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Error Modeling and Accuracy  
of Parallel Industrial Robots 

Hongliang Cui and  Zhenqi Zhu 

1. Introduction 

Most industrial robots are open-chain mechanisms constructed of consecutive 
links connected by rotational or prismatic joints of one degree of freedom. 
These serial manipulators have large workspace, high dexterity and good ma-
neuverability. However, due to their serial structure they exhibit low stiffness 
and poor positioning accuracy. As a result, their use in applications that re-
quire large loads (e.g. machining) and high accuracy, is limited. In the case of a 
parallel manipulator, the end-effector is attached to a moveable plate which is 
supported in-parallel by a number of actuated links. As a result, these parallel 
manipulators are anticipated to possess the following advantages, compared 
with serial manipulators: 1) high force/torque capacity since the load is dis-
tributed to several in-parallel actuators; 2) high structural rigidity; and 3) bet-
ter accuracy due to less cumulative joint errors. 
A large number of publications dealing with the accuracy of the serial manipu-
lators appeared in the past. These include topics on error modeling effects of 
manufacturing tolerance on pose accuracy and numerous calibration strate-
gies. However, very few publications dealing with the same issue as related to 
parallel manipulators can be found.  Since high accuracy is generally believed 
to be one of their advantages compared to that of serial manipulators, it is im-
portant to address this issue.  The purpose of this research is to establish the 
kinematic and error models for evaluating the effects of manufacturing toler-
ances, installation errors and stiffness effect on the accuracy of a parallel ro-
botic system. 
In order to evaluate the accuracy of parallel robotic system, it is necessary to 
develop a kinematic model which will accommodate the above errors. Based 
on this model, algorithms for forward, inverse kinematics and error modeling 
of the parallel robot are presented.     These algorithms with a set of typical tol-
erances were used to compute the pose errors which include three transla-
tional and three angular errors. 

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero
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Manufacturing tolerances, installation errors and link offsets cause devia-
tions with respect to the nominal kinematic parameters of the robot system. As 
a result, if the nominal values of these parameters are used within the robot 
system control software, the resulting pose of the system will be inaccurate.  
Accuracy of a robot is the closeness with which its actual pose matches the 
pose predicted by its controller.  A robot normally designed for repeated work 
such as spray painting, pick and place, etc., has high repeatability but low ac-
curacy.  An accurate robot is required in applications where off-line program-
ming is involved.  To a large extent, robot inaccuracy is induced by the propa-
gation of geometric errors, compliance errors and time-variant thermal errors.  The 
geometric errors of a robot come from manufacturing imperfections, mis-
alignments or joint wear.  Compliance errors are due to the flexibility of robot 
joints and link deflection under self-gravity and external load.  The compliance 
errors also depend on the robot’s changing position.  Thermal errors result 
from thermal distortion and expansions of robot components due to internal 
and external heat sources such as motors, bearings and ambient temperature 
change.
Link and joint flexibility has a significant impact on robot performance and 
stability.  Link gravity and external payload cause the deflection of links and 
flexible joints, and therefore degrade the robot performance.  Link compliance 
effects are represented by six differential component changes: three transla-
tional and three rotational changes.  This paper presents a systematic method-
ology for estimating the compliance characteristics of serial and parallel ma-
nipulators due to external concentrated load/deflection.  In related 
experiments, special measurement tools and sensors are necessary to identify 
the stiffness of driving joints.
Also in this paper a general methodology is presented to calibrate and com-
pensate for robot compliance errors and thermal errors in addition to geomet-
ric errors, An error synthesis model based on the Denavit-Hartenberg (D-H) 
convention is derived for simultaneously considering geometric errors, com-
pliance errors and thermal errors.  Based on this model a general methodology 
is developed to calibrate geometric errors, compliance errors and thermal er-
rors.  Experimental results show that the accuracy of the robot is improved by 
an order of magnitude after the compensation. 

1.1 Serial and Parallel Robots 

Robots are representative of mechanics devices which integrate aspects of ma-
nipulation, sensing, control, and communication. Rarely have so many tech-
nologies and scientific disciplines focused on the functionality and perform-
ance of a system as they have done in the fields of robot development and 
application. Robotics integrates the state of the art of many front-running tech-
nologies. Large efforts have been made to define an industrial robot and to 
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classify its application by industrial branches so that remarkably precise data 
and monitoring are available today.  
The task of an industrial robot in general is to move a body (workpiece) with 
six maximal Cartesian spatial DOF (three translations, three rotations) to an-
other point and orientation within a workspace. The complexity of the task de-
termines the required kinematic configuration. The number of DOFs deter-
mines how many independently driven and controlled axes are needed to 
move a body in a defined way. Industrial robots normally have up to four 
principal arm axes and three wrist axes. While many exciting robot structures 
use serial kinematic chains, some parallel kinematic structures have been 
adopted for a variety of tasks. Typical configurations of industrial robots are 
shown in Figure 7. Most closed-loop kinematics is based on the so-called 
hexapod principle (Stewart platform, 1965), which represents a mechanically 
simple and efficient design. The structure is relatively stiff and enables rela-
tively high positioning accuracy and high speeds, but workspace or working 
volume is limited. 

Parallel or closed-chain linkages and serial or open-loop kinematic chains have 
been substantially investigated over last several decades. A closed-chain link-
age, which usually has a limited number of degrees of freedom, is not applica-
ble as a general-purpose robot kinematic configuration. A serial kinematic 
chain can provide a large workspace, but with less rigidity and load-carrying 
capacity compared with a parallel kinematic chain. The fully parallel-driven 
manipulators such as Stewart-platform have been investigated by many re-
searchers. In general, the workspace of a robot arm consisting of only parallel 
kinematic chains is relatively small. Currently, there has been an increasing in-
terest in the design of hybrid or serial-parallel robot manipulators which can 
provide salient features of both serial and parallel kinematic chains. An ap-
propriately designed hybrid robotic manipulator will have a large load-
carrying capacity and workspace, and yet be comparatively small and light-
weight.

The TAU parallel configuration (Figure 1) is rooted in a series of inventions 
and was masterminded by Torgny Brogardh, 2000; 2001; 2002.  The configura-

tion of the robot simulates the shape of “τ” like the name of the Delta robot 

named after the “∇” shape configuration of the parallel robot.  As shown in 
Fig. 1.1, the basic TAU configuration consists of three driving axes, three arms, 
six linkages, 12 joints and a moving (tool) plate.  There are six chains connect-
ing the main column to the end-effector in the TAU configuration. The TAU 
robot is a typical 3/2/1 configuration, which configuration is shown in Figure 
11 of Section 2. There are three parallel and identical links and another two 
parallel and identical links. Six chains will be used to derive all kinematic 
equations.  Table 1 highlights the features of the TAU configuration.  
On the subject of D-H modeling, Denavit J. & Hartenberg, H, 1955, Tasi, L. 
1999, Raghavan, M. 1993, Abderrahim M. & Whittaker, A. R. 2000 have ap-
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plied the method and studied the limitations of various modeling methods. On 
the subject of forward kinematics, focus has been on finding closed form solu-
tions based on various robotic configurations, and numerical solutions for diffi-
cult configurations of robots. It can be found in the work done by Dhingra A. 
K. et al. 1998, 2000, Shi, X. & Fenton, R. G. 1994, Didrit, O. et al, 1998, Zhang, X. 
& Song, S. 1991, Nanua, P. et al, 1990, Sreenivasan, S. V. et al, 1994, Griffis, M. 
& Duffy, J. 1989, and Lin, W. et al, 1992.  On the subject of error analysis, 
Wang, J. & Masory, O. 1993, Gong, C. et al, 2000, Patel, A. J. & Ehmann, F. E. 
2000 used forward kinematic solutions to obtain errors.  Jacobian matrix was also 
used in obtaining errors.  On the subject of the variation of parallel configura-
tions, based on the work done by Dhingra, A. K. et al, 1999, 2000, Geng, Z. & 
Haynes, L. S. 1994, the influence of the configurations on the methods of find-
ing closed form solutions can be found.

In this paper, the D-H model (Figure 2) is used to define the TAU robot con-
figuration, a complete set of parameters is included in the modeling process.  
Kinematic model and error model are established for including all types of er-
rors using Jacobian matrix method for the TAU robot. Meanwhile, a very ef-
fective Jacobian Approximation Method is introduced to calculate the for-
ward kinematic problem instead of the Newton-Raphson method. It denotes 
that a closed form solution can be obtained instead of a numerical solution. A 
full size Jacobian matrix is used in carrying out error analysis, error budget, 
and model parameter estimation and identification. Simulation results indicate 
that both Jacobian matrix and Jacobian Approximation Method are correct and 
have an accuracy of micrometers. ADAMS simulation results are used in veri-
fying the established models.  

A six-degrees-of-freedom precision measuring system is introduced in this 
study as an application of all methods mentioned above. The methods are also 
applied to explore new robotic applications such as grinding and machining. 
These new developments also revive the interest in robotic performance 
evaluation. Given the mechanical configurations of industrial robots with their 
popular six degrees of freedom, industrial robots have to be evaluated with 
metrology device or system of 3 or more degrees of freedom.  Evaluation 
methods and equipment are needed to measure the spatial pose of robot effi-
ciently with low cost.
Several methods are available for characterizing robot performance in accor-
dance with ISO 9283 “Manipulating Industrial Robots Performance Criteria 
and Related Test Methods”.  Eight major performance measuring methods and 
techniques are introduced in the technical report ISO TR 13309, including the 
accurate, easy-to-use but costly laser tracking technique.   The pros and cons of 
existing multi-degrees of freedom measuring systems, including laser tracker, 
straight edges, multi-probes at certain check points, image and scanning tech-
niques etc, are well documented [Lau and Hocken, 1984; Van Brussel, 1990; Ji-
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ang et al, 1988].  Pose measurement of robotic end-effecter has been the focus 
[Ziegert and Datseries, 1990; Zhu and Cui, 2001, 2003].

Precision booster (Figure 3) a 6-DOF piezoelectric ultraprecision positioning 
drive is developed to provide industrial robots with 6-DOF fine positioning 
capability.   It is designed to mount at the end of the forearm of a robot before 
its end-effector. With the added fine positioning capability, the accuracy of in-
dustrial robots can be greatly enhanced.  Working with more accurate feed-
back sensors or calibration processes, the booster enables industrial robot to 
reach micrometer accuracy – one or two orders of magnitude higher than those 
of conventional serial robots. The accuracy of the precision booster can be de-
signed in the range of sub-micrometer or micrometer over a range of millime-
ters enough to cover the sub-millimeter positioning resolution offered by exist-
ing industrial robots. The booster features monolithic flexure construction and 
the flexure structure functions as a spatial motion mechanism.  This monolithic 
motion mechanism is backlash free and stick-slip free.  High strength and high 
stiffness piezoelectric actuators are used to power the booster to perform fine 
positioning.

 TAU robot 

Work area 1.5 m * 3 m 

Repeatability 15 μm

Path accuracy 30 μm

Acceleration 5 g 

Maximum positioning speed 180m / min 

Excitation frequency > 40 Hz 

Cost < 250 KUSD 

Table 1. Specifications of the TAU Robot Based on Certain Applications 

Figure 1. One of the TAU Robot Configurations 
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Figure 2. Definition of the Parameters in D-H Model 

1.2 Kinematic Configurations of Parallel Robots 

Gough-Stewart parallel robot, or so-called ‘hexapod’ shown in Figure 3 
(Gough 1957 and Stewart 1965), is an assembly consisting of a fixed base with 
universal joints connecting the base to six linear-actuated limbs that support a 
moving platform through six ball-and-socket joints. This configuration allows 
the platform to move with six degrees-of-freedom employing the fewest num-
ber of actuators while maintaining stiffness by using only two-force-members. 
It is a closed-loop kinematic system with parallel links and is considered to be 
far more rigid than that of its serial counterparts of the same size and weight. 
Its force-output-to-manipulator-weight-ratio is generally an order of magni-
tude bigger than that of most industrial robots (Liu, 1993). The same closed-loop 
kinematic configuration that gives its rigidity also complicates the solution of the for-
ward kinematics in such a way that no closed-loop solution for this problem has been 
found (Lacaze, Tasoluk and Meystel, 1997).  

Tricept robot, shown in Figure 4, logically derived from the Tetrabot (Thorn-
ton, 1988), has a 3-DOF (degree of freedom) configuration of the parallel type 
to execute translational motions and a 3-DOF spherical wrist to execute rota-
tional motions (Neumann and Neos Robotics, 1998). Its workspace is to be 
considered relatively large compared to the size of the robot. In order to fur-
ther enlarge the size of the workspace, the addition of a revolute joint at the 
fixed base has been envisaged, introducing kinematic redundancy into the ro-
botic manipulator. Its translational part can be thought as a reduced Stewart 
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platform with only three limbs. Like the Stewart platform, its kinematics has 
not been completely obtained: the inverse kinematics problem admits an ana-
lytical solution whereas the direct kinematics problem may require the use of 
iterative algorithms (Siciliano, 1999). 

Delta robot, patented in U.S. in 1990 (Clavel, 1990), is shown in Figure 5.  The 
basic idea behind the Delta parallel robotic design is the use of parallelograms. 
A parallelogram allows an output link to remain at a fixed orientation with re-
spect to an input link. The use of three such parallelograms restrains com-
pletely the orientation of the mobile platform, which remains only three purely 
translational degrees of freedom. The input links of the three parallelograms 
are mounted on rotating levers via revolute joints. The revolute joints of the ro-
tating levers are actuated in two different ways: with rotational (DC or AC 
servo) motors or with linear actuators. Finally, a fourth leg is used to transmit 
rotary motion from the base to an end-effector mounted on the mobile plat-
form.
The use of base-mounted actuators and low-mass links allows the mobile plat-
form to achieve accelerations of up to 50-G in experimental environment and 
12 G in industrial applications. This makes the Delta robot a perfect candidate 
for pick and place operations of light objects. The Delta design has been ap-
plied to industry robot for several years. Its kinematics and dynamics also 
have been developed (Hunt 1973 and Codourey 1998).

Figure 3.Piezo Driven Flexure Based Hexapod (Zhu and Cui, 2001) 
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Figure 4. Tricept Robot (Neumann and Neos Robotics, 1998)  

Figure 5. Delta Robot from US patent No. 4,976,582 
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Figure 6. Octahedral Hexapod (NIST) 

Octahedral Hexapod as shown in Fig. 1.6 is a demonstration machining center 
with six DOFs. It is a small, portable machine based on an octahedral frame-
work. Machine motion is achieved by a Stewart Platform style actuation sys-
tem. The framework and machining system can achieve high overall stiffness 
due to the fact that the structural members are generally in tension or com-
pression with a minimum amount of bending stress. This structure allows the 
machine's capabilities to be independent of its foundation. Six identical struts 
with spherical pivots are mounted to the framework to drive the machining 
spindle, providing six-axis machining capability. The machine has a work vol-
ume of approximately 5" diameter X 3.5" high. The assembled machine will fit 
in a 24" X 24" X 25" volume. The machine completely disassembles and stores 
in a case approximately 24" X 16" X 10".
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Figure 7 Typical Arms and Wrist Configuration of Industrial Robots (Handbook of In-

dustrial Robotics)
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2. Tau Configuration Design

Hybrid manipulators are parallel-serial connection robots that give rise to a 
multitude of highly articulate robotic manipulators. The robotic manipulators 
have a strength-to-weight ratio many times larger than the value currently 
available with industrial or research manipulators. This is due to the fact that 
these hybrid manipulators are stress compensated and ultralight in weight, yet 
are extremely stiff due to the fact that the force distribution in their structures 
is mostly axial.
Serially connected robot manipulators in the form of an open-loop kinematic 
chain with computer-controlled joint actuation have been utilized extensively 
in robot industry. For parallel manipulators, a classic example is the Stewart 
platform, which has been kinematically and, to some extent, dynamically in-
vestigated by many researchers.
The major advantages of existing parallel robots, compared with serial robots, 
are smaller mass and higher stiffness of the arm system. This is very important 
to achieve a shorter cycle time with lower actuator power together with more 
accurate movement.
The disadvantage is a relative small workspace in relation to the volume of the 
arm system. In the process of improving the robotic performance by diminish-
ing the disadvantages, the basic features in design should include the follow-
ing:

1. All the actuators are mounted on a fixed platform, which minimizes the 
mass of the moving arm system. 

2. The links connected to the actuated platform are two-force members 
transmitting only compression and tensile forces and do not carry bend-
ing and twisting loads, which makes it easy to achieve a moving arm 
system of high in stiffness and low in mass. 

3. The joints can be implemented as ball and socket bearings, which makes 
it possible to obtain high precision in addition to high stiffness and low 
mass for the joint arrangement. 

4. The actuated platform is positioned with 3 translational DOFs in a par-
allel fashion without angular displacement.  

2.1 The Link Clustering Design Approach 

Systematic clustering of the links connected to the actuated robot platform has 
been studied. Based on this design approach new parallel arm structures have 
been identified and some new robot concepts have been found (Brogardh, T, 
2000).
Figure 8 shows schematically the basic components needed to achieve the 
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Delta parallel arm robot with the kinematic features listed above. The actuated 
platform is connected to 6 links of type A by means of ball and socket joints 
that each has 3 DOFs. Type A means that the links are designed to be stiff only 
for forces along their axial direction in the structure. This force loading charac-
teristic in the links of type A is guaranteed since a ball and socket joint cannot 
transmit bending moment or twisting torque to the link it is connected to. 
The actuators in Figure 8 are mounted on the fixed platform and the moving 
part of the actuators is connected to the links of type A via links of type B. The 
type B links are designed to be stiff against also bending moment and twisting 
torque. All the links of type B do not need to be connected to actuators, but 3 of 
them must, otherwise the actuated platform cannot be manipulated in 3 DOFs.

Figure 8.  Components for the Design of Structures with the Same Features as the 

Delta Robot. (Courtesy of Brogardh, T, 2000).

Each of the links of type B (Figure 8) can be connected to one or more of the 
links of type A. One could say that each link of type B can be connected to a 
cluster of links of type A and it is possible to introduce a simple clustering 
scheme, where for example 2/2/2 means that the links of type A are clustered 
with 2 links to each of the 3 links of type B. To achieve parallel movements of 
the actuated platform (to preserve the tilt angles), type A links belonging to the 
same cluster must be parallel and have the same length. Moreover, to avoid a 

Connecting 

bar
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collapsing parallel arm structure because of kinematic singularities, the place-
ment of the type A link joints on the actuated platform must be optimized as 
well as the relative directions between the type A links of the different clusters. 
The 6 links of type A can be clustered in 3 ways: 2/2/2, 3/2/1 and 4/1/1. The 
4/1/1 clustering will not fulfill the kinematic demands for a controllable struc-
ture and can be omitted. However, the 2/2/2 and the 3/2/1 clustering accord-
ing to Figure 10 are kinematically useful. Using the 2/2/2 clustering scheme 
for the design will end up with the Delta structure. The optimized link place-
ment in this case is achieved when the lines between the joints of each cluster 
on the actuated platform have an angle of 120 degrees between each other. The 
arm structure will collapse if the angle between two joint lines is 0 (180) de-
grees instead of 120 degrees. If instead the 3/2/1 clustering is used for the de-
sign of a parallel arm robot, the placement of the joints of the type A links on 
the platform surface is not critical. The only demand is that the 3 lower joints 
of cluster 1 are not allowed to be on a straight line on the platform. The opti-
mum is achieved when these 3 joints of cluster 1 form a triangle with equal 
side length. This robustness with respect to the link placement on the actuated 
platform opens up new possibilities for the robot design.
In Figure 9 the actuated platform is considered to have a plane design, which 
means that the links of type A connect to the platform surface in a plane. 
However, the actuated platform could also be designed as a 3-D framework as 
depicted in Figure 10. This framework does not need to be a cube as in the fig-
ure, but the cube drawing makes it easier to see the configurations of the links. 
As in the case with a plane platform design, there are also in this case 2 useful 
clustering possibilities for an actuated 3-D platform: 2/2/2 and 3/2/1. 

Figure 9. Useful Clustering Strategies When the Links of Type A Are Attached to the 
Actuator Platform in a 2-D Pattern. 

Cluster1
Cluster 2

Cluster 3 

Cluster1
Cluster3

Cluster2

3/2/1 clustering 2/2/2 clustering 
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Figure 10. Useful 2/2/2 Clustering Strategies when the Links of Type A are Attached 
to the Actuator Platform in a 3-D pattern. (Courtesy of Brogardh, T, 2000). 

2.2 TAU 3/2/1 Configuration 

A new class of parallel robot, namely, TAU robot, has been created based on 
the 3/2/1 configuration. It combines the performance advantages of parallel 
arm mechanism (e.g., high stiffness, high accuracy) with the large workspace 
of serial robot.
As shown in Figure 11, the primary design of the TAU prototype robot has 
three actuators mounted on the base fixture and arranged in a line, which is 
called an I-configuration TAU. From bottom to top, actuators and upper arms 
(type B link) are numbered as 1, 2 and 3, and connected with 3, 2 and 1 lower 
arm(s) (type A link) respectively. This configuration basically performs a 3-
DOF motion in its workspace. The 3-DOF parallel robot has a small footprint 
but with an enhanced stiffness. 
The six links (lower arms) connected to the tool plate are driven by the three 
upper arms rotating around Z-axis. This structure has 3 DOFs in its work-
space. With its geometric constraint, the DOF of a TAU robot is equal to (Tsai, 
1999)

DOF = 
=

+−−
1

)1(
i

ifjnλ

λ : degree of freedom of the space in which a mechanism is intended to 
function
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 n: number of links in a mechanism, including the fixed link 
 j: number of joints in a mechanism, assuming that all the joints are binary. 

if : degree of relative motion permitted by joint i.  

Joints between fixture and upper arms are 1-DOF rotational joints. Joints con-
necting upper and lower arms are 2-DOF universal joints. 3-DOF spherica-
joints connect lower arms and moving plate.

Figure 10.TAU Robot Based on Clustering Design Approach 

2.3 Features of the TAU Configuration 

The parallel robotic configuration for translational motion has a higher stiff-
ness compared to the serial robotic configuration. It also has the following fea-
tures: Large workspace, 360 degree around its base axis like a serial robot, ana-
lytic kinematic solution and analytic rigid-body dynamic solution. 

 Applications and Design Requirements 
With these new features, the robot has the possibility to work with several 
conveyors and feeders placed around the robot. This is just one example of 
how a SCARA like parallel arm robot could be used to increase the productiv-
ity in an existing production line just by replacing conventional SCARA robots 
used today with its parallel arm cousins. 
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Typical Applications 
Spot welding and painting are among the earliest application for industrial ro-
bot. Their payload is usually less than 50 kg. Repeatability requirement is in 

the range of 100 μm.
Pick and place and packaging have relatively low requirement on repeatability 
and stiffness. Payload varies from 1 to 500 kg. High speed is preferred for high 
productivity.
Machining or material removal including deburring, grinding, milling and 
sawing, requires high stiffness. Stiffness and accuracy of the robot decide the 
quality of the machined product. 

Potential Applications 
Laser cutting or welding, as a non-contact process requires an accu-

racy/repeatability less than 100 μm. Payload, which is the laser gun and acces-
sories, is usually less than 50 kg. Speed required is not high in such applica-
tions.
Coordinate measuring function is typically performed by a CMM. It has a 

strict accuracy requirement of less than 50 μm for both static and path follow-
ing at a low speed. 
Fine material removal is as precision machining application now dominated 
by CNC machines. It requires the highest stiffness and system accuracy. 

Design Objectives 
The mechanism design is application orientated. Three typical future applica-
tions were selected and studied in the design phase: 2-D laser cutting, CMM 
for automobile vehicle and material removal applications. Each of them repre-
sents a typical application with certain requirements. Accuracy is a dominating 
factor reflecting the level of performance of any measurement system. The ac-
curacy is low for current articulated robot arms. Material removal application 
requires high stiffness. Current serial configured CNC machines or parallel-
configured machines have a limited workspace.

 TAU robot  Linear motor gantry 
bWork area 1.5 m * 3 m 1.5 m * 3 m 

Repeatability 15 μm 17 μm

Path accuracy 30 μm  50 μm

Acceleration 5 g 2 - 4 g 

Maximum positioning speed 180 m / min 100 - 200 m / min 

Excitation frequency > 40 Hz 13 Hz 

Cost < 250 KUSD 250 KUSD 

Table 2. Performance Comparison with 2-D Laser Cutting Gantry Robot  
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Table 2 shows the performance comparison between the TAU robot and the 
gantry robot currently used in laser cutting application, which indicates the 
potential applications instead of using linear gantry robot. The performance of 
TAU covers all advantages of the Linear Motor Gantry. 

Figure 12. Single Arm Test Platform for Drive Motor Error Analysis 

Figure 13. ADAMS Simulation Model for Two-Arm Test Platform 
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Figure 14. Two-Arm Test Platform (double SCARA structure) 

Figure 15. TAU Prototype Design
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3. Kinematics of Tau configuration

This chapter gives the nominal (no error) kinematics of the TAU robot. It is a 
general solution for this type of 3-DOF parallel-serial robots. For the two-arm 
test platform, a simple kinematic solution can be obtained based on its double 
SCARA configuration and it is not included in this chapter. The two-arm test 
platform kinematics was used in friction model identification and kinematic 
error calibration of the two-arm test platform. It will be introduced as needed 
in the related chapters. 
To solve the kinematics of this 3-DOF TAU robot, three independent equations 
are needed. The three lower arm links, connected between the moving plate 
and upper arm 1, are designed to be parallel to each other and have the same 
length. Similarly, the two lower arms of upper arm 2 are also parallel and 
equal in length, which gives another length equation. The third equation 
comes from the lower arm 3.  
Formulating these three equations all starts from point P in Figure 3.1, where 
three kinematic chains meet.  Three basic equations for the kinematic problem 
are:

Figure 16.TAU Robot Kinematic Representation 
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)120cos()cos(

dD

aaD

aaD

z

y

x

=

+−=

+−=

θθ

θθ

323 )( aPDdist =−

Basic equations 
2

1

2

1

2

1

2

12 )()()( PzDpyDPxDa zyx −+−+−=   (1) 
2

2

2

2

2

2

2

22 )()()( PzDPyDPxDa zyx −+−+−=  (2) 
2

3

2

3

2

3

2

32 )()()( PzDPyDPxDa zyx −+−+−=                   (3) 

3.1 Inverse Kinematics

In an inverse kinematic problem, the Cartesian positioning information (Px, 
Py, Pz) is known. The unknowns are joint space position of active drive angles: 

θ1, θ2 and θ3.
Substitute point D2 into Equation (2): 

2

2

222

22

2

211121 )()sincos(2 PzDPyPxaaPyPxa Z −+++−=+ θθ

Therefore, the first angle is obtained as: 

Px

Py

PyPxa

PzDPyPxaa Z 1

22

21

2

2

222

22

2

211

1 tan
2

)(
cos −− +

+

−+++−
=θ  (4) 
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Substitute point D3 into Equation (3): 

2

3

2

133231

2

133231

2

32

)())120sin(sin(

))120cos(cos(

PzDPyaa

Pxaaa

z −+−+−+

−+−=

θθ

θθ

Therefore: 

x

y

yx

zzyx

C

C

CCa

CDCCaa

3

31

2

3

2

331

2

33

2

3

2

3

2

32

2

311

2 tan
2

)(
cos −− +

+

−+++−
=θ  (5) 

Where,

PzC

aPyC

aPxC

z

y

x

=

++=

++=

3

1333

1333

)120sin(

)120cos(

θ

θ

Substitute point D1into Equation (1) 

2

31

2

3

2

3

2

12

2

11333311 )()sincos(2 zzyxyx CDCCaaCCa −+++−=+ θθ

Therefore: 

x

y

yx

zzyx

C

C

CCa

CDCCaa

3

31

2

3

2

311

2

31

2

3

2

3

2

12

2

111

3 tan
2

)(
cos −− +

+

−+++−
=θ  (6) 

Equations (4), (5) and (6), therefore, are the inverse kinematics ended at point P 
on the moving platform. Noticed that point P is the kinematic calculation 
point, and additional inverse kinematic is needed to transfer TCP (Tool Center 
Point) to point P, when tool or wrist assembly is attached to the moving plat-
form.

3.2 Forward Kinematics  

The forward kinematic problem of a parallel configuration in general is more 
difficult than the inverse problem, for certain configurations there is no ana-
lytical solution admitted. For this TAU robot, the analytical forward kinemat-
ics is achievable. The Cartesian positioning information (Px, Py, Pz) is un-
known in this case. The known are joint space position of active drive angles: 

θ1, θ2 and θ3.

Change the format of Equations (1), (2) and (3) into: 
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2

12

2

1

2

1

2

1

2

1

2

1

2

1 222 aPzPzDDPyPyDDPxPxDD zzyyxx =+−++−++−  (7) 
2

22

2

2

2

2

2

2

2

2

2

2

2

2 222 aPzPzDDPyPyDDPxPxDD zzyyxx =+−++−++−   (8) 

2

32

2

3

2

3

2

3

2

3

2

3

2

3 222 aPzPzDDPyPyDDPxPxDD zzyyxx =+−++−++−   (9) 

Equation (7) – Equation (8) 

2

22

2

1221

2121

2

2

2

2

2

2

2

1

2

1

2

1

)(2

)(2)(2)()(

aaPzDD

PyDDPxDDDDDDDD

zz

yyxxzyxzyx

−=−−

−−−−++−++
  (10) 

Equation (7) – Equation (9) 

2

32

2

1231

3131

2

3

2

3

2

3

2

1

2

1

2

1

)(2

)(2)(2)()(

aaPzDD

PyDDPxDDDDDDDD

zz

yyxxzyxzyx

−=−−

−−−−++−++
  (11) 

Thus, define: 

2

3

2

3

2

33

2

2

2

2

2

22

2

1

2

1

2

11

zyx

zyx

zyx

DDDd

DDDd

DDDd

++=

++=

++=

Equation (10) becomes 

2/)()()()( 21

2

12

2

22212121 ddaaPzDDPyDDPxDD zzyyxx −+−=−+−+−

Let

2/)( 21

2

12

2

221

211

211

211

ddaae

DDc

DDb

DDa

zz

yy

xx

−+−=

−=

−=

−=

Substitutes into Equation (10): 

1111 ePzcPybPxa =⋅+⋅+⋅

Similarly define 
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2/)( 31

2

12

2

322

312

312

312

ddaae

DDc

DDb

DDa

zz

yy

xx

−+−=

−=

−=

−=

Then Equation (11) as 

2222 ePzcPybPxa =⋅+⋅+⋅

PzcePybPxa

PzcePybPxa

⋅−=⋅+⋅

⋅−=⋅+⋅

2222

1111

⋅−

⋅−
=

Pzce

Pzce

Py

Px

ba

ba

22

11

22

11

Define 1221 baba −=Δ

For case 1, Δ ≠ 0: 

Pzcbcbebeb

bPzcebPzcex

⋅−+−=

⋅−−⋅−=Δ

)()(

)()(

12212112

122211

Pzcacaeaea

aPzceaPzcey

⋅−+−=

⋅−−⋅−=Δ

)()(

)()(

21121221

211122

Pz
cacaeaeay

Py

Pz
cbcbebebx

Px

⋅
Δ

−
+

Δ

−
=

Δ

Δ
=

⋅
Δ

−
+

Δ

−
=

Δ

Δ
=

21121221

12212112

Define:

Δ

−
=

Δ

−
=

Δ

−
=

Δ

−
=

2112

1221

1221
2

2112
1

caca
f

cbcb
f

eaea
f

ebeb
f

y

x

Thus:

PzffPy

PzffPx

y

x

+=

+=

2

1
    (12) 
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Substitute Px, Py into Equation (3): 

2

3

2

23

2

13

2

32 )()()( PzDPyffDPzffDa zyyxx −+−−+−−=

Resort Equations above: 

0)()(2)1( 2

32

2

3

2

22

2

1132211

222 =−+++−++++ aDffPzDffffPzff zzyxyx

Where,

y

x

Dff

Dff

3222

3111

−=

−=

Then, let 

2

32

2

3

2

22

2

11

32211

22

)(2

1

aDffC

DffffB

ffA

z

zyx

yx

−++=

−+=

++=

The solution of Equation 02 =+⋅+⋅ CPzBPzA  is well known as: 

A

CABB
Pz

⋅

⋅⋅−±−
=

2

42

 ............................ (13) 

From Equation (12) 

PzffPx x+= 1  ............................ (14) 

PzffPy y+= 2  ............................ (15) 

For case 1, Δ = 0, i.e. a2 = b2 = 0 

1221 baba −=Δ

In this case, zDPz 3=  and only one Equation is available, 

PzcePybPxa ⋅−=⋅+⋅ 1111

i.e.

21

1111 /)(

fPzfPxf

bPxaPzcePy

y ++=

⋅−⋅−=
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Where:

11

112

111

/

/

/

baf

bef

bcf

x −=

+=

−=

Substitute Px, Py into Equation (3) and resort the equation above: 

0)()(2)1( 2

32

2

3

2

11311

22 =−++−++ aDfPxDffPxf xxxx

Where, yDfPzff 32111 −+=

Then, let 

2

32

2

3

2

11

311

2

)(2

1

aDfC

DffB

fA

x

xx

x

−+=

−=

+=

The solution of Equation 02 =+⋅+⋅ CPxBPxA  is well known as: 

A

CABB
Px

⋅

⋅⋅−±−
=

2

42

From Equation (12) 

z

x

DPz

fPzfPxfPy

3

21

=

++=

For case b1, b2 =0 

Equation PzcePybPxa ⋅−=⋅+⋅ 1111  becomes 

111 /)( aPzcePx ⋅−=

Py can be solved by one of those basic Equations, for example for Equation 
(1).

2

1

2

1

2

121 )()( PzDPxDaDPy zxy −−−−±=

The sign is the same as d1y. 

For case a1, a2 =0 
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Equation  becomes 

PzcePybPxa ⋅−=⋅+⋅ 1111

111 /)( bPzcePy ⋅−=

Px can be solved by one of those basic Equations as 

2

1

2

1

2

121 )()( PzDPyDaDPx zyx −−−−±=

The sign is the same as D1x.

Thus forward kinematic is solved based on geometry constrains. Like the in-
verse kinematics, additional mathematic work is needed for the kinematic 
chain from point P to final TCP depending on the configuration details of the 
tool or wrist. 

3.3 Discriminant Analysis of Kinematic Solution 

Mathematically neither forward nor inverse kinematics gives single solution. 
Forward kinematics usually has two solutions, because the passive joint angles 
formed between upper arm and lower arm are not determined by kinematic 
equations. When only arm 1 and arm 2 chains are considered, upper arm 1, 
lower arm1, upper arm 2 and lower arm 2 form a quadrilateral geometry. 
These two solutions form one convex and one concave quadrilateral and one 
and only one of them is allowed by mechanical constrains. The discriminating 
condition is the angle between arm 1 and arm 2. For inverse kinematics, the 
mathematic equations can give out up to 8 solutions for the same position in-
put. Still the physical constrains limits the left arm can be only placed on the 
left side of right arm, together with the convex and concave condition, there is 
only one solution is reasonable for arm 1 and arm 2. However including arm 3 
into consideration, if it can rotate freely around its axis, there are two solutions 
for the drive angle of arm 3 except for singularity point. However since the el-
bow joint of arm 3 physically limits arm 3 so that arm 3 can only move within 
one side. Therefore, combining mathematics and physical constrains together, 
within the reachable workspace, TAU robot kinematics gives single solution 
on each input for both forward and inverse routine. 

4. Error Modeling and Jacobian Matrix with all variables 

The purpose of error analysis is to minimize the error of robot system through 
assembly based on the comprehensive system error model. The reason is based 
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on the fact that all error source will either have a negative or positive influence 
on the system error, which is then possible to arrange them in a way that can-
cellation or at least error reduction will happen. The methodology is described 
as:

• Identifying the error effect of individual component using the established 
system error model.

• Identifying the dimensional ranges allowed in an assembly for each connec-
tion.

• Using the system error model to identify the negative or positive direction 
that a connection should be made within the ranges allowed.

• Predicting and minimizing system error using the model. 
• Using proper error budget approach to minimize the system error. 

4.1  Error Modeling 

The assembly process is a process of error identification and more importantly, 
a process of error assignment in the way towards minimizing system error. 
During the process, error budget is completed, and more importantly, an accu-
rate kinematic model should be established. The process is geared directly to-
wards error control and compensation when a robot is in service. The process 
is also a redesign process for improved performance 
Next attentions should be paid to:

• The direction and degree of influence of an error source on system error var-
ies in the whole workspace. 

• Random errors can not be dealt effectively. 

• Effective fixture and measuring are important.  

• The methodology reduces robotic system error and opens the door for more 
accurate error compensation.

For the TAU-robot, an important thing needed is the error analysis. One needs 
to assign an error limit or range to all components in order to obtain a given 
robotic system accuracy. The procedure is so called Error Budget. 
Before the error budget, an important thing to accomplish is to establish and 
analyze the Jacobian Matrix. It is necessary to know Jacobian Matrix for all 
components before assigning error to all components. On the other hand one 
can also obtain the final accuracy with knowing Jacobian Matrix. Besides one 
can know which components are more important than others based on the 
Jacobian Matrix. Table 3 lists all the design variables for the TAU robot. 
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Table 3. Design Variables of TAU Robot 

There are six kinematic chains from the base to the end-effector as: 

Transfer Matrix: M1  Base->Joint1->Joint_link11_arm1 
 Transfer Matrix: M1*M3 Base->Joint1->Joint_link21_arm1 
Transfer Matrix: M2  Base->Joint1->Joint_link31_arm1 
Transfer Matrix: M4*M5       Base->Joint2->Joint_link12_arm2 
Transfer Matrix: M4  Base->Joint2->Joint_link22_arm2 
Transfer Matrix: M6*M7 Base->Joint3->Joint->Joint13_link_arm3 

NO. DESCRIPTION MAME

1 drive 1 Joint 1

2 drive 2 Joint 2

3 drive 3 Joint 3

17 a1

24 d1

4 sit1

10 afa1

18 joint_link11_arm 1 a2

19 a3

25 d3

5 sit3

11 afa3

20 a4

26 d4

6 sit4

12 afa4

21 a5

27 d5

7 sit5

13 afa5

22 a6

28 d6

8 sit6

14 afa6

23 a7

29 d7

9 sit7

15 afa7

30 x1

31 y1

32 z1

33 x2

34 y2

35 z2

36 x3

37 y3

38 z3

39 x4

40 y4

41 z4

joint 2 and arm

2

short arm 2

joint 1 and arm

1

joint 3

arm 3

joint_link11_arm

1

joint_link21_arm

1

joint_link31_arm

1

joint_link12_arm

2

short arm 1

NO. DESCRIPTION MAME

42 x5

43 y5

44 z5

45 x6

46 y6

47 z6

48 x11

49 y11

50 z11

51 x22

52 y22

53 z22

54 x33

55 y33

56 z33

57 x44

58 y44

59 z44

60 x55

61 y55

62 z55

63 x66

64 y66

65 z66

16 height of the TCP a

66 link 13 L0

67 link 11 L1

68 link 31 L2

69 link 21 L3

70 link 22 L4

71 link 12 L5

joint_link22_arm2

joint_link13_arm3

joint_link11_platf

orm

joint-

link13_platform

joint_link31_platf

orm

joint_link21_platf

orm

joint_link12_platf

orm

joint_link22_platf

orm
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Where,

So, the six length equations can be obtained from matrices above.  

M1

cos joint1 Δθ1+( )
sin joint1 Δθ1+( )

0

0

sin joint1 Δθ1+( )− cos Δα 1( )⋅

cos joint1 Δθ1+( ) cos Δα 1( )⋅

sin Δα 1( )
0

sin joint1 Δθ1+( ) sin Δα 1( )⋅

cos joint1 Δθ1+( )− sin Δα 1( )⋅

cos Δα 1( )
0

700 Δa1+( ) cos joint1 Δθ1+( )⋅

700 Δa1+( ) sin joint1 Δθ1+( )⋅

750 Δd1+

1

→

M2

cos joint1 Δθ2+( )
sin joint1 Δθ2+( )

0

0

sin joint1 Δθ2+( )− cos Δα 2( )⋅

cos joint1 Δθ2+( ) cos Δα 2( )⋅

sin Δα 2( )
0

sin joint1 Δθ2+( ) sin Δα 2( )⋅

cos joint1 Δθ2+( )− sin Δα 2( )⋅

cos Δα 2( )
0

900 Δa2+( ) cos joint1 Δθ2+( )⋅

900 Δa2+( ) sin joint1 Δθ2+( )⋅

750 Δd2+

1

→

M3

cos Δθ3( )
sin Δθ3( )

0

0

sin Δθ3( )− cos Δα 3( )⋅

cos Δθ3( ) cos Δα 3( )⋅

sin Δα 3( )
0

sin Δθ3( ) sin Δα 3( )⋅

cos Δθ3( )− sin Δα 3( )⋅

cos Δα 3( )
0

Δa3 cos Δθ3( )⋅

Δa3 sin Δθ3( )⋅

200 Δd3+

1

→

M4

cos joint2 Δθ4+( )
sin joint2 Δθ4+( )

0

0

sin joint2 Δθ4+( )− cos Δα 4( )⋅

cos joint2 Δθ4+( ) cos Δα 4( )⋅

sin Δα 4( )
0

sin joint2 Δθ4+( ) sin Δα 4( )⋅

cos joint2 Δθ4+( )− sin Δα 4( )⋅

cos Δα 4( )
0

900 Δa4+( ) cos joint2 Δθ4+( )⋅

900 Δa4+( ) sin joint2 Δθ4+( )⋅

950 Δd4+

1

→

M5

cos Δθ5( )
sin Δθ5( )

0

0

sin Δθ5( )− cos Δα 5( )⋅

cos Δθ5( ) cos Δα 5( )⋅

sin Δα 5( )
0

sin Δθ5( ) sin Δα 5( )⋅

cos Δθ5( )− sin Δα 5( )⋅

cos Δα 5( )
0

Δa5 cos Δθ5( )⋅

Δa5 sin Δθ5( )⋅

200− Δd5+

1

→

M6

cos
1

2
joint1⋅

1

2
joint2⋅+ Δθ6+

sin
1

2
joint1⋅

1

2
joint2⋅+ Δθ6+

0

0

sin
1

2
joint1⋅

1

2
joint2⋅+ Δθ6+− cos 90− Δα 6+( )⋅

cos
1

2
joint1⋅

1

2
joint2⋅+ Δθ6+ cos 90− Δα 6+( )⋅

sin 90− Δα 6+( )
0

sin
1

2
joint1⋅

1

2
joint2⋅+ Δθ6+ sin 90− Δα 6+( )⋅

cos
1

2
joint1⋅

1

2
joint2⋅+ Δθ6+− sin 90− Δα 6+( )⋅

cos 90− Δα 6+( )
0

Δa6 cos
1

2
joint1⋅

1

2
joint2⋅+ Δθ6+⋅

Δa6 sin
1

2
joint1⋅

1

2
joint2⋅+ Δθ6+⋅

1700 Δd6+

1

→

M7

cos joint3 Δθ7+( )
sin joint3 Δθ7+( )

0

0

sin joint3 Δθ7+( )− cos Δα 7( )⋅

cos joint3 Δθ7+( ) cos Δα 7( )⋅

sin Δα 7( )
0

sin joint3 Δθ7+( ) sin Δα 7( )⋅

cos joint3 Δθ7+( )− sin Δα 7( )⋅

cos Δα 7( )
0

900 Δa7+( ) cos joint3 Δθ7+( )⋅

900 Δa7+( ) sin joint3 Δθ7+( )⋅

Δd7

1

→
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4.2 Jacobian Matrix of TAU Robot with All Error Parameters 

In error analysis, error sensitivity is represented by the Jacobian matrix. Deri-
vations of the Jacobian matrix can be carried out after all the D-H models are 
established. For the TAU robot, the 3-DOF kinematic problem will become a 6-
DOF kinematic problem. The kinematic problem becomes more complicated.

In fact, the error sensitivity is formulated through
ig

x

∂

∂
,

ig

y

∂

∂
,

ig

z

∂

∂
 where x, y, z  

represent the position of the tool plate and   idg  is the error source for each 

component. So the following equations can be obtained: 

i

N

i

dg
l

x
dx

∂

∂
=

1

                                                               (16) 

i

N

i

dg
l

y
dy

∂

∂
=

1

                                                            (17) 

i

N

i

dg
l

z
dz

∂

∂
=

1

                                                              (18)  

The error model is actually a 6-DOF model since all error sources have been 
considered. It includes both the position variables X, Y, Z and also rotational 
angles γβα ,, . From the six kinematic chains, the equations established based 

on D-H models are 

0),,,,,,(

..............................................

0),,,,,,(

0),,,,,,(

66

22

11

==

==

==

gzyxff

gzyxff

gzyxff

γβα

γβα

γβα

Differentiating all the equations against all the variables γβα ,,,,, zyx  and g, 

where g is a vector including all geometric design parameters: 

0=⋅
∂

∂
+⋅

∂

∂
+⋅

∂

∂
+⋅

∂

∂
+⋅

∂

∂
+⋅

∂

∂
+⋅

∂

∂
j

j

i

j

iiiiii dg
g

f
d

f
d

f
d

f
dz

z

f
dy

y

f
dx

x

f
γ

γ
β

β
α

α
     (19) 

Rewrite it in matrix as 
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∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂
∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂
∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

γβ

γβ

α

α

γβ

γβ

α

α

γβ

γβ

α

α

66

55

66

55

66

55

44

33

44

33

44

33

22

11

22

11

22

11

ff

ff

f

z

f

f

z

f

y

f

x

f
y

f

x

f

ff

ff

f

z

f

f

z

f

y

f

x

f
y

f

x

f

ff

ff

f

z

f

f

z

f

y

f

x

f
y

f

x

f

∂

∂−

∂

∂−

∂

∂−

∂

∂−

∂

∂−

∂

∂−

=•

j

jj

j

jj

j

jj

j

jj

j

jj

j

jj

dg
g

f

dg
g

f

dg
g

f

dg
g

f

dg
g

f

dg
g

f

d

d

d

dz

dy

dx

6

5

4

3

2

1

γ

β

α

              (20) 

In a compact form, it becomes

dGdXJ =1                                                                   (21) 

Where

dG=

∂

∂−

∂

∂−

∂

∂−

∂

∂−

∂

∂−

∂

∂−
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From Equation (22) above, we have, 

dgJdG 2= (23)

Substitute Equation (21) into Equation (23) to obtain

dgJdXJ 21 =                                                           (24) 
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The Jacobian matrix is obtained as 2
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 (26) 

For a prototype of the TAU robotic design, the dimension of the Jacobian ma-
trix is 6 by 71.  An analytical solution can be obtained and is used in error 
analysis.

4.3 Newton-Raphson Numerical Method 

Because of the number of parameters involved as well as the number of error 
sources involved, the kinematic problem becomes very complicated. No ana-
lytical solution can be obtained but numerical solution. The TAU configura-
tion, however, as a hybrid or a special case of parallel robots, its forward ki-
nematic problem is, therefore, very complicated.  The Newton-Raphson 
method as an effective numerical method can be applied to calculate the for-
ward problem of the TAU robot, with an accurate Jacobian matrix obtained. 
The Newton-Raphson method is represented by

(27)

With the six chain equations obtained before, the following can be obtained 

      (28) 
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This equation is used later to calculate the forward kinematic problem, and it 
is also compared with the method described in the next section.  

4.4 Jacobian Approximation Method 

A quick and efficient analytical solution is still necessary even though an accu-
rate result has been obtained by the N-R method. The N-R result is produced 
based on iteration of numerical calculation, instead of from an analytical 
closed form solution. The N-R method is too slow in calculation to be used in 
on-line real time control.  No certain solution is guaranteed in the N-R method. 
So the Jacobian approximation method is established.  Using this method, er-
ror analysis, calibration, compensation, and on-line control model can be in 
turn established. As the TAU robot is based on a 3-DOF configuration, instead 
of a general Stewart platform, the Jacobian approximate modification can be 
obtained based the 3-DOF analytical solution without any errors. The mathe-
matical description of the Jacobian approximation method can be described as 
follows.

For forward kinematics,

εθ

εθ

dJFX

FX

FORWARD⋅+=

=

)0,(

),(
                            (29) 

Where ),(' εθFJ FORWARD =  and ε  represents error. Thus, the analytical solution 

)0,(θF  and )0,(XF , is obtained. Therefore, the Jacobian Approximation as an 

analytical solution is obtained and is used to solve nonlinear equations instead 
of using N-R method.

4.5 Jacobian Matrix with a probe  

A real tool should be attached on the wrist of robots as robots are used for any 
application. Here a probe means a real tool.
From the six kinematic chains, the equations established based on D-H models 
are
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Differentiating all the equations against all the variables γβα ,,,,, zyx  and g, 

where g is a vector including all geometric design parameters: 
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Rewrite it in matrix as 
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In a compact form, it becomes

dGdXJ =1                                                  (21) 
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From Equation (22) above, we have 

dgJdG 2=        (23) 

Substitute Equation (21) into Equation (23) to obtain

dgJdXJ 21 =                         (24) 
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The Jacobian matrix is obtained as 2
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In the case with a probe on the end effecter:  

From the Jacobian matrix ,                           , transfer the coordinate of TCP

into the probe coordinates Xp, Yp and Zp as 

 (27) 
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Differentiating Equation (20), one can obtain:

              (28) 

Where

                                                     (31) 

Rewrite the equation into following forms, 
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The final Jacobian matrix with a probe is ⋅ RJ
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4.6 Inverse Jacobian Matrix with a Probe 

From 6 link length equations below: 
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where ,,, 321 θθθ  are drive angles from actuators or motors and  γβα ,,,,, zyx  is 

the pose of  TCP. 
with the probe, one can obtain the next three equations from Euler transforma-
tion.
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Differentiate with respect to all the variables 321 ,, θθθ , γβα ,,,,, zyx  for Equa-

tion (30), where gi is a vector including all design variables: 
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Rewrite it in a matrix form 

121 GdXJdJ −∂=+θ      (36) 
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From Equation (33), one can obtain next formulation. 

23 GdXJ −∂=                       (40) 
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From Equation (36) 
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Substituting Equation (43) into the Equation (36) 
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Finally
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4.7 Determination of Independent Design Variables Using SVD Method

With the reality that all the parts of a robot have manufacturing errors and 
misalignment errors as well as thermal errors, errors should be considered for 
any of the components in order to accurately model the accuracy of the robotic 
system.  Error budget is carried out in the study and error sensitivity of robot 
kinematics with respect to any of the parameters can be obtained based on er-
ror modeling.  This is realized through the established Jacobian matrix. 
To find those parameters in the error model that are linearly dependent and 
those parameters that are difficult to observe, the Jacobian matrix is analyzed.  
SVD method (Singular Value Decomposition) is used in such an analysis. 
A methodical way of determining which parameters are redundant is to inves-
tigate the singular vectors. An investigation of the last column of the V vector 
will reveal that some elements are dominant in order of magnitude. This im-
plies that corresponding columns in the Jacobian matrix are linearly depend-
ent. The work of reducing the number of error parameters must continue until 
no singularities exist and the condition number has reached an acceptable 
value.
A total of 31 redundant design variables of the 71 design parameters are elimi-
nated by observing the numerical Jacobian matrix obtained.   Table 7 in Section 
6 lists the remaining calibration parameters. 

4.8 Error Budget

When the SVD is completed and a linearly independent set of error model pa-
rameters determined, the Error Budget can be determined.  The mathematical 
description of the error budget is as follows: 
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 (48) 

Assume XddXU T =• and gddgV T =• .  So we have iiSXdgd /= , finally, 

ii

T SdXUVdg /)( ••=                                     (49) 

Thus if the dX is given as the accuracy of the TAU robot, the error budget dg
can be determined. 
Given the D-H parameters for all three upper arms and the main column, the 
locations of the joints located at each of the three upper arms can be known ac-
curately. The six chain equations are created for the six link lengths, as follows: 
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An error model is developed based on the system of equations as described 
above. A total of 71 parameters are defined to represent the entire system.   
The 71 parameters include all the D-H parameters for the 3 upper arms, as well 
as the coordinates (x, y, z) of the 6 points at both ends of the 6 links, respec-
tively.  Table 8 in Section 6 presents the error budget. 

4.9 Dexterity Analysis 

From the inverse kinematics

h

ii RPS =   (51) 

Where h

iP  denotes the position of the center on the end plate in local coordi-

nate. R is the

transfer matrix of coordinate. So the link vector

b

iihi PSPL −+=   (52) 

hP is the position coordinate of the center on the end plate. From the end plate 

velocities

to link velocities, We define the Jacobian matrix by 

XJL =         (53) 

Where L  is the vector of link velocities and TTT

hPX ],[ ω=  is the velocity vector 
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Figure 17. Vectors 

Differentiating Equation (52) we can get

)( ihiiii Spzlzl ×+=+ ω    (Zi is the unit vector of Li vector) (54) 

Taking the inner product with Zi yields 

ω•×+•= )( iihii zSpzl     ( from the ωω •×=×• )()( iiii zssz    )      (55)   

Thus we can obtain the Jacobian matrix as
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The dexterity is defined as
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 (57) 

where λ  is the eigen-value of the Jacobian matrix. 

5. System Stiffness 

The stiffness of the robot is a very important performance, which will have a 
significant influence on the robotic applications like cutting, milling, grinding 
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Si
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etc. In this chapter, general formulations for the stiffness of robotic system and 
the stiffness measurement result are presented, TCP stiffness is calculated 
based on theoretical analysis and modeling.  In the stiffness analysis, the stiff-
ness of individual component in related directions will be the output of stiff-
ness model.

5.1 The Measurement of the Robot Stiffness 

Based on the designed robot with certain component errors, Error modeling 
will be used to map the robot error over its working space.  Thermal model 
will also be established.  Deflection under load will be part of the modeling 
too. This comprehensive error model is the base for error analysis and robotic 
product design.  It will also be used, or partly used for error compensation.  
For error compensation, however, suitable sensors will have to be used. 
As measurement is concerned, it is important is to choose the suitable per-
formance evaluation standard.  The type of sensors will be selected based on 
the evaluation method.  In selecting the sensors, resolution, repeatability, and 
accuracy under certain environments will be the key to consider. The factors of 
price and user-friendliness will also be weighted heavily.  Measurement pro-
cedure will be carefully generated and measurement will be performed using 
certified metrology equipment only to ensure the results. 

5.2 Formulations of the Robotic System Stiffness 

A solution to the inverse kinematics problem is required for stiffness calcula-
tion.  It is briefly described below.  Referring to standard Stewart Platform the 
i-th leg length li is given by

li = gi(R,d)                         (58) 

where d = [x,y,z], is the position vector of the platform coordinate system’s ori-
gin in the base coordinate system,  li is the length of the i-th leg and gi is only a 
function of R and d for constant geometric the i-th leg parameters. 

−

−+

+−

=

ψθψθφ

ψφψθφψφψθφθφ

ψφψθφψφψθφθφ

coscossincossin

sincoscossinsincoscossinsinsinsinsin

sinsincossincoscossinsinsincoscos vos

R

            (59) 
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Above is the rotation matrix relating the platform’s coordinate system, to the 
base co-ordinate system,  Here R is constructed using Roll-Pitch-Yaw (RPY) 

angle rotations, where R (roll) = φ  around the z axis, P (pitch) = θ  around the 

y axis,  and Y (yaw) = ψ around the x axis.

 Thus, R is a rotation about the x axis of ψ, followed by θ , a rotation around y 

axis, and ending with a rotation of φ around z axis. 
 Equation (58) represents the inverse kinematic solution.  For some R and d, the 
i-th leg length (li) can be easily calculated. 

If Equation (58) is expanded using Taylor series expansion, and the first order 

term considered only, the change in leg length, Δ li, is obtained as a row vector 

Ji, multiplied by the column twist vector Δ p as given below: 

Δ p = Ji Δ li                                                            (60) 

where

∂
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∂
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∂
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=

iiiiii

i
gggg

z

g

y

g

x
J

φθψ
,,,,,                                   (61) 

And

Tzyxp ],,,,,[ φθψ ΔΔΔΔΔΔ=Δ .                                      (62) 

Assembling the equations for all the legs of the mechanism, 

qJp Δ=Δ                                                           (63) 

where Tllllllq ],,,,,[ 654321 ΔΔΔΔΔΔ=Δ .

From the principle of duality between the force/torque and velocity fields, or 
what is more commonly known as contragradience

τTJf =                                                             (64) 

where
T

zyxzyx MMMFFF ],,,,,[=τ

is the end effector wrench, and  

Tfffffff ],,,,,[ 654321=

is the vector of forces experienced by the legs, and TJ is the transpose of the 
Jacobian J, (described earlier). 
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As previously mentioned, the static stiffness (or rigidity) of the mechanism can 
be a primary consideration in the design of a parallel link manipulator for cer-
tain applications (specifically, those involving large forces and high accuracy). 

The static stiffness of the PLM is a function of:

• The limbs’ structure and material. 
• The joints’ stiffnesses. 
• The platform and base stiffness. 
• The geometry of the structure. 
• The topology of the structure. 
• The end-effector position and orientation. 

To ensure meeting the stiffness specifications, it becomes important to estimate 
the stiffness, particularly the lowest stiffness value and the direction in which 
it is experienced, for the manipulator in a given posture or configuration.  In 
the following analysis, this problem is addressed.  Algebraic expressions for 
stiffness (both the engineering and the general, to be defined later) are devel-
oped.  The fact that the minimum stiffness is experienced in the direction of 
the eigenvector that corresponds to the minimum eigenvalue of the ‘stiffness 
matrix’ of the manipulator is shown.  A corresponding result can be obtained 
for the maximum stiffness of the manipulator. Finally, expressions are devel-
oped for the stiffness of the manipulator in any direction. 

The basic assumption for the theory developed is: 

•  The joints are frictionless. 
•  The weights of the legs or arms are negligible. 

The rigidity of the platform and the base is much greater than that of the legs 
and, therefore, can be considered as infinite (or in general, the manipulator’s 
joints are the least stiff elements in the structure, and hence, dictate the ma-
nipulator stiffness).  If k is the axial or arm stiffness, then for the i-th leg or arm 

iii lkf Δ=                                                                   (65) 

where fi is the force needed to cause a ilΔ change of the i-th leg length.  Assem-

bling the equations for all the legs, Equation (65) becomes 

qkf i Δ=
                                                               (66) 

Substituting for qΔ from Equation (63) 

pkJf Δ= −1   (67) 
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Multiplying both sides of Equation (67) with J-T and substituting f with 

τTJ  from Equation (64) to obtain

.1 pkJJ T Δ= −−τ                                                                (68) 

Equation (68) can be interpreted as τ  is the wrench required to cause the plat-

form to experience a twist of pΔ .   So the stiffness is obtained as

1−− kJJ T   (69) 

5.3 Method for Measuring Joint Stiffness 

From Equation (69), the stiffness if the robot can be obtained, including the 
component or joint stiffness Ki .  In order to obtain the total stiffness of the ro-
bot, the joint stiffness has to be measured.  
From Equation (68), the following Equation (70) can be obtained by finding the 

inverse of the matrix 1−− kJJ T as

.
1 τTi JJKp

−
=Δ   (70) 

Equation (70) is very important for measuring the joint stiffness. Many differ-
ent equations can be obtained by applying different force τ  with different di-
rections then measuring the deflections pΔ .  Least square method is applied to 

solve Equation (70).   As variable 1/Ki is the unknown, one can simplify Equa-

tion (70) as linear equations since [ ]ii kK /1
1

=
−

 is a diagonal matrix.

5.4 Results of the Stiffness Measurement 

The instrument used in measuring includes: 

• CMM ROMER 3000i Digitizer with  an accuracy of 5µm 
• Sphere with an accuracy of 0.02 mm 
Pose measurement is carried out first as seen in Fig. 5.1.  The conditions are

J1=84.70, J2=-3.60, J3=38.80, J4=-0.30, J5=50.60 and J6=-110.20.
Load Fx=-360N

And the measured deformation is
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Δx = -0.69 mm, Δy = 0.37 mm, and Δz = -0.13 mm 

Condition for Deflection Measurement: 

•  Measure robot translational deflections by the position of the center of the 
sphere, which is calculated based on the measurement result of the portable 
CMM ROMER. 

• Motor servo is active during the measurement to take account of the control-
ler stiffness. 

Figure 18. Measurement Set-up 
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Figure 19 . Configuration of the IRB 4400 Robot 
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z
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Figure 20. Measured Deflection/Deformation Dx, Dy, and Dz 

Another measurement pose, as seen in Fig. 5.4 is J1=45.60, J2=-23.60, J3=37.20, 

J4=52.10, J5=52.10 and J6=-194.80. Load condition is 

Load Fx=-360N 

And the measured deformation is  

Δx = -1.05 mm, Δy = -0.01 mm and Δz = -0.57 mm 

Figure 21. Configuration of the IRB 4400 Robot 
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Figure 22. Measured Deflection/Deformation Dx, Dy, and Dz (Second pose) 
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Fx Fy Fz dx dy dz

-180 0 0 -0.4561 0.1767 -0.1211

-360 0 0 -0.9232 0.2812 -0.2723

-360 0 0 -0.9604 0.2825 -0.2452

-180 0 0 -0.4822 0.1983 -0.0943

-180 0 0 -0.5359 0.2062 -0.1103

-360 0 0 -0.9775 0.3464 -0.2344

-180 0 0 -0.7276 0.0201 -0.4238

-360 0 0 -1.423 0.0073 -0.8206

-360 0 0 -1.4246 -0.0099 -0.7893

-180 0 0 -0.768 0.0184 -0.44

-180 0 0 -0.7194 0.0518 -0.4242

-360 0 0 -1.4357 0.0577 -0.7922

0 -275 25 0.0061 -0.8927 0.0336

0 -275 25 -0.0004 -0.9184 -0.0111

-40 -295 10 0.134 -1.1826 -0.0926

-40 -295 10 0.1308 -1.2146 -0.1407

-360 0 0 -0.9344 0.2758 -0.2987

Table 4. Measured Deformation Data 

Then solve the Kq in Equation (70) FJJKx T

q

1−
=Δ    with the least square 

method.

The final result is as follows: 

lsqr result Nominal value

Axis 1: 19.03 22~80

Axis 2: 14.6 32~42

Axis 3: 45.83 25~39

Axis 4: 31.26 70

Axis 5: 15.16 50

Axis 6: 15 85

Table 5.Calculated Joint Stiffness 

Fig. 5.6 also gives the standard deviation from the measurement data.

Based on the results, the measurement data can be trusted and the standard 
deviation of residual error is 0.042mm. Also, verification of solved stiffness 
agrees well. The stiffness model can provide a method for position compensa-
tion to reach a high level accuracy, with a force sensor measuring the process 
force in real time, the impact on position deformation can be estimated and 
compensated.



Error Modeling and Accuracy of Parallel Industrial Robots 625 

Figure 23. Residual Error Std = 0.042 mm 

The same procedure can be applied to the TAU robot. The stiffness at TCP 
point was measured by applying a load at TCP and measuring the resulting 
displacements, see Figure 24. The results of the measurements are shown in 
Figure 25. 

Figure 24. Setup of the TAU robot’s Stiffness Measurement 
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Figure 25. Measured Stiffness of the TAU robot 

5.5 Application of the Robot Stiffness: Position Compensation 

Position compensation can be made once the stiffness model is established. 
The application is to compensate the position error caused by the cutting force 
of milling processing.

Figure 26.Robotic Milling Setup 
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First, the surface quality of the aluminum block can be recorded as cutting 
without position compensation then cutting again to measure the surface qual-
ity with on line compensation. The surface will be measured via the laser. See 
Fig. 5.9 for the robotic milling setup.  Based on the result shown in Figs. 5.10 
and 5.11, the compensation procedure is effective reducing the error to less 
than 0.1 mm compared with the original error of 0.5 mm.

Conclusions:
Verification of solved stiffness agrees very well. The stiffness model can pro-
vide a method to model and test robot stiffness, with a force sensor measures 
the process force in real time, the impact on position deformation can be esti-
mated and compensated. 

Figure 27. Surface Quality without Compensation 
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Figure 28. Surface Quality with Compensation, Mean Error < 0.1 mm 

6 . Simulation and Experimental Results  

The validation of the analytical model has been carried out, as well as the re-
alization of control scheme. Besides the analytical result and data, additional 
results used in this chapter come from three sources: 
Simulation results from ADAMS simulation software, see Figure 29 for details; 
Test results from two-arm test platform, see Table 11; 
Test results from the TAU prototype. 

6.1  Validation of Jacobian Matrix and N-R Method 

The Jacobian Matrix and N-R method need to be verified to guarantee their 
correctness. These simulations are made by ADAMS (commercial simulation 
software) see Figure 29.
The effect of the robot configurations were considered, all “verification points” 
are located in the whole work-space and with total different configurations. 
Figures 30, 6.3, and 6.4 show position differences between the N-R method and 
the ADAMS simulation, which indicates that accurate results have been ob-
tained up to 0.06 um compared with ADAMS simulation results. These results 
guarantee the correctness of Jacobian Matrix and N-R method. Based on the 
simulation results, the N-R method with analytical Jacobian matrix can be 
used in error modeling, error budget, offline calibration.
Like most of the methods in this thesis this method suffers from a drawback: it 
can not be used in online position compensation and online control because it 
is an iteration method even with an analytical, full size Jacobian Matrix.  Next 
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section will focus on the Jacobian Approximation Method (JAM), which is able 
to deal with the online compensation and online control problems. 

Figure 29. Using Adams to Verify the Analytical and Error Model 

 Error results between N-R and Adams simulation
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Figure 30. Position Error between the N-R Method and ADAMS Simulation 
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Comparison between N-R and Adams
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Comparison between N-R and Adams
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Figure 31. Results of N-R and ADAMS (Input Error  Link11=1mm) 

Error Results Between the N-R and Adams Simulation 
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Figure 32. TCP Difference between ADAMS Simulation and N-R Method 

6.2 Validation of Jacobian Approximation Method, Error Budget and 
Calibration 

The Jacobian approximation method is verified by the following two different 
approaches:

(1) 6-DOF forward kinematic analysis (Newton-Raphson method), and
(2) ADAMS simulation results. 

 Based on the D-H model of TAU with all error parameters, inverse and for-
ward kinematic models have been established. From the point of view of 
mathematics, the TAU kinematic problem is to solve 6 nonlinear equations us-
ing Newton-Raphson method with Jacobian matrix as the searching direction 
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and accurate results have been obtained up to 0.06 um compared with 
ADAMS simulation results. 
It can be observed from the Figure 34, for data in detail, see Table 6, the JAM 
(Jacobian Approximation Method) is effective with an accuracy of 1.53 µm 
with an input error of 1 mm (Link 1 of lower arm 1). This was verified using 
ADAMS simulation results. Results from N-R method match very well with 
ADAMS simulation with a difference of only 0.06 µm. 
The JAM can be used in on-line control and position compensation of the ro-
bot. For the TAU robot, a closed form solution of a forward kinematics prob-
lem is reached with a high accuracy instead of N-R numerical solution. The 
simulation results are almost perfect compared with that from ADAMS.
A series of results have been presented for error analysis. Figure 34 shows the 
results of SVD calibration. Which indicates the number of independent design 
variable is reduced from 71 to 31. A sudden drop can be observed from the 
Figure 34, which indicates other parameters behind variable #31 are not neces-
sary and their effects on error model can be neglected. From Table 7, totally 40 
redundant variables are removed also Table 10 gives the result of error budge.
Tables 8 and 9 give the actuator (driving motor) error and thermal error, which 
indicate the change of temperature should be controlled within ±50C otherwise 
the accuracy of system can not be reached to 50um. The resolution of drive 
motor should be at least < 10 arc second (1arc second=1/3600 degree). 
SVD calibration is carried out for three parameters that contribute to the final 
position error, see Table 11 and 12. These parameters are Arm3 length, link13 
length, and link12 length. Calibration process is completed for only1 iteration.  
Based on the Table 12 the accuracy of calibration is 4um for Link12 and others 
are below 1um, which indicates the calibration method and error model are 
correct.

Error between J and Adams simulation results
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 Figure 33. Position Error between Jacobian Approximation Method and ADAMS 
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Figure 34. SVD Calibration of TAU Robot 
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D rive  A n g le s TC P  P o s e Ja c o b ia n N e w to n _ ra p h s o n E rro r b e tw e en  J a n d  N

X 0 ,0 0 E + 0 0 1 ,5 3 E -0 3 0 ,0 0 1 5 3 1 33 9

Y -1 ,8 1 E + 0 0 -1 ,8 1 E + 0 0 -0 ,0 0 4 9 5 5 9

Z -1 ,6 1 E -1 6 -9 ,2 0 E -0 4 -0 ,0 0 0 9 1 9 8 8 9

a fa 5 ,0 1 E -0 3 5 ,0 1 E -0 3 2 ,6 3 4 E -0 7

b ta -9 ,3 2 E -1 9 -9 ,3 3 E -1 9 -1 ,0 0 6 7 9 E -2 1

g m a -9 ,3 2 E -1 9 -9 ,3 2 E -1 9 -1 ,5 9 7 6 E -2 2

X 1 ,1 9 E -0 1 1 ,2 0 E -0 1 0 ,0 0 1 1 9 9 1 6

Y -1 ,8 1 E + 0 0 -1 ,8 1 E + 0 0 -0 ,0 0 0 9 7 3 6

Z -2 ,0 9 E -1 6 -9 ,4 5 E -0 4 -0 ,0 0 0 9 4 5 0 4 8

a fa 5 ,0 1 E -0 3 5 ,0 1 E -0 3 2 ,7 5 6 6 E -0 6

b ta 0 ,0 0 E + 0 0 9 ,4 6 E -1 6 9 ,4 5 6 8 3 E -1 6

g m a 0 ,0 0 E + 0 0 -4 ,8 4 E -1 6 -4 ,8 4 1 5 3 E -1 6

X 2 ,3 7 E -0 1 2 ,3 8 E -0 1 0 ,0 0 1 3 5 5 3 7

Y -1 ,8 0 E + 0 0 -1 ,8 0 E + 0 0 0 ,0 0 0 75 6 2

Z -1 ,7 9 E -1 6 -9 ,6 9 E -0 4 -0 ,0 0 0 9 6 8 8 7 6

a fa 5 ,0 2 E -0 3 5 ,0 2 E -0 3 3 ,5 4 7 E -0 7

b ta 0 ,0 0 E + 0 0 3 ,1 5 E -1 6 3 ,1 4 8 5 3 E -1 6

g m a 0 ,0 0 E + 0 0 -4 ,8 2 E -1 6 -4 ,8 2 1 2 9 E -1 6

X 3 ,5 4 E -0 1 3 ,5 5 E -0 1 0 ,0 0 1 4 9 5 1 1

Y -1 ,7 8 E + 0 0 -1 ,7 8 E + 0 0 0 ,0 0 0 18 3 7

Z -1 ,7 9 E -1 6 -9 ,9 1 E -0 4 -0 ,0 0 0 9 9 1 3 9 7

a fa 5 ,0 3 E -0 3 5 ,0 3 E -0 3 3 ,2 6 3 E -0 6

b ta 0 ,0 0 E + 0 0 -3 ,1 0 E -1 8 -3 ,1 0 0 7 7 E -1 8

g m a -9 ,3 2 E -1 9 1 ,1 5 E -1 8 2 ,0 7 8 2 E -1 8

X 4 ,7 0 E -0 1 4 ,7 1 E -0 1 0 ,0 0 1 1 1 7 9 6

Y -1 ,7 5 E + 0 0 -1 ,7 5 E + 0 0 -0 ,0 0 2 7 7 3 7

Z -5 ,9 6 E -1 7 -1 ,0 1 E -0 3 -0 ,0 0 1 0 1 2 6 2 4

a fa 5 ,0 5 E -0 3 5 ,0 5 E -0 3 1 ,7 2 8 6 E -0 6

b ta 0 ,0 0 E + 0 0 0 ,0 0 E + 0 0 0

g m a 0 ,0 0 E + 0 0 0 ,0 0 E + 0 0 0

X 5 ,8 3 E -0 1 5 ,8 5 E -0 1 0 ,0 0 1 7 3 0 0 3

Y -1 ,7 2 E + 0 0 -1 ,7 2 E + 0 0 0 ,0 0 1 76 8 8

Z -5 ,9 6 E -1 7 -1 ,0 3 E -0 3 -0 ,0 0 1 0 3 2 5 6 5

a fa 5 ,0 7 E -0 3 5 ,0 8 E -0 3 6 ,0 4 6 5 E -0 6

b ta 4 ,6 6 E -1 9 -6 ,3 9 E -1 6 -6 ,3 9 4 2 5 E -1 6

g m a -9 ,3 2 E -1 9 9 ,5 9 E -1 6 9 ,6 0 1 5 E -1 6

jo in t1 = 0  

jo in t2 = 0  

jo in t3 = 0

jo in t1 = 3 .7 5  

jo in t2 = 3 .7 5  

jo in t3 = 2
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jo in t1 = 7 .5  

jo in t2 = 7 .5  

jo in t3 = 4

jo in t1 = 1 8 .7 5  

jo in t2 = 1 8 .7 5  

jo in t3 = 1 0

X 6 ,9 4 E -0 1 6 ,9 6 E -0 1 0 ,0 0 1 8 4 6 1 2

Y -1 ,6 8 E + 0 0 -1 ,6 8 E + 0 0 0 ,0 0 3 6 6 4 2

Z 2 ,0 9 E -1 6 -1 ,0 5 E -0 3 -0 ,0 0 1 0 5 1 2 2

a fa 5 ,1 1 E -0 3 5 ,1 1 E -0 3 -3 ,4 3 2 3 E -0 6

b ta 0 ,0 0 E + 0 0 -8 ,4 7 E -2 2 -8 ,4 7 0 3 3 E -2 2

g m a 0 ,0 0 E + 0 0 8 ,4 7 E -2 2 8 ,4 7 0 3 3 E -2 2

X 8 ,0 3 E -0 1 8 ,0 4 E -0 1 0 ,0 0 0 9 9 1 7 9

Y -1 ,6 3 E + 0 0 -1 ,6 3 E + 0 0 0 ,0 0 2 7 3 4

Z 0 ,0 0 E + 0 0 -1 ,0 7 E -0 3 -0 ,0 0 1 0 6 8 5 8 2

a fa 5 ,1 4 E -0 3 5 ,1 4 E -0 3 3 ,7 0 9 1 E -0 6

b ta 0 ,0 0 E + 0 0 3 ,2 6 E -1 6 3 ,2 5 6 7 2 E -1 6

g m a 0 ,0 0 E + 0 0 -4 ,7 8 E -1 6 -4 ,7 7 9 0 1 E -1 6

X 9 ,0 7 E -0 1 9 ,0 9 E -0 1 0 ,0 0 1 7 0 5 4 4

Y -1 ,5 7 E + 0 0 -1 ,5 7 E + 0 0 -0 ,0 0 1 2 3 0 6

Z -2 ,0 9 E -1 6 -1 ,0 8 E -0 3 -0 ,0 0 1 0 8 4 6 4 3

a fa 5 ,1 9 E -0 3 5 ,1 9 E -0 3 -2 ,0 3 4 6 E -0 6

b ta 0 ,0 0 E + 0 0 8 ,4 7 E -2 2 8 ,4 7 0 3 3 E -2 2

g m a 0 ,0 0 E + 0 0 0 ,0 0 E + 0 0 0

X 1 ,0 1 E + 0 0 1 ,0 1 E + 0 0 -0 ,0 0 0 4 5 9 7

Y -1 ,5 1 E + 0 0 -1 ,5 1 E + 0 0 0 ,0 0 1 5 3 1 9

Z 1 ,4 9 E -1 6 -1 ,1 0 E -0 3 -0 ,0 0 1 0 9 9 3 9 1

a fa 5 ,2 4 E -0 3 5 ,2 4 E -0 3 -7 ,5 4 E -0 8

b ta 0 ,0 0 E + 0 0 -6 ,7 5 E -1 6 -6 ,7 4 9 2 3 E -1 6

g m a 0 ,0 0 E + 0 0 4 ,5 5 E -1 8 4 ,5 4 7 7 2 E -1 8

X 1 ,1 0 E + 0 0 1 ,1 1 E + 0 0 0 ,0 0 6 0 6 6 3

Y -1 ,4 4 E + 0 0 -1 ,4 4 E + 0 0 0 ,0 0 0 7 5 4 7

Z 2 ,9 8 E -1 7 -1 ,1 1 E -0 3 -0 ,0 0 1 1 1 2 8 1 9

a fa 5 ,3 0 E -0 3 5 ,3 0 E -0 3 2 ,8 6 9 E -0 7

b ta 0 ,0 0 E + 0 0 0 ,0 0 E + 0 0 0

g m a 0 ,0 0 E + 0 0 0 ,0 0 E + 0 0 0

X 1 ,2 0 E + 0 0 1 ,2 0 E + 0 0 -0 ,0 0 2 1 2 8

Y -1 ,3 6 E + 0 0 -1 ,3 6 E + 0 0 -0 ,0 0 3 8 5 6 3

Z -2 ,9 8 E -1 7 -1 ,1 2 E -0 3 -0 ,0 0 1 1 2 4 9 3 1

a fa 5 ,3 7 E -0 3 5 ,3 7 E -0 3 -1 ,1 E -0 7

b ta 0 ,0 0 E + 0 0 0 ,0 0 E + 0 0 0

g m a 0 ,0 0 E + 0 0 0 ,0 0 E + 0 0 0

jo in t1 = 3 3 .7 5  

jo in t2 = 3 3 .7 5  

jo in t3 = 1 8

jo in t1 = 3 7 .5  

jo in t2 = 3 7 .5  

jo in t3 = 1 8

jo in t1 = 4 1 .2 5  

jo in t2 = 4 1 .2 5  

jo in t3 = 2 2

jo in t1 = 2 2 .5  

jo in t2 = 2 2 .5  

jo in t3 = 1 2

jo in t1 = 2 6 .2 5  

jo in t2 = 2 6 .2 5  

jo in t3 = 1 4

jo in t1 = 3 0  

jo in t2 = 3 0  

jo in t3 = 1 6

Table 6. Comparison between the Results of JAM and N-R Method 
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Param eter Num ber Param eter Definit ion Param eter

16 height of the TCP a

22 joint 3 a6

23 arm 3 a7

24 joint 1 &  arm  1 d1

25 short arm  1 d3

28 joint3 d6

31 joint_link11_arm 1 y1

34 joint_link21_arm 1 y2

37 joint_link31_arm 1 y3

40 joint_link12_arm 2 y4

43 joint_link22_arm 2 y5

46 joint_link13_arm 3 y6

48 joint_link11p x11

49 joint_link11p y11

51 joint_link31p x22

52 joint_link31p y22

54 joint_link21p x33

55 joint_link21p y33

56 joint_link21p z33

57 joint_link12p x44

58 joint_link12p y44

59 joint_link12p z44

60 joint_link22p x55

61 joint_link22p y55

62 joint_link22p z55

63 joint_link13p x66

64 joint_link13p y66

67 link11 L1

68 link31 L2

69 link21 L3

70 link22 L4

Table 7. List of the Independent Design Variables 

Actuator Error X=1731mm Y=0 mm Z=1125mm 

Δθ1 Δθ2 Δθ3 ΔX ΔY ΔZ

0 0 0 0 0 0 

+/-100
arcsec

0 0 -0.1154
0.1149

0.2126
-0.2126

-0.7599 
0.7598 

0 +/-100 
arcsec

0 0.3677
-0.3678

0.1605
-0.1605

0.2435 
-0.2433 

0 0 +/-100
arcsec

0
0

0.8392
-0.8392

0
0

+/-100
arcsec

+/-100
arcsec

0 0.2524
-0.2528

0.3732
-0.370

-0.5165 
0.5164 

0 +/-100 
arcsec

+/-100
arcsec

0.3675
-0.3681

0.9999
-0.9995

0.2435 
0.2433 

+/-100
arcsec

+/-100
arcsec

+/-100
arcsec

0.2520
-0.2531

1.2125 
-1.2121 

-0.5165 
0.5164 

Table 8. Actuator Error 
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Temperature

ΔT

X=1731mm 

ΔX

Y=0 mm 

ΔY

Z=1125mm 

ΔZ

+/-1° 0.0021
-0.0021

-0.0036
0.0036

0.0121 
0.0121 

+/-3° 0.0063
-0.0063

-0.0107
0.0107

0.0362 
-0.0362 

+/-5° 0.0106
-0.0106

-0.0178
0.0178

0.0603 
-0.0603 

Table 9. Thermal Error 

Error Budget 

Variable
No. Description Name Budget 

1 drive 1 Joint 1 32 arcsec 

2 drive 2 Joint 2 ar6 arcsec 

3 drive 3 Joint 3 1.2 arcsec 

17 a1 1.62 um 

24 d1 363 um 

4 sit1 10.4 arcsec 

10

joint 1 and arm 1 

afa1 110 arcsec 

18 joint_link11_arm 1 a2 373 um 

19 a3 174 um 

25 d3 449 um 

5 sit3 9.24 arcsec 

11

short arm 1 

afa3 9.45 arcsec 

20 a4 1.9 mm 

26 d4 485 um 

6 sit4 1.22 arcsec 

12

joint 2 and arm 2 

afa4 38.5 arcsec 

21 a5 430 um 

27 d5 D 

7 sit5 11.2 arcsec 

13

short arm 2 

afa5 D 

22 a6 0 

28 d6 D 

8 sit6 4.64 arcsec 

14

joint 3 

afa6 D 

23 a7 0 

29 d7 D 

9 sit7 6.14 arcsec 

15

arm 3 

afa7 D 

30 x1 D 

31

joint_link11_arm1 

y1 43 um 
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32 z1 123 um 

33 x2 D 

34 y2 49.4 um 

35

joint_link21_arm1 

z2 D 

36 x3 115 um 

37 y3 108 um 

38

joint_link31_arm1 

z3 D 

39 x4 D 

40 y4 1.28 mm 

41

joint_link12_arm2 

z4 D 

42 x5 2.6 mm 

43 y5 68.2 um 

44

joint_link22_arm2 

z5 D 

45 x6 D 

46 y6 21.6 um 

47

joint_link13_arm3 

z6 213 um 

48 x11 50 um 

49 y11 50 um 

50

joint_link11_platform

z11 D 

51 x22 50 um 

52 y22 50 um 

53

joint_link31_platform

z22 D 

54 x33 50 um 

55 y33 50 um 

56

joint_link21_platform

z33 13.3 um 

57 x44 50 um 

58 y44 50 um 

59

joint_link12_platform

z44 37.9 um 

60 x55 50 um 

61 y55 50 um 

62

joint_link22_platform

z55 398 um 

63 x66 50 um 

64 y66 50 um 

65

joint-link13_platform

z66 50 um 

16 height of the TCP a 436 um 

66 link 13 L0 0 

67 link 11 L1 88 um 

68 link 31 L2 151 um 

69 link 21 L3 54.3 um 

70 link 22 L4 213 um 

71 link 12 L5 1.47 mm 

Table 10. Error Budget (Assigned System Error = 50 um) 
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1 -0.731778837

2 2.934613648

3 0.246 -0.065823708

4 / 0.005595871

5 / 0.009767543

6 0.639 -0.600433798

7 0.004297187 -0.054380834

8 0.022 -0.652730647

9 / 0.100085204

10 NA 0.237556976

11 NA -0.297084061

12 NA 86.49124257

13 NA -61.06910063

14 NA -1934.277556

15 NA 510.5174107

16 NA 22.96695136

17 NA -56.41477281

tz

xpl

ypl

Ry

Rz

tx

ty

Rx

L2

alpha3

alpha1

beta1

a20

alpha20

theta1
3

theta2

L1

Parameter Number Parameter Name
Measured 

Parameter Errors 

Calibration Results with 

SVD (mm/deg)

Elapsed Time (s) 300 175 175

0.048491590.048491590.04774522

Average Absolute 

Accuracy (mm)

Average Standard 

Deviation (MM)

0.113953090.11718325 0.11395309

SVD 
LM -               

Nonlinear optimization

Gauss Newton -         

Nonlinear optim ization

Table 11. Calibration Results of 2D Testing Bench 

Error Parameter Error Assigned (mm) Error from Calibration 
(mm)

Arm3 0.02 
0.05

0.019969 
0.049904 

Link13 0.01 
0.02

0.012201 
0.024424 

Link12 0.02 
0.05

0.018469 
0.046093 

Table 12. Calibration Result of TAU Robot 
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6.3 Approach Comparison and Summary 

The results discussed above indicate that a closed form forward kinematic so-
lution can be computed and finished much faster than the conventional itera-
tive algorithms. The closed form solution is very difficult to obtain because the 
problem is highly nonlinear. The N-R method (iterative method) can give an 
accurate result but it usually takes an average of 4290 multiplications and 630 
sine functions for the iterative N-R algorithm. The Polynomial Based method 
needs at least to solve a 16th-order polynomial equation, which is slow and so-
lution is with spurious roots.
The proposed JAM algorithm can eliminate these drawbacks, and it has an ef-
fective closed-form solution with an accuracy of 1.53um. 
Table 13 below summarizes the features of the methods proposed by the au-
thor in solving the parallel robotics problems involved.   The methodology and 
approach are also used in other robotics applications to effectively increase 
system modeling, control and process accuracy. 

Approaches Description Drawback Accuracy 

Polynomial
Based

Reduces the result-
ing constraint equa-
tions into a high-
order polynomial 
by the method of 
elimination.

Requires extremely 
complicated formula-
tion procedures and 
has been known to be 
much slower than the 
numerical iteration 
such as the N-R 
method.

60-70 um 
Lee, H. S. and Han, 

M. 1999 IEEE  

Newton-
Raphson (N-R)
Numerical It-

eration

Among several it-
erative methods, it 
has been wisely 
employed due to its 
property of conver-
gence.

Jacobian matrix ob-
tained numerically,
which is not efficient, 
and has a great influ-
ence on the conver-
gence of numerical 
method.

0.06 um 
Researched in this 

paper

Extra-Sensor
Reduces the num-
bers of unknown 
variable by extra- 
sensor

Same as the polyno-
mial-based method. 
Complicated hard-
ware setup 

750 um 
Geng, Z. and Hay-

nes, L. 1994  

Jacobian Ap-
proximation

Method
(JAM)

Analytic solution of 
Jacobian matrix + 
N-R method (one 
iteration)

Analytical Jacobian
matrix is difficult to 
obtain for large-scale 
MIMO non-linear 
system.

1.6 um 
Closed-form solu-

tion
Proposed in this pa-

per

Table 13. Approaches in Parallel Robot Forward Kinematic Modeling 
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7. Conclusions 

The TAU robot represents a new configuration of parallel robots. This robotic 
configuration is well adapted to perform with a high precision and high stiff-
ness within a large working space compared with a serial robot. It has the ad-
vantages of both parallel robots and serial robots.
In this study, the kinematic modeling and error modeling are established with 
all errors considered using Jacobian matrix method for the robot. Meanwhile, a 
very effective Jacobian Approximation Method is introduced to calculate the 
forward kinematic problem instead of Newton-Raphson iteration method. It 
denotes that a closed form solution can be obtained instead of a numerical it-
eration solution. A full size Jacobian matrix is used in carrying out error analy-
sis, error budget, and model parameter estimation and identification. Simula-
tion results indicate that both Jacobian matrix and Jacobian Approximation 
Method are correct and with a level of accuracy of micron meters. ADAMS’s 
simulation results are used in verifying the established models. Experimental 
results obtained based on both the lab prototype and industrial prototype 
show that the established models enabled the realization of high precision for 
the new class of robots.
The established models are also used in the development of other precision 
robotics systems.  Precision robotic machining processes using existing serial 
robots have been realized successfully with industry partners involved.  These 
precision processes include robotic milling of aluminum engine blocks, and 
belt grinding of complicated parts of curved surfaces such as engine blades, 
and human knee joint replacements.
Based on the analytical Jacobian matrix solution, SVD calibration is carried out 
for three parameters that contribute to the final position error, the accuracy of 
calibration is within 4um for individual components.
In the milling application of engine block, the position compensation proce-
dure is proved, which reduces the error to < 0.1 mm compared with the origi-
nal error of 0.5 mm. 
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8. Future work: error minimization and design optimization of tau robot 

8.1 Problem Statement 

To further increase the accuracy and performance of a robotic system, error 
minimization and parameter optimization in the design space will be a power-
ful tool.  There are two spaces involved: the error space with numerous error 
sources, and the design parameter space with numerous robotic parameters 
associated with the D-H model.  The current practice in robotic design optimi-
zation is to solve one of the problems, often the later.  It is very difficult to 
solve both parameter problem and the error problem at the same time.
Based on the prior work about the Error modeling and Sensitivity analysis of 
Jacobian matrix, Position errors can be obtained in X, Y and Z directions as 
well as Jacobian matrix (error sensitivities). With these parameters for some 
given error sources, It is important that how to adjust the other error parame-
ters so that the minimum global error can be obtained in whole workspace. 
By analyzing error sensitivity results, the sensitivities vary according to differ-
ent positions in whole workspace, so the optimal results have to satisfy whole 
workspace. It is a powerful tool for industrial robot design and development 
that a method capable of optimizing design parameters in two kinds of differ-
ent optimization spaces through establishing an optimization criteria in two 
different independent and relative design and configuration (movement) 
spaces.

8.2 Problem Formulation – Proposed Object Function and Constrain
Function

For Tau robot, the global error function is not only the function of component 
sizes but also the function of robot positions, and the global error comes from 
three directions (X, Y and Z) so this multi-objects optimal problem can be 
transformed into single object problem then combined global error function 
can be written as object function as follows: 

zzyyxxii FFFXF ωωωθ ++=),(
                    (71) 

Where iθ  is the position variables of robot, zyx ωωω ,,  are weight factors de-

noted by designer according to the error budget, xF , yF  and zF  are errors of X, 

Y, and Z directions, respectively, and 

xF
2)( += ixix XSC

                                                         (72) 
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Where 2)( += iiyyy XSCF               

zF
2)( += iizz XSC

Where zyx CCC ,,  are given error sources caused by manufacturing and assem-

bly, and iziyix SSS ,, are just component’s sensitivities calculated before in X, Y 

and Z directions. Here one attention point is that all parameters Ci and Si are 

functions of position parameters iθ . The constrain function is maxmin iii XXX ≤≤

From above one can transform the constrained optimal problem into uncon-
strained optimal problem by using the Lagrange multiplier Method as follows: 

+++= zzyyxxii FFFXF ωωωθ ),(
=

k

j

ijj Xg
1

)(λ  (73) 

Where )( ij Xg  is the constrain function. 

In constrained optimization, the general aim is to transform the problem into 
an easier sub-problem that can then be solved and used as the basis of an itera-
tive process. A characteristic of a large class of early methods is the translation 
of the constrained problem to a basic unconstrained problem by using a pen-
alty function for constraints, which are near or beyond the constraint bound-
ary. In this way the constrained problem is solved using a sequence of param-
eterized unconstrained optimizations, which in the limit (of the sequence) 
converge to the constrained problem. These methods are now considered rela-
tively inefficient and have been replaced by methods that have focused on the 
solution of the Kuhn-Tucker (KT) equations. The KT equations are necessary 
conditions for optimality for a constrained optimization problem. If the prob-
lem is a so-called convex programming problem, then the KT equations are 
both necessary and sufficient for a global solution. 
So from the Equation (73) next Kuhn-Tucker conditions should be satisfied as: 

),...2,1(0

),...,2,1(0)(

0)(),(

*

1

***

kj

kjXg

XgXF

j

jj

k

j

jj

=≥

==

=∇+∇
=

λ

λ

λθ

     (74) 

For a given configuration, by using Sequential Quadratic Programming (SQP) 
method, Equation (74) can be solved.
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8.3 Future Work - Optimization in the Whole Robotics Workspace 

 Since from mentioned above the object functions have to satisfy whole work-
space. A most serious configuration (movement position) has to be found so 
that one can optimize the object function in this situation. 
   One needs to utilize the other method to optimize the object function since 
the relationship between the object function and position variable is not ex-
plicit. Here “Pattern Search method” is adopted to search the most serious po-
sition of robot that means to maximum the object function. The final optimal 
result can be obtained by using the Lagrange multiplier Method as the most 
serious position is known. 
“Pattern Search method” is consisted of two steps ‘move’, one is exploratory 
move and other is module move. The former is to obtain the useful direction 
by calculating the variations of object function the later is to get a better new 
“point” instead of old “point” in the useful direction, which is similar to the 
gradient direction.
Description of Exploratory Move and Module Move: 

Given initial point X(0), step length ,10,),....,,( 21 <<= βαααα T

n  error ε .

1. 0 K

2. Exploratory Move, α α

2.1 0 i , ),()( ˆ ikk XX

2.2 XXXeXXeX ik

ii

ik

ii

ik −+ ++++
),(

11

),(

11

),( ˆ,ˆ,
~ˆ αα

2.3 if )1,(ˆ~
),()

~
( +< ikXXthenXfXf ;

if )1,(ˆ),()()
~

( +>≥ ikXXthenXfXfXf ;

if )1,(ˆ),()()
~

( +≤≤ ikXXthenXfXfXf

           2.4 ii +1

2.5     if 3,;2.2,, doniifdothenni =<

3. if doXXthenXX knkknk ,ˆˆ,ˆˆ )1(),()0,(),( +≠  5; 

if ),(ˆ nkX = dothenX k ,,ˆ )0,(  4. 

4.   if    εα ≤ ,  then solve the optimal solutions, X ),(* ˆ nkX= .  if  α >ε  and        

αβα , go to 2.1 

5. ,
ˆ̂ˆ2 )1()()1( ++ − kkk XXX obtain )1(ˆ +ky from X̂  by exploratory move. 

6.    if ,1,ˆ),ˆ()ˆ( )1()1()1()1( kkXythenXfyf kkkk +< ++++  go to 2; 

       if ,1,ˆ),ˆ()ˆ( )1()1()1()1( kkXXthenXfyf kkkk +≥ ++++

αβα  go to 2.1 

So the calculation stops at the step 4.
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Module move ( Hooke-Jeeves ) Flow Chart  

Given

0=>

αα =>

From X
(k)

()1( ~ˆ kk XX +

εα ~

αβα =>

1(* ˆ += kXX

STO

)1()1( ˆ2
ˆ̂ kk XXX −= ++

)1(ˆ̂ +kXFrom to )1(ˆ +kY

ˆ(~)ˆ( ()1( ++ kk xfyf

()1( ˆ ++ = kk YX ()1( ˆ ++ = kk XX

K+1=

No (? 

)

Ye

Ye

No (? 

)

> or =
<
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