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1. Introduction

The computer vision research aims at a better understanding of the human visual system

and building artificial visual systems. Vision researchers in psychology and physiology

have explored biological visual systems including the human vision, and obtained much

knowledge on nature and architecture of their visual information processing. For example,

some of previous results in experimental psychology suggested integration of several

visual cues [1–3], and others of them showed evidence of anisotropy in the stereo depth

perception [4, 5]. Mathematical models and computer algorithms developed according to

previous experimental results help us to understand the human visual system and to build

artificial visual systems.

The human visual system has two eyes aligned on a horizontal line. When the system captures

an object located in a three-dimensional space, it perceives depth of the object. The visual

system projects the object onto both of left and right retinae and the projected intensity

distributions are referred to as retinal images. Since the eyes see the object from slightly

different three-dimensional positions, the object is projected at slightly different positions of

both retinal images. The positional difference which is referred to as stereo disparity gives

the depth of the object according to the concept of triangulation [6]. Detection of the stereo

disparity requires a task of finding a reliable one-to-one correspondence between the left

and right images. It is difficult to deal with this task, because there are ambiguities such

as repeated texture and uniform color. The human visual system seems to have some robust

mechanism for finding stereo disparity.

Motivated by the human visual system, Marr and Poggio presented a computer algorithm

of stereo disparity detection [7–9]. Their algorithm named “cooperative algorithm” solves

the stereo correspondence problem with a biologically inspired grid system, in which they

placed cells at grid points and connected neighboring cells. In order to solve the stereo

©2012 Nomura et al.,licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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2 Stereo Vision

correspondence problem and to obtain a dense stereo disparity map, they proposed imposing

two constraints: uniqueness and continuity on the disparity map. The uniqueness constraint

states that a point on the stereo disparity map has a unique disparity level except for

transparent surfaces and object boundaries having multiple disparity levels. The continuity
constraint states that neighboring grid points share the same or similar disparity levels except

object boundaries. Marr and Poggio designed the grid system so as to satisfy the two

constraints, by connecting neighboring cells cooperatively for the continuity constraint, and

by connecting multi-layered grid systems exclusively for the uniqueness constraint.

Psychological and biophysical research results have affected the computer vision research

including the cooperative algorithm. According to the Gestalt psychology [10, 11], when

the human visual system captures an image consisting of small figures such as short lines

and small crosses, it perceives a group of neighboring elements sharing the same or similar

visual properties [12]. The Gestalt psychologists originally found this phenomenon and

clearly stated the laws of closure, similarity, proximity, symmetry, continuity and common

fate. In addition, previous biophysical research results showed that biological cells respond

to external stimuli and exhibit a nonlinear excitation-inhibition process. Therefore, we

understand that these previous results have affected the cooperative algorithm by Marr

and Poggio. We can find similarities between the continuity constraint and the perceptual

grouping exhibiting the laws of similarity, proximity and continuity, and between behavior of

artificial cells in the cooperative algorithm and the cell responses in the excitation-inhibition

process.

We previously presented several reaction-diffusion algorithms for segmentation and

stereo disparity detection under the concept of reaction-diffusion systems [13, 14]. A

reaction-diffusion system refers to the system of diffusively coupled elements exhibiting an

excitation-inhibition process [15]. The reaction-diffusion system is mathematically described

with a set of time-evolving partial differential equations consisting of diffusion terms and

reaction ones. By numerically computing the reaction-diffusion system, we can simulate

spatio-temporal phenomena such as pulse propagation observed in natural and biological

systems, for example, in biological information transmission processes. We can expect that

the pulse propagation phenomenon in a reaction-diffusion system serves as the continuity
constraint in the stereo correspondence problem, and thus we proposed a stereo algorithm

consisting of exclusively connected multi-layered reaction-diffusion systems [14]. In addition,

inspired by the strong inhibitory diffusion causing Turing patterns [16], and suggested by a

lateral inhibition mechanism in a biological visual system [17], we have imposed the strong

inhibitory diffusion on the reaction-diffusion stereo algorithm.

This chapter presents recent advances in the reaction-diffusion stereo algorithm introducing

anisotropy in diffusion processes. After quickly reviewing previous related work achieved in

several different areas of psychology, stereo algorithms, reaction-diffusion and physiology

in Section 2, we describe elementary stereo geometry, the cooperative algorithm and a

reaction-diffusion system as preliminaries in Section 3. Then, we proceed to the original

reaction-diffusion stereo algorithm with isotropic diffusion processes and its recent advances

introducing anisotropic diffusion processes in Section 4. The section also presents the

cooperative algorithm revised with a reaction-diffusion system. Then, we demonstrate

comparison among the reaction-diffusion stereo algorithms including the original and
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Stereo Algorithm with Anisotropic Reaction-Diffusion Systems 3

anisotropic ones for several stereo image pairs provided on the Middlebury stereo vision

page [18, 19]. We discuss the experimental results and consider future research topics for the

reaction-diffusion stereo algorithms. Finally, we conclude this chapter by summarizing the

reaction-diffusion stereo algorithms, the experimental results and the future research topics.

2. Background

2.1. Human stereo depth perception

When the human visual system captures a three-dimensional scene with two eyes, it perceives

depth structure of the scene. Even if the system is exposed to a pair of random-dot

stereo images having only randomly dotted pattern (random-dot stereogram), it can perceive

depth structure of objects embedded into the stereo images. Julesz generated random-dot

stereograms by utilizing computers [20, 21]. Thimbleby et al. later proposed a computer

algorithm generating a single image named “autostereogram”, in which they embedded a

pair of stereo images; the autostereograms successfully caused stable depth perception for the

human visual system [22]. These previous findings suggested that structural image pattern

or higher knowledge on objects is unnecessary for the human stereo depth perception. In

addition, the findings suggested that the human visual system has a function or a module of

detecting disparity in its early vision. With the technique artificially generating random-dot

stereograms many researchers have explored the nature of the human visual system. For

example, it was shown that there exists the analogy between stereo depth perception and

brightness perception [23, 24]. It was strongly suggested that a common mechanism underlies
both the stereo depth perception and the brightness one.

In the depth perception, the human visual system integrates several visual cues such as

stereo disparity, motion parallax and monocular configuration, each of which brings depth

information. Landy et al. presented a weak fusion model that linearly integrates the visual

cues with weighted averaging [1]. In contrast to the weak fusion model, Bradshaw and

Rogers presented a strong fusion model that integrates the cues of stereo disparity and motion

parallax with a nonlinear manner [2]. The strong fusion model states that each of the two

modules processing stereo disparity and motion parallax takes an output of the other module

as feedback, and thus the two modules are depending each other. Ichikawa et al. examined

the depth perception and presented an integration model of the three visual cues: stereo

disparity, motion parallax and monocular configuration [3]. Their model states that the cues of

disparity and motion parallax are integrated with the strong fusion model at particular spatial

frequency-tuned channels, and then outputs obtained at all the channels are furthermore

integrated linearly with the cue of monocular configuration with the weak fusion model.

There is anisotropy in the human stereo depth perception; the human visual system perceives

differently a horizontally slanted surface and a vertically slanted one. Rogers and Graham

measured depth effect for an object having a one-dimensionally curved surface with the

Cornsweet type depth profile [4]. When the surface of the object slants horizontally, the

human visual system perceives a part of the surface to be nearer than the true depth. However,

when the surface slants vertically, the system perceives depth of the surface correctly. From

these experimental results, they presented a hypothesis. There exist two different processes

for perceiving vertical and horizontal slant surfaces; this brings anisotropy in the human
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4 Stereo Vision

stereo depth perception. Ichikawa more carefully examined the anisotropy with respect to

latency and adaptation of the stereo depth perception for three different depth profiles and for

a wide range of orientation [5]. His results also showed the similar anisotropy and presented

evidence to support the hypothesis presented by Rogers and Graham.

These previous experimental results inspired us to develop the reaction-diffusion stereo

algorithm. The former evidence showing the integration of several visual cues does

not straightforwardly indicate the integration of image edge information into stereo

disparity detection. However, it motivated us to study the integration of the image edge

information, which is obtained with another algorithm having a mechanism similar to

reaction-diffusion [25]. The latter evidence showing anisotropy encouraged us to divide a

diffusion process into two diffusion processes, that is, horizontally and vertically oriented

ones, with different diffusion coefficients.

2.2. Previous stereo algorithms

Dev proposed a feature segmentation model and its application to the stereo disparity

detection [26]. The segmentation model employed a multi-layered network of which each

grid point is described with a neural process having excited and resting states. When a point

on the network enters an excited state, it becomes a member of the group of the associated

feature. For achieving the segmentation, she imposed two interactions on the multi-layered

network; in one of the interactions a point on a network layer should have excitatory links

to neighboring points, and in the other one of the interactions the point in an excited state

should inhibit excitation of neighboring points on other network layers. She applied the

segmentation model to stereo disparity detection, in which each layer of the network is

associated with each layer of a possible disparity level. The former interaction is similar to the

continuity constraint, and the latter one is similar to the uniqueness constraint imposed on the

cooperative algorithm [7–9]. Although the model by Dev [26] and the cooperative algorithm
impose the similar interactions or constraints, the algorithm by Dev has an additional inhibitor

network, which controls the inhibitory interaction; this is the main difference between the

algorithm by Dev and the cooperative algorithm by Marr and Poggio.

Following the earlier work of the cooperative algorithm, many stereo algorithms have

been proposed [27]. There are three main categories of the cooperative algorithm, the

matching algorithm [28] and the regularization algorithm [29, 30]. The matching algorithm

deals with the stereo correspondence problem by utilizing a similarity measure such as a

cross-correlation coefficient computed between left and right images; in the case of the block

matching algorithm, a rectangular area is utilized for the similarity measure. If images are

rectified, an object in the left image should exist at the same vertical position in the right

image; thus, a search area for the matching algorithm is usually restricted on a horizontal line

(the epipolar constraint). Since a larger value of the cross-correlation coefficient indicates a

higher probability of a correspondence between left and right images, the disparity with the

maximum coefficient among possible disparities is employed as the detected disparity. The

regularization algorithm formulates a functional consisting of a data term and a smoothness

term. The data term denotes difference between left and right images at a disparity level,

and the smoothness term denotes the continuity constraint. By minimizing the functional, the

regularization algorithm provides a disparity map. Thus, the regularization algorithm avoids
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explicitly dealing with the stereo correspondence problem by replacing the problem with a

kind of the optimization problem.

In order to obtain a reliable stereo disparity map, we need to solve several problems such

as the aperture problem, the occlusion problem and the problem arising from transparent

surfaces. The following describes what the three problems refer to, and how classical stereo

algorithms have approached the problems.

The matching algorithm needs to estimate an optimal window size for measuring the

similarity. Real images usually contain untextured or featureless areas, which do not provide

information to find a stereo correspondence. If we extend a window size so as to cover

neighbor textured or feature-rich areas, we may obtain the drawback of a highly blurred

disparity map, in which we can not expect detailed depth structure around object boundaries,

resulting in lack of information necessary for later stages of the visual system. On the

other hands, a smaller window size results in an unreliable disparity map. The aperture

problem refers to the trade-off problem in estimating the window size. Kanade and Okutomi

proposed a block matching stereo algorithm with an adaptive correlation window [28]; the

algorithm controls the size and the shape of the window area for reducing uncertainty and

simultaneously for keeping detailed depth structure.

Let us consider a situation in which there are two objects in a three-dimensional scene and

one of the two objects partly occludes the other one on captured stereo images. Since two eyes

capture the scene from slightly different positions, a part of the occluded object appears in one

of the images and remains to be occluded in the other one. There is no corresponding points

for the part of the occluded object in the other image, and thus stereo algorithms tend to find

false correspondences for the part. This is the occlusion problem. A bi-directional matching

technique provides a cue for detecting occluded areas [31–33], as follows. In the case where an

interest point pl in the left image is not occluded in the right image, the corresponding point

in the right image, pr , can be detected by searching for a point with the maximum similarity,

and then a point p′l in the left image, which corresponds to the detected point pr, will be

searched. Now the coordinate of p′l is expected to be same with that of pl . On the other hand,

in the case where an interest point ql in the left image does not have its corresponding point

in the right image due to the occlusion, the point qr with maximum similarity in the right

image have the corresponding point q′l on the left image, whose coordinate is different from

that of ql . It means that by detecting a two-step corresponding point and comparing it with

the interest point, it is possible to judge if the interest point is occluded in the other image

or not. As another approach, Zitnick and Kanade proposed a modern cooperative algorithm

that can detect the occlusion areas [34]. As similar to the classical cooperative algorithm,

their algorithm iteratively updates states of network. In contrast to the classical algorithm,

the modern algorithm multiplies similarity distributions and states of the network at every

iteration. This simple modification for the classical cooperative algorithm effectively detected

occlusion areas.

Most stereo algorithms assume that objects are opaque and a point on a disparity map has

only one disparity level; that is, they impose the uniqueness constraint on a disparity map.

However, when we see an object through a window of glass material or wire fences, we
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perceive two different surfaces [35]. The human visual system can perceive multiple disparity

levels from a single pair of stereo images. According to the result of Tsirlin et al. [35],

the human visual system can perceive up to six overlaid surfaces; Akerstrom and Todd

examined the performance of the human visual system for random-dot stereograms including

transparent surfaces [36]. Later, Shizawa presented a mathematical model describing the

transparency upon the principle of superposition [37]. Szeliski and Golland proposed a

stereo algorithm for transparent objects [38]. The occlusion problem can be also considered

as the stereo transparency problem. Since an object occludes another object at an occluding

boundary, there exist two disparity levels at the boundary. Assumption of two disparity levels

brought another approach to solve the occlusion problem [39].

Since there have been proposed many stereo algorithms, Scharstein and Szeliski built a

website named “Middlebury Stereo Vision Page” [18, 19] for quantitative evaluations of the

algorithms. The website provides several stereo images, an evaluation system for stereo

disparity maps and tables ranking stereo algorithms submitted to the website. There are

two state-of-the-art algorithms in addition to the above mentioned three algorithms. One

of the two state-of-the-art algorithms is the belief propagation algorithm and the other

one is the graph-cuts algorithm. The belief propagation algorithm, which was originally

proposed by Sun et al. [40], has grid points on a disparity map, and propagates the belief

into their neighboring points. The belief denotes a kind of probability showing existence or

non-existence of its associated disparity level at a grid point. By updating the state of a grid

point with messages of belief received from its neighboring points, the algorithm builds a

disparity map iteratively. The graph cuts algorithm was originally proposed by Kolmogorov

and Zabih [41]. In the algorithm, we consider a graph network so as to express a functional

shown in the regularization algorithm. By minimizing the number of points cutting the graph

network, the algorithm provides a disparity map.

2.3. Reaction-diffusion systems related to image processing and vision research

Reaction-diffusion systems are common in nature, in particular, in chemical and biological

systems [15]. Let us focus on a photo-sensitive chemical reaction-diffusion system. Busse and

Hess firstly reported that the two-dimensional chemical reaction system senses illumination

and generates a circular pattern of a chemical concentration wave at an illuminated point [42].

Kuhnert et al. reported that the photo-sensitive system has the functions of image memory,

edge enhancement and segment detection for image pattern projected onto a surface of

the two-dimensionally extended chemical solution [43, 44]. They also mentioned that the

reaction-diffusion system is applicable to image processing and becomes a candidate of a

new computer architecture with parallel processing. After their findings, many researchers

examined experiments and proposed mathematical models on the photo-sensitive system. In

particular, Sakurai et al. experimentally demonstrated a traveling path of a chemical reaction

wave guided by a feedback control system having an illumination light [45]. These preceding

research results suggested that reaction-diffusion systems provide new research topics in

image processing and vision research.

An example of a biological reaction-diffusion system exists in an active pulse transmission

process along a nerve axon. A mathematical model of the system is formulated with a set
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of two reaction-diffusion equations consisting of diffusion terms and the FitzHugh-Nagumo

type reaction terms [46, 47]. If we stimulate a point on the reaction-diffusion system, we

can observe pulses traveling from the point on the system. Stereo algorithms presented

in this chapter utilize the FitzHugh-Nagumo type reaction-diffusion system; the nature of

traveling pulses helps to realize the continuity constraint. Later, Section 3.3 describes how the

reaction-diffusion system works for the stereo correspondence problem.

With a reaction-diffusion system Turing proposed a mechanism for explaining a stationary

pattern formation process observed in a biological system [16]. He considered a set of two

reaction-diffusion equations having two variables: activator and inhibitor. In general, a

diffusion process brings a spatial uniform distribution. For example, when a chemical species

distributes non-uniformly in a space, it diffuses according to a gradient of the distribution and

finally distributes uniformly. However, by considering two diffusion processes on activator

and inhibitor and by assuming that the inhibitor diffuses more rapidly than the activator

does, Turing found that those diffusion processes bring a non-uniform stationary pattern.

According to the mechanism proposed by Turing [16], Gierer and Meinhardt [48] proposed

more biologically plausible models explaining how biological systems self-organize spatial

patterns. More recently, several researchers reported evidence showing that the Turing

mechanism causes pattern formation observed on a fish skin [49], and other researchers

identified two proteins as an activator and its inhibitor for a hair follicle spacing pattern of a

mouse [50]. As the results of these researches, biologists have accepted the Turing mechanism

as a possible mechanism explaining biological pattern formation.

Mach found an edge enhancement phenomenon for a step-wise illumination change in the

human brightness perception; it is now known as the Mach-bands pattern [51]. Hartline and

Ratliff found that there are excitatory and inhibitory interactions among outputs of individual

eye units in compound eyes of Limulus, and proposed a linear model of equations describing

the interactions [52]. Later, Barlow and Quarles proposed a nonlinear model for explaining the

Mach-bands pattern observed in the visual system of Limulus [17]; they derived the nonlinear

model by modifying the original model proposed by Hartline and Ratliff [52]. By comparing

laboratory experiments with numerical results of the two models of equations, they indicated

the importance of the long-range inhibition and the nonlinearity in the modified model for

explaining the Mach-bands pattern. Gierer and Meinhardt pointed out that the long-range

inhibition is analogous to the rapid inhibitory diffusion of the Turing condition imposed in

modeling biological pattern formation processes [48]. These results suggested that the long

range inhibition or the rapid inhibitory diffusion may play an important role in biological

pattern formation and vision.

As pointed out by Gierer and Meinhardt [48], we have been interested in some common

mechanism organizing visual functions, or underlying biological visual systems and pattern

formation processes. We believe that the common mechanism is reaction-diffusion with

the rapid inhibitory diffusion proposed by Turing [16], or the long-range inhibition found

in eyes of Limulus. In order to show this, we have built the visual functions of edge

detection [53–55], segmentation (grouping) [13] and stereo disparity detection [14], explored

how the mechanism works, and confirmed how much the mechanism is effective in the visual

functions.
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8 Stereo Vision

3. Preliminaries

3.1. Stereo geometry

A stereo vision system consists of two cameras, which independently project an object located

in a three-dimensional space onto the image planes of the cameras. Let us consider a simple

stereo vision system, in which optical axes of the two cameras are parallel and a horizontal line

passing through the origin of the left image plane also passes through the origin of the right

image plane, as shown in Fig. 1. In this situation, an epipolar line refers to each of horizontal

lines shared by the two image planes. If we utilize a pin-hole camera model, we can simply

obtain depth of the object from stereo disparity d (pixel) [6]. Let f be a focal length of the

cameras and ℓ be distance between the two optical axes. The stereo vision system projects

the object at the position xL on the left image IL and at the position xR on the right image IR.

Then, the depth D becomes D = f (ℓ − d)/d with d = xL − xR. Thus, if we can solve the

stereo correspondence problem at particular points from the stereo images, we can obtain a

full disparity map M(x, y) and reconstruct its depth structure.

3.2. Cooperative algorithm for stereo disparity detection

A simple way of solving the stereo correspondence problem is to utilize a similarity measure

such as a cross-correlation coefficient computed for local areas between stereo images. Let B
be a local area for computation of the similarity measure; for example, the area is defined

as a 3 × 3 pixels square area consisting of a target discrete position (i, j) and its relative

positions B3×3 = {(i′, j′)| − 1 ≤ i′ ≤ 1, −1 ≤ j′ ≤ 1} in a discretized coordinate system,

or a cross-like local area consisting of the target position and its nearest neighboring four

relative positions B5 = {(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1)}. If we utilize a cross-correlation

Left Image

Right Image
Stereo Correspondence

xR

xL

Disparity

d

(c)

Left Image Plane Right Image Plane

Optical Axis Optical Axis

Object

(a) (b)

Left
Image Plane

Right
Image Plane

ObjectOptical Axis Optical Axis

xL xR

IL IR

f fFocal
Length

Focal
Length

D

Figure 1. Stereo vision system. Figure (a) shows the stereo cameras having left and right image planes;
their optical axes are parallel and perpendicular to the image planes. An object in a three-dimensional
space is projected onto the image planes. Figure (b) shows a top view of the vision system. The cameras
have the same focal length f . The object is located at the distance D from the image planes, and is
projected to the position xL on the left image plane IL and at the position xR on the right one IR. Figure (c)
shows that the stereo disparity d (pixel) refers to the difference between the two corresponding positions
xL and xR.
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coefficient as the similarity measure and the local area B as its local correlation area, we can

compute a similarity measure Cd,i,j between IL,i,j and IR,i−d,j as follows:

Cd,i,j =
1

sL,i,j × sR,i−d,j
∑

(i′,j′)∈B

[

IL,i+i′,j+j′ − IL,i,j

]

×
[

IR,i+i′−d,j+j′ − IR,i−d,j

]

, (1)

in which d (pixel) is a discrete disparity level; sL,i,j is the standard deviation of IL,i+i′,j+j′ and

sR,i−d,j is that of IR,i+i′−d,j+j′ for (i′, j′) ∈ B; IL,i,j is the average of IL,i+i′,j+j′ and IR,i−d,j is that

of IR,i+i′−d,j+j′ for (i′, j′) ∈ B. The similarity measure of Eq. (1) provides 1.0 for a pair of

completely matched local areas of the left and right images. If the similarity measure provides

a high value such as Cd,i,j ≃ 1.0 for the disparity level d and provides low values for other

disparity levels, the position (i − d, j) on the right image IR becomes a candidate for the

corresponding point of the position (i, j) on the reference left image IL. Let D be a set of

possible discrete disparity levels; D = {d0, d1, · · · , d(N−1)}. Thus, detection of the maximum

of Cd,i,j for d ∈ D at a position (i, j) provides a stereo disparity map Mi,j, as follows:

Mi,j = argmax
d∈D

Cd,i,j. (2)

As stated in Section 2.2, there are several typical problems in the stereo correspondence

problem. The aperture problem results from situations in which the local area defined by B
does not have enough intensity information such as distinguishable patterns from other areas

and thus the area is matchable to each of the most areas on its epipolar line. In the occlusion

problem, since a position on one of the stereo images is occluded on the other image, searching

the maximum of the similarity measure may bring a false position as its corresponding point.

For stereo images containing transparent objects, there are multiple maximum values at a

position; it is difficult to detect multiple disparity levels without information of its multiplicity

or under noisy situations.

Marr and Poggio proposed a classical cooperative algorithm by focusing on a random-dot
stereogram [7–9]. They imposed two constraints: continuity and uniqueness on a stereo

disparity map Mi,j. They considered a cell network in which cells enter an excited state

or a resting state and a state of a cell propagates into its neighboring cells, and utilized a

multi-layered cell network, in which each network layer is associated with a disparity level

d ∈ D. The cooperative algorithm iteratively computes states of cells on the network. Let Sk
d,i,j

be a state of the cell located at a position (i, j) on a network layer associated with a disparity

level d; a large value of Sk
d,i,j ≃ 1.0 denotes that the cell at (i, j) on the network layer is in an

excited state, and a small value of Sk
d,i,j ≃ 0.0 denotes that the cell is in a resting state. Then,

the state Sk+1
d,i,j at the (k + 1)-th iteration is updated, as follows:

Sk+1
d,i,j = σ

⎛

⎝ ∑
(i′,j′,d′)∈Ω(i,j,d)

Sk
d′,i′,j′ − ξ ∑

(i′,j′,d′)∈Θ(i,j,d)

Sk
d′,i′,j′ + Cd,i,j, T

⎞

⎠ , (3)

in which σ(S, T) is a step function which returns 1 for S > T and returns 0 for S ≤ T with

the threshold level T; ξ is a constant for inhibition; Ω denotes an excitatory domain for the

69Stereo Algorithm with Anisotropic Reaction-Diff usion Systems



10 Stereo Vision

continuity constraint and Θ denotes an inhibitory domain with D \ {d} for the uniqueness

constraint (for more detail, see Fig. 1 in Ref. [34]). Finally, as similar to Eq. (2), the cooperative

algorithm provides a disparity map Mk
i,j with

Mk
i,j = argmax

d∈D

Sk
d,i,j. (4)

In Eq. (3) the term ∑Ω Sk
d′,i′,j′ works for the continuity constraint and the term ∑Θ Sk

d′,i′,j′ works

for the uniqueness constraint, as follows. If most of neighboring cells in Ω are in excited states

with Sk
d′,i′,j′ ≃ 1.0, ∑Ω Sk

d′,i′,j′ also becomes large. Then, according to Eq. (3), if ∑Ω Sk
d′,i′,j′

becomes larger than the threshold level T, the next state of Sk+1
d,i,j also enters an excited state.

Thus, all cells in the local area denoted by B are in excited states, and the area becomes to be in

the disparity level d. This is what the continuity constraint indicates. If there is a situation in

which ∑Θ Sk
d′,i′,j′ is large, that is, if cells on other network layers associated with other disparity

levels are already in excited states, the threshold level T becomes relatively large. Thus, the

cell on the network layer of d tends to remain in a resting state, even if its surrounding cells on

the same network layer are in excited states. This is what the uniqueness constraint indicates.

3.3. Reaction-diffusion system and coupled nonlinear elements

A reaction-diffusion system is described with a set of reaction-diffusion equations consisting

of diffusion terms and reaction ones. Let us consider a two dimensional space Lx × Ly,

in which a process governed by the reaction-diffusion system proceeds with time t and the

process has two distributions of activator u(x, y, t) and inhibitor v(x, y, t) defined at a position

(x, y) ∈ Lx × Ly and t ≥ 0. The reaction-diffusion system has a general form of two

reaction-diffusion equations with their reaction terms f (u, v) and g(u, v), as follows:

∂tu = Du∇
2u + f (u, v), (5)

∂tv = Dv∇
2v + g(u, v), (6)

in which ∂t = ∂/∂t and ∇ is a two-dimensional gradient operator; Du and Dv are diffusion

coefficients. For example, the FitzHugh-Nagumo type reaction-diffusion equations have the

following reaction terms [46, 47]:

f (u, v) = [u(u − a)(1 − u)− v]/ε, (7)

g(u, v) = u − bv, (8)

in which a and b are constants and ε is a small constant (0 < ε ≪ 1).

In order to understand temporal behavior of the FitzHugh-Nagumo type reaction terms, let
us consider a single element governed by the following ordinary differential equations:

du

dt
= f (u, v) = [u(u − a)(1 − u)− v]/ε, (9)

dv

dt
= g(u, v) = u − bv. (10)
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Figure 2. Phase-portraits, solution trajectories and temporal changes of solutions in the
FitzHugh-Nagumo type ordinary differential equations. Figure (a) shows those of a mono-stable
element with the parameter settings of a = 0.15, b = 1.0; Fig. (b) shows those of a bi-stable element with
a = 0.15, b = 10; Fig. (c) shows those of an oscillatory element with a = −0.05, b = 1.0; the parameter ε
was fixed at ε = 1.0 × 10−2. Figures (a-1), (b-1) and (c-1) show the phase-portraits and the solution
trajectories; Figs. (a-2), (b-2) and (c-2) show the temporal changes of solutions starting from a point P0;
Figs. (a-3) and (b-3) show those from a point P1 ; Fig. (b-4) shows that from a point P2. The null-clines
du/dt = f (u, v) = 0 and dv/dt = g(u, v) = 0 divide each of the phase-portraits into four areas (I), (II),
(III) and (IV). A set of solutions (u, v) traces a trajectory, depending on the signs of du/dt and dv/dt in
each area denoted by (I), (II), (III) and (IV). For example, the combination of du/dt > 0 and dv/dt > 0 in
the area (I) increases the both solutions u and v as time proceeds.
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Equations (9) and (10) describe temporal changes of u(t) and v(t). Figure 2 shows the

temporal changes as well as phase-portraits of Eqs. (9) and (10). Depending on the parameter

settings of a and b, the element of Eqs. (9) and (10) exhibits three different types of behavior,

such as a mono-stable element shown in Fig. 2(a), a bi-stable element shown in Fig. 2(b), and

an oscillatory element shown in Fig. 2(c). The mono-stable element has one stable steady

state, to which all solutions converge; the bi-stable element has two stable steady states and

solutions converge to either of the two states. When a solution of an element is in areas having

large values of u > 0.5, we denote that the element is in an excited state; when a solution is in

areas having small values of |u| ≃ 0, we denote that the element is in a resting state. In contrast

to the mono-stable and bi-stable elements having stable steady states, an oscillatory element

does not have any stable steady state, and autonomously alternates between an excited state

and a resting one as time proceeds.

In addition to the reaction-diffusion system of diffusively coupled elements such as the

FitzHugh-Nagumo type, there is also an interesting system consisting of discretely coupled

elements; the former system is a continuous system and the latter one is a discrete system. For

example, the following equations describe a discrete system with reaction terms of f (·, ·) and

g(·, ·) in a two-dimensional grid system (i, j) on Lx ×Ly, as follows:

dui,j(t)

dt
= Cu

⎡

⎣ ∑
(i′,j′)∈B5\{(0,0)}

ui+i′,j+j′ − 4ui,j

⎤

⎦+ f (ui,j, vi,j), (11)

dvi,j(t)

dt
= Cv

⎡

⎣ ∑
(i′,j′)∈B5\{(0,0)}

vi+i′,j+j′ − 4vi,j

⎤

⎦+ g(ui,j, vi,j), (12)

in which Cu and Cv are positive coupling strength; B5 defines a local area consisting of

a target position and its nearest neighboring four positions, as introduced in Section 3.2.

Equations (11) and (12) are similar to a spatially discretized version of the reaction-diffusion

system of Eqs. (5) and (6); thus, both of the reaction-diffusion system and the system

of discretely coupled elements have common mechanisms such as the nonlinear reaction

denoted by f (·, ·) and g(·, ·) and spatial coupling of the nonlinear elements.

Let us confirm spatio-temporal patterns generated by the continuous system and the discrete

one; both the systems consist of the FitzHugh-Nagumo type reaction terms of Eqs. (7) and

(8). Figure 3 shows spatio-temporal representations of u and v and their one-dimensional

snapshots obtained in one-dimensional continuous or discrete space. The continuous

mono-stable system generates a traveling pulse as shown in Fig. 3(a), and the continuous

bi-stable system generates a propagating wave as shown in Fig. 3(c); velocity of the pulse

and the wave is almost constant, depending on the parameter settings of the system. The

continuous oscillatory system generates multiple pulses that also travel in the space as shown

in Fig. 3(e). In contrast to these, the discrete system with strong-inhibitory coupling (Cu ≪ Cv)

generates stationary pulse(s) and a wave, as shown in Figs. 3(b), 3(d) and 3(f). For example,

the discrete mono-stable system generates a pulse fixed at the edge position of a step-wise

initial distribution ui(t = 0). This result indicates that the discrete system is applicable to

edge detection for its initial condition.
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Figure 3. Spatio-temporal representations of solutions and their one-dimensional snap shots obtained
by numerical computations for a reaction-diffusion system (continuous system) and a system of
discretely coupled elements (discrete system). See Eqs. (5) and (6) for the continuous system, and
Eqs. (11) and (12) for the discrete system; both the systems have the FitzHugh-Nagumo type reaction
terms of Eqs. (7) and (8). Figures (a) and (b) show the results of mono-stable systems with the parameter
settings of a = 0.05, b = 1.0, Figs. (c) and (d) show the results of bi-stable systems with the parameter
settings of a = 0.05, b = 10, and Figs. (e) and (f) show the results of oscillatory systems with the
parameter settings of a = −0.05, b = 1.0; the parameter setting of ε was fixed at ε = 1.0 × 10−3 across
(a)∼(f). Figures (a), (c) and (e) show the results of propagation pattern obtained by the continuous
system with the parameter settings of Du = 1.0, Dv = 0.0, and Figs. (b), (d) and (f) show the results of
stationary pattern obtained by the discrete system with the parameter settings of Cu = 4.0, Cv = 12. The
spatio-temporal representations of u(x, t) and ui(t) visualize the range of −0.3 ≤ u ≤ 1.0 and those of
v(x, t) and vi(t) visualize the range of 0.0 ≤ v ≤ 0.15. The numerical computations were done with a
spatial finite difference δh = 0.2 and a temporal one δt = 1.0 × 10−5.
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In the neural network approach, Wang and his coworkers proposed a segmentation algorithm

(eg [56]). The algorithm consists of FitzHugh-Nagumo type oscillatory elements with complex

spatial coupling rules and a global inhibitor that controls the oscillatory elements. In the

algorithm, an oscillation period is automatically divided into the number of segments to be
detected. During one oscillation period, one segment emerges in a part of the period and

another segment emerges in another part of the period. The idea of utilizing the global

inhibitor is similar to the inhibitory array of the algorithm proposed by Dev [26]. However,

in contrast to the inhibitory array in the algorithm of Dev, the algorithm by Wang and his

coworkers has the global inhibitor represented by one variable. The approach by Wang and

his coworkers is also similar to our approach of reaction-diffusion algorithms. Although

both approaches utilize FitzHugh-Nagumo type elements, our approach imposes the strong

inhibitory coupling on the algorithms without any global inhibitor nor any complex spatial

coupling rules. We would like to emphasize this point as the main difference between the two

approaches.

4. Reaction-diffusion stereo algorithm

4.1. Original reaction-diffusion stereo algorithm

This section presents a stereo algorithm solving the stereo correspondence problem, by

utilizing bi-stable reaction-diffusion systems. Let us recall that the bi-stable system with

the FitzHugh-Nagumo type reaction terms generates a traveling wave as shown in Fig. 3(c).

Areas in excited states extend outward, as their interface facing an excited state and a resting
state propagates into areas in resting states. We apply the nature of the traveling wave to the

continuity constraint imposed on the stereo algorithm. According to the original cooperative

algorithm mentioned in Section 3.2, we consider multiple reaction-diffusion systems and

associate each of the systems with a possible disparity level. Each system governs areas

having the associated disparity level; if a point of the system enters an excited state and

all of the other systems are in resting states at that point, the algorithm judges the point to

have the associated disparity level. We consider a state of each reaction-diffusion system

as a kind of possibility and thus the traveling wave works as the continuity constraint. If

the reaction-diffusion systems are independent, the traveling wave fills in everywhere of the

space Lx × Ly. In order to partition a disparity map into segments having correct disparity

levels, we need to link the multiple reaction-diffusion systems exclusively for the uniqueness

constraint. This can be done via the parameter a; however a is a constant in the original

FitzHugh-Nagumo type reaction term of Eq. (7), we consider a as a threshold level depending

on states of other reaction-diffusion systems; the role of a is similar to that of the threshold

level T of the cooperative algorithm described with Eq. (3).

The above consideration brings a set of reaction-diffusion equations associated with a

disparity level d ∈ D, as follows:

∂tud = Du∇
2ud + [ud(ud − ad)(1 − ud)− vd] /ε + μCd(x, y), (13)

∂tvd = Dv∇
2vd + (ud − bvd), (14)

ad = α + [1 + tanh (da − β)]× max
d′∈Θ

ud′/2, da =

∣
∣
∣
∣
∣
d − argmax

d′∈Θ

ud′

∣
∣
∣
∣
∣

, (15)
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Algorithm 1 Original reaction-diffusion stereo algorithm.

1: for all d ∈ D do
2: for all (i, j) ∈ Lx ×Ly do
3: Compute Cd,i,j from IL and IR. � with Eq. (1).

4: Set initial conditions of uk=0
d,i,j = vk=0

d,i,j = 0.

5: end for
6: end for
7: k ← 0
8: while k < Lt/δt do
9: for all d ∈ D do

10: for all (i, j) ∈ Lx ×Ly do
11: Compute da and an � with Eq. (15)

12: Compute uk+1
d,i,j and vk+1

d,i,j � with Eqs. (17) and (18)

13: end for
14: end for
15: for all (i, j) ∈ Lx ×Ly do

16: Compute Mk
i,j. � with Eq. (16)

17: end for
18: k ← k + 1
19: end while

in which Cd(x, y) denotes an external stimulus and μ is its coefficient; the reaction-diffusion

stereo algorithm utilizes a cross-correlation coefficient of Eq. (1) as Cd(x, y); α and β are

constants.

After sufficient duration of time Lt, a disparity map is obtained by

M(x, y, Lt) = argmax
d∈D

ud(x, y, Lt). (16)

Numerical implementation of the reaction-diffusion stereo algorithm requires discretization of

Eqs. (13) and (14). Spatially and temporally discretized coordinate systems of i = ⌊x/δh�, j =
⌊y/δh� and k = ⌊t/δt�, in which ⌊·� is the floor function, derive the following set of equations

approximately describing Eqs. (13) and (14), as follows:

uk+1
d,i,j − Cu

⎡

⎣ ∑
(i′,j′)∈B5\{(0,0)}

uk+1
d,i+i′,j+j′ − 4uk+1

d,i,j

⎤

⎦ = uk
d,i,j + δt f (uk

d,i,j, vk
d,i,j) + δtμCd,i,j, (17)

vk+1
d,i,j − Cv

⎡

⎣ ∑
(i′,j′)∈B5\{(0,0)}

vk+1
d,i+i′,j+j′ − 4vk+1

d,i,j

⎤

⎦ = vk
d,i,j + δtg(uk

d,i,j, vk
d,i,j), (18)

in which Cu = δtDu/δh2 and Cv = δtDv/δh2 . For example, the Gauss-Seidel method provides

solution for a set of linear equations such as each of Eqs. (17) and (18). Algorithm 1 describes a
pseudo-code designed for the reaction-diffusion stereo algorithm originally proposed in [14].

Later, Section 5.1 shows a simple demonstration of how reaction-diffusion systems work for

the continuity constraint and the uniqueness one.
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Figure 4. Processing diagram of the reaction-diffusion stereo algorithm integrating image intensity edge
information. Firstly, the algorithm computes similarity measures Cd between left and right images
denoted by IL and IR for possible disparity levels d ∈ D. Secondly, the similarity measures are provided
for reaction-diffusion systems having ud and vd as their external stimuli. Each of the reaction-diffusion
systems has the self-inhibition mechanism and has exclusive links to the other systems via the mutual
inhibition mechanism. A reaction-diffusion stereo algorithm presented in Section 4.2 integrates an edge
map obtained from the left image into inhibitory diffusion coefficients; another edge detection
algorithm [25] provides the edge map Me. Finally, the algorithm provides a stereo disparity map

M(x, y, t) by gathering the results of the reaction-diffusion systems. The diagram without integrating the
edge map becomes that of the original reaction-diffusion stereo algorithm [14].

4.2. Integration of intensity edge information into the reaction-diffusion stereo

algorithm

As mentioned above, the continuity constraint states that disparity distribution varies

smoothly or neighboring points share the same disparity level on a disparity map. However,

object boundaries causing depth discontinuity violate the continuity constraint. Thus, it is

important to identify depth discontinuity areas from other areas satisfying the continuity

constraint. If the depth discontinuity areas are preliminary known, the stereo correspondence

problem becomes much easier. In general, the object boundaries or the depth discontinuity
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areas are unknown in advance of solving the stereo correspondence problem. Although

intensity edge areas do not always correspond to depth discontinuity areas, some of them

coincide with object boundaries. A practical idea to overcome the problem caused by

the depth discontinuity is to utilize other visual cues such as image intensity. Previous
psychological results show that the human visual system integrates several other cues into the

depth perception [1–3]. Sun et al. also showed that the integration of image edge information

into their belief propagation algorithm improves its performance [40]. Martin et al. proposed

a contour detection algorithm [57], that can be applied to the stereo correspondence problem.

In order to prevent the continuity constraint from working across object boundaries,

we consider integrating another cue of image intensity edge information into the

reaction-diffusion stereo algorithm. The diffusion terms Du∇2ud and Dv∇2vd in the stereo

algorithm mainly control the continuity constraint. There are several choices of integrating

the edge information into the algorithm; one of them is to weaken the excitatory diffusion

coefficient Du in image intensity edge areas, and another one is to strengthen the inhibitory

diffusion coefficient Dv in the areas. This is because a larger value of Du drives wave

propagation and increases its velocity, and a larger value of Dv makes strong diffusion of

an inhibitor distribution, and thus inhibits the propagation of the wave. Between the two

choices, we take the latter one of modulating the inhibitory diffusion coefficient Dv with

intensity edge information. Thus, we obtain another algorithm by replacing Eq. (14) of the

original reaction-diffusion algorithm with the following equation

∂tvd = ∇ · [Dv(x, y)∇vd] + (ud − bvd), (19)

in which the spatial distribution of Dv(x, y) is obtained from combination of the intensity edge

map denoted by Me and an initial guess of a stereo disparity map M(x, y, 0). If an intensity

edge exists at the point (x, y), and simultaneously if the initial guess is almost uniform in a

neighboring area around the point (x, y), Dvmax is given for Dv(x, y), otherwise Dvmin is given

for Dv(x, y), as follows:

Dv(x, y) =

{
Dvmax if (x, y) ∈ Me and |∇M(x, y, 0)| < 2

Dvmin otherwise
, (20)

in which Dvmax > Dvmin . In addition, Dv(x, y) is diffused during a short period of time Ldt

for its smoothness. The discrete system of spatially coupled FitzHugh-Nagumo elements

provides the intensity edge map Me [25] (recall that the discrete system can detect edges

as shown in Section 3.3). Figure 4 shows a processing diagram of the stereo algorithm.

4.3. Anisotropic inhibitory diffusion processes depending on pre-specified

orientation

Inspired by the anisotropy observed in the human stereo depth perception, we try to

introduce anisotropy into an inhibitory diffusion coefficient of the reaction-diffusion stereo

algorithm. We pre-specify horizontal or vertical orientation (φ = 0, π/2 radian) as the

anisotropy. According to the formulation proposed by Shoji et al. for modeling strip patterns

self-organized on fish skins [58], the coefficient is spatially modulated with difference between

φ and θ = arctan(∂yvd/∂xvd), in which ∂x = ∂/∂x and ∂y = ∂/∂y; θ denotes a gradient
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direction of the inhibitor distribution. If θ coincides with φ, the diffusion is strengthened at

the direction; as the difference between θ and φ becomes larger, the diffusion is weakened.

Thus, we obtain the anisotropic reaction-diffusion stereo algorithm by replacing Eq. (14) of

the original algorithm with the following equation:

∂tvd = Dv∇ · [A(θ)∇vd] + (ud − bvd), (21)

A(θ) = 1/
√

1 − ρ cos(2θ − 2φ), (22)

in which ρ indicates strength of the anisotropy (0 ≤ ρ < 1); if ρ = 0, Eq. (22) becomes

A(θ) = 1.0, and thus Eq. (21) returns to the original isotropic Eq. (14). Expansion of the first

term in the right side of Eq. (21) derives

∇ · [A(θ)∇vd] = ∂x A(θ) · ∂xvd
︸ ︷︷ ︸

Horizontal

+ ∂y A(θ) · ∂yvd
︸ ︷︷ ︸

Vertical

+ A(θ)∇2vd
︸ ︷︷ ︸

Isotropic

, (23)

which consists of the horizontal and vertical advection terms, of which the velocity is

−∇A(θ), in addition to the isotropic diffusion term. Thus, in accordance with the

psychological hypothesis proposed by Rogers and Graham [4] and its evidence shown

by Ichikawa [5], the anisotropic reaction-diffusion stereo algorithm has two processes of

horizontal and vertical advection terms that propagate information of existence of its

associated disparity level.

4.4. Cooperative algorithm revised with a reaction-diffusion equation

As described in Section 4.1, the original reaction-diffusion stereo algorithm satisfies the

continuity constraint and the uniqueness one presented in the original cooperative algorithm.

Let us focus on the FitzHugh-Nagumo type ordinary differential equations of Eqs. (7) and (8).

Under the condition of a fixed v = 0, the ordinary differential equation du/dt = f (u, 0) =
[u(u − a)(1 − u)]/ε behaves as a switching element having a threshold level a. This is because

the solution u(t) increases as time proceeds and finally converges to u = 1 for the initial

condition u(0) > a, and decreases and finally converges to u = 0 for u(0) < a. Thus, the

reaction term f (u, 0) = [u(u − a)(1 − v)]/ε can qualitatively replace the step function σ(S, T)
of Eq. (3), in which S corresponds to u and T does to a. These correspondences between

the step function σ(S, T) and the behavior of the FitzHugh-Nagumo equations with the fixed

v = 0 bring a revised version of the cooperative algorithm proposed by Marr and Poggio, as

follows:

∂tud = Du∇
2ud + ud(ud − ad)(1 − ud)/ε + μCd(x, y), (24)

in which ad is obtained by Eq. (15), other parameters Du, ε, μ are constants, and Cd(x, y)
denotes a similarity measure. The diffusive coupling Du∇2 in Eq. (24) works for the

continuity constraint described with the term ∑Ω sk
d′,i′,j′ in Eq. (3); the threshold level ad

in Eq. (24) works for the uniqueness constraint described with ξ ∑Θ sk
d′,i′,j′ and the fixed

threshold level T in Eq. (3). By comparing the revised cooperative algorithm of Eq. (24)

and the reaction-diffusion stereo algorithm of Eqs. (13) and (14), we can also understand

that the original reaction-diffusion stereo algorithm is an extended version of the cooperative
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Figure 5. Simple situation having two disparity levels d = 0, 1 pixel (N = 2) for the original
reaction-diffusion stereo algorithm. Figures (a) and (b) show snap shots of u0 and u1 obtained at t = 1.0
and t = 4.0. (a-1) u0,i,j(t = 1.0); (a-2) u0,i,j=77(t = 1.0) observed along the white broken line at j = 77
indicated in (a-1); (a-3) u1,i,j(t = 1.0); (a-4) u0,i,j(t = 1.0) and u1,i,j(t = 1.0) observed along the white
broken lines indicated in (a-1) and (a-3). (b-1) u0,i,j(t = 4.0); (b-2) u0,i,j=77(t = 4.0) observed along the
white broken line at j = 77 indicated in (b-1); (b-3) u1,i,j(t = 4.0); (b-4) u0,i,j(t = 4.0) and u1,i,j(t = 4.0)
observed along the white broken lines indicated in (b-1) and (b-3). See Table 1 for the parameter settings
of the algorithm RDSA(org).

algorithm, and the main difference between the two algorithms is the existence of the

inhibitory distribution vd described with Eq. (14). Section 5.2 demonstrates the effect of the

inhibitory distribution.

5. Experimental results and discussion

5.1. Demonstration for a simple stereo image pair

This section presents how the original reaction-diffusion stereo algorithm works for a simple

situation, in which there are two possible disparity levels d = 0, 1 pixel. Let us suppose that a

distribution Cd,i,j obtained by a similarity measure has high values at three points and zero at

other points; the two of the three points have the high values of Cd at the disparity level d =
0 pixel, and the reminder has the high value in the disparity level d = 1 pixel; the three points

located at different positions. Figure 5 shows snap shots of u0 and u1 obtained by the stereo

algorithm at two different time instances t = 1.0, 4.0. During the early period of the algorithm,

for example, at the time instance t = 1.0, waves originated from the three points began to

extend outward as shown in Figs. 5(a-1)∼5(a-4). After that, on the distribution of u0 the two

circular waves collided and became one, which occupied a large continuous area as shown in

Figs. 5(b-1) and 5(b-2). In contrast to this, on the distribution of u1 the wave originated from

the point in u1 exclusively collided with the waves originated from the two points on u0. As

the result, the wave on u1 did not extend beyond the collision boundary. The former result

shown in Figs. 5(b-1) and 5(b-2) denotes that the continuity constraint indeed works, and the

latter result shown in Figs. 5(b-3) and 5(b-4) denotes that the uniqueness constraint does.
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Algorithm Equations Parameter settings

COR5 Eqs. (1), (2) –

M&P Eqs. (24), (15) –

RDSA(org) Eqs. (13), (14), (15), (16) Dv = 3.0
RDSA(edge) Eqs. (13), (19), (20), (15), (16) Dvmax = 15.0, Dvmin = 0.5, Ldt

= 10.0

RDSA(aniso-H)
Eqs. (13), (21), (22), (15), (16)

Dv = 2.0, φ = 0, ρ = 0.9
RDSA(aniso-V) Dv = 2.0, φ = π/2, ρ = 0.9

Table 1. Summary of the stereo algorithms presented in this chapter and their parameter settings
utilized in experiments. RDSA(org) denotes the original reaction-diffusion stereo algorithm,
RDSA(edge) denotes the algorithm integrating intensity edge information, RDSA(aniso-H) denotes the
algorithm with anisotropic diffusion process depending on pre-specified horizontal orientation,
RDSA(aniso-V) denotes that depending on pre-specified vertical orientation, and M&P denotes the
cooperative algorithm originally proposed by Marr and Poggio and revised with a reaction-diffusion
equation. These algorithms shared the same parameter settings of
Du = 1.0, ε = 1.0 × 10−2, α = 0.13, β = 1.5, b = 10.0, μ = 3.0, Lt = 100, and the same finite differences of
δh = 1/5, δt = 1/100 for numerical computation, and utilized the same similarity measure of Eq. (1)
with the correlation window B5. The algorithm COR5 provided a stereo disparity map from the only
similarity measure.

5.2. Results for Middlebury stereo image pairs

The Middlebury stereo vision page [18, 19] provides four stereo image pairs named

TSUKUBA, VENUS, TEDDY and CONES as well as their ground truth data of stereo disparity

maps, and definitions of performance evaluation areas such as nonocclusion areas (nonocc.),

all areas (all) and depth discontinuity areas (disc.). The page also provides ranking tables

of stereo algorithms with respect to bad-match-percentage error measure, in addition to an

evaluation system for submitted stereo disparity maps. The bad-match-percentage error

measure BMPT evaluates an obtained stereo disparity map Mi,j with the ground truth

disparity map Gi,j, as follows:

BMPT =
1

|E | ∑
(i,j)∈E

σ
(

|Mi,j − Gi,j|, T
)

× 100 (%), (25)

in which E ∈ {nonocc., all, disc.} and |E | denotes the number of pixels in the area E ; σ(·, T)
denotes the step function and T (pixel) denotes a threshold level for judgment of a bad-match

pixel or a correct one; we chose T = 0.5, 1.0 pixel in this section. In addition to the error

measure, this section also utilized the root-mean-square error measure denoted by RMS and

defined by

RMS =

√
√
√
√

1

|E | ∑
(i,j)∈E

(

Mi,j − Gi,j

)2
(pixel). (26)

We applied the algorithms presented in this chapter to the four stereo image pairs and

evaluated obtained disparity maps with the error measures of BMP1.0, BMP0.5 and RMS.

Table 1 summarizes the algorithms utilized here; COR5 provides a stereo disparity map

with the only similarity measure, M&P is the cooperative algorithm revised with a

reaction-diffusion equation, RDSAs are the reaction-diffusion stereo algorithms, in which

RDSA(org) is the original algorithm, RDSA(edge) is the algorithm integrating intensity edge
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TSUKUBA VENUS
Algorithm Measure nonocc. all disc. nonocc. all disc.

COR5 BMP1.0 (%) 51.31 52.22 47.02 60.65 61.24 55.62
BMP0.5 (%) 68.74 69.41 64.52 69.21 69.68 63.80
RMS (pixel) 4.36 4.39 4.13 6.14 6.17 5.46

M&P BMP1.0 (%) 5.50 7.10 21.94 5.45 6.58 27.89
BMP0.5 (%) 39.84 40.99 45.10 29.14 30.01 40.93
RMS (pixel) 1.29 1.46 2.53 0.84 0.97 2.37

RDSA BMP1.0 (%) 7.01 8.81 19.82 2.81 3.97 21.64
(org) BMP0.5 (%) 22.82 24.24 27.58 10.93 12.04 25.70

RMS (pixel) 1.43 1.62 2.50 0.75 0.92 2.01

RDSA BMP1.0 (%) 6.46 7.99 18.54 1.14 2.36 7.48
(edge) BMP0.5 (%) 23.71 24.92 27.11 10.70 11.87 16.53

RMS (pixel) 1.43 1.61 2.60 0.57 0.79 1.48

RDSA BMP1.0 (%) 6.78 8.57 20.47 1.99 3.44 18.69
(aniso-H) BMP0.5 (%) 19.84 21.34 28.38 9.61 10.97 23.57

RMS (pixel) 1.41 1.61 2.54 0.71 0.91 1.95
RDSA BMP1.0 (%) 6.33 8.12 20.20 2.46 3.90 19.69

(aniso-V) BMP0.5 (%) 21.02 22.48 27.52 9.40 10.76 24.82
RMS (pixel) 1.36 1.56 2.52 0.75 0.95 1.94

TEDDY CONES Average
Algorithm Measure nonocc. all disc. nonocc. all disc. Rank

COR5 BMP1.0 (%) 70.93 73.83 69.72 58.55 63.17 62.44 122.0
BMP0.5 (%) 76.16 78.55 76.35 64.31 68.34 68.60 122.0
RMS (pixel) 17.03 18.09 15.25 15.39 17.24 15.22 –

M&P BMP1.0 (%) 12.99 20.48 29.68 6.98 13.98 17.83 108.0
BMP0.5 (%) 28.08 35.02 43.80 20.00 26.95 30.28 115.3
RMS (pixel) 2.30 4.70 3.48 2.20 3.15 3.76 –

RDSA BMP1.0 (%) 14.00 20.03 29.42 5.03 12.12 14.09 102.7
(org) BMP0.5 (%) 22.48 29.29 39.03 10.29 17.45 22.15 88.4

RMS (pixel) 2.16 3.21 3.35 1.94 3.08 3.35 –

RDSA BMP1.0 (%) 14.53 20.59 27.85 5.41 13.59 14.56 98.3
(edge) BMP0.5 (%) 23.93 30.54 38.60 12.07 19.96 23.11 90.3

RMS (pixel) 2.29 3.32 3.45 1.90 3.15 3.20 –
RDSA BMP1.0 (%) 13.52 19.56 29.36 5.21 13.68 14.38 103.3

(aniso-H) BMP0.5 (%) 22.58 29.28 39.30 10.80 19.13 22.60 86.6
RMS (pixel) 2.14 3.33 3.32 1.97 3.18 3.39 –

RDSA BMP1.0 (%) 13.87 19.83 29.19 5.64 13.77 15.76 104.8
(aniso-V) BMP0.5 (%) 22.81 29.52 39.46 11.03 19.07 23.94 87.6

RMS (pixel) 2.09 3.25 3.33 2.07 3.05 3.56 –

Table 2. Evaluation of the stereo algorithms summarized in Table 1 with BMP1.0, BMP0.5 and RMS [see
Eqs. (25) and (26)]. Figures 6 and 7 show obtained stereo disparity maps; the Middlebury stereo vision
page [18] provides the stereo image pairs of TSUKUBA, VENUS, TEDDY and CONES, their ground
truth disparity maps and definition of evaluation areas: non occlusion areas (nonocc.), all areas (all) and
depth discontinuity areas (disc.). We computed average ranks for the algorithms according to the
ranking tables of the page on March 15, 2012.
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(a-1) (a-2)
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(edge)
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(a) (b)

Figure 6. Results of stereo disparity maps obtained for (a) TSUKUBA and (b) VENUS. From top to
bottom in Figs. (a-1) and (b-1), the left reference image and the disparity maps obtained by M&P,
RDSA(org), RDSA(edge), RDSA(aniso-H) and RDSA(aniso-V) are shown. From top to bottom in
Figs. (a-2) and (b-2), the disparity map obtained by COR5 and absolute error distribution maps
evaluated for the disparity maps shown in Figs. (a-1) and (b-1) are shown; gray levels indicate absolute
error and a brighter level indicates larger error. See Table 1 for the algorithms and their parameter
settings and Table 2 for their quantitative performance evaluation results.
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Figure 7. Results of stereo disparity maps obtained for (a) TEDDY and (b) CONES. From top to bottom

in Figs. (a-1) and (b-1), the left reference image and the disparity maps obtained by M&P, RDSA(org),
RDSA(edge), RDSA(aniso-H) and RDSA(aniso-V) are shown. From top to bottom in Figs. (a-2) and (b-2),
the disparity map obtained by COR5 and absolute error distribution maps evaluated for the disparity
maps shown in Figs. (a-1) and (b-1) are shown; gray levels indicate absolute error and a brighter level
indicates larger error. See Table 1 for the algorithms and their parameter settings and Table 2 for their
quantitative performance evaluation results.

83Stereo Algorithm with Anisotropic Reaction-Diff usion Systems



24 Stereo Vision

(a) (b) (c) (d)

Figure 8. Enlarged stereo disparity map obtained by COR5 for TEDDY; (a) the groundtruth disparity
map Gi,j, (b) the obtained disparity map Mi,j, (c) the absolute error distribution |Mi,j − Gi,j| and (d) the
definition of depth discontinuity areas (disc.). See Fig. 7(a) for the obtained full disparity map and the
full absolute error distribution.

information, and RDSA(aniso-H) and RDSA(aniso-V) are the algorithms with anisotropic

diffusion processes depending on the pre-specified orientation. We fixed their parameter

settings across the four stereo image pairs except for the image size of Lx ×Ly and the possible

disparity levels D, which were provided as the Middlebury stereo vision page indicates.

Table 2 shows evaluation results and average ranks of the algorithms, and Figs. 6 and 7

show stereo disparity maps and their absolute error distributions. From these results, we

can state the following. On each of the algorithms: RDSAs, average ranks evaluated with

BMP0.5 were better than those with BMP1.0. The algorithms RDSAs were better than M&P in

most cases excluding for TSUKUBA and including average ranks. Among RDSAs, average

ranks were almost similar; although there was no distinguishable difference on performance

among RDSAs, RDSA(edge) was slightly better than RDSA(org) and RDSA(aniso-V), and

RDSA(edge) indicated similar error measures with RDSA(aniso-H) according to the sum of

average ranks obtained with BMP1.0 and BMP0.5. When focusing on the results for VENUS, in

particular, the results for the depth discontinuity areas (disc.), RDSA(edge) was quite effective

in comparison with other RDSAs. This can be also easily confirmed with the disparity maps

and their error distributions shown in Fig. 6(b). In most cases, the results with COR5 denoted

that the error measures evaluated in the areas of disc. were less than those evaluated in the

areas of nonocc. and all, except for the results of CONES with BMP1.0 and BMP0.5. This

implies that the depth discontinuity areas bring rather reliable disparity information than

other nonocclusion areas do in COR5; Fig. 8 supports this implication. We consider that

this is because there is rather rich information of image intensity distribution around depth
discontinuity areas. In contrast to this, the results for M&P and RDSAs indicated the worst

error measures for the depth discontinuity areas.

Figure 9 shows dependence of error measures on the inhibitory diffusion coefficient Dv in

RDSA(org). Let us focus on the dependence confirmed for the depth discontinuity areas

(disc.). For all of the four image pairs TSUKUBA, VENUS, TEDDY and CONES, the error

measures achieved the least values at certain positive values Dv > 0; for example, for the

image pair TSUKUBA, the error measure decreased as Dv increased and achieved the least

value at Dv = 3.0; for other image pairs, they indicated similar trends.

Figure 10 shows a representative example in which RDSA(edge) works in comparison to

other algorithms. The example shows a small rectangular area capturing a coffee cup and

chopsticks in the left image of CONES, and stereo disparity maps obtained in the area. An

edge detection result shown in Fig. 10(a-4) has almost completely detected object boundaries
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Figure 9. Dependence of error measures BMP0.5 on Dv in the original reaction-diffusion stereo algorithm
RDSA(org) applied to the stereo image pairs (a) TSUKUBA, (b) VENUS, (c) TEDDY and (d) CONES. See
Table 1 for the other parameter settings; see Figs. 6 and 7 for disparity maps obtained with Dv = 3.0.
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Figure 10. Enlarged results of disparity maps obtained for the rectangular area capturing a coffee cup
and chopsticks in CONES. Figure (a) shows the left image in (a-1), the initial disparity map M0

i,j in (a-2),

the ground truth disparity map Gi,j in (a-3) and an edge map Me obtained by another edge detection
algorithm [25] in (a-4). Figure (b) shows results by M&P. Figure (c) shows results by RDSA(org).
Figure (d) shows results by RDSA(edge) integrating the edge information (a-4). Figure (e) shows results
by RDSA(aniso-H). Figure (f) shows results by RDSA(aniso-V). In each figure of (b)∼(f), (b-1), (c-1), (d-1),
(e-1) and (f-1) are disparity maps Mi,j in the rectangular area, and (b-2), (c-2), (d-2), (e-2) and (f-2) are
their absolute error distributions |Mi,j − Gi,j|. See Fig. 7(b) for their full stereo disparity maps.

of the chopsticks. Although the result by RDSA(edge) was not perfect as shown in Fig. 10(d),

it was better than the results by the other algorithms of RDSA(org) and RDSA(aniso-V). Since

there exists depth discontinuity along the chopsticks standing almost vertically, the algorithm

85Stereo Algorithm with Anisotropic Reaction-Diff usion Systems



26 Stereo Vision

RDSA(aniso-H) causing strong inhibitory diffusion in horizontal orientation worked better

than RDSA(aniso-V) and provided a result similar to that of RDSA(edge).

Figure 11 shows temporal changes of error measures evaluated during processes of stereo

disparity detection in the stereo algorithms RDSA(org), RDSA(aniso-H) and RDSA(aniso-V).

In the early period less than t = 10, the error measures dynamically changed; after that, they

changed slowly and achieved almost constant at t = 100. From these results, we can roughly

state that the algorithms converged.

5.3. Discussion

Each of the reaction-diffusion systems utilized in the original reaction-diffusion stereo

algorithm has diffusion terms Du∇2ud and Dv∇2vd on excitation and inhibition. The

dependence of the inhibitory diffusion coefficient Dv on performance shows that the strong

inhibitory diffusion compared with the weak excitatory one improves performance in depth

discontinuity areas. In addition, the reaction-diffusion stereo algorithm having the inhibitory

distribution works better than the cooperative one revised with a single reaction-diffusion

equation having only excitatory distribution. These results indicate the importance of the

strong inhibitory diffusion, that is, the long-range inhibition. If turning our attention to an

edge detection algorithm proposed by Marr and Hildreth [59], we can find that the algorithm

has a long-range inhibition and a short-range excitation. Thus, we hypothesize that the

long-range inhibition is an important factor and underlies visual functions including edge

detection and stereo disparity detection.

In low curvature areas found along straight lines of depth discontinuity areas (see Fig. 10), we

can not expect the effect of the strong-inhibitory diffusion. In addition, previous psychological

results implied that the human depth perception integrates several visual cues [1–3]. From

these two reasons, we designed the reaction-diffusion stereo algorithm integrating intensity

edge information so as to work in the depth discontinuity areas, if the intensity edge areas

coincide with the depth discontinuity areas. Figure 10 showed an example of a successful

situation, in which the integration of intensity edge information compensated for difficulties

in the depth discontinuity areas. For more performance improvement, it is necessary to

integrate not an edge map, but a contour map defining object boundaries into the algorithm.

The study by Martin et al. [57] should be helpful for obtaining a contour map.

Image processing and computer vision algorithms utilizing diffusion equations require

estimating stopping time [60]; this is called the termination problem [56]. Reaction-diffusion

algorithms with a nonlinear reaction such as the FitzHugh-Nagumo type do not require

solving the termination problem, if they can spend sufficient duration of time for their

processing, as shown in Figs. 11(a)∼(d).

Between the two algorithms RDSA(aniso-H) and RDSA(aniso-V) of which diffusion

coefficients depend on pre-specified orientation, we could not confirm distinguishable

difference on their convergence trends, as shown in Figs. 11(e)∼(h). According to previous

results of psychological experiments [4, 5], the human stereo depth perception indicates

anisotropy on latency. In order to confirm the correctness of the idea introducing anisotropic

diffusion processes, we need to apply the algorithms to random-dot stereograms utilized
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Figure 11. Temporal changes of the error measures BMP0.5 on the algorithms: RDSA(org),
RDSA(aniso-H) and RDSA(aniso-V). Figures (a)∼(d) show the results on RDSA(org) and Figs. (e)∼(h)
show those on RDSA(aniso-H) and RDSA(aniso-V); Figs. (a) and (e) show those for the image pair
TSUKUBA, Figs. (b) and (f) show those for VENUS, Figs. (c) and (g) show those for TEDDY, and Figs. (d)
and (h) show those for CONES; each of Figs. (a)∼(h) include the results in the areas: nonocc., all and
disc. See Figs. 6 and 7 for disparity maps at t = 100, Table 1 for their parameter settings, and Table 2 for
quantitative error measures at t = 100.
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in the psychological experiments and confirm their convergence. At this moment, our

experimental results are insufficient to mention the correctness of the idea.

There are two main future research topics. One of them is intended for the occlusion

problem. As shown in Fig. 7, the results obtained for TEDDY and CONES indicate that

occluded areas have much error or large deviation from the true disparity level. In order

to solve the occlusion problem, we believe that the idea of bi-directional matching is

helpful also in the reaction-diffusion stereo algorithm. That is, by feeding the result of the

bi-directional matching to the iteration process of the reaction-diffusion systems, we build

a dynamical system with feedback and try to solve the occlusion problem. This feedback

system may furthermore bring a hint for building a strong fusion model proposed as the

human depth perception integrating several visual cues. The other future research topic

is accuracy improvement for slanted surfaces. The reaction-diffusion stereo algorithms

presented here imposed the continuity constraint on each reaction-diffusion system associated

with a disparity level; the continuity constraint does not work across more than two disparity

levels. Thus, for slanted surfaces, we need to impose the continuity constraint on the surfaces.

We believe that the imposition of the constraint on the slanted surfaces is possible. In addition

to the accuracy improvement, the imposition may bring a hint for our understanding the

anisotropy of the human stereo depth perception.

6. Conclusion

This chapter presented a reaction-diffusion stereo algorithm [14] solving the stereo

correspondence problem with multiple reaction-diffusion systems. The algorithm converts

the stereo correspondence problem into a segmentation problem with respect to stereo

disparity levels. Each of the reaction-diffusion systems is associated with a particular disparity

level. A set of FitzHugh-Nagumo type reaction-diffusion equations describes each of the

reaction-diffusion systems. Depending on the parameter settings of the set, it behaves as a

mono-stable system, a bi-stable system and an oscillatory system. In order to govern existence

or non-existence of a stereo disparity level associated with a reaction-diffusion system, the

algorithm utilizes bi-stable reaction-diffusion systems. The bi-stable systems have two stable

steady states, of which the excited state denotes the existence, and of which the resting

state denotes the non-existence. Since the bi-stable systems have the nature of driving wave

propagation, they extend their associated areas with the nature and fill-in undefined areas of

stereo disparity. This filling-in process works as the continuity constraint presented by Marr

and Poggio. For the uniqueness constraint assuming only one disparity level at a particular

point, the algorithm exclusively linked the multiple reaction-diffusion systems with mutual

inhibition mechanism. In addition to these constraints, the reaction-diffusion algorithm

has the self-inhibition mechanism caused by rapid inhibitory diffusion. The mechanism

contributes to preserving detailed depth structure or high curvature areas such as areas of

corner points in a disparity map.

Besides the original reaction-diffusion stereo algorithm, this chapter presented two additional

stereo algorithms with anisotropic diffusion processes. One of the algorithms integrated the

intensity edge information, which is provided by another edge detection algorithm designed

with discretely coupled nonlinear elements [25]; the stereo algorithm was inspired by the

human depth perception integrating several visual cues. The other algorithm introduced
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anisotropic diffusion processes depending on pre-specified horizontal or vertical orientation.

The human visual system differently perceives a horizontally slanted surface and a vertically

slanted one; this anisotropy inspired the stereo algorithm with anisotropic diffusion processes

depending on pre-specified orientation.

The experimental section demonstrated performance of the reaction-diffusion stereo

algorithms as well as a cooperative algorithm revised with a reaction-diffusion equation.

Experimental results showed that the reaction-diffusion stereo algorithms perform better

than the cooperative algorithm, and the original reaction-diffusion stereo algorithm works

better with larger inhibitory diffusion coefficients especially in depth discontinuity areas.

Thus, we reached the conclusion that the strong inhibitory diffusion or the strong inhibitory

coupling is an important condition for the algorithms, and the strong inhibitory coupling

underlies visual functions; a previous edge detection algorithm [59] and biological evidence

in vision [52] also support the conclusion. Integrating image intensity edge information is

effective, if intensity edge areas coincide with depth discontinuity areas. This also implies that

the algorithm achieves better, if object contour information is available; a future research topic

exists in how to obtain the reliable contour information. For the algorithms with anisotropic

diffusion processes depending on horizontal or vertical orientation, experimental results

demonstrated convergence of the algorithms for four stereo image pairs. However, there

was no distinguishable difference on the convergence between the two algorithms. We need

to confirm the convergence by applying the algorithms to random-dot stereograms utilized

in psychological experiments. In addition to these future topics, development of the depth

perception model integrating several visual cues is also an interesting topic, for which the

previous strong and weak fusion models may provide hints.
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