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1. Introduction 

There is abundant evidence that protein kinases are involved in the physiopathology of 
acute and chronic pain. In the first section, we discuss the role of protein kinases in pain and 
the signalling pathways involved in both the acute and chronic states. The second section 
will present evidence supporting the contribution of protein kinase inhibition to pain 
control by different classes of drugs. Both well-known drugs and new molecules can control 
pain in the peripheral and central nervous systems. The third section highlights the progress 
in pharmaceutical development and protein kinase research for new pain control drugs in 
the first decade of the 21st century.  

2. Role of protein kinases in acute and chronic pain  

In this section, we will discuss the differential activation of protein kinases by pain 
mediators and the modulation of the acute and chronic pain processes by several kinases.  

2.1 PKC 

Protein Kinase C (PKC) is a family of phospholipid-dependent serine/threonine 

phosphotransferases; it can be divided into the following groups of isoforms: a) conventional 

or classical (, I, II, ), b) novel (, , , ), and c) atypical (,  (mouse)/ (human)) isoforms 

(Nishizuka, 1992). Five subspecies of PKC, PKC-I, PKC-II, PKC-, PKC-, and PKC-, are 

expressed in the dorsal root ganglion (DRG) of rats (Cesare et al. 1999). The PKC isoforms 

that are expressed in the DRG of mice include PKC-, PKC-I, PKC-II, PKC-, PKC-, PKC-

, PKC-, PKC-, and PKC- (Khasar et al., 1999a). Thus, there are some differences in the 

expression of DRG PKC isoforms between species.  

Signal transduction through the PKC pathway has been strongly linked to pain. 
Inflammatory stimuli and mediators can activate PKC to induce pain. Nociceptive response 
caused by formalin injection into the mouse paw is characterised by two phases; the 
neurogenic response, which is due to direct nociceptor activation, and the inflammatory 
response, which is caused by inflammatory mediators (Hunskaar and Hole, 1987). In this 
model, PKC blockade by local treatment with chelerythrine inhibited the second phase of 
nociceptive response (Souza et al., 2002), which is driven largely by tissue inflammation, 
indicating a relationship between PKC activation and the inflammatory process. In the same 
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way, mechanical sensitisation induced by the inflammatory mediator bradykinin in rats is 
inhibited by a PKC inhibitor (Souza et al., 2002). In vitro experiments conducted in DRG 
neurons strongly suggest that bradykinin-induced heat sensitisation is dependent on PKC 
activation because it can be reversed by pharmacological inhibition with staurosporine or 
phosphatase inhibitors (Burguess et al., 1989; Cesare and McNaughton, 1996). In vitro 
experiments have shown noticeable PKC-activity in rat DRGs after 3 hours of prostaglandin 
E2 (PGE2) paw administration. This activity was accompanied by paw sensitisation to 
mechanical stimuli, as measured by behavioural experiments (Sachs et al., 2009).  

Carrageenan injection in rat or mouse paws is another tool used to study inflammatory 

sensitisation. In the same way, pharmacological inhibition of PKC reduces carrageenan-
induced mechanical sensitisation in mice (Khasar et al., 1999a). Phosphorylation of PKCε in 
DRG neurons is increased after carrageenan-induced acute sensitisation (Zhou et al. 2003), 

and a PKC agonist sensitises nociceptors to mechanical stimuli (Aley and Levine, 2003). 
Inflammatory sensitisation has a “sympathetic” component that involves the release of 
amines such as epinephrine and dopamine (Coderre et al. 1984; Nakamura and Ferreira 
1987). Evidence suggests that mechanical sensitisation induced either by epinephrine in rats 
(Khasar et al. 1999b) or dopamine in mice (Villarreal et al., 2009b) is blocked by PKCε-
selective inhibition. Cesare et al. (1999) found that bradykinin exposure induces PKCε 
translocation from the cytosol to a membrane-associated position in cultured DRG neurons, 
thus contributing to heat sensitisation.  

The mechanical sensitisation induced by PGE2 involves the peripheral activation of PKCε in 
rats and mice, as shown by specific pharmacological inhibition (Sachs et al., 2009; Villareal et 
al., 2009b). In PKCε-mutant mice, the nociceptive threshold is preserved, whereas the 
nociceptive response was significantly impaired, as evaluated in a model of visceral pain 
using peritoneal administration of acetic acid (Khasar et al. 1999a). Kassuya et al. (2007), 

found a noticeable increase in membrane-bound PKC expression of mouse paw tissue after 
PGE2 administration (Kassuya et al., 2007). Thus, the PGE2–induced pain-related effects 

during inflammation may be mediated by PKC and PKC. 

Multiple voltage-gated sodium channel (VGSC) isoforms are expressed in DRG neurons. For 
example, isoforms Nav 1.8 and Nav 1.9 are responsible for tetrodotoxin-resistant (TTX-
resistant) currents due to Na+ channel blocker insensitivity. These sodium currents can be 
modulated by PKC phosphorylation, which is induced by inflammatory mediators (Gold et 
al., 1998; Khasar et al., 1999a). Using whole-cell voltage-clamp recordings from DRG 
neurons, Gold et al. (1998) found that PKC inhibitors decreased the density of tetrodotoxin-
resistant sodium current, whereas the PKC activator PMA produces changes that are 
opposite, suggesting that PKC modulates it. In addition, it was show a relationship between 
inflammatory mediators-induced changes in TTX-resistant sodium currents and PKC 
activity (Gold et al., 1998; Khasar et al., 1999a).  

PKC peripheral activation contributes to central pain processing. During serotonin-induced 
rat paw sensitisation, another pain-sensitising mediator associated with inflammation, the 
response of animals to thermal stimulation and c-fos activation in the dorsal horn is 
attenuated by intraplantar application of the PKC inhibitor chelerythrine (Chen et al., 2006). 
During inflammation or in naïve animals, activation of glutamate receptors mGluRs in the 
spinal dorsal horn modulates acute nociception. These receptors are coupled to Gq/II 
protein phospholipase C (PLC)-phosphoinositide (PI) hydrolysis and PKC pre- and post-
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synaptic activation (Neugebauer, 2002; Giles et al., 2007), suggesting that PKC modulates 
the synaptic transmission at the spinal level.  

PKC activation is associated with chronic pain conditions. Mao et al. (1992) found an 
increase in membrane-bound PKC in the spinal cord of rats in a model of post-injury 
neuropathic pain. The role of PKC was confirmed using an intracellular inhibitor of PKC 
translocation/activation and analysing membrane-bound PKC translocation and pain 
behaviour. The data suggest a role for PKC in neuropathic pain states. Ahlgren and Levine 
(1994) found a reduction in streptozotocin-induced diabetic rat pain sensitisation after 
treatment with PKC inhibitors.  

Using the partial sciatic nerve section model, Malmberg et al. (1997) verified that mice 

lacking PKC completely fail to develop neuropathic-associated sensitisation even though 

they respond normally to acute pain stimuli. In addition, PKC expression is restricted to a 

subset of dorsal horn neurons. Malmberg and co-workers suggest that targeting PKC is a 
promising tool for treating chronic pain. This isoform inhibition also attenuates opioid 
tolerance in the spinal cord (section 3). 

The physiopathology of alcoholic neuropathy in rats seems to depend on PKC activation 
and up-regulation in DRG neurons, as shown by selective pharmacological inhibition and 
western blot analysis performed after 70 days of ethanol administration (Dina et al., 2000). 

In addition, the role of PKC in pain sensitisation is associated with neuropathy induced by 
the antineoplastic agent paclitaxel in rats (Dina et al., 2001).  

The role of PKC is well demonstrated during chronic inflammatory pain conditions. Aley et 
al. (2000) developed a model to study chronic inflammatory sensitisation that can be 
induced by a single episode of acute inflammation; after the induction, in a time-lapse of 5 

days there is inflammatory-mediator prolonged-response. During this state, PKC seems to 
be responsible for the maintenance of this “primed state” and the prolonged response to 

inflammatory mediators (Aley et al. 2000). Accordingly, the phosphorylation of PKC in 
DRG neurons correlated with pain-associated prolonged inflammation after 3 days of the 
administration of Complete Freund’s Adjuvant (CFA) to rat paws (Zhou et al., 2003). 

Mechanical persistent inflammatory sensitisation can also be induced by intraplantar 
administration of inflammatory mediators like prostaglandins and sympathetic amines in 
rats and mice (Ferreira et al., 1990; Villarreal et al., 2009b). Studies suggest that PKC activity 
in the DRG is up-regulated by and is at least partially responsible for the persistent 
condition, as shown by analyses of PKC activity in rat DRGs (Villarreal et al. 2009a). 

Moreover, the local administration of a selective PKC inhibitor abolished the persistent 
state induced by PGE2 in rats and mice (Villarreal et al. 2009a; Villarreal et al., 2009b). 

Evaluation of the mechanisms downstream of PKC activation found that Nav1.8 mRNA 

levels in the DRG from rats was up-regulated and inhibition of PKC activity reduced these 
levels (Villarreal et al., 2009a).  

2.2 PKA  

Cyclic adenosine-monophosphate (cAMP)-dependent protein kinase (PKA) is a 
serine/threonine phosphotransferase; in its inactive form, it is a tetrameric holoenzyme 
composed of two regulatory and two catalytic subunits (Taylor et al., 1990). When the 
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second messenger cAMP is generated the PKA-regulatory subunits bind cAMP, and the 
holoenzyme separates into the regulatory subunits and the catalytic subunits (Taylor et al., 
1990). The catalytic subunits can phosphorylate their biological targets and regulate many 

cellular functions. There are different regulatory (RI, RI, RII, RII) and catalytic (C, C) 

subunits;  subunits are expressed in non-neuronal and neuronal tissue, whereas  subunits 
are expressed predominantly in neuronal cells (Cadd and McKnight, 1989). 

cAMP/PKA signalling is involved in nociceptor sensitisation by inflammatory mediators. 
Ferreira and Nakamura (1979) provided evidence that sensitisation of rat hind-paws by 
prostaglandins is dependent on cAMP generation. Since this original study, many subsequent 
studies have shown that cAMP generation is induced by a plethora of inflammatory stimuli. 
The mechanical nociceptor sensitisation that occurs during inflammation or induced by 
either inflammatory mediators (PGE2, dopamine, serotonin) is blocked by treatment with 
PKA inhibitors in rats and mice (Taiwo and Levine 1991; Taiwo et al., 1992; Aley and Levine, 
1999; Aley et al., 2000; Sachs et al., 2009; Villarreal et al., 2009b). 

Adenylyl cyclase (AC)/cAMP/PKA activation may be necessary to induce and maintain 
mechanical nociceptor sensitisation (Aley and Levine, 1999). Moreover, PGE2–induced 
inflammatory sensitisation increased PKA activity in mouse paws (Kassuya et al., 2007); and 
in rat DRGs (Sachs et al., 2009), which correlates with the behavioural data. Accordingly, the 
intraplantar administration of the catalytic subunit of PKA (PKACS) induces mechanical 
nociceptor sensitisation (Aley and Levine, 1999; Aley and Levine, 2003). Supporting the 
animal model data, in vitro studies using sensory neurons that were cultured and bathed in 
classic inflammatory mediators showed that prostaglandins can sensitise these cells to 
bradykinin and that this effect is dependent on PKA activation (Cui and Nicol, 1995; Smith 
et al., 2000). The role of PKA in formalin-induced nociceptive pain and inflammatory 
sensitisation was demonstrated in experiments in mice with a null mutation in the type I 

regulatory subunit (RI) of PKA. This mutation dampens the response during nociceptive 
pain and thermal stimulation (Malmberg et al., 1997). 

Once activated, the PKA substrate in the nociceptive pathways can be voltage-gated sodium 
channels. In fact, in vitro studies have shown that TTX-resistant sodium current is 
modulated via PKA activation during inflammation (England et al., 1996; Gold et al., 1998). 
Additionally, during inflammation, PKA enhances the gating of transient receptor potential 
vanilloid channel-1 (TRPV-1) via direct phosphorylation (Lopshire and Nicol, 1998; Rathee 
et al., 2002). Therefore, PKA can directly phosphorylate ion channels, thus increasing the 
excitability of sensory neurons and contributing to some pain conditions. Studies using a 
model of persistent inflammatory sensitisation in rats and mice show that PKA could exert a 
role in the maintenance of the chronic state. The persistent sensitisation is abolished by 
injection of PKA inhibitors, and PKA expression and activity were up-regulated in DRG 
(Villarreal et al., 2009a, 2009b). The contribution of PKA to sensitisation maintenance seems 
to be due to the regulation of the Nav1.8 sodium channel expression (Villarreal et al., 2009a).  

In the neuropathic pain model of sciatic nerve ligature, PKARI-null animals present 
nociceptive responses that are similar to control animals (Malmberg et al., 1997). However, 
in a model of paclitaxel-induced pain neuropathy, pharmacological inhibition of PKA 
attenuates the response to thermal stimulation (Dina et al., 2001). Other subunits of PKA, 

different from PKARI, may be activated during neuropathy because PKA inhibitors do not 
present selectivity.  
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2.3 MAPKs 

Mitogen-Activated Protein Kinases (MAPKs) are protein-serine/threonine kinases. There 
are many subfamily isoforms known, and are currently 14 mammalian members. They are 
important for pain regulation and control and are divided in extracellular-signal-regulated 
kinases (ERKs, 7 isoforms), stress-activated protein kinases or c-Jun N-terminal kinases 
(JNKs, 3 isoforms) and p38 mitogen-activated protein kinases (p38 MAPK, 4 isoforms). 
These enzymes are activated by direct phosphorylation of two sites in the kinase activation 
loop, at a tyrosine and a threonine residue; separated by a single, variable residue (Pearson 
et al. 2001). 

Classically, upon receptor-dependent tyrosine kinase activation on the cellular surface, a 
cascade of biochemical reactions culminates in small GTPase (Ras) activation. This 
molecular event initiates a series of catalytic phosphorylation-based signalling, involving 
kinases such as the proto-oncogene serine/threonine-protein kinase (C-Raf), mitogen-
activated protein kinase kinase 1 (MEK1), MEK2 and MAPKs. The dual phosphorylation of 
these proteins leads to conformational changes, allowing their respective catalytic domains 
to be accessible to their substrates, which are mainly transcription factors that regulate 
diverse genes, and others proteins that are regulated by phosphorylation. In addition, the 
MAPKs interact with inactivating phosphatases, which finely tunes their cellular activity. 
The same hierarchical cascade exists for JNK and p38 MAPK activation, consisting of three 
consecutive steps of phosphorylation and activation of different kinases (MAPKKK  
MAPKK  MAPK). 

Extracellular mitogens such as growth factors (cytokines and hormones) and phorbol esters 
(e.g., 12-O-tetradecanoylphorbol-13-acetate, TPA) activate ERK1 and ERK2, which regulates 
cell proliferation and promotes effects such as induction or inhibition of differentiation, 
stimulation of secretory responses in a variety of cell types such as neutrophils, modulating 
membrane activity, and generating active oxygen species (Blumberg, 1988). The stress-
activated protein kinases, or JNKs, and p38 MAPK signalling pathways are responsive to 
stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, osmotic shock and 
cellular redox state, and are involved in cell differentiation and apoptosis. There are 10 
isoforms of the three JNKs due to alternative splicing of JNK-1, JNK-2, and JNK-3, and there 
are four p38 MAPK isoforms.  

These MAPKs are involved in processing cellular pain. Dai et al. (2002) demonstrated that 

ERK is activated in DRG neurons by electrical, thermal and chemical stimuli using 

electrophysiological recordings and western blot analysis. The peripheral stimulation of 

ERK1/2 and p38 MAPKs is involved in the nociceptor sensitisation produced by epinephrine, 

nerve grow factor (NGF) and capsaicin (Aley & Levine 2003, Zhu & Oxford, 2007). Activation 

of nuclear factor-kappaB (NF-κB), a transcription factor linked to inflammation, and p38 

MAPK leads to the formation of various pro-inflammatory cytokines, such as TNF-ǂ, IL-1ǃ, 

and IL-6 (Doyle et al. 2011). TNF-ǂ may induce acute peripheral mechanical sensitisation by 

acting directly on its receptor TNFR1, which is localised in primary afferent neurons, 

resulting in the p38-dependent modulation of TTX-resistant Na+ channel currents (Jin & 

Gereau 2006; Zhang et al. 2011). 

In neurons, synaptic activity-induced increases in the intracellular Ca2+ concentration 

activate MAPKs. Ca2+/calmodulin-activated protein kinase (CaMKII) is essential for 
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synaptic plasticity because it regulates transcriptional and translational modifications in 

gene expression and regulation. MAPKs are downstream effectors of multiple kinases, 

including CaMKII. Membrane depolarisation and calcium influx activate MAPK/ERK 

kinases. ERK and p38 MAPKs are up-regulated both in primary afferent nerves and the 

spinal cord in response to noxious stimulation, nerve injury and tissue injury. Inhibition of 

ERK or p38 MAPK phosphorylation or activity induces an antinociceptive effect in many of 

the animal pain models described throughout this section. Thus, in addition to the PKA and 

PKC signalling pathways, some cross-talk may exist with MAPK cascades upon inflammation 

or injury. 

As an example, IL-6 exerts an important role in the development and maintenance of 

muscular sensitisation to nociception. The IL-6-mediated muscular pain response involves 

resident cell activation, polymorphonuclear cell infiltration, cytokine production, 

prostanoids and sympathomimetic amines release (Manjavachi et al. 2010). This response to 

IL-6 triggers the activation of intracellular pathways, especially MAPKs. Upon IL-6 

stimulation, ERK, p38 MAPK and JNK phosphorylation is measurable by flux cytometry, 

and selective inhibitors of ERK and p38 MAPK partially reduced mechanical nociceptive 

behaviour (Manjavachi et al. 2010). Inflamed tissues release NGF that act upon nociceptors, 

activating the p38 MAPK cascade and leading to an increase of TRPV-1 translation and 

transport to nerve terminals, which contributes to the maintenance of nociceptive behaviour 

in animal models (Ji et al. 2002). Additionally, two separate p38 MAPK pharmacological 

inhibitors were effective at inhibiting the development of burn-induced sensitisation when 

administered as intrathecal pre-treatments (Sorkin et al. 2009).  

A screen of MAPK activation in the dorsal horn in both phases of the formalin test 

demonstrated that p38 MAPK is activated in spinal microglia. Thus, a reduction in the level 

of spinal p38ǃ, but not p38ǂ, prevented the development of sensitisation following 

peripheral inflammation (Li et al., 2010). Any study of MAPK signalling must also consider 

the effect of nervous system cells other than neurons in the pain process. 

The same kind of consideration is needed for chronic pain. Synaptic and nerve plasticity is a 

key element in pain chronification. Changes in structure and function as a result of input 

from the environment, lesions and pathologies may lead to neuropathic pain. These changes 

depend upon transcriptional and translational modifications in cell function that are 

mediated by MAPK signalling. Thus, MAPK modulation became a natural choice for 

research and the development of new drugs and pharmacological tools. 

Pfizer Global Research and Development published a research paper in 2003 showing that 

the development of neuropathic pain is associated with an increase in the activity of the 

MAPK/ERK-kinase cascade within the spinal cord. They explored the chronic constriction 

injury model and the streptozocin-induced diabetic model to mimic neuropathic pain states. 

Global changes in gene expression and the effect of MAPK/ERK-kinase (MEK) inhibitor 

were analysed (Ciruela et al., 2003). These efforts lead to the selection of these kinases as 

targets of drug design for pain, with a focus on neuropathic pain.  

The MAPK intracellular signalling cascades are also associated with synaptic long-term 
potentiation and memory and are associated with nociceptive behaviour in spinal cord 
injury (Crown et al., 2006). ERK 1/2 and p38 MAPK phosphorylation levels are up-
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regulated in rat-spinal cords during mechanical sensitisation after spinal cord injury. 
Neurons are not the only cells involved in this process; microglial but not astrocytic p38ǂ 
contributes to the maintenance of neuronal hyperexcitability in caudal areas after spinal 
cord injury (Gwak et al. 2009). 

The IL-6/p38 MAPK/CX3C Receptor 1 signalling cascade is involved in neural–glial 

communication and plays an important role in triggering spinal glial activation and 

facilitating pain processing following peripheral nerve injury. Up-regulation of CX3CR1 

expression by IL-6-p38 MAPK signalling enhances the responsiveness of microglia to 

chemokine CXCL1, or fractalkine, after nerve injury (Lee et al., 2010). TNF-ǂ is important 

during the development of neuropathic pain by spinal nerve ligature (SNL) (Schäfers et al., 

2003). The inhibition of spinal p38 MAPK activation prevents this event. However, the 

activation of ERK but not p38 MAPK is critically involved in the TNFǂ-induced increase in 

TRPV1 expression in cultured DRG neurons (Hensellek et al., 2007). 

Injury to peripheral nerves may result in the formation of neuromas. Elevated levels of 

phosphorylated ERK1/2 can be identified in individual neuroma axons that also possess the 

voltage-gated sodium channel Nav1.7. Painful human neuromas show accumulation of this 

sodium channel, and its function is modulated by ERK1/2 phosphorylation (Persson et al., 

2011). 

MAPK expression analysed in the spinal cord after SNL showed differential activation in 

injured and uninjured DRG neurons. Uninjured neurons had only p38 MAPK detectable 

induction. In contrast ERK, p38 MAPK and JNK were activated in several populations of 

injured DRG neurons (Obata et al., 2004). Differential activation of MAPK in lesioned and 

sound primary nerve afferents may be linked to the pathogenesis of neuropathic pain after 

partial nerve injury (Svensson et al., 2003). 

2.4 Interplay between pathways 

The specificity of activation for each signalling pathway may be determined by the stimuli 
(Juntilla et al., 2008), and the crosstalk between them could be induced during pathological 
states (Noselli, 2000). Pimienta and Pascual (2007) described MAPK intracellular signalling 
as “different signalling cascades crosstalk with each other in a way that their functional 
compensation makes possible the simultaneous integration of multiple inputs”. 

Considering only one inflammatory mediator, PGE2, in three models performed in the same 
species (mice) with analyses of not the same tissue, differences between the signalling 
pathways involved can be detected: 

a. Acute nociception induced by high-dose PGE2 administration is dependent on ERK 
signalling mechanisms because its overexpression was detected in hind paw by western 
immunoblotting analyses (Kassuya et al., 2007). This effect was reversed by EP receptor 
antagonists (Kassuya et al., 2007).  

b. In the same way, PGE2 is a final mediator of nociceptor sensitisation that acts on the 
peripheral nerve endings through the prostanoid receptors, leading to sensitisation of 
sensory nerves. PGE2-induced acute mechanical sensitisation, which is also associated 
with kinase activation, was completely prevented by PKA and PKCε, but not by ERK, 
pharmacological inhibition (Villarreal et al. 2009b). The persistent pain state induced by 
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chronic PGE2 administration is completely abolished by PKA or PKCε inhibitors, but 
not by ERK inhibitors (Villarreal et al. 2009b).  

Thus, we conclude that PKA, PKC and ERK are involved in the effects of PGE2 (including 
nociceptor sensitisation and nociception). The inflammatory processes include several 
others mediators in addition to PGE2. In the same work, Villarreal et al. (2009b) showed that 
dopamine-induced acute sensitisation involves PKA, PKC and ERK activation, whereas the 
dopamine-induced persistent sensitisation state is abolished by ERK inhibition and 
temporarily inhibited by PKA or PKCε inhibitors, suggesting that ERK plays the major role. 
So, what is the real meaning of these results?  

The study of MAPK and other kinases must keep its momentum. The interplay between 
different signalling pathways is challenging to understand. The available experimental 
models allow individual probing of each mediator and the kinase transduction of its 
signalling. Biological systems and pathological states have multiple variables in a complex 
regulated environment that hinder our understanding of each molecule and their combined 
role. Nevertheless, the continuous efforts have already achieved interesting findings. In the 
next sections, additional mechanisms and protein kinases will be described in discussing the 
pharmacological mechanisms of different drug classes in pain control.  

3. Role of protein kinases in pain control 

Both acute and chronic pain are usually controlled by administration of pharmacological 

agents (analgesics and adjuvants) that attempt to tackle pain in both the central and peripheral 

divisions of the nociceptive pathway. Although a classical mechanism of action is well 

described for most drugs, additional mechanisms link their analgesic effects with some 

kinases-dependent pathways, mainly pathways related to PKA, PKC, MAPKs and cyclic 

guanosine monophosphate (cGMP)-dependent protein kinase (PKG). In this section, the 

involvement of protein kinases in the mechanisms of action of drugs used for pain control, 

such as opioids, dipyrone, general and local anaesthetics and antidepressants will be analysed.  

3.1 Opioids 

Among opioids, morphine is widely used as a classical opioid analgesic for the clinical 
management of acute and chronic pain. Despite its wide use, tolerance to the analgesic 
actions of morphine is an important side effect of prolonged exposure. Individuals who are 
tolerant to the effects of morphine require larger doses to elicit the same amount of 
analgesia. Thus, antinociceptive tolerance and the high doses required to achieve effects 
have limited the use of morphine.  

Many factors have been related to morphine tolerance, such as a change of the descending 

pain modulatory pathway, receptor desensitisation, down-regulation of opioid functional 

receptors, release of excitatory neurotransmission and other adaptive changes in cell 

signalling pathways. Interestingly, PKC, especially PKCγ, plays a major role in the changes 

associated with morphine tolerance. Song et al. (2010) demonstrated that an isoform-specific 

inhibitor could successfully down-regulate PKCγ in the spinal cord and reverse the 

development of morphine tolerance in rats. This result not only implicates this PKC isoform 

in the opioid tolerance mechanism but also has potential applications in pain management. 
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Beyond the involvement of PKC in opioid tolerance, PKC is involved in inflammatory and 
neuropathic pain. The capacity of opioids to alleviate inflammatory pain is negatively 
regulated by the glutamate-binding N-methyl-D-aspartate receptor (NMDAR). And 
increased activity of this receptor complicates the clinical use of opioids for treating 
neuropathic pain. Rodríguez-Muñoz et al. (2011) indicated that morphine disrupts the 
glutamate-binding NMDAR complex by PKC-mediated phosphorylation and potentiates 
the NMDAR-CaMKII pathway, which is implicated in morphine tolerance. Inhibition of 

PKC restored the antinociceptive effect of morphine on the -opioid receptor (MOR). Thus, 
the opposing activities of the MOR and NMDAR in pain control affect their relation within 
neurons of structures such as the periaqueductal grey (PAG), a region that is implicated in 
the opioid control of nociception. This finding could be exploited in developing bifunctional 
drugs that would act exclusively on NMDARs associated with MORs. 

MORs are not the only opioid receptors that influence PKC. Berg et al. (2011), who were 
investigating the regulation of the κ-opioid receptor (KOR) in rat primary sensory neurons 
in vitro and in a rat model of thermal sensitisation, showed that the application of a KOR 
agonist (U50488) did not inhibit AC activity or release of calcitonin gene-related peptide 
(CGRP) in vitro and did not inhibit thermal sensitisation in vivo. It is important to note that 
AC activity, CGRP release, and thermal sensitisation process are related to PKC activation 
(see section 2). However, after a 15-min pretreatment with bradykinin, the agonist became 
capable of inhibiting AC activity, CGRP release, and thermal sensitisation. The in vitro 
effects of bradykinin on the KOR agonist were abolished by a PKC inhibitor; thus, Berg and 
co-workers suggest that PKC activation mediates BK-induced regulation of the KOR system. 
More studies are necessary to understand the mechanisms by which peripheral KOR agonist 
efficacy is regulated and the relationship of the KOR agonist effects with PKC activation.  

In this regard, formalin-induced inflammatory nociception may inhibit morphine tolerance 
in mice. In this model, conventional PKC (cPKC) is up-regulated and treatment with an 
antisense oligonucleotide (AS-ODN) directed against cPKC abolished the development of 
morphine tolerance, suggesting that cPKC is involved in morphine tolerance development 
(Fujita-Hamabe et al., 2010). Additionally, formalin-induced inflammatory nociception 
inhibit morphine tolerance by a mechanism involving KOR activation, down-regulation of 
cPKC, and up-regulation of MOR activity (Fujita-Hamabe et al., 2010). The data suggest a 
key role to cPKC in opioid-induced tolerance and that nociception-activated mechanisms 
may modulate opioid-response, improving it. In addition, studying the effects of chronic 
ethanol–induced neuropathy in rats, Narita et al. (2007) showed that chronic ethanol 
exposure dysregulated MOR but not DOR and KOR, and was related to PKC up-regulation 
in the spinal cord, which may explain the reduced sensitivity to the morphine 
antinociceptive effect. Taken together, these findings suggest the PKC activation disrupts 
MOR function, which could be counteracted by the KOR system. How the DOR participates 
remains unclear. 

Like PKC, PKA may also play a role in morphine antinociceptive tolerance. Previous studies 
have shown that chronic exposure to morphine results in intracellular adaptations within 
neurons that cause an increase in PKA activity. Unexpectedly, sustained morphine 
treatment produces paradoxical pain sensitisation (opioid-induced hyperalgesia) and causes 
an increase in spinal pain-related neurotransmitter concentrations, such as CGRP, in 
experimental animals. Studies have also shown that PKA plays a major role in the 
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regulation of presynaptic neurotransmitter (such as CGRP and substance P) synthesis and 
release. Tumati et al. (2011) previously showed that in cultured DRG neurons, sustained in 
vitro opioid agonist treatment up-regulates cAMP levels (AC superactivation) and augments 
CGRP release in a PKA-dependent manner. The authors also showed that selective knock-
down of spinal PKA activity by intrathecal pretreatment of rats with a PKA-selective small 
interference RNA (siRNA) mixture significantly attenuates sustained morphine-mediated 
augmentation of spinal CGRP immunoreactivity, thermal and mechanical sensitisation and 
antinociceptive tolerance. These findings indicate that sustained morphine-mediated 
activation of spinal cAMP/PKA-dependent signalling may play an important role in opioid-
induced pain sensitisation. More specifically, morphine acts acutely on MORs, which couple 
with G-proteins to inhibit AC and reduce PKA activity. However, during tolerance, MORs 
become uncoupled from G-proteins, AC inhibition is reduced, and PKA activity is 
increased. These findings also provide potential molecular targets for pharmacological 
intervention to prevent the development of such paradoxical pain sensitisation. 

The majority of studies that have demonstrated an increase in PKA activity during opioid 
tolerance have been conducted in rats using brain regions associated with the reinforcing 
properties of opioids, such as the locus coeruleus and nucleus accumbens. Studying the 
expression of morphine antinociceptive tolerance at the behavioural level (tail-flick test) and 
the alterations in PKA activity at the cellular level in mouse brain (PAG, medulla, thalamus) 
and lumbar spinal cord, Dalton et al. (2005) support the hypothesis that an increase in PKA 
activity contributes to the tolerance to morphine-induced antinociception. However, the 
effect of chronic morphine treatment for 15 days on PKA activity was region-specific 
because increases in cytosolic PKA activity were observed in the lumbar spinal cord. In 
contrast, PKA activity/kinetics was not altered in the PAG, medulla or thalamus. These 
results demonstrate that spinal and supraspinal PKA activity are differentially altered 
during morphine tolerance. Thus, the neurons in mouse brain and lumbar spinal cord that 
make up the pain pathway from the brainstem to the spinal cord respond differently to 
chronic morphine treatment. To confirm these findings, future studies need to elucidate the 
differential responses to chronic morphine treatment using in vivo models of morphine 
antinociceptive tolerance concerning the PKA involvement. 

Using a behavioural paw pressure test in rats, Yamdeu et al. (2011) demonstrated that up-
regulation of NGF, through activation of the p38 MAPK pathway, lead to adaptive changes 
in sensory neuron opioid receptors that enhance susceptibility to local opioids. After 
intraplantar NGF treatment, this effect occurs in three consecutive steps: MOR expression is 
increased in DRG at 24 h, increased axonal MOR transport at 48 h, and increased MOR 
density at 96 h. Consequently, the dose-dependent peripheral antinociceptive effects of 
locally applied full opioid agonists such as fentanyl are potentiated, and the effects of partial 
opioid agonists such as buprenorphine are more efficacious, which is reversed by the 
intrathecal administration of p38 MAPK inhibitor SB203580. Thus, in rats, peripheral 
inflammation increases MOR expression in nociceptors by NGF activation of p38 MAPK. 
This mechanism may act as a counter-regulatory response to painful p38 MAPK–induced 
conditions, such as inflammatory pain, to facilitate exogenously or endogenously mediated 
opioid antinociception. 

Recently, the roles of several MAPKs, including p38 MAPK and ERK, have been 
investigated in animal models of morphine tolerance and postoperative nociceptive 
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sensitisation. It is unknown, however, whether prior morphine-induced MAPK activation 
affects the resolution of postoperative nociceptive sensitisation. Horvath et al. (2010) 
investigated the effect of morphine-induced antinociceptive tolerance on the resolution of 
postoperative nociceptive sensitisation. They hypothesised that prior chronic morphine 
administration would inhibit or delay the resolution of postoperative nociceptive 
sensitisation via enhanced spinal glial proteins expression and MAPK signalling. Chronic 
morphine treatment attenuated the resolution of postoperative nociceptive sensitisation, as 
determined by thermal and mechanical behavioural tests, and enhanced microglial p38 
MAPK and ERK phosphorylation. To better understand these results, prior chronic 
morphine exposure could prime microglia, causing exacerbated MAPK signalling pathway 
activation following subsequent paw incision injury. This would cause more robust 
microglial responses in rats with a history of morphine tolerance versus naïve rats, and this 
response is manifested by further neuronal sensitisation, behavioural hypersensitivity and 
inhibition of the resolution of the postoperative-associated nociceptive condition. The 
Horvath and co-workers study indicates that microglial MAPKs play a role in the 
mechanisms by which morphine attenuates the resolution of postoperative pain and 
suggests that patients who abuse opioids or are on chronic opioid therapy may be more 
susceptible to developing chronic pain syndromes following acute injury. 

In conclusion, protein kinases (PKs) exert a crucial role in pain control responses mediated 
by opioids, mainly in tolerance-induced mechanisms. Thus, PKs could be the key to better 
understanding opioid pharmacodynamics. 

3.2 General and local anaesthetics  

3.2.1 General anaesthetics 

Ketamine is an NMDAR antagonist that is available for clinical use as a general anaesthetic. 
Ketamine presents analgesic effect in acute and chronic pain models in both animals and 
humans (Mathisen et al. 1995, Rabben et al., 1999; Visser & Schug, 2006; Pascual et al., 2010).  

The involvement of kinases in the analgesic effect of ketamine has been investigated. Using 
a model of neuropathic pain induced by SNL in rats, Mei et al. (2011) showed that SNL 
induced ipsilateral JNK phosphorylation up-regulation in astrocytes, but not microglia or 
neurons, within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced 
mechanical sensitisation and produced a dose-dependent effect on the suppression of SNL-
induced spinal astrocytic JNK phosphorylation but had no effect on JNK protein expression, 
suggesting that the inhibition of spinal JNK activation may be involved in the analgesic 
effects of ketamine in this model.  

The inhibition of MAPK phosphorylation by ketamine has also been related to a reduction 
in cytokine gene expressions in lipopolysaccharide (LPS)-activated macrophages (Wu et al., 
2008). A therapeutic concentration of ketamine can decrease LPS-induced JNK 
phosphorylation, thus inhibiting TNF-ǂ and IL-6 gene expression, which leads to the 
suppression of LPS-induced macrophage activation (Wu et al., 2008). In addition, ketamine 
reduced IL-1ǃ biosynthesis in LPS-stimulated macrophages through the suppression of Ras, 
Raf, MEK1/2, and ERK1/2/IKK phosphorylation and the subsequent translocation and 
transactivation of the transcription factor NF-κB (Chen et al., 2009). The involvement of 
TNF-ǂ, IL-6 and IL-1ǃ in inflammatory nociceptive sensitisation is well known. Thus, the 
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inhibition of cytokine production by ketamine in different cells may be an additional 
mechanism that contributes toward its analgesic effect. 

Beyond its own specific effects, ketamine also has analgesic effects when given in 
combination with opioids. As mentioned earlier, several studies have demonstrated that 
ERK1/2 is involved in nociception. However, activation of MOR by opioids leads to 
ERK1/2 phosphorylation (Fukuda et al. 1996; Gutstein et al. 1997; Gupta et al., 2011), and 
this can be potentiated by ketamine. Gupta et al. (2011) investigated whether the ability of 
ketamine to increase the duration of opioid-induced effects could be related to the 
modulation of opioid-induced signalling. The authors found that, in a cell culture model, 
ketamine increases the effectiveness of opioid-induced signalling by enhancing the level of 
opioid-induced ERK1/2 phosphorylation. Ketamine also delays the desensitisation and 
improves the resensitisation of ERK1/2 signalling. These effects were observed in 
heterologous cells expressing MOR, suggesting a non-NMDA receptor-mediated action of 
ketamine (Gupta et al., 2011). The authors concluded that the overall effect of ketamine 
appears to be keeping opioid-induced ERK1/2 signalling active for a longer time period, 
and this could account for the observed effects of ketamine on the duration of opioid-
induced analgesia. However, these data were obtained from in vitro experiments, and the 
link with analgesia is not clearly understood. Data provided from in vivo studies could 
contribute to improve the understanding of opioid-induced analgesia and its potentiation by 
ketamine.  

3.2.2 Local anaesthetics 

Systemic or topical administration of lidocaine and other local anaesthetics reduce 
hypersensitivity states induced by both acute inflammation and peripheral nerve injury in 
animals and brings significant relief in some patients with neuropathic pain syndromes 
(Mao & Chen, 2000; Ma et al., 2003; Gu et al., 2008; Fleming & O’Connor, 2009; Suter et al., 
2009; Buchanan& MacIvor, 2010; Suzuki et al., 2011). 

The analgesic effect of lidocaine in neuropathic pain can be partially explained by its ability to 
attenuate MAPK activation. Intrathecal injection of lidocaine in rats with chronic constriction 
injury suppressed the phosphorylation of p38 MAPK in the activated microglia in the spinal 
cord (Gu et al., 2008). In ATP-activated cultured rat microglia, lidocaine inhibited p38 MAPK 
activation and attenuated the production of proinflammatory cytokines, including TNF-ǂ, IL-

1 and IL-6 (Su et al., 2010). Furthermore, lidocaine significantly inhibited LPS-induced Toll-
like receptor 4, NF-κB, ERK and p38 MAPK activation, but not JNK activation in LPS-
stimulated murine macrophages (Lee et al., 2008). 

Spared nerve injury (SNI) induces mechanical sensitisation and p38 MAPK activation in spinal 

microglia. Bupivacaine microspheres induced a complete sensory and motor blockade and 

significantly inhibited p38 MAPK activation and microglial proliferation in the spinal cords of 

rats (Suter et al., 2009). Carrageenan-induced hind paw inflammation and sensitisation triggers 

phosphorylation of spinal p38 MAPK and enhances TNF and IL-1 production in the bilateral 

DRGs and spinal cord. Although bupivacaine inhibits oedema, hyperalgesia and the 

carrageenan-induced production of systemic cytokines (Beloeil et al., 2006a; Combettes et al., 

2010), the inhibitory effects of bupivacaine on the expression of cytokines or phosphorylated 

p38 MAPK in spinal cord or DRGs have not been verified (Beloeil et al., 2006b). 
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ERK activation as a potential target for bupivacaine antinociception was also investigated. 
The activation of both ionotropic (AMPA, NMDA, TRPV1) and metabotropic (NK-1, 
bradykinin 2 receptor, mGluR) receptors results in ERK phosphorylation in superficial 
dorsal horn neurons in rats. Bupivacaine blocked ionotropic but not metabotropic, receptor–
induced ERK activation by apparently blocking Ca2+ influx through the plasma membrane 
in the spinal cord (Yanagidate & Strichartz, 2006). 

Taken together, the inhibition of MAPK activation by general and local anaesthetics seems 
to represent a common and important pathway to at least partially explain the mechanism 
of analgesic action exerted by these drugs through ion influx inhibition. 

3.3 Antidepressants 

Selected antidepressants suppress pain through diverse mechanisms and are now 

considered as an essential component of the therapeutic strategy for treatment of many 

types of persistent pain. Their main mechanism of action involves reinforcement of the 

descending inhibitory pathways by increasing the amount of norepinephrine and serotonin 

in the synaptic cleft at both the supraspinal and spinal levels. Based on this, tricyclic 

antidepressants (TCAs) are widely used for treating chronic pain, such as neuropathic and 

inflammatory pain. Intrathecal (i.t.) co-infusion of amitriptyline with morphine not only 

attenuates the development of morphine tolerance but also preserves its antinociceptive 

efficacy (Tai et al., 2006). Tai et al. (2007) showed that amitriptyline pretreatment reverses 

the spinal cord PKA and PKC upregulation and preserves morphine’s antinociceptive effect 

in morphine-tolerant rats submitted to thermal behaviour test; this reversal may occur via 

preventing the up-regulation of PKA and PKC protein expression. It results in the 

trafficking of glutamate transporters from the cytosol to the plasma membrane of glial cells, 

thus reducing the excitatory amino acid (EAA) concentration in the cerebrospinal fluid (CSF) 

spinal cord by the morphine challenge. This study suggested that amitriptyline is a useful 

analgesic adjuvant in the treatment of patients who need long-term opioid administration 

for pain relief.  

In addition to the traditionally used TCAs, such as amitriptyline, selective serotonin 

reuptake inhibitors (SSRIs) and mixed monoamine uptake inhibitors are also used as a first-

line treatment for managing pain syndromes. As mentioned above, voltage-gated sodium 

channels (VGSCs) are subject to modulation by G protein-coupled receptor signalling 

cascades involving PKA- and PKC-mediated phosphorylation. Depending on the neuron 

type and its anatomical location, phosphorylation of the VGSCs by PKC may facilitate slow 

inactivation (Cantrell and Catterall, 2001). Activating the 5-HT2C subtype of serotonin 

receptors in prefrontal cortex neurons results in a negative shift in the voltage-dependence 

of fast inactivation accompanied with a reduction of the peak current due to a PKC-

mediated phosphorylation process (Carr et al., 2002). Concurrent phosphorylation by PKA 

seems necessary for the maximal current reduction (Cantrell et al., 2002). These mechanisms 

can be activated by various neurotransmitters including serotonin (Cantrell and Catterall, 

2001). Because SSRIs increase the extracellular concentration of serotonin it is logical that 

they would indirectly modulate sodium channels in the central nervous system. This action 

mediated by increased serotonin and, PKA and PKC activity, could account for the analgesic 

effect of SSRIs.  
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Thán et al. (2007) studied the pharmacological interaction between SSRIs and sodium 

channel blocking agents such as lamotrigine. They examined the interaction of VGSCs 

blockers and SSRIs at the level of spinal segmental neurotransmission in the rat hemisected 

spinal cord model. The reflex inhibitory action of VGSCs blocker was markedly enhanced 

when SSRI compounds were co-applied; and it was found serotonin receptors and PKC 

involvement in the modulation of sodium channel function (Thán et al., 2007). 

In conclusion, it seems that antidepressants exert analgesic effects by a mechanism involving 

serotonin, PKA and PKC activation, and modulation of VGSCs. Understanding the PK 

dynamics in these processes would be key to improve pain management. 

3.4 PKG signalling and pain control 

As described in section 1, the activation of signalling pathways that are dependent on PKA, 

PKC and MAPKs is important for the sensitisation of nociceptors and pain processing. The 

PKG pathway, in turn, is related to the nitric oxide (NO)/cGMP/PKG/ATP-sensitive K+ 

channel pathway, which plays an important role in peripheral antinociception (Rodrigues & 

Duarte, 2000; Sachs et al., 2004).  

The relationship between the NO/cGMP pathway and peripheral antinociception was first 

demonstrated by Ferreira and co-workers (Durate et al., 1990; Ferreira et al., 1991). They 

showed that the antinociceptive effect of acetylcholine and morphine was blocked by a 

guanylyl cyclase inhibitor and an NO synthase inhibitor, and was potentiated by a specific 

cGMP phosphodiesterase inhibitor. Moreover, the antinociception achieved with these 

drugs was mimicked by NO donors such as sodium nitroprusside. The involvement of this 

pathway has also been demonstrated for other analgesics, such as dipyrone (Duarte et al., 

1992), diclofenac (Tonussi et al., 1994), and some antinociceptive agents, such as Crotalus 

durissus terrificus snake-venom (Picolo et al., 2000), the potent κ-opioid receptor agonist 

bremazocine (Amarante & Duarte, 2002), xylazine (Romero & Duarte, 2009), the 

cannabinoid receptor agonist anandamida (Reis et al., 2009) and ketamine (Romero et al., 

2011). In agreement with in vivo studies, data from electrophysiological experiments 

studying inflammatory sensitisation showed that capsaicin-induced elevations in 

intracellular Ca2+ levels of rat sensory neurons lead to an enhanced production of cGMP via 

the NO pathway. The elevated cGMP levels and the subsequent activation of PKG appear to 

inactivate the sensitisation, confirming the important regulatory role of this kinase in 

reversing the neuronal sensitisation (Lopshire & Nicol, 1997). 

In addition to studies on the mechanism of antinociceptive action of analgesics, Duarte and 

co-workers showed that the ability of morphine and dipyrone to induce peripheral 

antinociception is dependent on the activation of ATP-sensitive K+ channels (Rodrigues & 

Duarte, 2000). cGMP can directly or indirectly (via PKG stimulation) modulate the activity 

of ion channels. PKG is a protein kinase that is stimulated selectively but not exclusively by 

cGMP. Once stimulated, PKG inhibits phospholipase C activity, stimulates Ca2+-ATPase 

activity, inhibits inositol 1,4,5-triphosphate, inhibits Ca2+ channels, and/or stimulates K+ 

channels activity (Cury et al., 2011). Furthermore, Sachs et al. (2004) demonstrated that the 

antinociceptive effect of dipyrone on persistent inflammatory sensitisation is dependent on 

the PKG activation and its modulation of ATP-sensitive K+ channels.  
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Taken together, these findings suggest the relevant role of PKG as an intermediate between 

cGMP generation and the opening of ATP-sensitive K+ channels. The activation of this 

modulatory pathway may be an interesting target for new drug development.  

4. Conclusions: A perspective of promising drug targets 

In this section, protein kinases will be viewed as targets for pain control drug development. 
Several pre-clinical and clinical trials will be reviewed, focusing on the effectiveness and 
adverse effects of such drugs. 

The genomic analysis of the eukaryotic protein kinase superfamily together with drug 
design approaches such as the bioisosteric replacement of pharmacophoric groups of lead 
compounds and 3D-quantitative structure-activity relationship analysis provide several new 
chemical entities to be tested and developed as drug candidates.  

The continuous progress in protein structure determination and improved resolution allows 
the identification of pharmacological targets. The experimental results from genetically 
modified animals support new hypotheses and help to validate new concepts to better 
understand the pathological genesis and natural processes of our body. 

Such progress in medicinal chemistry, biochemistry and pharmacology paradoxically leads to 
poor results in terms of new pharmaceutical entities and therapeutics. The pharmaceutical 
innovation decrease in recent decades is due to many aspects that are beyond the scope of this 
chapter. As targets of pharmaceutics, protein kinases play an important role in this history, 
providing several new therapeutic cancer targets. Drug discovery companies have targeted 
protein kinase inhibitors, which have led to billion dollar merges and a new branch of research 
and development that spread beyond the boundaries of cancer therapeutics (Garber, 2003). 

At the beginning of the second decade of the 21st century, there are synthetic and medicinal 

chemistry service companies with strong backgrounds in kinase targets and kinase inhibitor 

drug discovery; these companies can develop new compounds on demand. There are 

sixteen pharmaceuticals actually licensed as protein kinase inhibitors, mainly to treat 

different cancers. The first drug, Trastuzumab, was licensed in 1998; this drug is a 

monoclonal antibody targeting membrane receptors that activates the MAPK pathway as 

well as the PI3 Kinase/AKT pathways. After this initial drug, many small molecules 

followed, targeting kinases as mechanism of action, mainly as ATP competitors. 

The International Federation of Pharmaceutical Manufacturers & Associations has listed in 

its Clinical Trials Portal three entries for clinical trials focusing on pain and protein kinases. 

Two of these trials involve p38 MAPK inhibitors from a large pharmaceutical company and 

are testing for neuropathic pain following nerve trauma and from lumbosacral 

radiculopathy. The third trial involves tyrosine kinase (TrkA) receptor expression in 

children with retrosternal pain. 

Experimental evidence suggests that p38 MAPK is activated in spinal microglia after nerve 
injury and contributes to neuropathic pain development and maintenance (Ji & Suter, 2007). 
p38 MAPK phosphorylates targets that transduce cellular signals to molecules and 
transcription factors that are involved in regulating the biosynthesis of inflammatory 
cytokines such as IL-1 and TNF-ǂ. The inhibitor dilmapimod was associated with a 
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significant reduction in pain intensity in patients with neuropathic pain following nerve 
injury (Anand et al., 2011). The clinical efficacy of p38 MAPK inhibitors in acute pain was 
also demonstrated in an assay of acute postsurgical dental pain; these inhibitors increased 
the time to rescue medication and decreased pain intensity when compared with the 
placebo group (Tong et al. 2011). 

Despite these clinical assays that are directly associated with pain, many other clinical and 
pre-clinical studies have some degree of relevance when pain management is the goal. The 
action of different protein kinases inhibitors in cancer, rheumatoid arthritis, postsurgical 
conditions, diabetes and so forth has significant impact on decreasing pain in subjects 
suffering from these pathologies. 

In addition to these efforts, one long-sought goal is the development of inhibitors of PKC 
isoforms because this family of protein kinases is involved in the cellular signalling of 
nociception, anxiety and cognition (Van Kolen et al., 2008). Non-isoform-specific PKC 
inhibitors have proven to be too toxic for in vivo use. PKCε is the primary target for drug 
design. This isoform is activated during nerve sensitisation and phosphorylates ion channels 
in the peripheral nervous system such as TRPV-1, and N-type voltage-dependent calcium 
channels (VDCCs) in isolectin B4-positive nociceptors; in addition, it mediates interplay 
between other kinases that are important to nociceptor function, such as PKA and MAPK 
(Hucho et al., 2005). There are no specific ATP-binding competitors for PKCε. There are 
other compounds that target alternative domains, such as the pseudosubstrate sequence, 
which is responsible for keeping the kinase in an inactivate state. The lipid-binding, cellular 
localisation and actin-binding domains are also valid targets. The main goal is to develop 
isoform-specific inhibitors among the ten known isozymes and to provide tissue specificity 
because cardiac-specific PKCε inhibition blocks norepinephrine-mediated regulation of 
heart contraction (Johnson et al., 1996). 

The pharmaceutical paradigm of “new targets for old drugs”, where known medications are 
employed in new pathologies as an innovation strategy to keep new products flowing to the 
market also applies to protein kinases and pain control because many drugs utilised for 
chronic and neuropathic pain management, such as antidepressants and anaesthetics, 
depend on protein kinases for their mechanisms of action.  

New lead drugs are also being proposed; these drugs utilise molecular hybridisation and 
bioisosteric replacement of pharmacophoric groups, where different bioactive molecular 
moieties of mechanistically diverse drugs are fused, giving birth to new chemical entities 
with dual activity profiles (Brando Lima et al., 2011) that incorporate protein kinase 
inhibition with another type of biological activity. The challenge of developing new 
molecular approaches to create drugs that manage pain is great, and as seen throughout this 
chapter, protein kinases are an important aspect of this problem. 
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