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Not even windstorm, earth-tremor, or rush of water is a catastrophe.  

A catastrophe is known by its works; that is, to say, by the occurrence of disaster.  

So long as the ship rides out the storm, so long as the city resists the earth-shocks,  

so long as the levees hold, there is no disaster.  

It is the collapse of the cultural protections that constitutes the proper disaster. 

(Carr, 1932) 

1. Introduction 

Essentially, disasters are human-made. For a catastrophic event, whether precipitated by 

natural phenomena or human activities, assumes the state of a disaster when the 

community or society affected fails to cope. Earthquake hazards themselves do not 

necessarily lead to disasters, however intense, inevitable or unpredictable, translate to 

disasters only to the extent that the population is unprepared to respond, unable to deal 

with, and, consequently, severely affected. Seismic disasters could, in fact, be reduced if 

not prevented. With today’s advancements in science and technology, including early 

warning and forecasting of the natural phenomena, together with innovative approaches 

and strategies for enhancing local capacities, the impact of earthquake hazards somehow 

could be predicted and mitigated, its detrimental effects on populations reduced, and the 

communities adequately protected.  

After each major earthquake, it has been concluded that the experienced ground motions 

were not expected and soil behavior and soil-structure interaction were not properly 

predicted. Failures, associated to inadequate design/construction and to lack of phenomena 

comprehension, obligate further code reinforcement and research. This scenario will be 
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repeated after each earthquake. To overcome this issue, Earthquake Engineering should 

change its views on the present methodologies and techniques toward more scientific, 

doable, affordable, robust and adaptable solutions. 

A competent modeling of engineering systems, when they are affected by seismic activity, 

poses many difficult challenges. Any representation designed for reasoning about models of 

such systems has to be flexible enough to handle various degrees of complexity and 

uncertainty, and at the same time be sufficiently powerful to deal with situations in which 

the input signal may or may not be controllable. Mathematically-based models are 

developed using scientific theories and concepts that just apply to particular conditions. 

Thus, the core of the model comes from assumptions that for complex systems usually lead 

to simplifications (perhaps oversimplifications) of the problem phenomena. It is fair to argue 

that the representativeness of a particular theoretical model largely depends on the degree 

of comprehension the developer has on the behavior of the actual engineering problem. 

Predicting natural-phenomena characteristics like those of earthquakes, and thereupon their 

potential effects at particular sites, certainly belong to a class of problems we do not fully 

understand. Accordingly, analytical modeling often becomes the bottleneck in the 

development of more accurate procedures. As a consequence, a strong demand for 

advanced modeling an identification schemes arises. 

Cognitive Computing CC technologies have provided us with a unique opportunity to 

establish coherent seismic analysis environments in which uncertainty and partial data-

knowledge are systematically handled. By seamlessly combining learning, adaptation, 

evolution, and fuzziness, CC complements current engineering approaches allowing us 

develop a more comprehensive and unified framework to the effective management of 

earthquake phenomena. Each CC algorithm has well-defined labels and could usually be 

identified with specific scientific communities. Lately, as we improved our understanding of 

these algorithms’ strengths and weaknesses, we began to leverage their best features and 

developed hybrid algorithms that indicate a new trend of co-existence and integration 

between many scientific communities to solve a specific task.  

In this chapter geotechnical aspects of earthquake engineering under a cognitive 

examination are covered. Geotechnical earthquake engineering, an area that deals with 

the design and construction of projects in order to resist the effect of earthquakes, requires 

an understanding of geology, seismology and earthquake engineering. Furthermore, 

practice of geotechnical earthquake engineering also requires consideration of social, 

economic and political factors. Via the development of cognitive interpretations of 

selected topics: i) spatial variation of soil dynamic properties, ii) attenuation laws for rock 

sites (seismic input), iii) generation of artificial-motion time histories, iv) effects of local 

site conditions (site effects), and iv) evaluation of liquefaction susceptibility, CC 

techniques (Neural Networks NNs, Fuzzy Logic FL and Genetic Algorithms GAs) are 

presented as appealing alternatives for integrated data-driven and theoretical procedures 

to generate reliable seismic models.  
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2. Geotechnical earthquake hazards 

The author is well aware that standards for geotechnical seismic design are under 

development worldwide. While there is no need to “reinvent the wheel” there is a 

requirement to adapt such initiatives to fit the emerging safety philosophy and demands. 

This investigation also strongly endorses the view that “guidelines” are far more desirable 

than “codes” or “standards” disseminated all over seismic regions. Flexibility in approach is 

a key ingredient of geotechnical engineering and the cognitive technology in this area is 

rapidly advancing. The science and practice of geotechnical earthquake engineering is far 

from mature and need to be expanded and revised periodically in coming years. It is 

important that readers and users of the computational models presented here familiarize 

themselves with the latest advances and amend the recommendations herein appropriately. 

This document is not intended to be a detailed treatise of latest research in geotechnical 

earthquake engineering, but to provide sound guidelines to support rational cognitive 

approaches. While every effort has been made to make the material useful in a wider range 

of applications, applicability of the material is a matter for the user to judge. The main aim 

of this guidance document is to promote consistency of cognitive approach to everyday 

situations and, thus, improve geotechnical-earthquake aspects of the performance of the 

built safe-environment. 

2.1. A “soft” interpretation of ground motions  

After a sudden rupture of the earth’s crust (caused by accumulating stresses, elastic strain-

energy) a certain amount of energy radiates from the rupture as seismic waves. These waves 

are attenuated, refracted, and reflected as they travel through the earth, eventually reaching 

the surface where they cause ground shaking. The principal geotechnical hazards associated 

with this event are fault rupture, ground shaking, liquefaction and lateral spreading, and 

landsliding. Ground shaking is one of the principal seismic hazards that causes extensive 

damage to the built environment and failure of engineering systems over large areas. 

Earthquake loads and their effects on structures are directly related to the intensity and 

duration of ground shaking. Similarly, the level of ground deformation, damage to earth 

structures and ground failures are closely related to the severity of ground shaking. 

In engineering evaluations, three characteristics of ground shaking are typically considered: 

i) the amplitude, ii) frequency content and iii) significant duration of shaking (time over 

which the ground motion has relatively significant amplitudes).These characteristics of the 

ground motion at a given site are affected by numerous complex factors such as the source 

mechanism, earthquake magnitude, rupture directivity, propagation path of seismic waves, 

source distance and effects of local soil conditions. There are many unknowns and 

uncertainties associated with these issues which in turn result in significant uncertainties 

regarding the characteristics of the ground motion and earthquake loads.  

If the random nature of response to earthquakes (aleatory uncertainty) cannot be avoided 

[1,2], it is our limited knowledge about the patterns between seismic events and their 
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manifestations -ground motions- at a site (epistemic uncertainty) that must be improved 

thorough more scientific seismic analyses. A strategic factor in seismic hazard analysis is the 

ground motion model or attenuation relation. These attenuation relationships has been 

developed based on magnitude, distance and site category, however, there is a tendency to 

incorporate other parameters, which are now known to be significant, as the tectonic 

environment, style of faulting and the effects of topography, deep basin edges and rupture 

directivity. These distinctions are recognized in North America, Japan and New Zealand [3-

6], but ignored in most other regions of the world [7]. Despite recorded data suggest that 

ground motions depend, in a significant way, on these aspects, these inclusions did not have 

had a remarkable effect on the predictions confidence and the geotechnical earthquake 

engineer prefers the basic and clear-cut approximations on those that demand a blind use of 

coefficients or an intricate determination of soil/fault conditions.  

A key practice in current aseismic design is to develop design spectrum compatible time 

histories. This development entails the modification of a time history so that its response 

spectrum matches within a prescribed tolerance level, the target design spectrum. In such 

matching it is important to retain the phase characteristics of the selected ground motion 

time history. Many of the techniques used to develop compatible motions do not retain the 

phase [8]. The response spectrum alone does not adequately characterize specific-fault 

ground motion. Near-fault ground motions must be characterized by a long period pulse of 

strong motion of a fairly brief duration rather than the stochastic process of long duration 

that characterizes more distant ground motions. Spectrum compatible with these specific 

motions will not have these characteristics unless the basic motion being modified to ensure 

compatibility has these effects included. Spectral compatible motions could match the entire 

spectrum but the problem arises on finding a “real” earthquake time series that match the 

specific nature of ground motion. For nonlinear analysis of structures, spectrum compatible 

motions should also correspond to the particular energy input [9], for this reason, designers 

should be cautious about using spectrum compatible motions when estimating the 

displacements of embankment dams and earth structures under strong shaking, if the 

acceptable performance of these structures is specified by criteria based on tolerable 

displacements.  

Another important seismic phenomenon is the liquefaction. Liquefaction is associated with 

significant loss of stiffness and strength in the shaken soil and consequent large ground 

deformation. Particularly damaging for engineering structures are cyclic ground movements 

during the period of shaking and excessive residual deformations such as settlements of the 

ground and lateral spreads. Ground surface disruption including surface cracking, 

dislocation, ground distortion, slumping and permanent deformations, large settlements 

and lateral spreads are commonly observed at liquefied sites. In sloping ground and 

backfills behind retaining structures in waterfront areas, liquefaction often results in large 

permanent ground displacements in the down-slope direction or towards waterways 

(lateral spreads). Dams, embankments and sloping ground near riverbanks where certain 

shear strength is required for stability under gravity loads are particularly prone to such 

failures. Clay soils may also suffer some loss of strength during shaking but are not subject 
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to boils and other “classic” liquefaction phenomena. For intermediate soils, the transition 

from “sand like” to “clay-like” behavior depends primarily on whether the soil is a matrix of 

coarse grains with fines contained within the pores or a matrix of plastic fines with coarse 

grained “filler”. Recent papers by Boulanger and Idriss [10, 11] are helpful in clarifying 

issues surrounding the liquefaction and strain softening of different soil types during strong 

ground shaking. Engineering judgment based on good quality investigations and data 

interpretation should be used for classifying such soils as liquefiable or non-liquefiable.  

Procedures for evaluating liquefaction, potential and induced lateral spread, have been 

studied by many engineering committees around the world. The objective has been to 

review research and field experience on liquefaction and recommended standards for 

practice. Youd and Idriss [12] findings and the liquefaction-resistance chart proposed by 

Seed et al. [13] in 1985, stay as standards for practice. They have been slightly modified to 

adjust new registered input-output conditions and there is a strong tendency to recommend 

i) the adoption of the cone penetration test CPT, standard penetration test SPT or the shear 

wave velocities for describing the in situ soil conditions [14] and ii) the modification of 

magnitude factors used to convert the critical stress ratios from the liquefaction assessment 

charts (usually developed for M7:5) to those appropriate for earthquakes of diverse 

magnitudes [12, 15].  

3. Cognitive Computing 

Cognitive Computing CC as a discipline in a narrow sense, is an application of computers to 

solve a given computational problem by imperative instructions; while in a broad sense, it is 

a process to implement the instructive intelligence by a system that transfers a set of given 

information or instructions into expected behaviors. According to theories of cognitive 

informatics [16-18], computing technologies and systems may be classified into the 

categories of imperative, autonomic, and cognitive from the bottom up. Imperative 

computing is a traditional and passive technology based on stored-program controlled 

behaviors for data processing [19-24]. An autonomic computing is goal-driven and self-

decision-driven technologies that do not rely on instructive and procedural information [25-

28]. Cognitive computing is more intelligent technologies beyond imperative and autonomic 

computing, which embodies major natural intelligence behaviors of the brain such as 

thinking, inference, learning, and perceptions. 

Cognitive computing is an emerging paradigm of intelligent computing methodologies and 

systems, which implements computational intelligence by autonomous inferences and 

perceptions mimicking the mechanisms of the brain. This section presents a brief description 

on the theoretical framework and architectural techniques of cognitive computing beyond 

conventional imperative and autonomic computing technologies. Cognitive models are 

explored on the basis of the latest advances in applying computational intelligence. These 

applications of cognitive computing are described from the aspects of cognitive search 

engines, which demonstrate how machine and computational intelligence technologies can 

drive us toward autonomous knowledge processing. 
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3.1. Computational intelligence: Soft Computing technologies 

The computational intelligence is a synergistic integration of essentially three computing 

paradigms, viz. neural networks, fuzzy logic and evolutionary computation entailing 

probabilistic reasoning (belief networks, genetic algorithms and chaotic systems) [29]. This 

synergism provides a framework for flexible information processing applications designed 

to operate in the real world and is commonly called Soft Computing SC [30]. Soft computing 

technologies are robust by design, and operate by trading off precision for tractability. Since 

they can handle uncertainty with ease, they conform better to real world situations and 

provide lower cost solutions. 

The three components of soft computing differ from one another in more than one way. 

Neural networks operate in a numeric framework, and are well known for their learning 

and generalization capabilities. Fuzzy systems [31] operate in a linguistic framework, and 

their strength lies in their capability to handle linguistic information and perform 

approximate reasoning. The evolutionary computation techniques provide powerful search 

and optimization methodologies. All the three facets of soft computing differ from one 

another in their time scales of operation and in the extent to which they embed a priori 

knowledge. 

Figure 1 shows a general structure of Soft Computing technology. The following main 

components of SC are known by now: fuzzy logic FL, neural networks NN, probabilistic 

reasoning PR, genetic algorithms GA, and chaos theory ChT (Figure 1). In SC FL is mainly 

concerned with imprecision and approximate reasoning, NN with learning, PR with 

uncertainty and propagation of belief, GA with global optimization and search and ChT 

with nonlinear dynamics. Each of these computational paradigms (emerging reasoning 

technologies) provides us with complementary reasoning and searching methods to solve 

complex, real-world problems. In large scope, FL, NN, PR, and GA are complementary 

rather that competitive [32-34]. The interrelations between the components of SC, shown 

in Figure 1, make the theoretical foundation of Hybrid Intelligent Systems. As noted by L. 

Zadeh: "… the term hybrid intelligent systems is gaining currency as a descriptor of 

systems in which FL, NC, and PR are used in combination. In my view, hybrid intelligent 

systems are the wave of the future" [35]. The use of Hybrid Intelligent Systems are leading 

to the development of numerous manufacturing system, multimedia system, intelligent 

robots, trading systems, which exhibits a high level of MIQ (machine intelligence 

quotient). 

3.1.1. Comparative characteristics of SC tools 

The constituents of SC can be used independently (fuzzy computing, neural computing, 

evolutionary computing etc.), and more often in combination [36, 37, 38- 40, 41]. Based on 

independent use of the constituents of Soft Computing, fuzzy technology, neural 

technology, chaos technology and others have been recently applied as emerging 

technologies to both industrial and non-industrial areas.  
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Figure 1. Soft Computing Components 

Fuzzy logic is the leading constituent of Soft Computing. In Soft Computing, fuzzy logic 

plays a unique role. FL serves to provide a methodology for computing [36]. It has been 

successfully applied to many industrial spheres, robotics, complex decision making and 

diagnosis, data compression, and many other areas. To design a system processor for 

handling knowledge represented in a linguistic or uncertain numerical form we need a 

fuzzy model of the system. Fuzzy sets can be used as a universal approximator, which is 

very important for modeling unknown objects. If an operator cannot tell linguistically what 

kind of action he or she takes in a specific situation, then it is quite useful to model his/her 

control actions using numerical data. However, fuzzy logic in its so called pure form is not 

always useful for easily constructing intelligent systems. For example, when a designer does 

not have sufficient prior information (knowledge) about the system, development of 

acceptable fuzzy rule base becomes impossible. As the complexity of the system increases, it 

becomes difficult to specify a correct set of rules and membership functions for describing 

adequately the behavior of the system. Fuzzy systems also have the disadvantage of not 

being able to extract additional knowledge from the experience and correcting the fuzzy 

rules for improving the performance of the system.  

Another important component of Soft Computing is neural networks. Neural networks NN 

viewed as parallel computational models, are parallel fine-grained implementation of non-

linear static or dynamic systems. A very important feature of these networks is their 
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adaptive nature, where "learning by example" replaces traditional "programming" in 

problems solving. Another key feature is the intrinsic parallelism that allows fast 

computations. Neural networks are viable computational models for a wide variety of 

problems including pattern classification, speech synthesis and recognition, curve fitting, 

approximation capability, image data compression, associative memory, and modeling and 

control of non-linear unknown systems [42, 43]. NN are favorably distinguished for 

efficiency of their computations and hardware implementations. Another advantage of NN 

is generalization ability, which is the ability to classify correctly new patterns. A significant 

disadvantage of NN is their poor interpretability. One of the main criticisms addressed to 

neural networks concerns their black box nature [35].  

Evolutionary Computing EC is a revolutionary approach to optimization. One part of EC—

genetic algorithms—are algorithms for global optimization. Genetic algorithms GAs are 

based on the mechanisms of natural selection and genetics [44]. One advantage of genetic 

algorithms is that they effectively implement parallel multi-criteria search. The mechanism 

of genetic algorithms is simple. Simplicity of operations and powerful computational effect 

are the two main advantages of genetic algorithms. The disadvantages are the problem of 

convergence and the absence of strong theoretical foundation. The requirement of coding 

the domain of the real variables' into bit strings also seems to be a drawback of genetic 

algorithms. It should be also noted that the computational speed of genetic algorithms is 

low.  

Because in this investigation PR and ChT are not exploited, they are not going to be 

explained. For the interested reader [41] is recommended. Table 1 presents the comparative 

characteristics of the components of Soft Computing. For each component of Soft 

Computing there is a specific class of problems, where the use of other components is 

inadequate. 

3.1.2. Intelligent Combinations of SC 

As it was shown above, the components of SC complement each other, rather than compete. 

It becomes clear that FL, NC and GA are more effective when used in combinations. Lack of 

interpretability of neural networks and poor learning capability of fuzzy systems are similar 

problems that limit the application of these tools. Neurofuzzy systems are hybrid systems 

which try to solve this problem by combining the learning capability of connectionist 

models with the interpretability property of fuzzy systems. As it was noted above, in case of 

dynamic work environment, the automatic knowledge base correction in fuzzy systems 

becomes necessary. On the other hand, artificial neural networks are successfully used in 

problems connected to knowledge acquisition using learning by examples with the required 

degree of precision.  

Incorporating neural networks in fuzzy systems for fuzzification, construction of fuzzy 

rules, optimization and adaptation of fuzzy knowledge base and implementation of fuzzy 

reasoning is the essence of the Neurofuzzy approach.  
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Table 1. Central characteristics of Soft Computing technologies 

The combination of genetic algorithms with neural networks yields promising results as 

well. It is known that one of main problems in development of artificial neural systems is 

selection of a suitable learning method for tuning the parameters of a neural network 

(weights, thresholds, and structure). The most known algorithm is the "error back 

propagation" algorithm. Unfortunately, there are some difficulties with "back 

propagation". First, the effectiveness of the learning considerably depends on initial set of 

weights, which are generated randomly. Second, the "back propagation", like any other 

gradient-based method, does not avoid local minima. Third, if the learning rate is too 

slow, it requires too much time to find the solution. If, on the other hand, the learning rate 

is too high it can generate oscillations around the desired point in the weight space. 

Fourth, "back propagation" requires the activation functions to be differentiable. This 

condition does not hold for many types of neural networks. Genetic algorithms used for 

solving many optimization problems when the "strong" methods fail to find appropriate 

solution, can be successfully applied for learning neural networks, because they are free of 

the above drawbacks. 

The models of artificial neurons, which use linear, threshold, sigmoidal and other transfer 

functions, are effective for neural computing. However, it should be noted that such models 

are very simplified. For example, reaction of a biological axon is chaotic even if the input is 

periodical. In this aspect the more adequate model of neurons seems to be chaotic. Model of 

a chaotic neuron can be used as an element of chaotic neural networks. The more adequate 

results can be obtained if using fuzzy chaotic neural networks, which are closer to biological 

computation. Fuzzy systems with If-Then rules can model non-linear dynamic systems and 

capture chaotic attractors easily and accurately. Combination of Fuzzy Logic and Chaos 

Theory gives us useful tool for building system's chaotic behavior into rule structure. 

Identification of chaos allows us to determine predicting strategies. If we use a Neural 

Network Predictor for predicting the system's behavior, the parameters of the strange 

attractor (in particular fractal dimension) tell us how much data are necessary to train the 
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neural network. The combination of Neurocomputing and Chaotic computing technologies 

can be very helpful for prediction and control.  

The cooperation between these formalisms gives a useful tool for modeling and reasoning 

under uncertainty in complicated real-world problems. Such cooperation is of particular 

importance for constructing perception-based intelligent information systems. We hope that 

the mentioned intelligent combinations will develop further, and the new ones will be 

proposed. These SC paradigms will form the basis for creation and development of 

Computational Intelligence. 

4. Cognitive models of ground motions 

The existence of numerous databases in the field of civil engineering, and in particular in the 

field of geotechnical earthquake, has opened new research lines through the introduction of 

analysis based on soft computing. Three methods are mainly applied in this emerging field: 

the ones based on the Neural Networks NN, the ones created using Fuzzy Sets FS theory 

and the ones developed from the Evolutionary Computation [45].  

The SC hybrids used in this investigation are directed to tasks of prediction 

(classification and/or regression). The central objective is obtaining numerical and/or 

categorical values that mimic input-output conditions from experimentation and in situ 

measurements and then, through the recorded data and accumulated experience, predict 

future behaviors. The examples presented herein have been developed by an engineering 

committee that works for generating useful guidance to geotechnical practitioners with 

geotechnical seismic design. This effort could help to minimize the perceived significant 

and undesirable variability within geotechnical earthquake practice. Some urgency in 

producing the alternative guidelines was seen, after the most recent earthquakes 

disasters, as being necessary with a desire to avoid a long and protracted process. To this 

end, a two stage approach was suggested with the first stage being a cognitive 

interpretation of well-known procedures with appropriate factors for geotechnical 

design, and a posterior step identifying the relevant philosophy for a new geotechnical 

seismic design.  

4.1. Spatial variation of soil dynamic properties 

The spatial variability of subsoil properties constitutes a major challenge in both the design 

and construction phases of most geo-engineering projects. Subsoil investigation is an 

imperative step in any civil engineering project. The purpose of an exploratory investigation 

is to infer accurate information about actual soil and rock conditions at the site. Soil 

exploration, testing, evaluation, and field observation are well-established and routine 

procedures that, if carried out conscientiously, will invariably lead to good engineering 

design and construction. It is impossible to determine the optimum spacing of borings 

before an investigation begins because the spacing depends not only on type of structure but 
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also on uniformity or regularity of encountered soil deposits. Even the most detail soil maps 

are not efficient enough for predicting a specific soil property because it changes from place 

to place, even for the same soil type. Consequently interpolation techniques have been 

extensively exploited. The most commonly used methods are kriging and co-kriging but for 

better estimations they require a great number of measurements available for each soil type, 

what is generally impossible.  

Based on the high cost of collecting soil attribute data at many locations across landscape, 

new interpolation methods must be tested in order to improve the estimation of soil 

properties. The integration of GIS and Soft Computing SC offers a potential mechanism to 

lower the cost of analysis of geotechnical information by reducing the amount of time spent 

understanding data. Applying GIS to large sites, where historical data can be organized to 

develop multiple databases for analytical and stratigraphic interpretation, originates the 

establishment of spatial/chronological efficient methodologies for interpreting properties 

(soil exploration) and behaviors (in situ measured). GIS-SC modeling/simulation of natural 

systems represents a new methodology for building predictive models, in this investigation 

NN and GAs, nonparametric cognitive methods, are used to analyze physical, mechanical 

and geometrical parameters in a geographical context. This kind of spatial analysis can 

handle uncertain, vague and incomplete/redundant data when modeling intricate 

relationships between multiple variables. This means that a NN has not constraints about 

the spacing (minimum distance) between the drill holes used for building (training) the SC 

model. The NNs-GAs acts as computerized architectures that can approximate nonlinear 

functions of several variables, this scheme represent the relations between the spatial 

patterns of the stratigraphy without restrictive assumptions or excessive geometrical and 

physical simplifications.  

The geotechnical data requirements (geo-referenced properties) for an easy integration of 

the SC technologies are explained through an application example: a geo-referenced three-

dimensional model of the soils underlying Mexico City. The classification/prediction 

criterion for this very complex urban area is established according to two variables: the cone 

penetration resistance cq  (mechanical property) and the shear wave velocity sV  (dynamic 

property). The expected result is a 3D-model of the soils underlying the city area that would 

eventually be improved for a more complex and comprehensive model adding others 

mechanical, physical or geometrical geo-referenced parameters. 

Cone-tip penetration resistances and shear wave velocities have been measured along 16 

bore holes spreaded throughout the clay deposits of Mexico City (Figure 2). This 

information was used as the set of examples inputs (latitude, longitude and depth) → 

output ( cq  / sV ). The analysis was carried out in an approximate area of 125 2km  of Mexico 

City downtown. It is important to point out that 20% of these patterns (sample points and 

complete variables information) are not used in the training stage; they will be presented for 

testing the generalization capabilities of the closed system components (once the training is 

stopped). 
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Figure 2. Mexico City Zonation 

In the 3D-neurogenetic analysis, the functions   {  ( , , )} /   {  ( , , )} c c s sq q X Y Z V V X Y Z are to be 

approximated using the procedure outlined below: 

1. Generate the database including identification of the site [borings or stations] (X,Y –

geographical coordinates, Z –depth, and a CODE –ID number), elevation reference 

(meters above de sea level, m.a.s.l.), thickness of predetermined structures (layers), and 

additional information related to geotechnical zoning that could be useful for results 

interpretation.  

2. Use the database to train an initial neural topology whose weights and layers are tuned 

by an evolutive algorithm (see [46] for details), until the minimum error between 

calculated and measured values    ( , , )} /   {  ( , , )} c sq fNN X Y Z V fNN X Y Z is achieved 

(Figure 3a). The generalization capabilities of the optimal 3D neural model are tested 

presenting real work cases (information from borings not included in the training set) to 

the net. Figure 3b presents the comparison between the measured cq , sV  values and 

the NN calculations for testing cases. Through the neurogenetic results for unseen 

situations we can conclude that the procedure works extremely well in identifying the 

general trend in materials resistance (stiffness). The correlation between NN 

calculations and “real” values is over 0.9.  



A Cognitive Look at Geotechnical Earthquake Engineering:  
Understanding the Multidimensionality of the Phenomena 77 

qc cone penetration resistance, kg/cm2

MEASURED
Vs shear wave velocity, m/s

MEASURED

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 9000                               40.0                              80.0      0                                300                                         700      

0 0 

80.0 

40.0 

700

300

0 

80.0 

40.0 

0                               40.0                              80.0      0                                300                                         700      

0 

700

300

q
c
, 

k
g
/c

m
2

N
N

 E
S

T
IM

A
T

IO
N

S

V
s
, 
m

/s
 N

N
 E

S
T

IM
A

T
IO

N
S

training training

testtest

a) b)

 

Figure 3. Neural estimations of mechanical and dynamic parameters 

3. For visual environment requirements a grid is constructed using raw information and 

neurogenetic estimations for defining the spatial variation of properties (Figure 4). 

The 3D view of the studied zone represents an easier and more understandable 

engineering system. The 3D neurogenetic-database also permits to display property-

contour lines for specific depths. Using the neurogenetic contour maps, the spatial 

distribution of the mechanical/dynamic variables can be visually appreciated. The 3D 

model is able to reflect the stratigraphical patterns (Figure 5), indicating that the 

proposed networks are effective in site characterization with remarkable advantages 

if comparing with geostatistical approximations: it is easier to use, to understand and 

to develop graphical user interfaces. The confidence and practical advantages of the 

defined neurogenetic layers is evident. Precision of predictions depends on 

neighborhood structure, grid size, and variance response, but based on the results we 

can conclude that despite of the grid cell (size) is not too small the spatial correlation 

extends beyond the training neighborhood, but the higher confidence is obviously 

only within.  
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Figure 4. 3D Neural response 
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Figure 5. Stratigraphy sequence obtained using the 3D Neural estimations 

4.2. Attenuation laws for rock site (outcropping motions) 

Source, path, and local site response are factors that should be considered in seismic hazard 

analyses when using attenuation relations. These relations, obtained from statistical 

regression, are derived from strong motion recordings to define the occurrence of an 

earthquake with a specific magnitude at a particular distance from the site. Because of the 

uncertainties inherent in the variables describing the source (e.g. magnitude, epicentral 

distance, focal depth and fault rupture dimension), the difficulty to define broad categories 

to classify the site (e.g. rock or soil) and our lack of understanding regarding wave 
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propagation processes and the ray path characteristics from source to site, commonly the 

predictions from attenuation regression analyses are inaccurate. As an effort to recognize 

these aspects, multiparametric attenuation relations have been proposed by several 

researchers [47-53]. However, most of these authors have concluded that the governing 

parameters are still source, ray path, and site conditions. In this section an empirical NN 

formulation that uses the minimal information about magnitude, epicentral distance, and 

focal depth for subduction-zone earthquakes is developed to predict the peak ground 

acceleration PGA and spectral accelerations aS  at a rock-like site in Mexico City.  

The NN model was training from existing information compiled in the Mexican strong 

motion database. The NN uses earthquake moment magnitude wM , epicentral distance  DE , 

and focal depth DF  from hundreds of events recorded during Mexican subduction 

earthquakes (Figure 6) from 1964 to 2007. To test the predicting capabilities of the neuronal 

model, 186 records were excluded from the data set used in the learning phase. Epicentral 

distance DE  is considered to be the length from the point where fault-rupture starts to the 

recording site, and the focal depth DF  is not declared as mechanism classes, the NN should 

identify the event type through the DF  crisp value coupled with the others input parameters 

[54, 47, 55], The interval of wM  goes from 3 to 8.1 approximately and the events were 

recorded at near (a few km) and far field stations (about 690 km). The depth of the zone of 

energy release ranged from very shallow to about 360 km. 
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Figure 6. Earthquakes characteristics 

Modeling of the data base has been performed using backpropagation learning algorithm. 

Horizontal (mutually orthogonal 1 hPGA , N-S component, and 2 hPGA , E-W component) and 

vertical components ( vPGA ) are included as outputs for neural mapping. After trying many 
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topologies, the best horizontal and vertical modules with quite acceptable approximations 

were the simpler alternatives (BP backpropagation, 2 hidden layers/15 units or nodes each). 

The neuronal attenuation model for  1 2{ , , }  { , , }w D D h h vM E F PGA PGA PGA  was evaluated by 

performing testing analyses. The predictive capabilities of the NNs were verified by 

comparing the estimated PGA’s to those induced by the 186 events excluded from the 

original database (data for training stage). In Figure 7 are compared the computed PGA’s 

during training and testing stages to the measured values. The relative correlation factors 

( 2 0.97R ), obtained in the training phase, indicate that those topologies selected as 

optimal behave consistently within the full range of intensity, distances and focal depths 

depicted by the patterns. Once the networks converge to the selected stop criterion, learning 

is finished and each of these black-boxes become a nonlinear multidimensional functional. 

Following this procedure 20 NN are trained to evaluate de aS  at different response spectra 

periods (from T= 0.1 s to T= 5.0 s with DT=0.25 s). Forecasting of the spectral components is 

reliable enough for practical applications.  
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Figure 7. Some examples of measured and NN-estimated PGA values 
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In Figure 8 two case histories correspond to large and medium size events are shown, the 

estimated values obtained for these events using the relationships proposed by Gómez, 

Ordaz &Tena [56], Youngs et al. [47], Atkinson and Boore [55] –proposed for rock sites– and 

Crouse et al. [51] –proposed for stiff soil sites– and the predictions obtained with the 

1 2  h hPGA modules are shown. It can be seen that the estimation obtained with Gómez, 

Ordaz y Tena [56] seems to underestimate the response for the large magnitude event. 

However, for the lower magnitude event follows closely both the measured responses and 

NN predictions. Youngs et al. [47] attenuation relationship follows closely the overall trend 

but tends to fall sharply for long epicentral distances.  

 

Figure 8. Attenuation laws comparisons 

Furthermore, it should be stressed the fact that, as can be seen in Figure 9 the neural 

attenuation model is capable to follow the general behavior of the measure data expressed 

as spectra while the traditional functional approaches are not able to reproduce. A neural 

sensitivity study for the input variables was conducted for the neuronal modules. The 

results are strictly valid only for the data base utilized, nevertheless, after several sensitivity 

analyses conducted changing the database composition, it was found that the following 

trend prevails; the wM  would be the most relevant parameter then would follow DE  

coupled with DF . However, for near site events the epicentral distance could become as 

relevant as the magnitude, particularly, for the vertical component and for minor 

earthquakes (M low) the DF  becomes very transcendental. 
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Figure 9. Response Spectra: NN-calculated vs traditional functions 

Through  { , , }  { , }w D D hi aM E F PGA S  mapping, this neuronal approach offers the flexibility 

to fit arbitrarily complex trends in magnitude and distance dependence and to recognize 

and select among the tradeoffs that are present in fitting the observed parameters within the 

range of magnitudes and distances present in data. This approach seems to be a promising 

alternative to describe earthquake phenomena despite of the limited observations and 

qualitative knowledge of the recording stations geotechnical site conditions, which leads to 

a reasoning of a partially defined behavior.  

4.3. Generation of artificial time series: Accelerograms application 

For nonlinear seismic response analysis, where the superposition techniques do not apply, 

earthquake acceleration time histories are required as inputs. Virtually all seismic design 

codes and guidelines require scaling of selected ground motion time histories so that they 

match or exceed the controlling design spectrum within a period range of interest. 

Considerable variability in the characteristics of the recorded strong-motions under similar 

conditions may still require a characterization of future shaking in terms of an ensemble of 
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accelerograms rather than in terms of just one or two “typical” records. This situation has 

thus created a need for the generation of synthetic (artificial) strong-motion time histories 

that simulate realistic ground motions from different points of views and/or with different 

degrees of sophistication. To provide the ground motions for analysis and design, various 

methods have been developed: i) frequency-domain methods where the frequency content 

of recorded signals is manipulated [57-60] and ii) time-domain methods where the recorded 

ground motions amplitude is controlled [61, 62]. Regardless of the method, first, one or 

more time histories are selected subjectively, and then scaling mechanisms for spectrum 

matching are applied. This is a trial and error procedure that leads artificial signals very far 

from real-earthquake time series. 

In this investigation a Genetic Generator of Signals is presented. This genetic generator is a 

tool for finding the coefficients of a pre-specified functional form, which fit a given sampling 

of values of the dependent variable associated with particular given values of the 

independent variable(s). When the genetic generator is applied to synthetic accelerograms 

construction, the proposed tool is capable of i) searching, under specific soil and seismic 

conditions (within thousands of earthquake records) and recommending a desired subset 

that better match a target design spectrum, and ii) through processes that mimic mating, 

natural selection, and mutation, producing new generations of accelerograms until an 

optimum individual is obtained. The procedure is fast and reliable and results in time series 

that match any type of target spectrum with minimal tampering and deviation from 

recorded earthquakes characteristics. 

The objective of the genetic generator, when applied to synthetic earthquakes construction, 

is to produce compatible artificial signals with specific design spectra. In this model specific 

seismic (fault rupture, magnitude, distance, focal depth) and site characteristics (soil/ rock) 

are the first set of inputs. They are included to take into consideration that a typical strong 

motion record consists of a variety of waves whose contribution depends on the earthquake 

source mechanism (wave path) and its particular characteristics are influenced by the 

distance between the source and the site, some measure of the size of the earthquake, and 

the surrounding geology and site conditions; and that the design spectra can be an envelope 

or integration of many expected ground motions that are possible to occur in certain period 

of time, or the result of a formulation that involves earthquake magnitude, distance and soil 

conditions. The second set of inputs consist of the target spectrum, the period range for the 

matching, lower- and upper-bound acceptable values for scaling signal shape, and a 

collection of GAs parameters (a population size, number of generations, crossover ratio, and 

mutation ratio). The output is the more success individual with a chromosome array 

generated from “real” accelerograms parents (a set of).  

The algorithm (see Figure 10) is started with a set of solutions (each solution is called a 

chromosome). A solution is composed of thousands of components or genes (accelerations 

recorded at the time), each one encoding a particular trait. The initial solutions (original 

population) are selected based on the seismic parameters at a site (defined previously by the 

user): fault mechanism, moment magnitude, epicentral distance, focal depth, geotechnical 

and geological site classification, depth of sediments. If the user does not have a priori 
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seismic/site knowledge, the genetic generator could select the initial population randomly 

(Figure 11). Once the model has found the seed-accelerogram(s) or chromosome(s), the 

space of all feasible solutions can be called accelerograms space (state space). Each point in 

this search space represents one feasible solution and can be "marked" by its value or fitness 

for the problem. The looking for a solution is then equal to a looking for some extreme 

(minimum or maximum) in the space.  

According to the individuals’ fitness, expressed by difference between the target design 

spectrum and the chromosome response spectrum, the problem is formulated as the 

minimization of the error function, Z, between the actual and the target spectrum in a 

certain period range. Solutions with highest fitness are selected to form new solutions 

(offspring). During reproduction, the recombination (or crossover) and mutation permits to 

change the genes (accelerations) from parents (earthquake signals) in some way that the 

whole new chromosome (synthetic signal) contains the older organisms attributes that 

assure success. This is repeated until some user’s condition (for example number of 

populations or improvement of the best solution) is satisfied (Figure 12).  

GENES Algorithm 

[Start]  Generate random or Select specific population of n chromosomes
(suitable solutions for the problem) 

[Fitness] Evaluate the fitness f(x) (differences between actual and design spectrum)  
of each chromosome x in the population 

[New population] Create a new population by repeating following steps  
until the new population is complete 

[Selection] Select two parent chromosomes (two accelerograms) from a population 
according to their fitness (the better fitness, the bigger chance to be selected

[Crossover] With a crossover probability cross over the parents to form a new offspring (children). 
If no crossover was performed, offspring is an exact copy of parents. 

[Mutation] With a mutation probability mutate new offspring at each locus 
(position in chromosome). 

[Accepting] Place new offspring in a new population 

[Replace] Use new generated population for a further run of algorithm 

[Test] If the end condition is satisfied, stop, 
and return the best solution in current population 

[Loop] Go to step 2

GENES Algorithm 

[Start]  Generate random or Select specific population of n chromosomes
(suitable solutions for the problem) 

[Fitness] Evaluate the fitness f(x) (differences between actual and design spectrum)  
of each chromosome x in the population 

[New population] Create a new population by repeating following steps  
until the new population is complete 

[Selection] Select two parent chromosomes (two accelerograms) from a population 
according to their fitness (the better fitness, the bigger chance to be selected

[Crossover] With a crossover probability cross over the parents to form a new offspring (children). 
If no crossover was performed, offspring is an exact copy of parents. 

[Mutation] With a mutation probability mutate new offspring at each locus 
(position in chromosome). 

[Accepting] Place new offspring in a new population 

[Replace] Use new generated population for a further run of algorithm 

[Test] If the end condition is satisfied, stop, 
and return the best solution in current population 

[Loop] Go to step 2  

Figure 10. Genetic Generator: flow diagram 
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Figure 11. Genetic Generator: working phase diagram 
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Figure 12. Iteration process of the Genetic Generator 

One of the genetic advantages is the possibility of modifying on line the image of the 

expected earthquake. While the genetic model is running the user interface shows the 

chromosome per epoch and its response spectra in the same window, if the duration time, 

the highest intensities interval or the t  are not convenient for the user’s interests, these 

values can be modified without retraining or a change on model’ structure.  
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In Figure 13 are shown three examples of signals recovered following this methodology. The 

examples illustrate the application of the genetic methodology to select any number of 

records to match a given target spectrum (only the more successful individuals for each 

target are shown in the figure). It can be noticed the stability of the genetic algorithm in 

adapting itself to smooth, code or scarped spectrum shapes. The procedure is fast and 

reliable as results in records match the target spectrum with minimal deviation. The genetic 

procedure has been applied successfully to generate synthetic ground motions having 

different amplitudes, duration and combinations of moment magnitude and epicentral 

distance. Although the variations in the target spectra, the genetic signals maintain the 

nonlinear and nonstationary characteristics of real earthquakes. It is still under development 

an additional toolbox that will permit to use advanced signal analysis instruments because, 

as it has been demonstrated [63] [64], studying nonstationary signals through Fourier or 

response spectra is not convenient for all applications.  
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Figure 13. Some Generator results: accelerograms application 
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4.4. Effects of local site conditions on ground motions 

Geotechnical and structural engineers must take into account two fundamental 

characteristics of earthquake shaking: 1) how ground shaking propagates through the Earth, 

especially near the surface (site effects), and 2) how buildings respond to this ground 

motion. Because neither characteristic is completely understood, the seismic phenomenon is 

still a challenging research area. 

Site effects play a very important role in forecasting seismic ground responses because they 

may strongly amplify (or deamplify) seismic motions at the last moment just before 

reaching the surface of the ground or the basement of man-made structures. For much of the 

history of seismological research, site effects have received much less attention than they 

should, with the exception of Japan, where they have been well recognized through 

pioneering work by Sezawa and Ishimoto as early as the 1930’s [65]. The situation was 

drastically changed by the catastrophic disaster in Mexico City during the Michoacan, 

Mexico earthquake of 1985, in which strong amplification due to extremely soft clay layers 

caused many high-rise buildings to collapse despite their long distance from the source. The 

cause of the astounding intensity and long duration of shaking during this earthquake is not 

well resolved yet even though considerable research has been conducted since then, 

however, there is no room for doubt that the primary cause of the large amplitude of strong 

motions in the soft soil (lakebed) zone relative to those in the hill zone is a site effect of these 

soft layers.  

The traditional data-analysis methods to study site effects are all based on linear and 

stationary assumptions. Unfortunately, in most soil systems, natural or manmade ones, the 

data are most likely to be both nonlinear and nonstationary. Discrepancies between 

calculated responses (using code site amplification factors) and recent strong motion 

evidence point out serious inaccuracies may be committed when analyzing amplification 

phenomena. The problem might be due partly because of the lack of understanding 

regarding the fundamental causes in soil response but also a consequence of the distorted 

soil amplification quantification and the incomplete characterization of nonlinearity-

induced nonstationary features exposed in motion recordings [66]. The objective of this 

investigation is to illustrate a manner in which site effects can be dealt with for the case of 

Mexico City soils, making use of response spectra calculated from the motions recorded at 

different sites during extreme and minor events (see Figure 6). The variations in the spectral 

shapes, related to local site conditions, are used to feed a multilayer neural network that 

represent a very advantageous nonlinear-amplification relation. The database is composed 

by registered information earthquakes affecting Mexico City originated by different source 

mechanisms. 

The most damaging shocks, however, are associated to the subduction of the Cocos Plate 

into the Continental Plate, off the Mexican Pacific Coast. Even though epicentral distances 

are rather large, these earthquakes have recurrently damaged structures and produced 

severe losses in Mexico City. The singular geotechnical environment that prevails in Mexico 
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City is the one most important factor to be accounted for in explaining the huge 

amplification of seismic movements [67-70]. The soils in Mexico City were formed by the 

deposition into a lacustrine basin of air and water transported materials. From the view 

point of geotechnical engineering, the relevant strata extend down to depths of 50 m to 80 

m, approximately. The superficial layers formed the bed of a lake system that has been 

subjected to dessication for the last 350 years. Three types of soils may be broadly 

distinguished: in Zone I, firm soils and rock-like materials prevail; in Zone III, very soft clay 

formations with large amounts of microorganisms interbedded by thin seams of silty sands, 

fly ash and volcanic glass are found; and in Zone II, which is a transition between zones I 

and III, sequences of clay layers an coarse material strata are present (Figure 14).  
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Figure 14. Accelerographic stations used in this study 

Due to space limitations, reference is made only to two seismic events: the June 15, 1999 and 

the October 9, 1995. This module was developed based in a previous study (see section 4.2 

of this Chapter) where the effect of the parameters DE , DF  and wM  on the ground motion 

attenuation from epicentre to the site, were found to be the most significant [71]. The recent 

disaster experience showed that the imprecision that is inherent to most variables 
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measurements or estimations makes crucial the consideration of subjectivity to evaluate and 

to derive numerical conclusions according to the phenomena behavior. The neuronal 

training process starts with the training of four input variables booked: DE , DF  and  wM . 

The output linguistic variables are 1hPGA  (peak ground acceleration horizontal, component 

1) and 2, hPGA  (peak ground acceleration, horizontal component 2) registered in a rock-like 

site in Zone I .The second training process is linked feed-forward with the previous module 

(PGA for rock-like site) and the new seismic inputs are Seismogenic Zone and PGArock and 

the Latitude and Longitude coordinates are the geo-referenced position needed to draw the 

deposition variation into the basin. This neuro-training runs one step after the first training 

phase and until the minimum difference between the  aS  and the neuronal calculations is 

attained. In Figure 15 some results from training and testing modes are shown.  
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Figure 15. Neural estimations for PGA in Lake Zone sites 

This second NN represents the geo-referenced amplification ratio that take into 

consideration the topographical, geotechnical and geographical conditions, implicit in the 

recorded accelerograms. The results of these two NNs are summarized in Figure 16. These 

graphs show the predicting capabilities of the neural system comparing the measured 

values with those obtained in neural-working phase. It can be observed a good 

correspondence throughout the full distance and magnitude range for the seismogenic 

zones considered in this study for the whole studied area (Lake Zone).  
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Figure 16. Spectral accelerations in some Lake-Zone sites: measured vs NN 

4.5. Liquefaction phenomena: potential assessment and lateral displacements 

estimation 

Over the past forty years, scientists have conducted extensive research and have proposed 

many methods to predict the occurrence of liquefaction. In the beginning, undrained cyclic 
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loading laboratory tests had been used to evaluate the liquefaction potential of a soil [72] but 

due to difficulties in obtaining undisturbed samples of loose sandy soils, many researchers 

have preferred to use in situ tests [73]. In a semi-empirical approach the theoretical 

considerations and experimental findings provides the ability to make sense out of the field 

observations, tying them together, and thereby having more confidence in the validity of the 

approach as it is used to interpolate or extrapolate to areas with insufficient field data to 

constrain a purely empirical solution. Empirical field-based procedures for determining 

liquefaction potential have two critical constituents: i) the analytical framework to organize 

past experiences, and ii) an appropriate in situ index to represent soil liquefaction 

characteristics. The original simplified procedure [74] for estimating earthquake-induced 

cyclic shear stresses continues to be an essential component of the analysis framework. The 

refinements to the various elements of this context include improvements in the in-situ 

index tests (e.g., SPT, CPT, BPT, Vs), and the compilation of liquefaction/no-liquefaction 

cases. 

The objective of the present study is to produce an empirical machine learning ML method 

for evaluating liquefaction potential. ML is a scientific discipline concerned with the design 

and development of algorithms that allow computers to evolve behaviours based on 

empirical data, such as from sensor data or databases. Data can be seen as examples that 

illustrate relations between observed variables. A major focus of ML research is to 

automatically learn to recognize complex patterns and make intelligent decisions based on 

data; the difficulty lies in the fact that the set of all possible behaviours given all possible 

inputs is too large to be covered by the set of observed examples (training data). Hence the 

learner must generalize from the given examples, so as to be able to produce a useful output 

in new cases. In the following two ML tools, Neural Networks NN and Classification Trees 

CTs, are used to evaluate liquefaction potential and to find out the liquefaction control 

parameters, including earthquake and soil conditions. For each of these parameters, the 

emphasis has been on developing relations that capture the essential physics while being as 

simplified as possible. The proposed cognitive environment permits an improved definition 

of i) seismic loading or cyclic stress ratio CSR, and ii) the resistance of the soil to triggering of 

liquefaction or cyclic resistance ratio CRR.  

The factor of safety FS against the initiation of liquefaction of a soil under a given seismic 

loading is commonly described as the ratio of cyclic resistance ratio (CRR), which is a measure 

of liquefaction resistance, over cyclic stress ratio (CSR), which is a representation of seismic 

loading that causes liquefaction, symbolically,  /FS CRR CSR . The reader is referred to Seed 

and Idriss [74], Youd et al. [75], and Idriss and Boulanger [76] for a historical perspective of 

this approach. The term CSR    '0.65, , , , ,  vo max vo dCSR f a r MSF is function of the vertical 

total stress of the soil voσ  at the depth considered, the vertical effective stress '
voσ , the peak 

horizontal ground surface acceleration maxa , a depth-dependent shear stress reduction factor 

dr  (dimensionless), a magnitude scaling factor MSF  (dimensionless). For CRR, different in 

situ-resistance measurements and overburden correction factors are included in its 

determination; both terms operate depending of the geotechnical conditions. Details about the 

theory behind this topic in Idriss and Boulanger, [76] and Youd et al. [75]. 
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Many correction/adjustment factors have been included in the conventional analytical 

frameworks to organize and to interpret the historical data. The correction factors improve 

the consistency between the geotechnical/seismological parameters and the observed 

liquefaction behavior, but they are a consequence of a constrained analysis space: a 2D plot 

[CSR vs. CRR] where regression formulas (simple equations) intend to relate complicated 

nonlinear/multidimensional information. In this investigation the ML methods are applied 

to discover unknown, valid patterns and relationships between geotechnical, seismological 

and engineering descriptions using the relevant available information of liquefaction 

phenomena (expressed as empirical prior knowledge and/or input-output data). These ML 

techniques “work” and “produce” accurate predictions based on few logical conditions and 

they are not restricted for the mathematical/analytical environment. The ML techniques 

establish a natural connection between experimental and theoretical findings. 

Following the format of the simplified method pioneered by Seed and Idriss [74], in this 

investigation a nonlinear and adaptative limit state (a fuzzy-boundary that separates 

liquefied cases from nonliquefied cases) is proposed (Figure 17). The database used in the 

present study was constructed using the information included in Table 3 and it was 

compiled by Agdha et al., [77], Juang et al., [78], Juang [79], Baziar, [80] and Chern and Lee 

[81]. The cases are derived from cone penetration tests CPT, and shear wave velocities Vs 

measurements and different world seismic conditions (U.S., China, Taiwan, Romania, 

Canada and Japan). The soils types ranges from clean sand and silty sand to silt mixtures 

(sandy and clayey silt). Diverse geological and geomorphological characteristics are 

included. The reader is referred to the citations in Table 3 for details. 
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Figure 17. An schematic view of the nonlinear-liquefaction boundary 

The ML formulation uses Geotechnical ( cq , sV , Unit weight, Soil Type, Total vertical 

stresses, Effective vertical stresses, Geometrical (Layer thickness, Water Level Depth, Top 

Layer Depth) and Seismological (Magnitude, PGA) input parameters and the output 
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variable is “Liquefaction?” and it can take the values “YES/NO” (Figure 17). Once the NN is 

trained the number of cases that was correctly evaluated was 100% and applied to “unseen” 

cases (separated for testing) less than 10% of these examples were not fitted. The CT has a 

minor efficiency during the training showing 85% of cases correctly predicted, but when the 

CT runs on the unseen patterns its capability is not diminished and it asserts the same 

proportion. From these findings it is concluded that the neuro system is capable of 

predicting the in situ measurements with a high degree of accuracy but if improvement of 

knowledge is necessary or there are missed, vague even contradictory values in the 

analyzed case, the CT is a better option. 

Set Input Parameters Number .of 

Patterns 

Ref. 

    

A Z, ZNAF; H, Soil Class, 

Geomorphological units, Geological 

units, Site amplification, amax 

56 Fatemi-Agdha et 

al., 1988 

B Z, qc, Fs, σ0, σ0’, amax, M 21 Juang et al., 1999 

C Z, qc, Fs, σ0, σ0’, amax, M 242 Juang, 2003 

D D50, amax, σ0’ , σ0 , M, Fs, qc, SPT, Z 170 Baziar, 2003 

E 

 

M, σ0, σ0’,qc, amax 466 Chern and Lee, 

2009 

F ZNAF, Z, H, σ0, σ0’, Soil Class, Vs 80 Andrus and 

Stokoe, 1997; 2000 

 Total: 1035  

Table 2. Database for liquefaction analysis 

Figure 18 shows the pruned liquefaction trees (two, one runs using cq  values and the other 

through the  sV  measurements) with YES/NO as terminal nodes. In the Figure 19, some 

examples of tree reading are presented. The trees incorporate soil type dependence through 

the resistance values ( cq , and sV ) and fine content, and it is not necessary to label the 

material as “sand” or “silt”. The most general geometrical branches that split the behaviors 

are the Water table depth and the Layer thickness but only when the soil description is 

based on  sV , when cq , serves as rigidity parameter this geometrical inputs are not explicit 

exploited. This finding can be related to the nature of the measurement: the cone penetration 

value contains the effect of the saturated material while the shear wave velocities need the 

inclusion of this situation explicitly. Without potentially confusing regression strategies, the 

liquefaction trees results can be seen as an indication of how effectively the ML model maps 

the assigned predictor variables to the response parameter. Using data from all regions and 

wide parameters ranges, the prediction capabilities of the neural network and classification 

trees are superior to many other approximations used in common practice, but the most 

important remark is the generation of meaningful clues about the reliability of physical 

parameters, measurement and calculation process and practice recommendations. 
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Figure 19. CT classification examples 

The intricacy and nonlinearity of the phenomena, an inconsistent and contradictory 

database, and many subjective interpretations about the observed behavior, make SC an 

attractive alternative for estimation of liquefaction induced lateral spread. NEFLAS [82], 

NEuroFuzzy estimation of liquefaction induced LAteral Spread, profits from fuzzy and 

neural paradigms through an architecture that uses a fuzzy system to represent knowledge 

in an interpretable manner and proceeds from the learning ability of a neural network to 

optimize its parameters. This blending can constitute an interpretable model that is capable 

of learning the problem-specific prior knowledge. 

NEFLAS is based on the Takagi-Sugeno model structure and it was constructed according 

the information compiled by Bartlett and Youd [83] and extended later by Youd et al. [84]. 

The output considered in NEFLAS is the horizontal displacements due to liquefaction, 

dependent of moment magnitude, the PGA, the nearest distance from the source in 

kilometers; the free face ratio, the gradient of the surface topography or the slope of the 

liquefied layer base, the cumulative thickness of saturated cohesionless sediments with 

number of blows (modified by overburden and energy delivered to the standard 

penetration probe, in this case 60%) , the average of fines content, and the mean grain size. 
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One of the most important NEFLAS advantages is its capability of dealing with the 

imprecision, inherent in geoseismic engineering, to evaluate concepts and derive 

conclusions. It is well known that engineers use words to classify qualities (“strong 

earthquake”, “poor graduated soil” or “soft clay” for example), to predict and to validate 

“first principle” theories, to enumerate phenomena, to suggest new hypothesis and to point 

the limits of knowledge. NEFLAS mimics this method. See the technical quantity 

“magnitude” (earthquake input) depicted in Figure 20. The degree to which a crisp 

magnitude belongs to LOW, MEDIUM or HIGH linguistic label is called the degree of 

membership. Based on the figure, the expression, “the magnitude is LOW” would be true to 

the degree of 0.5 for a wM of 5.7. Here, the degree of membership in a set becomes the 

degree of truth of a statement. 

On the other hand, the human logic in engineering solutions generates sets of behavior rules 

defined for particular cases (parametric conditions) and supported on numerical analysis. In 

the neurofuzzy methods the human concepts are re-defined through a flexible 

computational process (training) putting (empirical or analytical) knowledge into simple “if-

then” relations (Figure 20). The fuzzy system uses 1) variables composing the antecedents 

(premises) of implications; 2) membership functions of the fuzzy sets in the premises, and 3) 

parameters in consequences for finding simpler solutions with less design time. 

 

Figure 20. Neurofuzzy estimation of lateral spread 

NEFLAS considers the character of the earthquake, topographical, regional and geological 

components that influence lateral spreading and works through three modules: Reg-

NEFLAS, appropriate for predicting horizontal displacements in geographic regions where 

seismic hazard surveys have been identified; Site- NEFLAS, proper for predictions of 

horizontal displacements for site-specific studies with minimal data on geotechnical 

conditions and Geotech-NEFLAS allows more refined predictions of horizontal 

displacements when additional data is available from geotechnical soil borings. The 
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NEFLAS execution on cases not included in the database (Figure 21.b and Figure 21.c) and 

its higher values of correlation when they are compared with evaluations obtained from 

empirical procedures permit to assert that NEFLAS is a powerful tool, capable of predicting 

lateral spreads with high degree of confidence.  

 

Figure 21. NN estimations vs measured displacements for a) the whole data set, b)Niigata Japan, c) San 

Francisco USA cases 
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5. Conclusions 

Based on the results of the studies discussed in this paper, it is evident that cognitive 

techniques perform better than, or as well as, the conventional methods used for modeling 

complex and not well understood geotechnical earthquake problems. Cognitive tools are 

having an impact on many geotechnical and seismological operations, from predictive 

modeling to diagnosis and control. 

The hybrid soft systems leverage the tolerance for imprecision, uncertainty, and 

incompleteness, which is intrinsic to the problems to be solved, and generate tractable, low-

cost, robust solutions to such problems. The synergy derived from these hybrid systems 

stems from the relative ease with which we can translate problem domain knowledge into 

initial model structures whose parameters are further tuned by local or global search 

methods. This is a form of methods that do not try to solve the same problem in parallel but 

they do it in a mutually complementary fashion. The push for low-cost solutions combined 

with the need for intelligent tools will result in the deployment of hybrid systems that 

efficiently integrate reasoning and search techniques.  

Traditional earthquake geotechnical modeling, as physically-based (or knowledge-driven) 

can be improved using soft technologies because the underlying systems will be explained 

also based on data (CC data-driven models). Through the applications depicted here it is 

sustained that cognitive tools are able to make abstractions and generalizations of the 

process and can play a complementary role to physically-based models.  
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