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1. Introduction

Nowadays, about 100,000 fungi have already been identified. From these, more than 400
may be considered potentially toxigenic, and about 5% are known to produce toxic com‐
pounds or classes of compounds that cause adverse effects in animals and humans in sever‐
al parts of the world [1]. These compounds, called mycotoxins, are secondary metabolites of
low molecular weight produced by mycelia or spores of filamentous fungi [2]. It is suggest‐
ed that mycotoxin production is generally limited to a relatively small number of mold spe‐
cies, and that toxin may be produced by the whole species or just one specific strain [3]. The
more complex the synthesis pathway of a mycotoxin, the lesser the number of mold species
that produce it.

The term “mycotoxin” originates from the Greek word "Mykes”, meaning fungus, and from
the Latin word “Toxicum”, meaning poison or toxin [2]. Mycotoxins are classified as the
most important chronic and noninfectious foodborne risk factor, more important than syn‐
thetic contaminants, plant toxins, food additives, and pesticide residues. Both humans and
animals may show acute or chronic intoxication caused by mycotoxin ingestion, and the
pathological condition that results from this ingestion is called mycotoxicosis [4]. Some fac‐
tors affect the magnitude of toxicity in humans or animals, including the animal species,
mechanism of action, metabolism and defense mechanisms [5].

About 400 types of mycotoxins have been already discovered, and they are generally divid‐
ed into groups based on structural similarities and most important toxic effects [6]. From all

© 2013 Oliveira et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



mycotoxins that have been isolated, aflatoxin is one of the most well-known and widely dis‐
tributed in foodstuffs, with proven and marked toxic properties. Aflatoxins are predomi‐
nantly produced by Aspergillus flavus and A. parasiticus, but may also be produced by other
strains, such as A. nomius, A. tamari, and A. pseudotamarii [7]. Contamination of foodstuff
with aflatoxigenic fungi may occur at any moment during production, harvesting, process‐
ing, transportation, and storage [8]. The most different kinds of foods may be affected, such
as corn, peanuts, cotton seeds, rice, pistachio, almonds, chestnuts, Brazil nuts, and pumpkin
seeds, as well as other oily seeds, such as sunflower and coconut [9].

Aflatoxins are distributed worldwide. Aspergillus species are able to grow in a wide variety
of substrates and under different environmental conditions. Toxin formation in agricultural
products occurs in hot and humid weather, and in inadequate or deficient storage facilities.
The most important factors that influence growth and aflatoxin production are relative hu‐
midity, ranging from 88 to 95% in most of the cases [8], and temperature, ranging from 36 to
38 C for mold growth, and 25 to 27 C for maximum toxin production [10].

Other factors may also influence aflatoxin production: substrate composition, water activity,
pH, atmosphere (concentration of oxygen and carbon dioxide), microbial competition, me‐
chanical damage to the seeds, mold lineage, strain specificity and variation, instability of
toxigenic properties, plant stress, insect infestation, and use of fungicides or fertilizers [2, 5,
11]. It is important to remember that aflatoxin contamination is cumulative, and the moment
of harvesting and drying, and storage conditions may also play an important role in aflatox‐
in production [12].

Concerns related to the negative impacts of aflatoxins on health led to the study of strategies
to prevent toxin formation in foodstuffs, as well as to eliminate, inactivate or reduce toxin
bioavailability in contaminated products [13]. Contamination may be prevented by im‐
proved agricultural practices, antifungal agents, genetic engineering, and control of storage
conditions [2]. Bioavailability may be reduced by enterosorption, which is done by adding
nutritionally inert adsorbent compounds to the diet. These compounds are mycotoxin se‐
questrants, and prevent the toxin from being absorbed in the gastrointestinal tract of the ani‐
mals, making its distribution to the target organs impossible [14]. This method has limited
practical use, due to the safety of the adsorbent agents used, and the difficulty in applying
them to human foods [15]. Elimination or inactivation, that is, decontamination, may be ach‐
ieved by physical, chemical, and biological methods, which have to present the following
characteristics: complete inactivation; destruction or removal of the toxin; no production or
toxic residues in foods or no remainders of them; preservation of nutritional value and pal‐
atability of the food; destruction of fungal spores and mycelia to prevent production or re-
appearance of the toxin; no significant changes in the physical properties of the food; low
cost and ease of use [1,11].

Physical methods for mycotoxin decontamination involve procedures such as thermal inac‐
tivation, ultraviolet light, ionizing radiation, or extraction with solvents. Chemical methods
are based on agents that break mycotoxin structure, such as chlorine treatment (sodium hy‐
pochlorite or chlorine gas), oxidizing agents (hydrogen peroxide, ozone and sodium disul‐
fide), or hydrolytic agents (acids, alkalis and ammonia). However, both chemical and
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physical methods have disadvantages, either because removal is not efficient, or because of
high costs or nutritional losses to the product [16,17]. Biological methods are based on the
action of microorganisms on mycotoxins. These microorganisms may be yeasts, filamentous
fungi, bacteria, algae, among others, and their mechanisms of action is based on competition
by nutrients and space, interactions, and antibiosis, among others [18].

Biodegradation of aflatoxins by microorganisms offers an attractive alternative for the con‐
trol or elimination of aflatoxins in foods and animal feed, preserving their quality and safety
[19]. Besides, their use have a more "natural" appeal, given the ever-growing resistance of
the  consumer  to  chemical  treatments  [1].  Biological  decontamination methods are  being
widely studied and may be a very promising choice, provided they show to be efficient,
specific, cost-effective, and are environmentally friendly [20]. Among the types of microor‐
ganisms available and that may be used to remove aflatoxins from a contaminated medi‐
um,  lactic  acid bacteria  (LAB)  and yeasts  are  the  most  studied ones,  showing the  most
promising results.

Therefore, the objective of this chapter was to present results of studies on microbiological
methods for aflatoxin decontamination, more specifically on the ability of LAB and yeasts to
degrade or sequestrate this mycotoxin.

2. Toxicological Properties of Aflatoxins

Nowadays, there are 18 similar compounds called aflatoxins. However, the most important
types in terms of health and medical interest are identified based on their fluorescence un‐
der ultraviolet light (B = Blue and G = Green), such as aflatoxin B1 (AFB1), B2 (AFB2), G1

(AFG1) and G2 (AFG2). From these compounds, AFB1 is the most prevalent and toxic one
[21]. When AFB1 is ingested by domestic animals in contaminated feed or foodstuffs, such as
by dairy cows, the toxin undergoes liver biotransformation and is converted into aflatoxin
M1 (AFM1), becoming the hydroxilated form of AFB1, which is excreted in milk, tissues and
biological fluids of these animals [22-24]. It was reported that of all AFB1 ingested in feed,
about 0.3% to 6.2% is transformed in AFM1 in milk and that there is a linear relationship be‐
tween the concentration of AFM1 in milk and the concentration of AFB1 in contaminated
feeds consumed by the animals [25,26].

Chronic exposure to low levels of aflatoxins represents a serious risk to economy, and main‐
ly to health [21]. Economic losses are related to decreased efficiency in industrial or agricul‐
tural production, with loss in quality, lower yield, and defective product [27]. It was also
reported that in some states of the USA, economic losses to agriculture amount to 100 mil‐
lion dollars [19]. On the other hand, these losses caused by mold contamination and myco‐
toxins are greater than 1.6 billion dollars in the US, and African feeds lose about 670 billion
dollars a year due to barriers to the trade of aflatoxin-contaminated foodstuffs [28].

As for human and animal health, biological effects of aflatoxins may be carcinogenic, muta‐
genic, teratogenic, hepatotoxic, and immunosuppressive [29]. The International Agency for
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Research on Cancer classifies AFB1 and AFM1 as Group 1 human carcinogens, even though
AFM1 is about 10 times less carcinogenic than AFB1 [30]. All these aflatoxin effects are influ‐
enced by variations according to the animal species, sex, age, nutritional status, and effects
of other chemical products, besides the dose of toxin and the length of exposure of the or‐
ganism to it [31].

Aflatoxicosis is the poisoning caused by the ingestion of moderate to high levels of alfatoxin
in contaminated foods. Acute aflatoxicosis causes quick and progressive jaundice, edema of
the limbs, pain, vomiting, necrosis, cirrhosis and, in severe cases, acute liver failure and
death, caused by the ingestion of about 10 to 20 mg of aflatoxin in adults. Aflatoxin LD50
shows the following order of toxicity: AFB1> AFM1> AFG1> AFB2> AFG2 [4, 32]. Chronic afla‐
toxicosis causes cancer, immunosuppression and other pathological conditions, having the
liver as the primary target organ [4].

The greatest risk presented by aflatoxins for human beings is chronic exposure causing hep‐
atocellular carcinoma, which may be made worse by hepatitis A virus [5]. It was also report
that aflatoxins were found in the tissues of children affected by Reye syndrome (encephal‐
opathy with serious lesions in liver and kidneys after influenza or chickenpox), and Kwa‐
shiorkor (protein-energy malnutrition). Aflatoxicosis is considered, then, a contributing
factor to these diseases.

AFB1 is metabolized in the liver by the cytochrome P450 system, generating its most carcino‐
genic metabolite, AFB1-8,9-epoxide (AFBO), or other less mutagenic forms, such as AFM1, Q1

or P1. There are several pathways for AFBO after it is metabolized, with one of them leading
to cancer, another to toxicity and another one, to excretion. AFBO exo-form easily binds to
cell macromolecules, including genetic material such as DNA proteins, producing adducts.
Formation of these DNA adducts leads to genetic mutations and cancer, and their excretion
in the urine of infected people is not only a proof that humans have the necessary biochemi‐
cal pathways for carcinogenesis, but also offers a reliable biomarker for AFB1 exposure [24].

Potential risk to human health caused by aflatoxins has led to surveillance programs for the
toxin in different raw materials, as well as regulations determined by almost every country
in the world [9]. A study carried out by the Food and Agriculture Organization of the Unit‐
ed Nations (FAO) in 2002 pointed out that about 100 countries had specific regulations for
the presence of aflatoxin in foods, dairy products and animal feed, and that the total popula‐
tion of these countries amounted to 90% of the world population. The same study showed
that regulations for aflatoxin are getting more diverse and detailed, including sampling
methods and methods of analysis [33].

In countries where a regulation for aflatoxin exists, tolerance levels for the total aflatoxin
(sum of aflatoxins B1, B2, G1 and G2) ranges from 1 to 35 µg/kg for foods, with an average of
10 g/kg; and from zero to 50 µg/kg for animal feed, with an average of 20 µg/kg. For AFM1

in milk, tolerance levels are between 0.05 and 0.5 µg/kg, with most countries adopting a
threshold of 0.05 µg/kg [10].
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3. Decontamination of Aflatoxins by Lactic Acid Bacteria

LAB is a large group of genetically different bacteria that, besides producing lactic acid as
the main product of their metabolism, have similar characteristics: they are all gram-posi‐
tive, non-sporoformers, non-motile, and catalase, and oxidase negative. They are, therefore,
aerotolerant anaerobes. Besides, they mandatorily ferment sugars and tend to be nutritional‐
ly fastidious, frequently requiring specific amino acids and B-complex vitamins as growth
factors [34]. Several LAB genera, such as Lactobacillus, Bifidobacterium and Lactococcus are
known for they ability to act as preserving agents in fermented foods, such as vegetables,
cereals, dairy and meat products, actively inhibiting spoilage and growth of pathogenic bac‐
teria, besides increasing shelf life and sensory properties of these foods [ 23].

Fermentation enables longer shelf life and improves sensory and nutritional properties of
the product, as sugar fermentation lowers pH and inhibits growth of spoilage and patho‐
genic microorganisms. Fermentation is also responsible for other reactions, such as proteins
hydrolysis, improving texture and flavor; synthesis of aromatic components and texturizers,
affecting the consistency of the product; and production of inhibitory components [35,36].
This inhibition is, in part, caused by the final products of fermentation, such as lactic acid,
diacetyl, acetaldehyde and acetic acid, which may accumulate in inhibitory concentrations
in certain foods and drinks. In other cases, inhibition may also be caused by secondary by-
products of metabolism, such as hydrogen peroxide or bacteriocins [37].

Therefore, two aspects may be considered when LAB are used: fermentation and antibiosis
ability. In the first case, the starter culture added to the food acts on the substrate, causing
advantages to the food. In the second case, the starter culture has to inhibit the development
of undesirable microorganisms that may spoil the product or be hazardous to human health.
In reference [38], authors state that one of the effects that were identified in LAB was protec‐
tion against toxins found in foods, such as heterocyclic amines, polycyclic aromatic hydro‐
carbons, reactive oxygen species, and mycotoxins. In the latter case, studies have
demonstrated that LAB have the ability to inhibit aflatoxin biosynthesis, or that they have
the ability to remove mycotoxins from the medium, reducing their effects.

It should be emphasized that with increased interest in probiotic food production all over
the world, selection of LAB cultures with probiotic characteristics and greater ability to re‐
move mycotoxins may help to reduce risk of exposure to these toxins in foodstuffs, which is
a very promising line of research in mycotoxicology. Yeast and LAB strains have great abili‐
ty to remove mycotoxins, and may be used as part of starter cultures in the fermentation of
foods and drinks [39]. These microorganisms have, thus, ability to ferment and decontami‐
nate the medium, and purified components of these strains may be used in small amounts
as food additives without compromising the characteristics of the final product.

One of the first studies in this area was carried out in the 1960s, when these authors evaluat‐
ed the ability of about 1,000 types of microorganisms to degrade aflatoxins [40]. Yeasts, fila‐
mentous fungi, bacteria, actinomycetes, algae, and fungal spores were among the organisms
studied. From these, only the bacterium Flavobacterium aurantiacum B-184 (known today as
Nocardia corynebacterioides) was able to irreversibly remove aflatoxins from the solution.
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After this study, many others followed. However, the most significant ones started to appear
after the 1990s. Table 1 presents the most relevant studies carried out with bacteria for aflatox‐
in decontamination. The action of 7 different types of bacteria on AFB1 was evaluated and it
was found that some strains of Lactobacillus (L. rhamnosus GG and L. rhamnosus LC-705) were
able to efficiently remove most mycotoxin from the medium, up to about 80% [17]. In refer‐
ence [27] authors analyzed 9 strains of Lactobacillus and achieved the same result, that L. rhamnosus
GG and L. rhamnosus LC-705 were the most efficient strains in removing AFB1, with removal
rates of 78.9% and 76.5%, respectively. Fifteen types of LAB, among them Lactobacillus and
Lactococcus, and 5 types of bifidobacteria, were studied and it was observed that removal of
AFB1 ranged from 5.6% to 59.7% [23]. Strains of Lactobacillus amylovorus (CSCC 5160 and CSCC
5197) and L. rhamnosus LC 1/3 showed the best results: 59.7%, 57.8%, and 54.6%, respectively.
It was also observed that different strains of bifidobacteria removed from 37% to 46% AFB1,
and that Staphylococcus aureus and Escherichia coli removed 46% and 37%, respectively [22]. It
may be observed that among a given genus, and even a given species, not all the strains show
equivalent toxin removal rates. On the contrary, the ability to remove aflatoxin is a character‐
istic of specific lineages, and efficiency varies widely [41].

Most assays on aflatoxin removal in the studies cited above were carried out in phosphate-
buffered saline (PBS). In reference [42], besides testing the ability of 27 strains of Lactococcus
spp. and 15 strains of Streptococcus spp. isolated from yogurt, raw milk, and Karish cheese to
remove AFB1 in buffered solution, observed that Lactococcus L. lactis and Streptococcus ther‐
mophilus presented the greatest rates of toxin removal (54.85% and 81.0%, respectively).
They also tested the ability of viable and non-viable cells to remove AFB1 in different vegeta‐
ble oils, and observed that viable L. lactis cells removed from 71% to 86.7% AFB1, whereas
non-viable cells removed 100% of the toxin in all the oils. Moreover, viable S. thermophilus
cells removed from 66.5% to 91.5% of the toxin, and non-viable ones, from 81.7% to 96.8%.

AFB1 was added to yogurt and acidified milk in concentrations ranging from 1,000 to 1,400
g/kg,  and a  reduction of  AFB1  in  yogurt  (pH 4.0),  ranging from 97.8% to  90% was ob‐
tained [43]. Maximum decrease in AFB1 was observed during milk fermentation. As for milk
acidified with citric, lactic, and acetic acid (pH 4.0) AFB1 reduction (concentration of 1,000
µg/Kg) was 90%, 84% and 73%, respectively. The ability of probiotic bacteria (L. paracasei, L.
casei, L. brevis and L. plantarum) and the yeast Saccharomyces cerevisiae to remove a sum of
aflatoxins (B1, B2, G1 and G2) during fermentation of dough made up of 50% barley flour,
45% wheat flour, and 5% corn flour was evaluated [44]. They observed that after 6 hours of
fermentation, the amount of aflatoxin had decreased 18% and 33% for dough added of 4
and 40 µg of aflatoxin, respectively, and after 24 hours, the amount of aflatoxin decreased
27% and 50%, respectively.

Toxin polarity has an important role in the binding mechanism. The percentage of aflatoxin
removed by LAB decreases in the following order: AFB1> AFB2> AFG1> AFG2. This observa‐
tion correlates with the decrease in the polarity of these toxins, and is consistent with hydro‐
phobic reactions, which may also have a role in the binding mechanism [45]. AFM1 is less
efficiently removed than AFB1. However, scientific literature has few studies on the ability
of LAB to remove AFM1.
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In reference [46], authors examined the ability of 4 strains of Lactobacillus spp. and 2 strains
of Bifidobacterium spp. to remove AFM1 in PBS and reconstituted skim milk. In PBS, viable
cells of 6 strains were able to remove from 10.22 to 26.65% AFM1 in solution, depending on
the level of contamination and the length of incubation, whereas non-viable cells removed
from 14.04 to 28.97% of the toxin. In reconstituted skim milk incubated for 4 hours, 7.85 to
25.94% AFM1 were removed by viable cells, and 12.85 to 27.31% for cells rendered non-via‐
ble by heat treatment. These researchers concluded that the removal process was fast, with
no differences between 0, 4, and 24 hours of contact, different from what was observed in
[47] for strains of Lactobacillus spp., Lactobacillus spp. and Bifidobacterium spp., which showed
removal rates ranging from 0 to 14.6% after 24 hours of contact, and from 4.5 to 73.1% after
96 hours of contact.

The ability of L. rhamnosus GG to remove AFM1 from reconstituted skim and whole milk
was investigated and it was observed rates of 18.8% and 26.0%, respectively [29]. The au‐
thors concluded that the decrease in removal efficiency may be explained by the fact that
AFM1 is possibly not accessible in milk, that is, it is associated with casein, and the interfer‐
ence of proteins in toxin removal may be the greatest responsible factor for the difference
between skim milk and whole milk (approximately 10% lower), once powdered skim milk
used in the study contained 37g of protein / 100 g, whereas protein content in powdered
whole milk was 25g /100g. In the same study, AFM1 removal in buffered solution (50.7%)
was compared with AFB1 removal by the same bacterial strain in the same solution (75.3%).
It was concluded that AFM1 removal was less effective possibly due to the presence of an -
OH group in the molecule, increasing its polarity and making it less hydrophilic, what in‐
creases the tendency of the molecule to be retained in aqueous solutions.

Some physical, chemical, and enzymatic treatments may increase the ability of LAB to bind
to aflatoxin in the medium. In reference [48] authors studied the ability of L. rhamnosus GG
to bind to AFB1, observing little difference between aflatoxin removal by heat-treated and
acid-treated cells (85% and 91%, respectively), compared with viable bacterial cells (86%).
The use of physical and chemical treatments (chloric acid, and heat treatment in autoclave or
boiling at 100 °C) on L. rhamnosus GG and LC-705 caused a significant increase in AFB1 re‐
moval, showing that metabolic degradation caused by viable bacterial cells may be ruled out
as a possible mechanism of action [15-17].

Comparing the ability of viable and heat-treated bifidobacteria cells, it was observed that viable
cells removed 4 to 56% AFB1 from the medium, whereas non-viable cells removed 12 to 82%
[23]. Evaluating the influence of the inactivation treatment on the ability of 4 types of Lactoba‐
cillus spp. to remove AFB1, it was observed that acid treatment (58.6 to 87.0%) and heat treatment
(33.5 to 71.9%) increased the ability to remove the toxin, compared with viable cells in PBS
(16.3 to 56.6%) [49]. On the other hand, alkali treatment (8.3 to 27.4%) and ethanol treatment
(15.9 to 46.5%) decreased the amount of aflatoxin removed from the medium.

Removal of AFM1 with 8 LAB strains showed that heat-treated cells bound more efficiently
(25.5 to 61.5%) to the toxin than viable bacterial cells (18.1 to 53.8%) [29]. In reference [50] it
was observed that heat-treated cells removed greater percentages of AFM1 (12.4% to 45.7%)
in PBS compared with viable cells (5.6% to 33.5%), with no significant differences between 15
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minutes or 24 hours of contact. Similar results were found in [51], because viable cells of
Lactobacillus delbrueckii spp. bulgaricus CH-2 removed 29.42% AFM1 in PBS after 4 hours of
contact at 37 C. These authors also analyzed the ability of Streptococcus thermophilus ST-36,
observing that 18.70% AFM1 was removed from the medium. Until today, only one bacteri‐
um, Flavobacterium aurantiacum NRRL B-184, was able to remove 100% of AFM1 from conta‐
minated liquid medium, at a cell concentration of 5 x 1010 CFU/mL and 4 hours of contact [52].

In [53] authors observed that B. subtilis UTBSP1 presented significant removal of AFB1 from
a medium contaminated with 2.5 µg/g (52.67% and 80.53%, after 24 and 48 hours, respec‐
tively). After 72 and 96 hours, there was no significant increase in the amount of toxin re‐
moved from the medium. Strains of B. subtilis were analyzed and it was concluded that
strain ANSB060 was the one that best removed AFB1, AFM1, and AFG1 from the medium
(81.5%, 60%, and 80.7%, respectively) [54]. Results of this study also demonstrated that afla‐
toxin degradation is mainly observed in the supernatant culture, compared with cells or cell
extracts. Besides, in assays that simulated the gastrointestinal environment (pH 2.0, and
0.3% of biliary salts), viable cells of the same strain were able to survive for 24 hours of incu‐
bation, and presented antimicrobial activity against E. coli, S. typhimurium, and S. aureus.

These examples show that both viable and non-viable cells are able to remove aflatoxin from
aqueous solutions. As non-viable cells are also able to remove the toxin, it is supposed that
cells are physically bound to the toxin, that is, components of the bacterial cell wall adhere
to it, mainly polysaccharides and peptidoglycans, taking into account the possibility of a co‐
valent bond or degradation caused by bacterial metabolism [1, 55, 56].

Both polysaccharides and peptidoglycans of the bacterial cell wall may be extremely affect‐
ed by heat and acid treatment, once heat may denature proteins or form Maillard reaction
products. Besides, acid treatment may break glycosidic bonds of polysaccharides, releasing
monomers that may be further broken into aldehydes, also degrading proteins to smaller
components, such as peptides and amino acids. Thus, acid treatment may break the peptido‐
glycan structure, compromising its structural integrity, that is, decreasing the thickness of this
layer, reducing cross links and increasing the size of the pores. These changes caused by the
treatments cited above enable AFB1 to bind to the bacterial cell wall and to the components
of the plasmatic membrane that were not available when the bacterial cell was intact [27].

In reference [57] authors explained that the integrity of the bacterial cell wall is important in
the process of toxin removal by both viable and non-viable cells. In their study of AFB1, they
observed that both the bacterial cell wall and its purified fragments were able to remove
aflatoxin from the medium. However, when the cell wall was lost or destroyed (totally or
partially) by enzymatic treatment, there was a significant decrease in the ability to remove
the toxin. It was observed, using atomic force microscopy, that the bond between AFB1 and
Lactobacillus casei Shirota produced structural changes that modified the surface of the bacte‐
rial cell [58]. Before the toxin was bound to it, the surface was well-defined, smooth and ho‐
mogenous, and after AFB1 adsorption, there were changes in shape. These changes were
probably caused by the bond between the toxin and the surface of the cell wall, which be‐
came very irregular and rough, with undefined edges. The authors suggest that changes in
the shape of teichoic acids are responsible for these alterations, once these molecules are

Aflatoxins - Recent Advances and Future Prospects66



found inside the cell wall in such a way that they produce no differences in the texture of
the surface before the toxin was bound to it.

The ability of L. rhamnosus GG to bind to AFB1 was studied, observing that the addition of
urea - an anti-hydrophobic agent - to the medium, significantly decreased removal of the
toxin by non-viable cells, from 85-91% to 50-60%, showing that hydrophobic interactions
have a relevant role in the process [48]. Besides, addition of different concentrations of NaCl
and CaCl2 (from 0.01 to 1 M), and pH variations from 2.5 to 8.5 had practically no effect on
AFB1 removal by the bacterium, suggesting that hydrogen bonds and electrostatic interac‐
tions are not important in this process.

In the use of pronase E, lipase and periodate, treatment with periodate led to significant re‐
duction in the ability to remove the toxin, both by viable and non-viable cells, once it oxidiz‐
es the -OH cis groups in aldehyde and carboxylic acid groups, suggesting that the bonds
involve predominantly bacterial polysaccharides. Treatment with pronase E caused the
same significant reduction in AFB1 removal, evidencing that proteins may also be involved
in the process. Thus, the fact that pronase E and periodate both have a significant reduction
on AFB1 removal indicates that binding sites are made of protein. Treatment with lipase, on
its turn, did not cause any significant reduction in AFB1, showing that lipids, such as lypo‐
teichoic acid probably do not have a role in the process. Although the treatments decreased
AFB1 removal, it was still substantial in all cases, possibly showing the involvement of mul‐
tiple components in the bond with mycotoxin [48].

However, not only the type of bacterial strain and the inactivation treatment used may influ‐
ence formation and stability of the LAB/aflatoxin complex, but also of other factors, such as
bacterial counts, specificity of the bacteria, pH, incubation temperature, addition of nu‐
trients, and the solvents used, among others [23, 27, 48].

As for the number of bacterial cells in the medium, it has been concluded that there was a
significant decrease in the amount of AFM1 removed when cell counts changed from 107

CFU/mL (0 to 5.02%) to 108 CFU/mL (10.22 to 26.65%), indicating that bacterial counts are
critical factors in the removal of AFM1 by LAB [46]. In reference [59] authors observed that
no less than 5 x 109 CFU/mL of Lactobacillus acidophilus or Bifidobacterium longum are necessa‐
ry to remove only 13% AFB1 in about one hour.

In reference [17] authors reported that, for Lactobacillus rhamnosus (strains GG and LC705),
minimum counts of 2 x 109 CFU/mL were required to remove 50% AFB1, and greater remov‐
al rates were obtained when LAB concentration was increased to 1010 CFU/mL. In this same
study, the authors observed that the process depended on the temperature, once the effi‐
ciency in aflatoxin removal was greater at 37 °C than at 4 and 25 °C. Besides, the authors
observed that Gram-positive bacteria are better aflatoxin sequestrants than Gram-negative
bacteria, with removal rates of 80% and 20%, respectively, suggesting the ability to remove
the toxin depends on the structure of the cell wall. It has also been stated that aflatoxin con‐
centration in the medium also influences adsorption rates, leading to the conclusion that the
greater its concentration in the medium, the greater the removal rate, both for viable and
non-viable cells [60].
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Assays with AFB1 and L. rhamnosus GG and LC-705 at different incubation temperatures
was also carried out, but it was not observed significant differences in the stability of the
LAB/AFB1 complex formed in the temperatures range between 4 °C and 37 °C [27]. When
pH of the medium was changed from 2 to 10, a range that includes the pH switch in the gas‐
trointestinal tract, only 10% AFB1 removed was released back into the solution, different
from what happened when organic solvents were used. In this case, almost all AFB1 that
was removed by the bacterial strains was released back into the medium, providing extra
evidence that the process is based on a non-covalent bond. In this study, the release efficien‐
cy by solvents presented the following order: methanol < acetonitrile = benzene < chloro‐
form, which does not coincide with the order of decreasing polarity. This may be explained
by the fact that AFB1 hydrophobicity is similar to that of the chloroform molecule. These re‐
sults show once more that hydrophobic interactions have an important role in the binding
mechanism between LAB and the toxin.

The effect of washing on the stability of the LAB/aflatoxin complex was analyzed [47]. They
observed that after the first washing of bacterial pellets with PBS, the proportion of AFM1

released by the bacteria was 87.3% for Lactobacillus spp. strains; 85.7% for Lactococcus spp.
strains, and 85.7% for strains of Bifidobacterium spp. They also observed that after the third
washing, practically all bacteria had released adsorbed AFM1 back into the medium (92.0 a
100%). In reference [46] they concluded that AFM1 removal by bacteria was reversible, and
that small amounts of toxin were released back to the PBS solution (5.62 to 8.54%). This find‐
ing is consistent with those observations of reference [27], who reported that L. rhamnosus
GG, L. rhamnosus LC-705, and Lactobacillus casei Shirota released, respectively, 3.7%, 3.0%
and 2.4% AFB1 back into the solution. Differently, in [23] authors showed that release of
AFB1 back into the solution in the first washing was 48.6%, 30.7% and 26.5% for L. amylovo‐
rus (strains CSCC 5160 and CSCC 5197) and L. rhamnosus Lc 1/3, respectively. After 5 wash‐
ings, AFB1 adsorbed by L. amylovorus CSCC 5160 was almost completely released (94.4%),
whereas L. amylovorus CSCC 5197 and L. rhamnosus Lc 1/3 retained, respectively, only 17.4%
and 32.2% AFB1 found in the original solution.

Thus, the LAB/aflatoxin complex seems to be unstable, once part of the aflatoxin, both for
AFB1 and AFM1, is released from the complex after washing, and gradually returns to the
aqueous solution. Therefore, the greater the number of washings, the greater the amount of
aflatoxin released back into the solution. This shows that the bond is not a strong one, sug‐
gesting it is a weak non-covalent bond and an association with hydrophobic sites on the sur‐
face of the bacteria [23, 48].

Different from this hypothesis, in reference [61], performing the same washings on a com‐
plex between Flavobacterium aurantiacum and AFB1, authors observed that aflatoxin was not
released into the aqueous solution. Analyzing the stability of the complex formed between
AFB1 and 8 strains of Lactobacillus casei after the washings, it was demonstrated that the amount
of aflatoxin released ranged from practically zero and 9.2% [13]. Possible explanations for this
variation in aflatoxin release include the differences in binding sites found in the different
strains, or more probably, that these biding sites are similar, but that they present minimal
differences depending on the strain. Authors explained that lower rate of toxin release into
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the medium after the washings may be attributed to the interactions between aflatoxin mol‐
ecules retained on the cell wall of a bacterium and molecules retained on the cell wall of the
adjacent bacterium, forming a kind of reticulated matrix that prevents aflatoxin release. It has
also been suggested that the greater the number of molecules that are removed by the bacte‐
rial cells, the longer these molecules remain adsorbed on the cell surface [60].

The stability of the LAB/aflatoxin complex in a wide range of pH is an important factor in
the use of these microorganisms to remove aflatoxin from foods, once gastric release of the
toxin would have negative health implications. Therefore, the complex formed has to resist
environmental stress caused by the gastrointestinal tract, such as low pH and presence of
bile. When the influence of the presence of bile on the LAB/aflatoxin complex was analyzed,
it was observed that Lactobacillus casei removed more AFB1 when exposed to bile, suggesting
that this exposure causes changes in the structure and composition of the bacterial cell wall,
probably inducing the formation of new biding sites for aflatoxin, or increasing the size of
the sites available [13].

The ability of L. rhamnosus (strains GG and LC705) and Propionibacterium freudenreichii spp.
shermanii JS to remove AFB1 from intestinal liquid medium extracted from the duodenum of
chicks was investigated, and it was observed that AFB1 concentration was reduced in 54% in
only 1 minute in the presence of L. rhamnosus GG, whereas it was reduced in only 44% in the
presence of L. rhamnosus LC705, and 36% in the presence of P. freudenreichii spp. shermanii JS
[62]. The authors observed that the accumulation of AFB1 in the intestinal tissue was re‐
duced in 74%, 63%, and 37%, respectively, for L. rhamnosus (strains GG and LC705) and P.
freudenreichii spp. shermanii JS, showing that these bacteria may affect aflatoxin bioavailabili‐
ty and be used to reduce its toxicity to humans and animals.

Rats  treated with  feed added of  aflatoxin  (3  mg/kg of  feed)  presented a  significant  de‐
crease in the feed intake compared with the control group, different from the animals fed
diets containing Lactobacillus casei and Lactobacillus reuteri (10 mL/kg of feed, with 1 x 1011

CFU/mL) and aflatoxin [63]. The second group did not show reduced feed intake. Conse‐
quently,  animals  treated  with  the  diet  containing  only  aflatoxin  presented  lower  body
weight, significant increase in serum levels of transaminase, alkaline phosphatase, choles‐
terol, triglycerides, total lipids, creatinine, uric acid, and nitric oxide; and in lipid peroxi‐
dation  in  the  liver  and  kidneys,  followed by  a  significant  decrease  in  total  antioxidant
capacity. Treatment with bacteria was able to induce a significant improvement in all bio‐
chemical  parameters  and in  the  histological  condition  of  the  liver,  with  L.  reuteri  being
more efficient than L. casei.

In Egypt, a pilot study investigated the effect of the addition of L. rhamnosus LC-705 and P.
freudenreichii spp. shermanii JS in human diet on the levels of aflatoxin in feces samples. It
was observed that from 11 of 20 volunteers, AFB1 ranged from 1.8 to 6 µg AFB1/kg feces, and
after two weeks of supplementation with probiotic bacteria, there was a significant reduc‐
tion in the excretion rate, showing that these strains have the ability to influence the concen‐
tration of AFB1 in feces [64].
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Microorganism AF Bound

(%)

Conditions Ref.

L. rhamnosus GG B1

Viable cells

Freeze-dried cells

Heat-treated cells

L. rhamnosus LC-705

Viable cells

Freeze-dried cells

Heat-treated cells

L. gasseri

L. acidophilus

L. casei Shirota

E. coli

5 µg/mL 78.4

65

81

 

78.8

50

82

58.1

67.4

33.2

16.3

2 x 1010 cfu/mL, 0h, 37 °C, PBS

4h, 37 C, PBS

4h, 37 °C, PBS

 

2 x 1010 cfu/mL, 0h, 37 °C, PBS

4h, 37 °C, PBS

4h, 37 °C, PBS

2 x 1010 cfu/mL, 0h, 37 C, PBS

7 x 109 cfu/mL, 0h, 37 °C, PBS

1 x 1010 cfu/mL, 0h, 37 C, PBS

5 x 1010 cfu/mL, 0h, 37 °C, PBS

[17]

L. paracasei, L. casei, L.

brevis, L. plantarum and

S. cerevisiae

B1, B2, G1,

G2

4 or 40

µg/kg

18-33

 

 

 

27-50

6h, 37 °C , barley flour (50%),

wheat flour (45%) and corn flour

(5%) mixed with water in 1:1.5

proportion

24h, 37 °C , barley flour (50%),

wheat flour (45%) and corn flour

(5%) mixed with water in 1:1.5

proportion

[44]

Lc. lactis ssp. cremoris

Lactobacillus delbrueckii

Lb. acidophilus

Lb. rhamnosus

Lb. plantarum

Lc. lactis ssp. lactis

Bifidobacterium lactis

Lb. helveticus

Lc. lactis ssp. cremoris

Lb. rhamnosus Lc

Lb. acidophilus

Lb. fermentum

Lb. johnsonii

Lb. rhamnosus

Lb. amylovorus

Lb. amylovorus

Bb. lactis

Bb. longum

Bb. animalis

Bb. lactis

B1

5 µg/mL

5.6

17.3

18.2

22.7

28.4

31.6

18.0

34.2

41.1

54.6

20.7

22.6

30.1

33.1

57.8

59.7

34.7

37.5

45.7

48.7

1 x 1010 cfu/mL, 24h, 37 °C, PBS [23]
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Microorganism AF Bound

(%)

Conditions Ref.

L. rhamnosus GG

Viable cells

Heat-treated cells

Acid-treated cells

L. rhamnosus LC-705

Viable cells

Heat-treated cells

Acid-treated cells

L. acidophilus LC1

Viable cells

Heat-treated cells

Acid-treated cells

L. lactis subsp. lactis

Viable cells

Heat-treated cells

Acid-treated cells

L. acidophilus ATCC 4356

Viable cells

Heat-treated cells

Acid-treated cells

L. plantarum

Viable cells

Heat-treated cells

Acid-treated cells

L. casei Shirota

Viable cells

Heat-treated cells

Acid-treated cells

L. delbrueckii subsp.

bulgaricus

Viable cells

Heat-treated cells

Acid-treated cells

L. helveticus

Viable cells

Heat-treated cells

Acid-treated cells

P. freudenreichii subsp.

shermanii JS

Viable cells

Heat-treated cells

B1

5 µg/mL

 

78.9

84.1 

86.7

 

76.5

87.8

88.3

 

59.7

74.7

84.2

 

59.0

58.1

69.5

 

48.3

69.7

81.3

 

29.9

35.5

62.7

 

21.8

41.5

32.3

 

 

15.6

33.7

75.8

 

17.5

29.8

58.1

 

 

22.3

67.3

 

1 x 1010 cfu/mL, 1h, 37 °C, PBS

 

 

 

1 x 1010 cfu/mL, 1h, 37°C, PBS

 

 

 

1 x 1010 cfu/mL, 1h, 37 °C, PBS

 

 

 

1 x 1010 cfu/mL, 1h, 37 °C, PBS

 

 

 

1 x 1010 cfu/mL, 1h, 37 °C, PBS

 

 

 

1 x 1010 cfu/mL, 1h, 37 °C, PBS

 

 

 

1 x 1010 cfu/mL, 1h, 37 °C, PBS

 

 

 

1 x 1010 cfu/mL, 1h, 37 °C, PBS

 

 

 

 

1 x 1010 cfu/mL, 1h, 37 °C, PBS

 

 

 

 

1 x 1010 cfu/mL, 1h, 37 °C, PBS

 

[27]
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Microorganism AF Bound

(%)

Conditions Ref.

Acid-treated cells

Lc. lactis subsp. cremoris

Viable cells

Heat-treated cells

Acid-treated cells

S. thermophilus

Viable cells

Heat-treated cells

Acid-treated cells

82.5

 

26.9

40.1

43.7

 

32.7

42.0

63.8

 

 

1 x 1010 cfu/mL, 1h, 37 °C, PBS

 

 

 

1 x 1010 cfu/mL, 1h, 37 °C, PBS

E. Coli

L. rhamnosus GG

S. aureus

Bifidobacterium sp. Bf6

B. adolescentis 14

B. bifidum BGN4

Bifidobacterium sp. CH4

B. longum JR20

Bifidobacterium sp. JO3

B1

2 µg/mL

37

37

46

25

31

46

37

37

41

30 min, 37 °C, PBS [22]

Lc. lactis

Living cells

 

 

 

 

Dead cells by boiling

 

 

Dead cells by autoclaving

 

S. thermophilus

Living cells

 

 

 

Dead cells by boiling

 

 

 

 

Dead cells by autoclaving

B1

0.5

µg/mL

 

54.8

86.7

82.3

71.0

 

81.0

100

 

80.0

 

 

81.0

91.5

90.7

66.5

100.0

96.8

81.7

96.0

 

83.0

107-108 cfu/mL,30 min, 37 °C, in:

PBS

maize oil

sunflower oil

soybean oil

 

PBS

maize, sunflower or soybean oil

 

 

PBS

 

PBS

maize oil

sunflower oil

soybean oil

PBS

maize oil

sunflower oil

soybean oil

 

PBS

[42]
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Microorganism AF Bound

(%)

Conditions Ref.

Yoghurt Culture B1

0.6mg/kg

1 mg/kg

1.4mg/kg

 

1 mg/kg

 

97

91

90

 

90

84

73

 

42 °C/3h, pH 4.0, overnight, milk

 

 

 

milk acidified with citric acid

milk acidified with latic acid

milk acidified with acetic acid

[43]

L. acidophilus NCC12

Living cells

 

Heated cells

 

L. acidophilus NCC36

Living cells

 

Heated cells

 

L. acidophilus NCC68

Living cells

 

Heated cells

 

B. bifidum Bb13

Living cells

 

Heated cells

 

B. bifidum NCC 381

Living cells

 

Heated cells

 

 

L. rhamnosus

Living cells

 

Heated cells

M1

5, 10 and

20

ng/mL

 

14.9-20.2

14.4-15.4

17.0-24.9

16.6-19.0

 

20.4-25.3

21.8-22.7

22.1-26.8

23.7-25.1

 

10.2-16.0

7.8-10.5

14.0-21.8

12.8-15.9

 

23.5-26.6

24.0-25.9

24.3-28.9

25.4-27.4

 

16.6-22.1

15.5-18.3

17.4-23.5

17.1-22.2

 

20.1-24.0

20.4-22.2

 

23.4-27.8

22.9-26.3

 

108 cfu/mL, 0, 4, 24 h, 37 °C, PBS

108 cfu/mL, 4h, 37 °C, milk

0, 4 , 24 h, 37 °C, PBS

 4h, 37 °C, milk

 

108 cfu/mL, 0, 4, 24 h, 37 °C, PBS

108 cfu/mL, 4h, 37 °C, milk

0, 4, 24 h, 37 °C, PBS

4h, 37 °C, milk

 

108 cfu/mL, 0, 4, 24 h, 37 °C, PBS

108 cfu/mL, 4h, 37 °C, milk

0, 4, 24 h, 37 °C, PBS

4h, 37 °C, milk

 

108 cfu/mL, 0, 4, 24 h, 37 °C, PBS

108 cfu/mL, 4h, 37 °C, milk

0, 4,24 h, 37 °C, PBS

4h, 37 °C, milk

 

108 cfu/mL, 0, 4,24 h, 37 °C, PBS

108 cfu/mL, 4h, 37 °C, milk

0, 4 and 24 h, 37 °C, PBS

4h, 37 °C, milk

 

108 cfu/mL, 0, 4, 24 h, 37 °C, PBS

108 cfu/mL, 4h, 37 °C, milk

 

0, 4 and 24 h, 37 °C, PBS

4h, 37 °C, milk

[46]

Lactobacillus strains AFM1 9.4-73.1 96 h, 37 °C , PBS [47]

Recent Trends in Microbiological Decontamination of Aflatoxins in Foodstuffs
http://dx.doi.org/10.5772/51120

73



Microorganism AF Bound

(%)

Conditions Ref.

Lactococcus strains

Bifidobacterium strains

 

L. plantarum

B. adolescentes

Lactobacillus strains

Lactococcus strains

Bifidobacterium strains

L. bulgaricus

B. adolescentes

4.5-38.3

7.8-41.6

 

73

41.6

64-80.5

46.0-68.5

67.0-72.5

80.5

73

96 h, 37 °C , PBS

96 h, 37 °C , PBS

 

96 h, 37 °C , PBS

96 h, 37 °C , PBS

96 h, 37 °C ,milk

96 h, 37 °C , milk

96 h, 37 °C , milk

96 h, 37 °C , milk

96 h, 37 °C , milk

L. rhamnosus strain GG

(pre-cultured)

Viable cells

 

 

Heat-killed cells

 

 

 

L. rhamnosusstrain

LC-705

(pre-cultured)

Viable cells

 

 

Heat-killed cells

 

 

 

L. rhamnosus strain GG

(lyophilized)

Viable cells

Heat-killed cells

L. rhamnosus strain

LC-705

(lyophilized)

Viable cells

Heat-killed cells

L. lactis ssp. cremoris

strain ARH74

Viable cells

M1

0.15

µg/ml

 

 

50.7

18.8

26.0

57.8

26.6

36.6

 

 

 

 

46.3

69.6

27.4

51.6

63.6

30.1

 

 

 

53.8

56.2

 

 

 

45.7

57.4

 

 

40.4

5.3 x 108, 15 - 16h, , 37 °C, in:

 

PBS

skim milk

full cream milk

PBS

skim milk

full cream milk

 

 

 

 

PBS

skim milk

full cream milk

PBS

skim milk

full cream milk

 

 

 

1.0 x 1010, 15-16h, 37 °C, PBS

 

 

 

 

1.0 x 1010, 15-16h, 37 °C, PBS

 

 

 

2.9 x 108, 15-16h, , 37 °C, PBS

[29]
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Microorganism AF Bound

(%)

Conditions Ref.

Heat-killed cells

L. gasseri (ATCC 33323)

Viable cells

Heat-killed cells

L. acidophilus strain LA1

Viable cells

Heat-killed cells

L. rhamnosus strain 1/3

Viable cells

Heat-killed cells

38.9

 

30.8

61,5

 

18,3

25,5

 

18,1

39,9

 

 

3.9 x 108, 15-16h, , 37 °C, PBS

 

 

1.7 x 109, 15-16h, , 37 °C, PBS

 

 

3.9 x 108, 15-16h, , 37 °C, PBS

L. rhamnosus strain GG

Pre-treatment:

Pronase E

Viable cells

Heat-treated cells

Acid-treated cells

Lipase

Viable cells

Heat-treated cells

Acid-treated cells

Phosphate Buffer

Viable cells

Heat-treated cells

Acid-treated cells

m-Periodater

Viable cells

Heat-treated cells

Acid-treated cells

Iodate

Viable cells

Heat-treated cells

Acid-treated cells

Urea

Viable cells

Heat-treated cells

Acid-treated cells

Water (Milli Q)

Viable cells

Heat-treated cells

Acid-treated cells

B1

5 µg/mL

 

 

 

66

72

85

 

76

74

89

 

86

85

91

 

60

49

36

 

83

84

80

 

64

60

50

 

76

83

84

 

 

 

1h, 37 °C, 5% CO2, PBS

Boiled for 1h, PBS

2 mol/L HCl, 1h, 37 °C, 5% CO2

 

1h, 37 °C, 5% CO2, PBS

Boiled for 1h, PBS

2 mol/L HCl, 1h, 37 °C, 5% CO2

 

1h, 37 °C, 5% CO2, PBS

Boiled for 1h, PBS

2 mol/L HCl, 1h, 37 °C, 5% CO2

 

1h, 37 °C, 5% CO2, PBS

Boiled for 1h, PBS

2 mol/L HCl, 1h, 37 °C, 5% CO2

 

1h, 37 °C, 5% CO2, PBS

Boiled for 1h, PBS

2 mol/L HCl, 1h, 37 °C, 5% CO2

 

1h, 37 °C, 5% CO2, PBS

Boiled for 1h, PBS

2 mol/L HCl, 1h, 37 °C, 5% CO2

 

1h, 37 °C, 5% CO2, PBS

Boiled for 1h, PBS

2 mol/L HCl, 1h, 37 °C, 5% CO2

[48]
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Microorganism AF Bound

(%)

Conditions Ref.

L. acidophilus

Pre-treatment:

None

Heat

Ethanol

Acid

Alkaline

L. casi

None

Heat

Ethanol

Acid

Alkaline

L. helveticus

None

Heat

Ethanol

Acid

Alkaline

L. bulgaricus

None

Heat

Ethanol

Acid

Alkaline

B1

5 µg/mL

 

 

56.6

71.9

46.5

87.0

27.4

 

22.4

41.8

21.8

43.1

12.0

 

17.8

28.5

18.0

56.3

9.1

 

16.3

33.5

15.9

586

8.3

 

 

4h, 37 °C, PBS

[49]

L. plantarum

Viable cells

Heat-killed cells

E. avium

Viable cells

Heat-killed cells

P. pentosaceus

Viable cells

Heat-killed cells

L. gasseri

Viable cells

Heat-killed cells

L. bulgaricus

Viable cells

Heat-killed cells

M1

0.15

µg/mL

PBS

solution

0.5

µg/mL

skimmed

milk

 

5.6

8.1

 

7.4

6.6

 

8.7

7.8

 

21.4

22.8

 

30.2

33.5

1010 cfu/mL, 15 min, 37°C, in:

PBS

PBS

 

PBS

PBS

 

PBS

PBS

 

PBS

PBS

 

PBS

PBS

[50]
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Microorganism AF Bound

(%)

Conditions Ref.

 

 

L. rhamnosus

Viable cells

Heat-killed cells

 

 

B. lactis

Viable cells

Heat-killed cells

33.5

 

 

17.1

27.8

24.5

 

 

16.9

23.6

32.5

skimmed milk

 

 

 

PBS

PBS

skimmed milk

 

PBS

PBS

skimmed milk

L. delbrueckii subsp.

bulgaricus CH-2

 

S. thermophilus ST-36

M1

10 ng/mL

18.7

27.6

 

29.4

39.2

14.8

4h, 37 °C, PBS

4h, 42 °C, milk

 

4h, 37 °C, PBS

4h, 42 °C, milk

Yoghurt

[51]

F. aurantiacum NRRL

B-184

M1

10 µg/mL

100 5 x 1010 cfu/mL, 30 °C, 4h, PBS

and milk

[52]

B. subtilis UTBSP1

Viable cells

Cell Free Supernatant

B1

2.5

µg/mL

 

85.7

95

 

 

 

78.4

 

96h, 30 °C, nutrient broth culture

108 cfu/ml, 120 h, 30 °C, pistachio

nuts

120 h, 35 °C, nutrient broth

culture

[53]

B. subtilis ANSB060

“Inocula” suspension

 

 

 

Cell

Cell extract

Culture Supernatant

B1

G1

M1

(0.5

µg/mL)

B1

 

81.5

80.7

60

 

10.5

9.6

78.7

 

72h, 37 °C, Luria-Bertani medium

 

 

 

72h, 37 °C, PBS

[54]

L. rhamnosus strain GG

“In vivo”

 

“In vitro”

L. rhamnosus strain

LC-705

B1

3 µg/mL

 

51

92

80

 

 

1010cfu/mL:

1 min, duodenum of chicks

 

1 h, duodenum of chicks

37 °C, 1h , pH 7.3

 

[62]
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Microorganism AF Bound

(%)

Conditions Ref.

“In vivo”

 

“In vitro”

P. freudenreichii subsp.

shermanii JS

“In vivo”

 

“In vitro”

36

71

77

 

 

37

82

22

1 min, duodenum of chicks

1 h, duodenum of chicks

37 °C, 1h , pH 7.3

 

 

1 min, duodenum of chicks

1 h, duodenum of chicks

37 °C, 1h , pH 7.3

Table 1. Aflatoxin binding / absorption by microorganisms. Note: PBS, Phosphate-Buffered Saline; cfu, colony
formingunit.

4. Decontamination of Aflatoxins by Yeasts

Yeasts are non-photosynthetic organisms with a separate nucleus and complex life cycle.
They are larger than bacteria, normally spherical, non-motile, and reproduce by budding.
Although their main function is alcoholic fermentation, these organisms are also capable of
producing enzymes and vitamins. The primary substrates for yeasts are fermentable sugars,
which are mainly transformed in ethanol, carbon dioxide, and biomass under oxygen-limit‐
ed conditions. Under adequate oxygen supply, yeast produces carbon dioxide, water, and
biomass [65]. Saccharomyces cerevisiae (SC) is the most well-known and commercially impor‐
tant species of yeast, and SC strains are widely used in the production of alcoholic drinks
and in the baking industry.

As it occurs with LAB, SC cells have been studied to evaluate their ability to remove aflatox‐
ins from contaminated media. The most important results obtained until now are summar‐
ized in Table 2. Products based on SC (cell wall from baker and brewer yeasts, inactivated
baker yeast, or alcohol yeast) was studied, and it was observed that in pH 3, 37 °C and 15
minutes of contact, AFB1 removal ranged from 2.5% to 49.3%, depending on the concentra‐
tion of the toxin in the medium, and on the yeast-based products used [66]. These authors
also observed a decrease in toxin adsorption as the initial concentration increased, and con‐
cluded that adsorption is not a linear phenomenon. Similar results with a SC strain and
AFB1 concentration ranging from 1 to 20 µg/mL was also reported [56]. At the 1 µg/mL con‐
centration, 69.1% AFB1 was removed; at 5 g/mL, removal rate was 41%; and at 20 µg/mL,
34%. S. cerevisiae strains were isolated from animal feed, feces and intestines, and tested for
their ability to tolerate gastrointestinal conditions and remove AFB1 from a contaminated
medium [67]. These researchers observed that all strains isolated were able to survive in gas‐
trointestinal conditions, and that the percentage of toxin removed ranged among SC strains
(107 CFU/mL), and with AFB1 concentration used (16.4% to 82% of adsorption for 50 ng/mL
AFB1; 21.3% to 48.7% for 100 ng/mL AFB1; and 20.2% to 65.5% for 500 ng/mL AFB1).
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The ability of SC (0.1%, 0.2%, and 0.3%) to adsorb AFB1 in contaminated corn (150, 300, 450
and 800 µg/kg corn was analyzed [68]. The adsorption process showed an inversely propor‐
tional relationship with the concentration, that is, the greater the AFB1 concentration in the
medium, the lower the efficiency of AFB1 removal by SC (16% to 66% for 800 µg/kg AFB1 vs.
40% to 93% for 150 µg/kg AFB1). The authors concluded, using densitogram analysis, that
the adsorption process did not change the molecular structure of the mycotoxin, and that
the decreased AFB1 adsorption rates observed as the toxin concentration increased may pos‐
sibly be caused by saturation of the adsorption sites on the SC cell. Other factors, such as
length of incubation, pH, method of biomass purification, and methods of analysis, may also
influence this process.

Immobilized SC cells (ATTC 9763) was investigated for their ability to remove AFB1 from
pistachio seeds, and it was observed that the amount of toxin removed was dependent on its
concentration in the medium (40% and 70% of removal for concentrations of 10 ng/mL and
20 ng/mL AFB1, respectively) [69]. The authors also concluded that this ability to remove the
toxin was greater in SC exponential growth phase, and that the process was a quick one, be‐
ing saturated after 3 hours of contact. Besides, the ability of SC cells to remove toxin was
increased after treatment with acid (60% and 73% for 10 ng/mL and 20 ng/mL AFB1, respec‐
tively) and heat (55% and 75%, respectively). In another study, authors also concluded that
the treatment of SC cells with heat at 60 °C and 120 °C, and with chloric acid (2 mol/L) in‐
creased their ability to remove AFB1 from the medium to 68.8%, 79.3%, and 72.1%, respec‐
tively, against 38.7% when viable yeast cells were used [56].

Heat treatment may increase the permeability of the external layer of the cell wall due to the
suspension of some mannanes on the cell surface, leading to increased availability of previ‐
ously hidden binding sites. Besides, countless physical-chemical changes take place on the
cell wall during heat treatment, leading to more exposed binding sites. On the other hand,
acid conditions may affect polysaccharides by releasing monomers, which are further frag‐
mented in aldehydes after glycosidic bonds are broken. Continuous removal of aflatoxin,
even after use of acid and heat treatments, confirms that yeast cell viability is not a signifi‐
cant factor for the removal of aflatoxin from the medium [69].

During the fermentation of broiler feed using LAB (3 strains of Lactobacillus) and SC strains
resistant to gastric juices and bile, 55% AFB1 was removed when AFB1 concentration in the
medium was 1 mg/kg, and 39% when concentration was 5 mg/kg AFB1, after 6 hours [70].
This tendency for removal was maintained as incubation continued, and after 24 hours, the
amount of AFB1 removed was 73% and 53%, respectively, for the two concentrations of the
toxin. The authors considered that, from a practical point of view, the most important factor
was the 6-hour fermentation period, once the passage of feed through the gastrointestinal
tract of broilers lasts from 4 to 8 hours. In reference [71], authors analyzed the ability of SC
to remove AFB1 from a contaminated medium at different pH values (3.0, 6.0, and 8.0), and
observed that the three strains analyzed showed great ability to remove the toxin (41.6% to
94.5%), and that after washing, only a small amount of AFB1 was released back into the me‐
dium. In vitro studies are not always good indications of the in vivo responses, as in vivo
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studies are affected by physiological parameters, such as pH, peristaltic movements, and
gastric and intestinal secretions.

In vivo studies using SC are not as rare as those with LAB, mainly in poultry science. Gener‐
ally, SC is added to the feed as a growth promoter. However, the addition of yeasts has also
presented beneficial effects against the exposure to AFB1. It was observed that the addition
of 1% SC to feed contaminated with 5 g/g of AFB1 prevented loss of weight; liver and heart
hyperplasia; and decreased serum albumin and total protein concentrations in broilers [72].
The addition of SC in feed containing aflatoxin decreased the deleterious effects on feed in‐
take, weight gain, and feed conversion in Japanese quails [73]. Compared with control ani‐
mals, weight gain was 37% lower in birds fed a diet added only of aflatoxin, and was 15%
greater than the control in the group that received feed containing aflatoxin and SC. The au‐
thors concluded that the diet containing with only SC significantly improved all growth pa‐
rameters investigated (about 40%), compared with the control group.

In a study with mice, it was observed that the addition of AFB1 to the diet (0.4 and 0.8
mg/kg) caused a significant reduction in weight gain, and an increase of 85% (0.8 mg/kg) in
the rate of micronucleated normochromatic erythrocytes (MNE) after 3 weeks of ingestion,
compared with the control group [68]. When diets containing AFB1 and SC (0.3%) were ad‐
ministered, weight gain was twice greater than in diets that contained only the toxin, and
the rate of MNE increased only 46% (0.8 mg/kg) The authors stated that reduced body
weight is one of the most common consequences of AFB1 ingestion, because the toxin alters
the activity of several digestive enzymes, giving rise to a malabsorption syndrome charac‐
terized by steatorrhea, hypovitaminosis A and a decrease in the levels of bile, pancreatic li‐
pase, trypsin, and amylase. Besides, biotransformation of AFB1 gives rise to several
metabolites, particularly AFB1-8,9-epoxide, which may bind covalently to DNA and pro‐
teins, changing enzymatic processes such as gluconeogenesis, Krebs cycle, and fatty acid
synthesis [74]. MNE rate is used to determine the genotoxicity of AFB1, because it quantifies
broken chromosomes and whole chromosomes that are abnormally distributed to daughter
cells, showing thus, that AFB1 is a potent mutagenic agent.

A diet containing 5 g/g of aflatoxin (82.06% AFB1, 12.98% AFB2, 2.84% AFG1, and 1.12%
AFG2) by female quails (49 to 84 days of age) led to decreased egg production, feed intake,
and feed conversion (31%, 28%, and 47%, respectively) [75]. However, addition of SC (2
g/kg) significantly increased these parameters (16%, 4%, and 14%, respectively). They also
observed that the diet with aflatoxins caused a marked decrease in weight gain and egg
weight, besides increasing animal mortality (39%, 7%, and 50%, respectively), whereas addi‐
tion of SC reverted the negative effect on these parameters (65%, 8%, and 50%, respectively).
The authors stated that these negative effects of aflatoxins in egg production, feed intake,
and feed conversion may have been caused by anorexia, apathy, and inhibition of protein
synthesis and lipogenesis. Besides, affected liver function and mechanisms of use of protein
and lipids may have affected performance criteria and the general health of the animals. In
reference [76] authors reported that the components of the cells wall of SC are able to adsorb
mycotoxins, stimulate the immune system, and compete for binding sites in the enterocytes,
inhibiting intestinal colonization by pathogens.
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SC cell wall is mainly made up of polysaccharides (80-90%), and its mechanical resistance is
due to an inside layer composed of β-D-glucans, which are formed by a complex network of
highly polymerized β-(1,3)-D-glucans, branched off as β-(1,6)-D-glucans, that have a low
level of polymerization. This inside layer is firmly bound to the plasmatic membrane by lin‐
ear chains of chitin, which have a significant role in the insolubility of the overall structure
and packing of the branched β-D-glucans. Both chitin chains and β-D-glucans affect the
plasticity of the cell wall. The external layer of the yeast cell wall is formed by mannopro‐
teins, which have an important role in the exchanges with the external environment. This
whole structure is highly dynamic and may vary according to the yeast strain, phase of the
cell cycle, and culture conditions, such as pH, temperature, oxygenation rate, nature of the
medium, concentration and nature of the carbon source. Thus, these differences in the com‐
position of the cell wall among yeast strains are related with their ability to bind to the my‐
cotoxin [77].

Studies have shown that the components of SC cell wall, called oligomannanes, after esterifi‐
cation, are able to bind more than 95% AFB1 [78]. Addition of 0.05% glucomannanes in the
basal diet improved broiler performance [79].

The possible binding mechanisms between yeast cell wall and mycotoxins were studied,
and authors suggested that β-D-glucans are the components of the cell wall that are respon‐
sible for forming the complex with the toxin, and that the reticular organization of β-D-glu‐
cans and their distribution in β-(1,3)-D-glucans and β-(1,6)-D-glucans have an important
role in the efficiency of the bond [77]. Besides, studies have shown that weak hydrogen and
van der Waals bonds are involved in the complex chemical connection between the myco‐
toxins and β-D-glucans, a chemical interaction that is much more "adsorption” than “bond”.
As for AFB1, they observed that the aromatic ring, the lactone and ketone groups of the po‐
lar form of AFB1, or chemical bonds with glucose units in the single helix of the β-D-glucans,
are what keep the toxin bound to the glucans.

It was demonstrated that yeast strains isolated from environments were animals are raised
are able to bind to AFB1 in saline solution (PBS, pH 7) [67]. These strains presented other
properties that were beneficial to the host, such as the inhibition of pathogenic bacteria.
Therefore, SC strains acted both as probiotics (co-aggregation and inhibition of pathogenic
bacteria), and as mycotoxin adsorbents.

In reference [72], SC was able to reduce the deleterious effects of AFB1 in the diet of broilers
and in [68] authors replicated these findings in rats. Protective effect against aflatoxins pro‐
duced by yeasts was confirmed in rats. However, when yeast cells were inactivated by heat,
they were inefficient [80] but when glucomannanes extracted from the cell wall of yeasts
were used, there was an increase in the efficiency of the bond with AFB1, OTA and T-2 toxin
[81-84], individually or in combination [75, 79, 85, 86]. The addition of SC in the diet reduced
AFB1 toxic effects in chickens [72, 87]. The ability of SC to reduce AFB1 toxic effects in quails
was demonstrated, and this effect was apparently more efficient with the increase in inclu‐
sion rates [88].
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In [89] authors obtained a significant reduction in AFB1 concentration during beer produc‐
tion, probably due to the bond between mycotoxins and SC cell. This hypothesis was sup‐
ported by other studies [39, 90]. A 19% reduction in AFB1 during dough fermentation in
bread production was observed [91].

Microorganism AF Bound

(%)

Conditions Ref.

S. cerevisiae B1

0.0058-

6.35 μg/mL

 

7.6-49.3

7.6-29

10-24

4-29

17-44

3-44

23-35

27-44

15 min, 37 °C:

YCW from brewer’s yeast

YCW from brewer’s yeast

Inactivated baker’s yeast

YCW from baker’s yeast

Inactivated baker’s yeast

YCW from baker’s yeast

YCW from baker’s yeast

Alcohol yeast

[66]

S. cerevisiae

Strain A18

 

 

 

Strain 26.1.11

 

 

 

Pre-treatment:

Heated cells 52°C

Strain A18

Strain 26.1.11

Heated cells 55 °C

Strain A18

Strain 26.1.11

Heated cells at 60 °C

Strain A18

Strain 26.1.11

Heat cells at 120 °C

Strain A18

Strain 26.1.11

2 mol/L HCl / 1h

Strain A18

Strain 26.1.11

B1

1 μg/mL

5 μg/mL

10 μg/mL

20 μg/mL

1 μg/mL

5 μg/mL

10 μg/mL

20 μg/mL

 

5 μg/mL

 

69.1

41

33

34.2

65.1

37.2

31

32.6

 

58.8

56.5

 

64.5

64

 

68.8

67

 

79.3

77.7

 

72.1

69.3

 

3h, 25 C, PBS

 

 

 

3h, 25 C, PBS

 

 

 

 

3h, 25 C, PBS

[56]

S. cerevisiae B1 (ng/mL)   [67]
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Microorganism AF Bound

(%)

Conditions Ref.

 

Strain RC008

 

 

Strain RC009

 

 

Strain RC012

 

 

Strain RC016

50 ng/mL

100

500

50

100

500

50

100

500

50

100

500

 

67.6

43.5

38.2

16.4

21.3

31.8

29.6

20.6

20.2

82.0

48.7

65.5

 

107 cells/mL, 1h, 37 °C, PBS

S. cerevisiae

Yeast concentration:

0.1 %

 

 

 

0.2 %

 

 

 

0.3 %

B1

(µg/kg)

150

300

450

800

150

300

450

800

150

300

450

800

 

 

40

25

17

16

88

76

64

51

93

86

81

66

 

 

37 °C, 24 h, corn

 

 

 

37 °C, 24 h, corn

 

 

 

37 °C, 24 h, corn

[68]

S. cerevisiae ATTC 9763

Pre-treatment:

None

 

Acid treated cells

(2 mol/L / 90 min)

Heat-treated cells

(120 °C / 20 min)

B1

(ng/mL)

10

20

10

20

10

20

 

 

40

70

60

73

55

75

 

 

3 h, 25 °C, pistachio nuts

[69]

L. paracasei LOCK 0920,

L. brevis LOCK 0944, L.

plantarum LOCK 0945,

and S. cerevisiae LOCK

0140

B1

1 mg/kg

5 mg/kg

 

55

39

 

37 °C, 6h fermentation in broiler

feed

[70]
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Microorganism AF Bound

(%)

Conditions Ref.

S. cerevisiae B1

1 µg /g

10 µg /g

 

86

72

 

12 °C, 8 days, brewing process

[89]

Table 2. Aflatoxin binding by yeasts. YCW, Yeast Cell Wall

5. Concluding Remarks

Considering the data from several studies carried out until now, it may be observed that mi‐
croorganisms, among them lactic acid bacteria and yeasts, have a huge potential application
in aflatoxin degradation in foodstuffs. However, new studies are necessary to identify bacte‐
rial species with greater binding potential with aflatoxins, once there are differences in sen‐
sitivity and selectivity, besides the influence of factors that are intrinsic and extrinsic to the
bacteria in the decontamination process. After this step of choosing species with greater effi‐
ciency has been overcome, new production technologies that are economically viable to be
applied to human and animal foods may be developed.

Several studies have demonstrated that the cell wall of SC and LAB and their components
are responsible for binding with aflatoxins. However, the mechanisms by which this bond
occurs remain unclear. Cell walls with glucomannanes and manno-oligosaccharides have
been pointed out as the responsible elements for AFB1 bond with yeasts. The great advant‐
age in the commercial use of these microorganisms as binding agents is that these strains
are approved and already used in a wide range of fermented food products, being recog‐
nized as  safe.  However,  aflatoxin may be  released from the cell-aflatoxin complex with
changes in the pH and temperature conditions. Therefore, further studies are necessary to
determine the behavior of yeasts in the different environmental conditions before they are
used commercially.
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