The lasted time of an AIBO action is learning in part (5). After an 

AIBO action finished, the rewards for correctness of action and action lasted time are given 

by the touch of different AIBO’s sensors. 

 

Figure 3. System architecture of voice command recognition 

LPN model for AIBO voice command recognition system 

In the LPN model for AIBO voice command recognition system, AIBO action change, action 

time are modeled as transition, transition delay, respectively. The human voice command is 

modeled by the different color Token. The LPN model is showed in Figure 4. The meaning 

of every transition is listed below: Tr input changes voice signal as colored Token which 

describe the voice characteristic. Tr11, Tr12 and Tr13 can analyze the voice signal. Tr1 generates 

35 different Token VL1….VL35 according to the voice length. Tr2 generates 8 different Token 

E21…E28 according to the front twenty voice sample energy characteristic. Tr3 generates 8 

different Token E41…E48 according to the front forty voice sample energy characteristic [8]. 

These three types of the token are compounded into a compound Token <VLl> + <VE2m> + 

<VE4n> in p2 [12]. 

Tr2j generates the different voice Token. The input arc’s weight function is ((<VLl>+<VE2m>+ 

<VE4n>), VWVlmn,2j) and the output arc’s weight function is different voice Token. And voice 

Token will generate different action Token through Tr3j. When Pr4 – Pr8 has Token, AIBO’s 

action will last. Tr4j takes Token out from p4 – p8, and makes corresponding AIBO action 

terminates. Tr4j has a delay time DT4i, and every DT4i has a value VT4i. Transition adopts 

which delay time DT4i according to VT4i. 

Results of simulation 

When the system begins running, it can’t recognize the voice commands. A voice command 

comes and it is changed into a compound Token in p2. This compound Token will randomly 

generate a voice Token and puts into p3. This voice Token randomly arouses an action 

Token. A reward for action correctness is gotten, then, VW and VT are updated. For 

example, a compound colored Token (<VLl>+ <VE2m> + <VE4n>) fired Tr21 and colored Token  
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Figure 4. LPN model of voice command recognition 

VC1 is put into p3. VC1 fires T32 and AIBO acts "go". A reward is gotten according to 

correctness of action. VWVC1,32 is updated by this reward and VWVC1,32 updated value is fed 

back to p2 as next time reward value of (<VLl>+ <VE2m> + <VE4n>) fired Tr21. After an action 

finished, a reward for correctness of action time is gotten and VT is updated.  

 

Figure 5. Relation between training times and recognition probability 

Figure 5 shows the relation between training times and voice command recognition 

probability. Probability 1 shows the successful probability of recently 20 times training. 

Probability 2 shows the successful probability of total training times. From the result of 

simulation, we confirmed that LPN is correct and effective using the AIBO voice command 

control system. 
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3.2. Application for continuous parameter optimization  

The proposed system is applied to guide dog robot system which uses RFID (Radio-

frequency identification) to construct experiment environment. The RFID is used as 

navigation equipment for robot motion. The performance of the proposed system is 

evaluated through computer simulation and real robot experiment. 

RFID environment construction 

RFID tags are used to construct a blind road which showed in Figure 6. There are forthright 

roads, corners and traffic light signal areas. The forthright roads have two group tags which 

have two lines RFID tags. Every tag is stored with the information about the road. The guide 

dog robot moves, turns or stops on the road according to the information of tags. For 

example, if the guide dog robot reads corner RFID tag, then it will turn on the corner. If the 

guide dog robot reads either outer or inner side RFID tags, it implies that the robot will 

deviate from the path and robot motion direction needs adjusting. If the guide dog robot 

reads traffic control RFID tags, then it will stop or run unceasingly according to the traffic 

light signal which is dynamically written to RFID. 

 

Figure 6. The real experimental environment 

LPN model for the guide dog 

The extended LPN control model for guide dog robot system is presented in Figure 7. The 

meaning of place and transition in Figure 7 is listed below: 

P1 System starting state P2 Getting RFID information 

P3 Turning corner state P4 Left adjusting state 

P5 Right adjusting state Tr1 Reading of the RFID environment 

Tr2 Stop of the guide dog Tr3 Guide dog runs 

Tr4 Start of the turning corner state Tr5 Start of left adjusting state 

Tr6 Start of the right adjusting state Tr7 Stop of the turning corner state 

Tr8 Stop of the left adjusting state Tr9 Stop of the right adjusting state 
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Figure 7. The LPN model for the guide dog robot 

When the system begins running, it firstly reads RFID environment and gets the 

information, Token puts into P2. These Tokens fire one of transition from Tr2 to Tr6 according 

to weight function on P2 to Tr2, …, Tr6. Then, the guide dog enters stop, running, turning 

corner, left adjusting or right adjusting states. Here, at P3, P4, P5 states, the guide dog turns at 

a specific speed. The delay time of Tr7-Tr9 decide the correction of guide dog adjusting its 

motion direction.  

Reward getting from environment 

When Tr7, Tr8 or Tr9 fires, it will get reward r as formula (12-b) when the guide dog doesn’t 

get Token <Left> and <Right> until getting Token <corner> i.e. the robot runs according 

correct direction until arriving corner. It will get reward r as formula (12-a), where t is time 

from transition fire to get Token <Left> and <Right>. On the contrary, it will get punishment 

-1 as (12-c) if robot runs out the road. 

 

(a)

. (b)

(c)

1/
1
1

t

r

e
 




 (12)  

Computer simulation and real robot experiment 
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When robot reads the <Left>, <Right> and <corner> information, it must adjust the direction 

of the motion. The amount of adjusting is decided by the continuing time of the robot at the 

state of P3, P4 and P5. So, the delay time of Tr7, Tr8 and Tr9 need to learn. 

       
(i) Direction adjustment of the robot motion on the forthright road 

 
(ii) Direction adjustment of the robot motion at the corner 

Figure 8. Direction adjustment of the guide dog robot motion 

Before the simulation, some robot motion parameter symbols are given as: 

v     velocity of the robot 

ω    angular velocity of the robot 

tpre   continuous time of the former state 

t     adjusting time 

tpost   last time of the state after adjusting 

v, ω, tpre, tpost can be measured by system when the robot is running. The delay time of Tr7, Tr8 

and Tr9, i.e. the robot motion adjusting time, is simulated in two cases. 

1. As shown in Figure 8 (i), when the robot is running on the forthright road and meets 

inside RFID line, its deviation angle θ is: 

 θ = arcsin(d1/l1) = arcsin(d1/(tpre�v)).              (13) 

where d1 and l1 are width of area between two inside lines and moving distance between 

two times reading of the RFID, respectively (See Figure 8). 
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Robot’s adjusting time (transition delay time) is t.  

If ωt -θ ≥ 0, then 

 tpost = 1

sin( )

d

v t 
,    (14) 

else  

   tpost = 2

sin( )

d

v t 
 .    (15) 

Here, tpost is used to calculate reward r using formula (12). In the same way, the reward r can 

be calculated when the robot meets outside RFID line. 

When the robot is running on the forthright road and meets the outside RFID line, the 

deviation angle θ is 

 θ= arcsin(d2/(v � tpre)),                  (16) 

Robot’s adjusting time (transition delay time) is t. 

If ωt -θ ≥ 0, then 

 tpost  =  2

sin( )

d

v t 
,                        (17) 

else the robot will runs out the road. And the reward r is calculated using formula (12). 

2. As shown in Figure 8 (ii), when the robot is running at the corner, it must adjust θ=90°. 

If θ≠90°, the robot will read <Left>, <Right> after it turns corner. Now, the case which 

the robot will read inner line <Left>, <Right> will be considered. If robot’s adjusting 

time is t. If ωt -θ≥0, then 

 tpost = 1

2 sin( )

d

v t 
,        (18) 

else                    

  tpost = 2

2 sin( )

d

v t 
 (19) 

Same to case (1), tpost is used to calculate reward r using formula (12). In the same way, the 

reward r can calculate when the robot meets outside RFID line. The calculation of reward, 

which is calculated from t, for other cases of direction adjustment of the robot is considered 

as the above two cases. 

In this simulation, the value of the delay time has only a maximum at optimal delay time 

point. The graph of relation for the delay time and its value is parabola. So, when 
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transition’s delay time learning by function approximation method which states in section 

2.2.3, the relation of the delay time and its value is assumed as: 

 Q = 2
2 1 0a t a t a  .              (20) 

Computer simulations of Transition’s delay time learning algorithms were executed in the 

all cases of the robot direction adjusting. In the simulation of algorithm of discretization, the 

positive inverse temperature constant β is set as 10.0. After the delay time of different cases 

was learnt, it is recorded in a delay time table. Then, the real robot experiment was carried 

out using the delay time table which was obtained by simulation process.  

Result of simulation and experiment 

The simulation result of transition’s delay time learning algorithm in two cases is shown in 

Figure 9. 

 
(i) Simulation result of moving adjustment on the forthright road 

   
(ii) Simulation result of moving adjustment at the corner 

Figure 9. Result of simulation for the guide dog robot 
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The simulation result of θ=5° for the robot moving adjustment on forthright road is shown 

in Figure 9 (i). The simulation result of robot moving adjustment at the corner is shown in 

Figure 9 (ii). From the result, it is found that the function approximation method can quickly 

approach optimal delay time than the discretization method, but the discretization method 

can approach more near optimal delay time through long time learning.  

4. Construction of the learning fuzzy Petri net model  

Petri net (PN) has ability to represent and analyze concurrency and synchronization 

phenomena in an easy way. PN approach can also be easily combined with other techniques 

and theories such as object-oriented programming, fuzzy theory, neural networks, etc. These 

modified PNs are widely used in the fields of manufacturing, robotics, knowledge based 

systems, process control, as well as other kinds of engineering applications [15]. Fuzzy Petri 

net (FPN), which combines PN and fuzzy theory, has been used for knowledge 

representation and reasoning in the presence of inexact data and knowledge based systems. 

But traditional FPN lacks of learning mechanism, it is the main weakness while modeling 

uncertain knowledge systems [25]. In this section, we propose a new learning model tool — 

learning fuzzy Petri net (LFPN) [7]. Contrasting with the existing FPN, there are three 

extensions in the new model: 1) the place can possess different tokens which represent 

different propositions; 2) these propositions have different degrees of truth toward different 

transitions; 3) the truth degree of proposition can be learned through the arc’s weight 

function adjusting. The LFPN model obtains the capability of fuzzy production rules 

learning through truth degree updating. The artificial neural network is gotten learning 

ability through weight adjusting. The LFPN learning algorithm which introduces network 

learning method into Petri net update is proposed and the convergence of algorithm is 

analyzed.  

4.1. The learning fuzzy Petri net model 

Petri net is a directed, weighted, bipartite graph consisting of two kinds of nodes, called 

places and transitions, where arcs are either from a place to a transition or from a transition 

to a place. Tokens exist at different places. The use of the standard Petri net is inappropriate 

in situations where systems are difficult to be described precisely. Consequently, fuzzy Petri 

net is designed to deal with these situations where transitions, places, tokens or arcs are 

fuzzified.  

The definition of fuzzy Petri net  

A fuzzy place associates with a predicate or property. A token in the fuzzy place is 

characterized by a predicate or property belongs to the place, and this predicate or property 

has a level of belonging to the place. In this way, we may get a fuzzy proposition or 

conclusion, for example, speed is low. A fuzzy transition may correspond to an if-then fuzzy 

production rule for instance and is realized by truth values such as fuzzy inference 

algorithms [11, 20, 26].  
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Definition1 FPN is a 8-tuple, given by FPN=<P, Tr, F, D, I, O, α, β > 

where:   

P = {p1, p2, … , pn} is a finite set of places;  

Tr = {tr1, tr2, … , trm} is a finite set of transitions; 

F  (P×Tr)∪(Tr×P) is a finite set of directional arcs; 

D = {d1, d2, … , dn} is a finite set of propositions, where proposition di corresponds to place pi; 

P ∩ Tr ∩ D = �; cardinality of (P) = cardinality of (D);  

I: tr → P∞ is the input function, representing a mapping from transitions to bags of (their 

input) places, noting as *tr;  

O: tr → P∞ is the output function, representing a mapping from transitions to bags of (their 

output) places, noting as tr*;  

α: P → [0, 1] and β: P → D. A token value in place piϵP is denoted by α(pi)ϵ [0, 1]. If α(pi)=yi, 

yi∈[0, 1] and β(pi)= di,, then this states that the degree of truth of proposition di is yi.  

A transition trk is enabled if for all pi∈I(trk), α(pi)≥th, where th is a threshold value in the unit 

interval. If this transition is fired, then tokens are moved from their input place and tokens 

are deposited to each of its output places. The truth values of the output tokens are yi�uk, 

where uk is the confidence level value of trk. FPN has capability of modeling fuzzy 

production rules. For example, the fuzzy production rule (21) can be modeled as shown in 

Figure 10. 

 IF di THEN dj (with Certainty Factor (CF) uk)          (21) 

 

Figure 10. A fuzzy Petri net model (FPN) 

The definition of LFPN  

In a FPN, a token in a place represents a proposition and a proposition has a degree of truth. 

Now, three aspects of extension are done at the FPN and learning fuzzy Petri net (LFPN) is 

constructed. First, a place may have different tokens (Tokens are distinguished with 

numbers or colors) and the different tokens represent different propositions, i.e. a place has 

a set of propositions. Second, a place has a special token, i.e. there is a specified proposition. 

This proposition may have different degrees of truth toward different transitions tr which 

regard this place as input place *tr. Third, the weight of each arc is adjustable and used to 

record transition’s input and output information.  

Definition 3 LFPN is a 10-tuple, given by LFPN= <P, Tr, F, D, I, O, Th, W, α, β> (A LFPN 

model is shown in Figure 11). 

where: Tr, F, I, O are same with definition of FPN. 
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P={ p1, p2,…, pi,…, pn,…, p′1, p′2,…, p′i,…, p′r} is a finite set of places, where pi is input place 

and p′i is output places. 

D = {d11, … , d1N ; d21, …, d2N ; …, dij, …; dn1, … , dnN ; d′11, … , d′1N ; d′21, …, d′2N ; …, d′ij, …; d′r1, 

… , d′rN} is a finite set of propositions, where proposition dij is j-th proposition for input 

place pi and proposition d′ij is j-th proposition for output place p′i. 

W ={w11, w12, …, w1k, …, w1m; …; wi1, wi2, …, wik, …, wim; …；wn1, wn2, …, wnm; w′11, w′12, …, 

w′1r; …; w′k1, w′k2, …, w′kj，…, w′kr; …；w′m1, w′m2, …, w′mr}  is the set of weights on the arcs, 

where wik is a weight from i-th input place to k-th transition and w′kj is a weight from k-th 

transition to j-th output place. 

W ={w11, w12, …, w1k, …, w1m; …; wi1, wi2, …, wik, …, wim; …；wn1, wn2, …, wnm; w′11, w′12, …, 

w′1r; …; w′k1, w′k2, …, w′kj，…, w′kr; …；w′m1, w′m2, …, w′mr}  is the set of weights on the arcs, 

where wik is a weight from i-th input place to k-th transition and w′kj is a weight from k-th 

transition to j-th output place. 

α(dij, trk)→ [0, 1] and β: P → D. When pi∈P has a special tokenij and β(tokenij, pi)=dij, the degree 

of truth of proposition dij in place pi toward to transition trk is denoted by α(dij, trk ) ∈ [0, 1]. 

When trk fires, the probability of proposition dij in pi is α(dij, trk ) . 

 

 

 

 
 

 

Figure 11. The model of learning fuzzy Petri net (LFPN)  

α(dij, trk)→ [0, 1] and β: P → D. When pi∈P has a special tokenij and β(tokenij, pi)=dij, the degree 

of truth of proposition dij in place pi toward to transition trk is denoted by α(dij, trk ) ∈ [0, 1]. 

When trk fires, the probability of proposition dij in pi is α(dij, trk ) . 
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Figure 12. A LFPN model with one transition 

Th = {th1, th2, …, thk, … , thm} represents a set of threshold values in the interval [0, 1] 

associated with transitions (tr1,  tr2, …,  trk, …, trm), respectively; If all pi∈I(trk) and α(dij, 

trk )≥thk, trk is enable. 

As showed in Figure 12, when pi has a tokenij, there is proposition dij in pi. This proposition dij 

has different truth to tr1, tr2, …, trk, …, trm. When a transition trk fired, tokens are put into p′1, 
…, p′r according to weight w′k1, …, w′kr and each of p′1, …, p′r gets a proposition. 

Figure 11 shows a LFPN which has n-input places, m-transitions and r-output places. To 

explain the truth computing, transition fire rule, token transfer rule and fuzzy production 

rules expression more clearly, a transition and its relation arcs, places are drawn-out from 

Figure 11 and shown in Figure 12. 

Truth computing As shown in Figure 12, wik is the perfect value for tokenij when trk fires. 

When a set of tokens= (token1j, token2j, …, tokenij, …, tokennj) are input to all places of *trk, 

β(token1j, p1)= d1j, …, β(tokennj, pn)= dnj. α(dij, trk ) is computed using the degree of similarity 

between tokenij and wik and calculation formula is shown in formula (22). 

 ( , ) 1
max( , )

ik ij

ij k

ik ij

w token
d tr

w token



     (22) 

According to LFPN models for different systems, the token and weight value may have 

different data types. There are different methods for computing α(dij, trk ) according to data 

type. If value types of token and weight are real number, α(dij, trk ) is computed as formula 

(2). In Section 4, α(dij, trk ) will be discussed for a LFPN model which has the textual type 

token and weight. 

Transition fire rule As shown in Figure 12, when a set of tokens=(token1j, token2j, …, tokennj) 

are input to all places of *trk, and β(token1j, p1)= d1j, …, β(tokennj, pn)= dnj. If all α(dij, trk ) (i=1, 

2, …, n) ≥thk is held, trk is enabled. Maybe, several transitions are enabled at same time. If 

formula (23) is held, trk is fired.  
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1 2

1 2 1

( , ) ( , ) ... ( , )

max( ( , ) ( , ) ... ( , ) )

j k j k nj k

j h j h nj h h m

d tr d tr d tr

d tr d tr d tr

  

    

  

       (23) 

Token transfer rule As shown in Figure 12, after trk fired, token will be taken out from p1~pn. 

The token take rule is:  

If tokenij ≤wik is held, tokenij in pi will be taken out. 

If tokenij ≥wik is held, token which equates tokenij−wik will be left in pi. 

Thus, after a transition trk fired, maybe the enable transitions still exist in LFPN. An enable 

transition will be selected and fired according to formula (23) until there isn’t any enable 

transition.  

After trk fired, the token according w′ki will be put into p′i. For example, if the weight 

function of arc trk to p′i is w′ki, then token which equates w′ki will be put into p′i. 

Fuzzy production rules expression A LFPN is capable of modeling for fuzzy production 

rules just as a FPN. For example, as a case which states in Transition fire rule and Token 

transfer rule, when trk is fired, the below production rule is expressed: 

IF d1j AND d2j AND … AND dnj THEN d′1k AND d′2k AND … AND d′rk  

 (CF=α (d1i, trk )�α(d2i, trk )�…�α(dni, trk ))                        (24) 

The mathematical model of LFPN 

In this section, the mathematical model of LFPN will be elaborated. Firstly, some 

conceptions are defined. When a tokenij is input to a place pi, it is defined event pij occurs, i.e. 

the proposition dij is generated and probability of event pij is Pr(pij). The fired trk is defined as 

event trk and probability of event trk occurrence is Pr(trk). Secondly, we assume that each 

transition tr1, tr2, …, trk, …, trm has the same fire probability in whole event space, then 

 
1

( )ktr
m

Pr   (25) 

And when event trk occurs, the conditional probability of pij occurrence is defined as Pr(pij | 

trk), i.e. á(dij, trk ) which is the probability of proposition dij generation when trk fires. 

When p1, p2 , …, pn have token1j, token2j…tokennj and events p1j , p2j , …, pnj occur. Then, Pr(trk | 

p1j , p2j , …, pnj) is: 

 
1 2

1 2

1 2
1

( , ,..., | ) ( )
( | , ,..., )

( ) ( ,..., )

j j nj k k

k j j nj m

h j j nj
h

p p p tr tr
tr p p p

tr p p p






Pr Pr
Pr

Pr Pr

   (26) 

When events p1j, p2j, …, pnj occurred, there is one of transitions tr1, tr2, …, trk, …, trm which 

will be fired, therefore 



 
Construction and Application of Learning Petri Net 163 

 1 2
1

( ) ( , ,..., ) 1
m

h j j nj
h

tr p p p


Pr Pr    (27) 

From (25), (26) and (27), (28′) is gotten by the formula of full probability and Bayesian 

formula. 

 1 2 1 2

1
( | , ,..., ) ( , ,..., | )k j j nj j j nj ktr p p p p p p tr

m
Pr Pr   

             1 2

1
( | ) ( | ) ... ( | )j k j k nj kp tr p tr p tr

m
   Pr Pr Pr      (28′) 

 1 2

1
( , ) ( , ) ... ( , )j k j k n j kd tr d tr d tr

m
              (28) 

The transformation from (28′) to (28) is according to definition of α(dij, trk). As shown in 

Figure 11, when p1, p2 , …, pn have token1j, token2j…tokennj, the occurring probability of 

transition tr1, …, trk, …, trm are α(d1j, tr1) �α(d2j, tr1) �…�α(dnj, tr1)/m, …, α(d1j, trk) �α(d2j, trk) 

�…�α(dnj, trk)/m, …, α(d1j, trm) �α(d2j, trm) �…�α(dnj, trm)/m. Thus, the transition trk, which has 

maximum of α(d1j, trk) �α(d2j, trk) �…�α(dnj, trk), is selected and fired according to formula 

(23). 

4.2. Learning algorithm for learning fuzzy Petri net 

Learning algorithm 

The learning fuzzy Petri net (LFPN) can be trained and made it learn fuzzy production 

rules. When a set of data input LFPN, a set of propositions are produced in each input place. 

For example, when token vectors (token1j, token2j, …, tokennj) (j=1, 2, …, N) input to p1~pn, 

propositions d1j, d2j, …, dnj (j=1, 2, …, N) are produced. To train a fuzzy production rule 

which is IF d1j AND d2j AND … AND dnj THEN d′1k AND d′2k AND … AND d′nk, there are 

two tasks: 

1. α(d1j, trk )�α(d2j, trk )�…�α(dnj, trk ) (k∈{1,2,…m}) need to be updated to hold formula 

(23); 

2. 2) The output weight function of trk need to be updated for putting correct token to 

p′1~p′r. Then, β(p′1) = d′1k, β(p′2) = d′2k, …, β(p′r) = d′rk.  

To accomplish these two tasks, the weights w1k, w2k, …, wnk and w′k1, w′k2, …, w′kr are 

modified by a learning algorithm of LFPN. Firstly, we define the training data set as {(X1, 

Y1), (X2, Y2), …, (XN, YN)}, where X is input token vector, Y is output token vector and Xj, Yj is 

defined as Xj=( x1j, x2j, …, xnj)T, Yj=( y1j, y2j, …, yrj)T, respectively. Thus, 

X=(X1, X2, …,  Xj, …, XN,),  Y=( Y1,  Y2,  …, Yj, …, YN) , i.e. 
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X=

11 12 1 1

21 22 2 2

: : : : : :
: : : : : :

1 2

... ...

... ...

... ...

j N

j N

n n nj nN

x x x x

x x x x

x x x x
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 
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 
 
 
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     Y=

11 12 1 1

21 22 2 2

: : : : : :
: : : : : :

1 2

... ...

... ...

... ...

j N

j N

r r rj rN

y y y y

y y y y

y y y y

 
 
 
 
 
 
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Secondly, the weight Wk=(w1k, w2k , …, wnk)T is the weight on arcs from *trk to trk and 

W′k=( w′k1, w′k2, …, w′kr)T is the weight on arcs from trk to trk*. W1, …, Wk, …, Wm and W′1, …, 

W′k, …, W′m are the input and output arcs weight for tr1, …, trk, …, trm. Thus, 

W=(W1, W2,…, Wk, …, Wm), W′=(W′1, W′2,…, W′k, …, W′m), i.e. 

W=

11 12 1 1

21 22 2 2
: : : : : :
: : : : : :

1 2
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k m

k m

n n nk nm
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 
 
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 W′=

11 21 1 1

12 22 2 2
: : : : : :
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... ...

k m

k m

r r kr mr

w w w w

w w w w

w w w w

   

   

   

 
 
 
 
 
  

 

Lastly, in the learning algorithm, when trk is fired, the truth of d′1j, d′2j, …, d′rj to trk are 

defined as α(d′1j, trk )=1−|y1j−w′k1|/max (|w′k1|, |y1j|), α(d′2j, trk )=1−|y2j− w′k2| / max 

(|w′k2|,  |y2j|), …, α(d′rj, trk )=1 − |yrj− w′kr| / max(|w′kr|, |yrj|) according to definition 3.The 

learning algorithm of learning fuzzy Petri net is shown in Table 4. 

 

Learning Algorithm of LFPN:

Step 1. W and W′ are selected randomly. 

Step 2. For every training data set (Xj, Yj)(j=1, 2, …, N), subject propositions d1j, d2j, …, dnj in p1~pn and 

propositions d′1j, d′2j, …, d′rj in p′1~p′r are produced. Then do step 3 to step 7; 

Step 3. For  i=1 to n 

  For h=1 to m do 

Compute α(dij, trh ) according to formula (2); 

Step 4. Compute maximum truth of transition 

4.1 Max=α(d1j, tr1 ) �α(d2j, tr1 ) �…� α(dnj, tr1 ); k=1; 

4.2 For h=1 to m do  

If α(d1j, trh ) �α(d2j, trh ) �…� α(dnj, trh )>Max 

Then { Max=α(d1j, trh ) �α(d2j, trh ) �…� α(dnj, trh ); 

k=h; } 

Step 5. Fire trk; 

Step 6. Make d1j, d2j, …, dnj have bigger truth to trk, 

                                                                Wk(new) = Wk (old) + γ(Xj−Wk (old))                                                          (29) 

(Wk (new) is the vector Wk after update and Wk (old) is the vector Wk before updated. 

γ∈(0,1) is learning rate.) 

Step 7. Make d′1j, d′2j, …, d′rj have bigger truth to trk, 

                                              W′k(new) = W′k(old) +γ(Yj−W′k(old) )                                                         (30) 

(W′k(new) is the vector W′k after update and W′k(old) is the vector W′k before updated. γ∈ 

(0,1) is learning rate.) 

Step 8. Repeat step 2-7, until the truth of α(d1j, trk ), α(d2j, trk ), …, α(dnj, trk ) meet the requirement. 

Table 4. Learning algorithm of learning fuzzy Petri net 
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Some details in the algorithm need to be elaborated further.  

1. About the net construction: The number of input and output places can be easily set 

according to a real problem. It is difficult to decide a number of transitions when the net 

is initialized. When LFPN is used to solve a special issue, the number of transitions is 

initially set according to practical situation experientially. Then, transitions can be 

dynamically appended and deleted during the training. If an input data Xj has a 

maximal truth to trk but one or several α(dij, trk)(1≤i≤n) are less than thk (threshold of trk), 

transition trk cannot fire according to definition 3. Thus, data Xj cannot fire any existed 

transition. This case means that W1, W2, …, Wk, …, Wm cannot describe the vector 

characteristic of Xj. Then, a new transition trm+1 and the arcs which connect trm+1 with 

input and output place are constructed. Xj can be set as weight Wm+1 directly. Second, 

during a training episode, if there is no data in X1, X2, …, XN that can fire transition trd, it 

means that Wd cannot describe the vector characteristic of any data X1, X2, …, XN. Then, 

the transition trd and the arcs which connect trd with input and output place will be 

deleted. 

2. About W and W′ initialization: for promoting training efficiency at the first stage of 

training, W and W′ are set randomly in [Xmin, Xmax], [Ymin, Ymax] (Xmin is a vector which 

every components is minimal component of vector set X1, X2, …, XN; Xmax is a vector 

which every components is maximal component of vector set X1, X2, …, XN; Ymin, Ymax 

are same meaning with Xmin, Xmax).  

3. Training stop condition of the learning algorithm: According to application case, th1, 

th2, …, thk, … thm are generally set a same value th. When training begins, the threshold 

th is set low (for example 0.2), th increases as training time increasing. A threshold value 

thlast (for example 0.9) is set as training stop condition and algorithm is run until α(d1j, 

trk )> thlast, α(d2j, trk ) > thlast …α(dnj, trk ) > thlast. From transition appending analysis, we 

understand that number of transitions will near to the number of training data if the 

threshold of transition sets near to 1. In this case, results will be obtained more correctly 

but the training time and LFPN running time will increase. 

Analysis for convergence of LFPN learning algorithm 

In this section, the convergence of the proposed algorithm will be analyzed. In step 6 of the 

LFPN learning algorithm, the formula (29) is used for making Wk (new) approach Xj than 

Wk (old) when Xj fired a transition trk. It is proved as follows.  
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 



   

 

 


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X W
             (31′) 

Formula (11′) is rewritten as a scalar type and the scalar type of   (Xj–Wk (old)) is used to 

divide both sides of formula (11′). We get formula (11). 
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Hence, Wk will converge to Xj after enough training times.  

In LFPN learning algorithm, there may be a class of training data Xj which are able to fire 

same transition trk. In this case, Wk approaches to a class of data Xj and converges to a point 

in the class of data Xj according to formula (31).  

Now, we will discuss the point in the class of data Xj where Wk converges to. Supposing, 

there are b1 data which are in X1, X2, …, Xj, …, XN and fire a certain transition trk at the first 

training episode. At the second training episode, there are b2 data which fire trk, and so on. If 

the total training times is ep and the total number of data which fire trk is t, t =
1

ep

ii
b

 . 

According to the order of the data fired trk, these t data are rewritten as Xk1, Xk2, …, Xkt. The 

average of training data Xk1, Xk2, …, Xkt is noted as X k. To record the updated process of Wk 

simply, the updated order of Wk is recorded as Wk1,Wk2…. Wkt.  

The learning rate γ (0<γ<1) will decrease according to training time increasing, and it 

approaches to 0 at last because every training data cannot effect Wk too much in the last 

stage of training, else Wk will shake at the last stage of training. If learning rate γ is set as 

1/(q+1) (q>0) when training begin, 1/(q+2), 1/(q+3), …, 1/(q+t) are set as learning rate γ when 

trk is fired at 2, 3, …, t time. Here, the initial values of Wk is set as Wk0=W(0)×1/q, every 

component of W(0) ×1/q is a random value in [Xmin, Xmax]. According to formula (29), we get 
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 ( (0)
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1
... )k k t ktq t     


W X X X               (32) 

When the training time increases, the training data set Xk1, Xk2, …, Xkt can be looked as very 

large, i.e. t is large.  
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1
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t t q t  

    


W W X X X                       (33) 

Generally, q is a small positive constant and t is large. Then, 
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    X X X X              (34) 

From formula (14) will be gotten: 

 Wk→ kX      (35) 

In the same way, Wk→ kX (k=1, 2, …, m) and W′k→ kY (k=1, 2, …, m) can be proved. 

Consequently, the learning algorithm of LFPN converges. 

Now, we will analyze the convergence process and signification of convergence. 

1. Xk1, Xk2, …, Xkt fire a certain transition trk at training time. As the training time increase, 

there are almost same data which fire the transition trk in every training time. These 

data belong to a class k. We suppose that these data are Xk1, Xk2, …, Xks. When training 

begins, supposing, there is data Xu which does not belong to Xk1, Xk2, …, Xks but fires trk. 

But, when training times increase, Wk will approach to Xk1, Xk2, …, Xks and the 

probability which Xu fires trk will decrease. Hence, this type data Xu is very small part of 

Xk1, Xk2, …, Xkt. Xu little affects to Wk. On the other hand, when training begins, there is 

Xke which belongs to Xk1, Xk2, …, Xks but doesn’t fire transition trk. But, when training 

times increase, the probability which Xke fires trk increases, then, Xk1, Xk2, …, Xks can be 

approximately looked firing trk according to the training. kX is denoted as the average 

of training data Xk1, Xk2, …, Xks. 

2. In the convergence demonstration, we use a special series of learning rate γ. Form the 

analysis in 1), Xk1, Xk2, …, Xks can be looked as a class data which fires one transition trk. 

The data series Xk1, Xk2, …, Xkt can be looked as iterations of Xk1, Xk2, …, Xks. Wk can 

converge to a point near kX with any damping learning rate series γ. 

3. After training, Wk=(w1k, w2k, …, wnk) comes near to the average of data which belong to 

class k, i.e., Wk ≈ kX =( x 1k, x 2k, …, x nk). When a data Xkj belong to class k comes, Xkj will 
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have same vector characteristic with Xk1, Xk2, …, Xks, i.e. x1,kj, x2,kj, …, xn,kj are near to w1k, 

w2k, …, wnk. Then, each component xi, kj (1≤i≤n) of this data Xkj will have bigger similarity 

to wik (1≤i≤n) than i-th components of other weight W according to formula (2). Xkj will 

have biggest truth to trk according to formula (2). Thus, when data Xkj which belongs to 

class of Xk1, Xk2, …, Xks inputs to LFPN, it will fire trk correctly and product correct 

output. 

5. Web service discovery based on learning fuzzy Petri net model  

Web services are used for developing and integrating highly distributed and heterogeneous 

systems in various domains. They are described by Web Services Description Language 

(WSDL). Web services discovery is a key to dynamically locating desired Web services 

across the Internet [16]. It immediately raises an issue, i.e. to evaluate the accuracy of the 

mapping in a heterogeneous environment when user wants to invoke a service. There are 

two aspects which need to evaluate. One is functional evaluation. The service providing 

function should be completely matched with user’s request; another aspect is non-functional 

evaluation, i.e. Quality of Service (QoS) meets user’s requirement. UDDI (Universal 

Description, Discovery and Integration) is widely used as a kind of discovery approach for 

functional evaluation. But, as the number of published Web services increases, discovering 

proper services using the limited description provided by the UDDI standard becomes 

difficult [17]. And UDDI cannot provide the QoS information of service. To discover the 

most appropriate service, there are necessary to focus on developing feasible discovery 

mechanisms from different service description methods and service execution context. 

Segev proposed a service function selection method [21]. A two-step, context based semantic 

approach to the problem of matching and ranking Web services for possible service 

composition is elaborated. The two steps for service function selection are Context extraction 

and Evaluation for Proximity degree of Service. Cai proposed service performance selection 

method [3]. The authors used a novel Artificial Neural Network-based service selection 

algorithm according to the information of the cooperation between the devices and the 

context information. In this paper, we aim at analyzing different context of services and 

constructing a services discovery model based on the LFPN. Firstly, different service 

functional descriptions are used to evaluate service function and an appropriate service is 

selected. Secondly, context of QoS is used to predict QoS and a more efficient service is 

selected. Data of QoS is real number and LFPN learning algorithm is directly used. But 

service function description is literal. Therefore, a Learning Fuzzy Petri Net for service 

discovery model is proposed for keyword learning based on LFPN. 

5.1. Web services discovery model based on LFPN  

To map a service’s function accurately, free textual service description, WSDL description, 

Web service’s operation and port parameters which are drawn from WSDL are used as 

input data here. Because the input data type is keyword, the proposed LFPN cannot deal 

with this type of data. Consequently, a Learning Fuzzy Petri Net for Web Services Discovery 
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model (LFPNSD) is proposed. LFPNSD is a 10-tuple, given by LFPNSD = <P, Tr, F, W, D, I, O, 

Th, α, β > (as shown in Figure 13.) 

where: Tr, I, O, Th, β are same with definition of LFPN. 

P= {Pinput}∪{Poutput}={P11, P12, P13}∪{P21, P22, P23, P24} 

F  (Pinput×Tr)∪(Tr×Poutput) 

W=F→ Keywords+, where weight function on Pinput×Tr  are different keywords of service 

description and weight function on Tr×Poutput are different service invoking information. 

D = {d11,a, d12,b, d13,c}∪{d21,e, d22,f , d23,g, d24,h } is a finite set of propositions, where proposition d11, a 

is that P11 has a service description tokens; proposition d12, b is that P12 has a free textual 

description tokens; proposition d13, c is that P13 has a service operation and port parameters 

tokens. And the propositions d21, e, d22, f, d23, g, d24, h are that P21, P22, P23, P24 have different 

invoking information tokens of services. 

 

Figure 13. The learning fuzzy Petri net for Web service discovery (LFPNSD) 

α(dij, trk )→ [0, 1]. α(dij, trk)=yi∈ [0, 1] is the degree of truth of proposition dij to trk. α(dij, trk) is 

computed by bellow rules: if input description has n keywords and the wik on arc Pi to trk has 

s same keywords, the degree of similarity between weight keywords and input description 

keywords is expressed as:  

   | |
, 1

max( , )ij k

n s
d tr

n s
 

     (36) 

The fire rule of transition: if α(d11,a, trk) �α(d12,b, trk) �α(d13,c, trk) =max((α(d11,a, tri) �α(d12,b, tri) 

�α(d13,c, tri))1≤i≤m) and all of α(d11,a, trk), α(d12,b, trk), α(d13,c, trk) are bigger than a threshold value 

th, then trk fires, the tokens in P11~P13 are taken out and tokens which according to wk,21, wk,22, 

wk,23, wk,24 are put into P21~P24. 
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As shown in Figure 13, service free textual description, WSDL description and operation 

and port information are used as input vector in the learning algorithm. And, service 

classification, WSDL address, all of service operation names and service SOAP messages are 

used as output vector. Because the training data type is the keyword, the learning algorithm 

of LFPN is developed into a learning algorithm of LFPNSD. The learning algorithm of 

learning fuzzy Petri net for Web service discovery is shown in the table 5. 

 

Learning Algorithm of LFPNSD:

Step 1. Make all weights on arcs be �; 

Step 2. For every service in training data set,  

Repeat: 

2.1 Get free textual description; Draw out WSDL description and operation and port name 

from WSDL; 

2.2 Set service textual description, WSDL description, operation and port information as input 

vector; 

2.3 Compare the input with the keywords on the weight of input arc:  

If every keyword in weight is in the input data, then compute α(dij, trk) according to 

formula (16), else set α(dij, trk) =0.  

If each of α(dij, tr1), α(dij, tr2), …, α(dij, trm-1) equates 0 and the weight of trm is �, then set 

α(dij, trm) =1.  

If each of α(dij, tr1), α(dij, tr2), …, α(dij, trm-1) equates 0�and trm doesn’t exist, a new 

transition trm and the arcs which connect trm with input and output place are constituted, 

set weight of arcs to be ��and α(dij, trm) =1. 

2.4 If α(d11,a, trk) �α(d12,b, trk) �α(d13,c, trk) =max((α(d11,a, tri) �α(d12,b, tri) �α(d13,c, tri)) 1≤i≤m), then trk 

fires. 

2.5 If the trk fired, get a keyword in service description but not in the weight, and add it into 

the weight.  

If training time is t and the weight is �, t keywords in service description are gotten and 

they are added into the weight. 

2.6 If the trk fired, compare out training data (service classification, WSDL address, service 

operation and message) with the weight of wk,21, wk,22, wk,23, wk,24, and calculate and record 

the correct rate of output.  

2.7 Update wk,21, wk,22, wk,23, wk,24 according to output of training data. 

Step 3. Repeat step 2, until each α(d11,a, trk), α(d12,b, trk), α(d13,c, trk) meets the requirement value thk. 

Table 5. Learning algorithm of learning fuzzy Petri net for Web service discovery 

Discussion:  

1. We discuss about the learning rate γ in the learning algorithm of LFPNSD. In the 

algorithm, the keyword is learned and added into weights one by one. Hereby, Xj–Wk 

(new) =1 and Xj−W(old) equates the difference between the number of input data keywords 

and the number of keywords on arc weight. Because Xj−W(old) is not constant, the 

learning rate γ is different at each learning episode. For example, when input data has 

10 keywords and arc weight has 6 keywords firstly, one keyword is learnt from input 

data and added into weight. In this case, the learning rate is 1/(10-6)=0.25.  

2. If keyword isn’t learning one by one, the keywords on W1, W2, …, Wk, …, Wm will do 

not balance at beginning stage of training. Then, the similar but different description 
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services have unbalance probability to fire transition at beginning stage of training. This 

makes the similar but different description services improperly fire a transition which 

has more keywords on its weight. It makes training efficiency lower. 

3. In step 2.3 of algorithm, when each of α(dij, tr1), α(dij, tr2), …, α(dij, trm-1) equates 0, it 

means all weights on transition tr1~ trm-1 cannot describe this service. Therefore, it is a 

new type service. If there is a transition which has weight arc, it is used to record the 

new type service; else a new transition needs to be constructed. 

5.2. The result of simulation  

The two simulations are carried out. One is a more efficient service selection through QoS 

prediction using LFPN. The other is a service selection for appropriate function using 

LFPNSD. 

Simulation for more efficient Web service selection  

During the process of Web services discovery, there are maybe several services which have 

same function. One service which has the best QoS needs to be select. Hereby, the service 

performance context is used to predict the QoS value for next execution of service. If the 

prediction is precise enough, an appropriate service maybe selected.  

In this simulation, LFPN is used as learning model for predicting service execution time 

which is main part of QoS. There are 11 inputs and 1 output in this model. 11 inputs include 

10 data which are last 10 times execution time of a service and one data which is reliability 

of the service. The output is a prediction for execution time of service’s next execution. 10 

transitions of LFPN is set when initialization.  

A Web service performance dataset is employed for simulation. This dataset includes 100 

publicly available Web services located in more than 20 countries. 150 service users executed 

about 100 invocations on each Web service. Each service user recorded execution time and 

invocation failures in dataset [27]. We selected one use’s invocation data as training data. 

Last 10 times execution time and reliability of each service was set as input and next time 

execution time was set as output. 20 sets of training data were selected for each of 100 

services. 

The initial threshold is selected as 0.2 and the threshold is increased 0.001 at every training 

episode. The initial learning rate is set as 1/1.1 for every transition. The learning rate is 

1/(0.1+t) when a transition fired t times. Prediction result and training output data are noted 

as Outputpredict and Outputtraining. Prediction precision probability Prepro is used to evaluate the 

precision result. And the precision probability is computed using: 

  Prepro =1-(|Outputpredict−Outputtraining|/ Outputtraining).  

Three different training stop conditions are set as that three threshold values equal to 0.7, 

0.8, and 0.9. The simulation result is listed in Table 6. Here, the number of service, which 

their execution time is precisely predicted, increased with the training threshold value 

increasing. 



 
Petri Nets – Manufacturing and Computer Science 172 

In the paper [3], the authors improved the traditional BP algorithm based on three-term 

method consisting of a learning rate, a momentum factor and a proportional factor for 

predicting service performance according to service context information. In this paper, this 

model is used to predict service execution time. The training data is same to LFPN’s. And 

the learning rate is 0.6, momentum factor 0.9, proportional factor 1 and training times is 

10,000. We compared the simulation result of the method of [3], i.e. the conventional 

method, with that of LFPN in Table 7. From Table 7, it is shown that Web service number of 

high precision in LFPN’s prediction is bigger than the number of BP algorithm’s prediction 

and Web service number of low precision in LFPN’s prediction is smaller that BP 

algorithm’s prediction. Hereby, the result of LFPN is better than result of three term’s BP 

algorithm.  

 

Precision 0.99~1 0.98~0.99 0.95~

0.98

0.9~0.95 0.8~0.9 0.7~0.8 0.6~0.7 0~0.6 

Number of Web services (th= 0.9) 21 14 17 15 10 8 9 6 

Number of Web services (th= 0.8) 17 12 14 11 10 12 10 14 

Number of Web services (th= 0.7) 10 10 16 8 8 11 19 18 

Table 6. Prediction ability of LFPN 

 

Precision 0.99~1 0.98~0.99 0.95~0.98 0.9~0.95 0.8~0.9 0.7~0.8 0.6~0.7 0~0.6 

Number of Web services using the 

LFPN(th=0.9) 

21 14 17 15 10 8 9 6 

Number of Web services using the 

conventional method

6 7 15 18 20 12 10 12 

Table 7. Prediction ability compares for two methods 

Simulation for selection of Web service’s function 

In this simulation, LFPNSD is used as leaning model. The benchmark Web services which 

listed at www.xmethods.net are used as training data. Each service of these 260 services has 

a textual description and its WSDL address. And, we can get WSDL description, operation 

and port parameters from the WSDL. We want to classify the Web service into four classes: 

1) business, 2) finance, 3) nets and 4) life services. After training, Web services are invoked 

by natural language request [14]. The natural language is decompounded into three inputs 

of this model. For example, we want to get a short message service (SMS) for sending a 

message to a mobile phone. The nature language of this discovery is input and decomposed 

into three parts: 1) WSDL description: send a message to a mobile phone; 2) free textual 

service description: sending a message to a mobile phone through the Internet; 3) operation 

and port parameters maybe have operation names: send messages, send message multiple 

recipients, and so on; port names send service SOAP, and so on. 

In this simulation, we firstly set 100 transitions for LFPNSD model. The training stop 

condition is thk (1≤k≤m) ≥ 0.6. The service selection precision is recorded after every time of 

training. As shown in Figure 14 and 15, using LFPNSD model and its learning algorithm 

described in Section 5.1, every service class precision probability raised to more than 0.9 

when the training time reaches to 10.  
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Figure 14. The results of simulation using LFPNSD and its learning algorithm− Discovery Precision 

Probability for total services                     

 

Figure 15. The results of simulation using LFPNSD and its learning algorithm − Discovery Precision 

Probability for classification services 

A method for evaluating the proximity of services is proposed [21]. In the method, WSDL 

document is represented as Dwsdl={t1, t2, …, twsdl} and Ddesc={t1, t2, …, tdesc} represents the textual 

description of the service. Because there is another descriptor of operation and port 

parameters in LFPNSD model, we add this descriptor as Dop&port ={t1, t2, …, top&port} in order to 

compare two methods. Here, twsdl, tdesc and top&port are last keyword of WSDL, textural 

description and operation and port parameters. In the proximity of services method, the 

descriptor of natural language request which is provided by a user is Duser and descriptor of 

invoked service is Dinv. The three Context Overlaps (CO) are defined as same keywords 

between Dwsdluser, Ddescuser, Dop&portuser and Dwadlinv, Ddescinv, Dop&portinv. The proximity of user 
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requested service and invoked service is defined as a root of sum of three CO’s squares. 

When a user invoking comes, it is compared with all services in services repository. Then, 

one service in Dinv, which has the biggest proximity value with Duser, was selected. We 

compared the discovery precision probability of this method (conventional method) with 

the proposed LFPNSD. The simulation results are shown in Figure 16. The LFPNSD method 

yielded higher precision probabilities than the conventional method proposed in [21]. 

Especially when the service number of Web services’ repository becomes more than 88, the 

difference is much more significant. Here, a correct service is selected in 14 services, 24 

services, 37 services, 54 services, 88 services, 151 services just as they were used in [21].  

 

Figure 16. Comparison of two discovery methods 

6. Conclusion  

In this chapter, Learning Petri net (LPN) was constructed based on High-level Time Petri net 

and reinforcement learning (RL). The RL was used for adjusting the parameter of Petri net. 

Two kinds of learning algorithm were proposed for Petri net’s discrete and continuous 

parameter learning. And verification for LPN was shown. LPN model was applied to 

dynamical system control. We had used the LPN in three robot systems control - the AIBO, 

Guide Dog. The LPN models were found and controlled for these robot systems. These 

robot systems could adjust their parameters while system was running. And the correctness 

and effectiveness of our proposed model were confirmed in these experiments. LPN model 

was improved to the hierarchical LPN model and this improved hierarchical LPN model 

was applied to QoS optimization of Web service composition. The hierarchical LPN model 

was constructed based on stochastic Petri net and RL. When the model was used, the Web 

service composition was modeled with stochastic Petri net. A Web service dynamical 

composing framework is proposed for optimizing QoS of web service composition. The 

neural network learning method was used to Fuzzy Petri net. Learning fuzzy Petri net 

(LFPN) was proposed. Contrasting with the existing FPN, there are three extensions in the 

new model: the place can possess different tokens which represent different propositions; 
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these propositions have different degrees of truth toward different transitions; the truth 

degree of proposition can be learnt through adjusting of the arc’s weight function. The 

LFPN model obtains the capability of fuzzy production rules learning through truth degree 

updating. The LFPN learning algorithm which introduced network learning method into 

Petri net update was proposed and the convergence of the algorithm was analyzed. The 

LFPN model was used into discovery of Web service. Using the LFPN model, different 

service functional descriptions are used to evaluate service function and an appropriate 

service is selected firstly, Secondly, context of QoS is used to predict QoS and a more 

efficient service is selected. 

In the future, the different intelligent computing methods will be used into Petri net for 

constructing different type of LPN. The efficient different types of LPN used in different special 

area will be compared and an efficient LPN model for solving various problems will be founded. 
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