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1. Introduction 

Invisibility or cloaking is an old myth of humanity that must date probably from the time 

when the success in hunting or war would depend on the ability to hide as much as 

possible. This invisibility, after being a prolific subject for writers and filmmakers, has 

become almost a reality in 2006 with the first practical realization of an electromagnetic 

invisibility cloak.  

The invariance of Maxwell's equations in the geometric transformation of coordinates has 

become a hot topic that year with the first proposal of a cylindrical invisibility cloak by J. B. 

Pendry and U. Leonhardt. The experimental fabrication and characterization of the first 

cloak at microwave frequencies have shown that this tool is very effective. After this 

realization, several applications of this transformation have been proposed for the design of 

concentrators, waveguides, transitions and bends, directional antennas, and even 

electromagnetic wormholes. 

This space transformation is therefore a powerful tool for the design of devices or 
components with special properties difficult to obtain from conventional materials and 
geometries. Theoretically, the method of coordinate transformation involves the generation 
of a new space derived from an original space where the solutions of Maxwell's equations 
are known. 

The first step is to imagine an initial space and a final space with their topological properties 
and link them through an analytic transformation. Most of this work is based on a 
continuous transformation that produces a final space with electromagnetic parameters 
often complex, heterogeneous and anisotropic. 

The challenge is then to effectively design this new space. To make the fabrication easier, 
simplified parameters were proposed in the early works, with the disadvantage of an 
impedance mismatch between the material and its environment. More recently, a 
transformation applied to discrete multi-layer structures has been proposed to further 
simplify the realization. In this chapter, we present the principles and main applications 
envisaged for this transformation. 
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2. Space coordinate transformation 

2.1 Principle 

In a letter of 1662 Pierre de Fermat established the principle that governs the geometrical 

optics [Tannery, 1891]. The light follows a stationary optical path between two points. Most 

of the time, it follows the shortest path. In some cases, it takes the longer one. The optical 

path is defined by the equation 1, where n is the refractive index of the space, which may 

depend on the spatial coordinates, and dl a small element of distance: 

 s ndl=   (1) 

If n varies with the position in space the path followed by the light can be bent instead of 
following a straight line. This occurs, for example over a hot road in summer when the 
index of the air layers above the road varies with the temperature and the height over the 
road. In this case we can observe a curvature of the path followed by the sunlight that 
gives the impression that the road is covered with water. Figure 1 shows a schematic of 
the path of light when the space is not distorted and when this space is distorted (Figure 
1a and b). 

 

         (a)    (b)         (c) 

Fig. 1. (a) Propagation of a light beam in a non distorted space. (b) propagation of the same 

ray of light in a distorted space. (c) isolation of a region of space by deforming the 

propagation of light rays around this region. 

J. Pendry and U. Leonhardt noted both in their articles published in 2006, the invariance of 
Maxwell's equations in such a deformed space [Pendry, 2006, Leonhardt, 2006]. J. Pendry 
has concluded that it was possible to isolate a zone of space by bending light rays around 
this area (Figure 1c). 

2.2 Implementation 

The implementation of this transformation is relatively simple. If we consider a Cartesian 

space where each point is identified by three coordinates (x, y, z), we can define a new space 

where each point will be identified by three new coordinates (u, v, w). These three new 

coordinates are based on the original ones. 
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 u(x,y, z),v(x,y, z), and w(x,y, z) (2) 

In this case, we use normalized values of the electromagnetic parameters ε and µ that we 

will define in the new space: 
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The conventionnal relations of electromagnetics are conserved in the new space : 

 0B Hµ µ′ ′ ′=
 

   and      0E Eε ε ′ ′=
 

  (5) 

In these relations, µ’ and ε’ are tensors whose components depend on the spatial coordinates 

u, v et w. Generally, the new space is anisotropic. 

3. Cloaking 

The first application of the space coordinate transformation will be the design and the 

characterization of different electromagnetic invisibility cloaks [2-6].  

3.1 Principle 

In the case of the first invisibility cloak proposed by Smith and Pendry [Pendry, 2006], the 

transformation of space concerned a cylindrical space of radius b which is transformed into 

an annular space between radii a and b (Figure 2). The initial points in space are identified 

by coordinates r, θ and z. Those of the transformed space are identified by r ', θ' and z' in 

cylindrical coordinates. Both spaces are assumed infinite in the directions z and z ', which 

are combined. 

The transformation is defined by a relatively simple set of equations (6).  

 
b a

r r a
b

−
′ = +  ; θ θ′ =  ; z’=z  (6) 

After transformation we obtain : 

 
r r
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−
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z z
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  (7) 

The three parameters obtained depend on the distance r and on the geometric parameters of 

the original and transformed spaces. These are the electromagnetic parameters of the 
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transformed space. Note that the permeability and permittivity have here the same 

expressions. This guarantees the matching of the wave impedance of the transformed 

medium with the initial medium. 

 

Fig. 2. Initial circular space of radius b, transformed to a ring between a and b. 

3.2 Realization of the first microwave cloak 

The practical realization of the material forming the transformed space is a difficult task 

since the three parameters vary simultaneously [Schurig, 2006]. To simplify this material, 

one solution is to choose a polarization, namely the transverse magnetic (TM) polarization, 

with the electric field E parallel to the axis z. In this case, only the parameters 

,   et z r θε µ µ are important. In this case, a simple set of parameters is possible provided it 

meets the propagation equation. The next set is one of the possibilities: 

 

2

z

b

b a
ε

 
=  

− 
; 

2

r

r a

r
µ

− 
=  
 

; 1θµ =  (8) 

In these three parameters, two are fixed and one varies; the radial permeability ur. This 

material can be realized by the metamaterial concept [Soukoulis, 2011]. Figure 3a shows the 

basic pattern of the material and the geometric values used with the corresponding values of 

ur. The permittivity εz is realized using a conventional dielectric. 

Figure 3c shows a part of the realized circuit with, in the insert, the evolution of the three 

parameters µr, µθ and εz. The shape of the elementary patterns depends on the layer of 

material so that the permeability µr also varies and follows the red curve in the figure inset. 

Figure 4(a) and 4(b) shows the simulation of the cloak with respectively the theoretical 

parameters of equation 13 and the reduced parameters of equation 14. Figure 4(c) presents 

the measured electric field cartography of the central bare metallic cylinder where we can 

observe strong reflections and shadows compared to the case of very low reflections when 

the cloak is applied around the cylinder (Figure 4(d)).  
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(a)      (b) 

 

(c) 

Fig. 3. (a) Elementary cell of the metamaterial. (b) values of the parameters. (c) Photography 

of the prototype. The insert shows the variations of µr, µθ and εz. 

Figures 4b and 4d are quite similar and clearly show the influence of electromagnetic 
radiation on the cloak with in particular the cloaking of the central metallic cylinder by the 
electromagnetic energy. Both figures also illustrate the limits of the exercise as the use of a 
reduced set of parameters causes reflection of part of the incident energy, and therefore an 
imperfect reconstruction of the wave after the cloak. 
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Fig. 4. (a) Simulation of the theoretical cloak. (b) simulation of the cloak with reduced 
parameters. (c) simulation of the central metallic cylinder. (d) E field measurement. 

3.3 Others realizations 

The experimental verification of this first cloak has excited the imagination of researchers 
who have tried to extend to other areas in optics but also in acoustics. 

3.3.1 Cloak insensitive to the polarization 

In the field of electromagnetics, few achievements have been proposed and tested 
experimentally. But there are some exceptions [Guven, 2008, Kante, 2008, Kante, 2009]. In 
reference [Guven, 2008], S. Tretyakov and his team tried to design a cloak based on spiral 
type resonators and the principle of homogenization. These coils act as a combination of an 
electric and a magnetic dipole. They can therefore meet the criteria to realize the material of 
the cloak. Fig. 5a shows the unit spiral resonator cell used by S. Tretyakov and Fig. 5b 
illustrates the distribution of the resonators in the cloak. The realization of the cloak is 
simpler than that of Smith and is supposed to work for both TM and TE polarizations of the 
incident wave with the disadvantage of its large size compared to the cloaked object. 

3.3.2 Cloak based on the electric resonance of the SRR 

In the references [Kante, 2008, Kante, 2009] the principle is completely different. Instead of 
using the magnetic resonance of the resonators of Pendry, the authors use the electrical 
resonance of these resonators. Smith’s cloak works for a TM polarization (E-field vertical 
and H-field in the plane of the cloak). The new cloak works with a TE polarized wave (H-
field vertical and E-field in the plane of the cape). For this non-magnetic cloak, the set of 
parameters is as follows: 

 
1zµ = ,  2( )
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b a
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−
,  
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b a r
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−
=

−
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(a) (b)  

Fig. 5. (a) Spiral coil used by S. Tretyakov in his cloak. (b) schematic view of the cloak. 

This reduced set of parameters holds for a polarization perpendicular to the cylinder axis 
and satisfies the dispersion relation, but not the equality of the wave impedance between the 
vacuum and the cloak. A non-zero reflection is then predictable. In our implementation, the 
radial permittivity profile is designed using the electric response of SRRs by locally 
changing the dimension of resonators, actually only the SRRs gap size. The typical unit cell 
and the effective parameters of discrete SRRs at the design frequency (11 GHz) are 
presented in Fig. 6. While SRRs (embedded in the host medium) are used to achieve the 
radial variation of the permittivity function, the azimuthal permittivity is mainly 
implemented by the permittivity of the host medium itself since SRRs have no electric 
response in this direction. The realized cloak is composed of 15700 elementary SRRs. The 
cylindrical shell is divided in 20 annular regions of equal thickness (lr=4.5 mm) with a linear 
radial variation of the permittivity from 0 to 1 (from the inner to the outer boundary of the 
cloak) and 157 stripes separated by an angle of about 2.3° (Fig.7 (a)). The inner and outer 
radius of the cloak are a=6 cm, b=15 cm and the cloak height is 2.25 cm corresponding to 
5×lz i.e. 5 SRR layers. For this set of parameters the reflection coefficient Rp is very weak, 
equal to 0.0625. The SRRs within a given annular region are identical and designed to have 
the proper local radial permittivity. The host medium, a commercially available resin is an 
important design component (closely linked to εθ). Its permittivity has been measured and 
found to be equal to εresin= 2.75. The SRRs have been printed on a dielectric substrate (as 
seen in the picture of Fig.1 (c)) with a permittivity close to the resin’s one. We chose RO3003 
with εsubstrate= 3±0.04 and a dielectric loss tangent at 11 GHz of about 0.0013. The 157 stripes 
were arranged in a moulded water-tight polymeric matrix designed accordingly (Fig. 7 (a)).  

In contrast with previously reported structure, the measurements are performed in free 
space and not in a waveguide configuration(Fig. 7b). A loop antenna, consisting of a circular 
coil made of the inner conductor of a SMA cable has been designed to map the magnetic 
field (Hz). The magnetic field is output from the X-band horn antenna. Both antennas are 
connected to an Agilent 8722ES Vectorial Network Analyzer. The loop antenna position can 
be controlled via an automated Labview program over a surface of 40 cm*40 cm and getting 
for each spatial position of the loop antenna the complex (magnitude and phase) scattering 
parameters. The experimental setup can be seen on Fig. 7(b). Since the resin fills the  
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Fig. 6. (a) Unit cell. (b) The dimensions of a typical square SRR are: L=3.6 mm, w=0.3 mm 

and copper thickness t=35 µm. The SRRs gap g and lθi, are the only varying parameters. lθi 

linearly decreases from the outer to the inner boundary of the cloak. 

(a) 

 

(b) 

Fig. 7. (a) Realized metamaterial cloaking device (b) Picture of a portion of the experimental 

setup with the loop antenna mapping the magnetic field at the bottom surface of the cloak. 

structure, it is difficult to access the internal field. Instead, the bottom surface of the cloak 

(see Fig. 8d) has been scanned taking profit of the continuity of field at this boundary in 

quasi-contact mode. The first measurement maps the magnetic field of the free space 

radiation from the horn antenna (Fig. 8(a)). The second and third measurements use a 

metallic cylinder alone (diameter 12 cm) (Fig. 8(b)) and surrounded with the cloak (outer 

diameter 30 cm) (Fig. 8(d)). The results are presented in Fig. 8 (real part of the complex 

transmission). The quasi-cylindrical wave output from the horn antenna is nicely resolved in 

our measurement (Fig. 8(a)). In presence of the metallic cylinder, the scattering and 

shadowing effects can be clearly observed in Fig. 8(b) as well as interferences between the 
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incident and reflected beams. Fig. 8(d) shows that in the presence of the cloak, the 

shadowing effect of the metallic cylinder is suppressed and the wave fronts are maintained 

thus demonstrating the cloaking effect. For comparison, simulation result using commercial 

finite element code (Comsol Multiphysics) for a cloak with the reduced parameters of 

equations [Kante, 2009]. is reported in Fig. 8(c). The fact that a non-zero field is detected in 

the central region of Fig. 8(b) and 8(d) results from radiation leakage below the metallic 

cylinder in our measurements. More importantly, the bending and redirection of quasi-

cylindrical wave fronts inside the cloak can be nicely observed as a change in the radius of 

the horn antenna waves fronts in Fig. 8(d). 

 

Fig. 8. Real part of the measured magnetic field output from the horn antenna in free space 

(a) with the metallic cylinder alone (b) and with the cloak surrounding the metallic cylinder 

(d). Finite element simulation exciting the cloak by the appropriate optical excitation 

(Comsol Multiphysics) with the reduced set of parameters presented in equations (1) is 

reported for comparison (c). In all cases, the 11 GHz wave travels from bottom to top. 

3.4 Optical cloaks 

3.4.1 Propositions of V. Shalaev 

In the reference [Cai, 2008], V. Shalaev proposes two possible achievements of cloaks in the 
infrared and visible domains with a TE and TM polarization (figure 9). 
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Fig. 9. Proposition of an invisibility cloak for a TE polarization (a) and a TM one (b). 

The first one corresponds to a TE polarization. For this polarization, the main parameters are: 
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Instead for the TM polarization the main parameters are: 
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In these expressions g(r) is the relation between the intial space and the final one. For 

example in the case of a cylindrical cloak : 

 r g(r ) (1 a / b)r a= ′ = − ′ +  (12) 

In the case of a TM polarization, where ε must vary between the inside and outside of the 

cloak, Shalaev proposes to use an effective permittivity given by Wiener relations, varying 

between the permittivity of a metal (in this case silver or silicon carbide) and that of a 

dielectric, which can vary with the wavelength of work (like silica or barium fluoride) 

(Figure 9(a)). 

For the TE polarization, where the permeability must vary, the material used can be silicon 

carbide with the shape of rods embedded in air, which seems to be a bit unrealistic at visible 

wavelengths. However no practical realization has been proposed. 

3.4.2 Other optical cloak for TE polarization 

In reference [Kante, 2008] another proposal is to use the electromagnetic properties of metal 

cut wires. This proposal concerns only the TE polarization, and is directly correlated to the 

proposed cloak in the microwave region [10] by replacing the resonators of Pendry by gold 

nanowires.  
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Indeed, the magnetic resonators of Pendry and the nanowires are equivalent for a TE 

polarized incident wave, where the electric field is parallel to the long side of the 

resonator or to the wire. The invisibility cloak that was made in the microwave domain 

and that operates at 11GHz can be implemented in optics by replacing the resonators used 

in microwave by gold nanowires (Fig. 10). This figure shows a detail of the cape made 

using the magnetic resonators of Pendry (Fig. 10 (a)), the simulation of the cloak at 1.5 

microns (Fig. 10 (b)), a gold nanowire for a TE polarization of the incident wave (Fig. 10 

(c)), the equivalent parameters of the nanowire around its first resonance frequency (Fig. 

10 (d)), and a schematic view of the cape in which the resonators are replaced by gold 

nanowires. 

3.5 Cloak with arbitrary shapes 

The principles used in the cylindrical cloaks described above can be generalized to a variety 

of different shapes. The figure below is taken from reference [Nicolet, 2008] where a Fourier 

expansion is used to access to convex shapes. Reference [Rahm, 2008] proposes a square 

cloak (Figure 12a), which has been generalized to a polygonal cloak in [Tichit, 2008] (Figure 

12b), then to an elliptical one (Figure 12c). 

3.6 Broadband cloak 

The major disadvantages of the first invisibility cloak were the narrow frequency-operating 

band and the extreme values of electromagnetic parameters needed. Various attempts have 

then been proposed to achieve broadband cloaks, or to design cloaks with more realistic 

parameter values. The most amazing proposition was suggested by U. Leonhardt who 

proposed to benefit from a non-Euclidean geometry to achieve the broadband [Leonhardt, 

2009]. A. V. Kildishev also proposed an approximate solution to achieve a broadband cloak 

[Kildishev, 2008]. Following the preceding reference, we show the transition from a two-

dimensional "conventional" cloak (Figure 13a) to a non-Euclidean one, namely a sphere 

replacing a single circle (Figure 13b). In the broadband cloak proposed by Shalaev, the 

principle is simple: light follows a different path depending on the operating frequency 

(Figure 13c).  

Recently other concepts of broadband invisibility cloaks based on the use of broadband non-

resonant metamaterials have been proposed [Qiu, 2009, Feng, 2011] (figure 14). These recent 

works are based on the use of materials made of broadband dielectric multilayer where the 

electromagnetic parameters are extracted using the relations of Wiener on one-dimensional 

multi-layer materials. Figure 14 shows an example of a dielectric multi-layer structure used 

in a cylindrical invisibility cloak. Each concentric layer is constituted by a sub-layer of 

permittivity εA and a sub-layer of permittivity εB and η is the thicknesses ratio of the two 

layers. The effective permittivity parameters of the layer are given by: 
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(a) 

(b) 

 

(c) 

 

 
 
 
 

 

(e) 
 

 

(d) 

Fig. 10. (a) Cloak made of resonators of Pendry for the TE polarization of the incident field. 

(b) Simulation of this cloak at 1.5µm. (c) gold nanowire in TE polarization. (d) Variation of 

the effective permittivity and permeability of the wire as a function of frequency for a 

nanowire with 300nm length and a width and height of 50 nm on silicon. (e) Portion of the 

infra-red cloak made by a juxtaposition of gold nanowires on silicon. 
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Fig. 11. Electric field radiated by a point source illuminating a cloak whose the shape is 
obtained by Fourier expansion of a simpler one. 

 
(a) 

  
 

(b) 

 
(c) 

Fig. 12. (a) Squared invisibility cloak [Rahm, 2008]. (b) polygonal cloak [Tichit, 2008]. (c) 
elliptical cloak [Tichit, 2008]. 

source 

cloak 
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(a)

 
(b) 

 
(c)

Fig. 13. (a) Classical cylindrical cloak. (b) Cloak in a non-Euclidian space. (c) Principle of the 

broadband cloak proposed by Shalaev : the light path changes following the frequency. 

 

   (a)                (b) 

Fig. 14. (a) TM plane wave incident on a PEC cylinder surrounded by concentric multilayers. 

The inner and outer radii of the shell are a and b, respectively. (b) The total magnetic field 

distribution for an optimized six-layer cloak.  

A TM plane wave is incident on a PEC cylinder surrounded by concentric multilayers as 

shown in Fig. 14a. The inner and outer radii of the shell are a and b, respectively. The total 

magnetic field distribution for an optimized six-layer cloak is presented in Fig. 14b. The 
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main difficulty in this kind of design is the realization of permittivity lower than 1. This 2D 

approach was also generalized to a 3D cloak [Qiu, 2009]. 

3.7 Acoustic cloak 

The transposition of the concept of electromagnetic cloak in acoustics has been proposed by 

several research laboratories in 2007 and 2008 [Torrent, 2007, Chen, 2007, Fahrat, 2008, 

Cummer, 2008], and particularly by the Fresnel Institute at University of Marseille. The 

variables considered here are the scalar pressure p, the fluid velocity, the density ρ0, the 

tensor density and modulus of the fluid density ┣. As for the electromagnetic cloak, we have 

a variation of the above parameters in spherical coordinates as in the set of equations (13) 

where ρr and ρφ are the components in the plane of the relative bulk density ρ, relative to ρ0. 
This example shows the versatility of the concept that can be applied to all media where a 

wave can propagate. 

 

(a) 

 
(b) 
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(c)  

Fig. 15. (a) The principle of acoustic cloak proposed in [Cummer, 2008]. (b) Real part of the 
fluid pressure around the object. (c) The cloak proposed in [Fahrat, 2009]. 
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4. Others applications of the space coordinate transformation 

4.1 Antennas 

The space coordinate transformation was proposed initially by J. Pendry and U. Leonhardt 
to design invisibility cloaks. This transformation of space was then used to design new 
devices including microwave antennas. The principle of these antennas is as follows: we 
define an initial space in which there is an emitter and a transformed space connected by a 
geometric transformation to the original space. The transformed space is realized to control 
the field emitted outside by the antenna. The new coordinates of the transformed space x ', 
y' and z 'are expressed in terms of x, y, z of the initial space 

 x’=x’(x,y, z), y’=y’(x,y, z), z’=z ‘(x,y, z)  (14) 

Then we calculate the electromagnetic parameters of the transformed space  

 
1(det )

T

J J Jε ε −′ =
 

1(det )
T

J J Jµ µ −′ =  (15) 

where ε  is the permittivity tensor, µ  the permeability tensor and J  the Jacobian matrix 

defined by 
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In the initial space, an antenna emits a certain type of radiation. This radiation is then 

modified by the transformation of the space in which it propagates. Several examples have 

been proposed in recent papers [Kong,2007, Tichit, 2009, Tichit, 2011, Rui, 2011, Cui 2011]. 

4.1.1 1
st

 example: Parabolic transformed antenna 

An example of a directional antenna is given below [Kong, 2007], where a parabolic space is 

transformed into a rectangular one (Figure 16a). In this example we are in TM polarization. 

 

(a) 

 

(b) 

Fig. 16. (a) Initial parabolic space and transformed rectangular space. (b) Variation of the 

electromagnetic parameters µx, µy et εz of the transformed space. 

Figure 16b shows the variations of the calculated electromagnetic parameters. Figure 17 

shows the radiation of a horn in the transformed space. In this example, the benefit of the 

transformation of space is not real in the sense that the obtained antenna has almost the 

same size as the original antenna. Moreover, in this reference, the antenna has not been 
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realized and the far-field radiation patterns have not been presented. However, space 

coordinate transformation can be used to design antennas more compact than conventional 

ones. This is the case of the antenna proposed theoretically in reference 23 and 

experimentally measured in [Tichit, 2009]. 

 
(a) 

  
(b) 

Fig. 17. (a) Horn antenna emitting in the parabolic space. (b) horn antenna emitting in the 
transformed space. In both cases the near fields are almost equivalent. 

4.1.2 2
nd

 example: Directive antenna 

The 2nd example concerns the transformation of an isotropic antenna into a directive one 
[Tichit, 2009, Tichit, 2011]. This isotropic antenna is taken as an infinite radiating wire. The 
initial space is then supposed to be the cylindrical space surrounding the wire. The 
transformed space is a rectangular one as illustrated in Figure 18. After the transformation, 
the radiating wire in the cylindrical space is then comparable to a plane source radiating in 
the rectangular space. 
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Fig. 18. Initial cylindrical space with the radiating monopole (left) and the transformed 
space (right) with the transformed plane source. 

Figure 19 shows the variations of the electromagnetic parameters εxx, εyy , and ┤zz needed to 
achieve the space transformation. The expressions of these parameters are as follows: 

0

 (x ,y ) 0 0xx
0 (x ,y ) 0  yy

0 0 (x ,y )zz

ε

ε ε ε

ε
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with 
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where d, e and L are the geometrical dimensions of the initial and transformed spaces.  

 

Fig. 19. Variations of the electromagnetic parameters of the transformed space: (a) εxx, (b) εyy , 
et (c) εzz.  

The expressions of the electromagnetic parameters vary continuously, and remain limited to 
reasonable values. Figure 20 shows the calculated magnetic field at 5, 10 and 40 GHz. The 
directivity of the antenna increases as the frequency rises. The dimensions of the antenna are 
shown in Figure 20a. One can observe that there is no reflection between the metamaterial 
and the air. 

monopole 

Plane source
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Fig. 20. Magnetic field cartography for a TM wave polarization calculated at (a) 5, (b) 10 and 
(c) 40 GHz. 

The practical realization of this antenna, however, requires a simplification of these 
parameters. One solution proposed recently is to use a discrete variation of these 
parameters. The simplification is performed with a conservation of the propagation 
equation. The following set of parameters is then obtained: 

 
1yy zzε = µ =  : 

2

xx

x

e

π
ε

 
=  
 

 (19) 

The material needed must have a variable permittivity in the direction of propagation Ox. 
The other parameters remain constant. Figure 21a shows a detail of the material used to 
make the variable permittivity, and the fabricated antenna prototype for an operation near 
10 GHz. Figure 21b shows the performances of this antenna. It can be observed that the 
radiation pattern of the antenna is not affected by the simplification and the discretization of 
the material.  

 

(a) 
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b 

Fig. 21. (a) Normalized measured radiation pattern of the antenna. (b) detail of the 
metamaterial and of the realized antenna. 

4.1.3 3
rd

 example: Broadband Fresnel antenna 

The previous antenna made use of resonant metamaterials. Then its bandwidth is inherently 
narrow. An interesting broadband operation proposal was recently presented by Y. Hao 
[Rui, 2011]. A broadband Fresnel lens can be realized using a multilayer dielectric structure. 
The permittivities of the different layers are calculated using space coordinate 
transformation. Figure 22 shows an example of such antenna. The performances are 
presented in part II of the figure. We can note the broadband characteristics of the antenna 
in IId. 

 

I 
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II 

Fig. 22. I/ Schematic showing of the transformed zone plate lens antenna. (a) 2D hyperbolic 

lens with nearly orthogonal mapping. (b) 2D flat lens with the permittivity map consisting 

of 110×20 blocks. (c) 2D flat lens with the permittivity map consisting of 22×4 blocks. (d) 3D 

transformed zone plate lens antenna. II/ The radiation patterns of the conventional 3D 

hyperbolic lens, 3D phase-correcting Fresnel lens and 3D transformed zone plate lens at (a) 

20 GHz, (b) 30 GHz, (c) 40 GHz. (d) The comparison of the bandwidth performance of 3D 

phase-correcting Fresnel lens and 3D transformed zone plate lens from 20 GHz to 45 GHz 

4.1.4 4
th

 example: Three-dimensional metamaterial lens antennas 

The proposal of T.J. Cui to realize a lens using variable index material so as to focalize the 

beam of a waveguide is also an interesting application of transformation optics [Cui, 2011]]. 

Figure 23 shows a photo of the realized prototype and the performances of this lens in X 

band. The antenna presents two main advantages: the broadband behavior of the dielectric 

and the easiness of the realization (at microwave frequencies). Indeed the index gradient is 

realized with an array of variable size closed square rings printed on a dielectric substrate. 

Remains the classical drawback of the impossibility to realize an index lower than 1. 

4.2 Circuits 

M. Rahm proposed in [Rahm, 2008] a general method to achieve an invisibility cloak. But he 

also proposed the implementation of energy concentrator. Figure 24a shows a simulation of 

such a device. In [Lin, 2008], L. Lin proposed a number of applications such as a phase 

transformer to transform a cylindrical wavefront to a plane wavefront (Figure 24b) or a 

power divider (Figure 24c). In [Huangfu, 2008], J. Huangfu proposed a method to achieve 

wave guiding without reflection at 90° bends (Figure 24d). 
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Fig. 23. (a) The 3D flat-lens antenna made of gradient index metamaterial. The aperture size 
is 9.6 cm. (b) The measured far-field radiation patterns of the 3D metamaterial flat lens 
antenna in the X band. 

Other devices were recently proposed in the domain of the optical waveguiding devices 

[Ghasemi, 2010, Liu, 2008]. The proposal in [Ghasemi, 2010] tends to answer to a main 

drawback of use of metallic metamaterials at optical frequencies which is their high losses. 

A promising approach consists in creating hybrid photonic structures in which metallic 

parts are coupled with dielectric (and almost lossless) waveguides. In this configuration, 

useful functionalities are obtained by allowing just enough light to interact with the metallic 

parts of the system. The remaining part of the energy propagates in the dielectric 

waveguide, thereby considerably mitigating the losses. Figure 25 shows a mode adapter 

designed using this approach. The mode adapter allows the transition of the energy flow 

from a large SOI ridge waveguide to a narrower one. The taper has been achieved using the 

method of transformation optics. Although the authors simply considered a 2D 

transformation, they show that this structure can effectively act upon the three dimensional 

flow of light guided by the SOI structure. 
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(a) (b)

 
(c) (d)

Fig. 24. (a) Energy concentrator proposed in the reference 12. (b) Phase Transformer between 
2 regions. (c) Power divider. (d) 90° waveguide bend without loss. 

4.3 Broadband carpet cloak 

4.3.1 Microwave broadband carpet cloak 

D. R. Smith has recently proposed a broadband cloak that can be adjusted to any object 
placed on the ground [Valentine, 2009]. This cloak allows to reconstruct the reflection of 
light incident on an object in order to make as if the object was not present. The object must 
however have dimensions small compared to the dimensions of the cloak. Figure 26a 
illustrates the operating principle of the cloak. Figure 26b gives a picture of its 
implementation and shows the pattern of the material permittivity variable used. The idea is 
to change the optical path followed by the reflected beam. The carpet cloak reconstructs the 
reflected beam as it is when no object is placed on the ground. This is clearly shown in 
Figure 26a: in I the ground reflects an incident beam without obstacle, in II the beam is 
reflected in the presence of an obstacle, in III the reflected beam consists of parallel rays 
reconstructed by the cloak covering the obstacle. 
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(d) 

Fig. 25. (a) Geometry of the mode adapter considered in this study; (b) cross-sectional view 
of the input SOI ridge waveguide; (c) cross-sectional view of the mode adapter. (d) 
Transition from the large to the narrow waveguide using a mode adapter. The y-component 
of the electric field is shown in the x-y plane located halfway through the Si slab. 

4.3.2 Optical carpet cloak 

The same principle can be applied in infrared and visible domains [Gabrielli, 2009, 

Greenleaf, 2007, Cheng, 2009]. In reference [Gabrielli, 2009], the authors present the 

realization and the characterization of a carpet cloak operating in the optical domain. Figure 

27 shows a view of the realized carpet on silicon. 
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(a) 

 

(b) 

Fig. 26. Principle of the carpet cloak: in I the ground reflects an incident beam without 

obstacle, in II the beam is reflected in the presence of an obstacle, in III the reflected beam 

consists of parallel rays reconstructed by the cloak covering the obstacle. (b) View of the 

realized carpet cloak and the metamaterial unit cell with variable permittivity used in the 

carpet. 

 

Fig. 27. Principle (a) and realization (b) of an optical carpet cloak on silicon. 

Figure 28 shows the carpet cloak operating at a wavelength of 1,540 nm, for an incident 

Gaussian beam reflected from a curved reflecting surface. Similar reflection characteristics 

can be observed when compared to a reflection on a flat surface. 
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Fig. 28. Optical carpet cloaking at a wavelength of 1,540 nm: The results for a Gaussian beam 
reflected from a flat surface (a), a curved (without a cloak) surface (b) and the same curved 
reflecting surface with a cloak (c). 

4.4 Electromagnetic wormhole and other cosmological objects 

One of the most amazing applications has been proposed by A. Greenleaf [Greenleaf, 2007]. 

He imagined to create a wormhole using electromagnetic invisibility cloak able to link two 

remote areas of space and ensures the propagation of an electromagnetic wave between 

both regions invisible from the outside. Figure 29 shows a schematic illustration of the 

wormhole where its exterior deflects the incident electromagnetic waves and a section of the 

wormhole showing a wave propagating inside. 

 

Fig. 29. (a) A schematic illustration of the wormhole whose exterior cloak deflects the 
incident electromagnetic waves. (b) a section of the wormhole showing a wave propagating 
inside. 
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(a) (b)

  
(c) 

Fig. 30. (a) Distributions of electric fields |Ez| for the designed black hole at the frequency 
of 18 GHz: The full-wave simulation result under the on-center incidence of a Gaussian 
beam. (b) The full-wave simulation result under the off-center incidence of a Gaussian beam. 
(c) Photograph of the fabricated artificial black hole based on metamaterials, which is 
composed of 60 concentric layers, with ELC structures in the core layers and I-shaped 
structures in the shell layers. 

5. Conclusion and outlooks 

The potential applications of the space coordinate transformation seem to be very various. 
The examples presented in this chapter show their usefulness, even if they are still far from 
industrial achievements. Also it appears that these applications can be transposed to any 
frequency. The conventional metamaterials used in the microwave region are metal-
dielectric structures. However metals have different present high losses at infrared and 
optical frequencies. Therefore the applicability will differ greatly between the microwave 
domain on one hand, and optical frequencies on the other. In the optical domain, the 
problem is mainly the achievement of materials with metallic patterns having sizes of about 
one-tenth of the wavelength (a few hundred nanometers) and the control of their geometry 
[Soukoulis, 2011]. The other problem is the losses of the metallic metamaterials at optical 
wavelengths. Innovative approaches have recently been proposed to solve partially this 
problem. But the problem is not completely solved. 

In the microwave field, the achievements seem easier as they involve usually inexpensive 
materials, and metallic parts of the metamaterials present low losses at these frequencies. 
But they depend strongly on the complexity of the electromagnetic parameters to achieve. In 
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the rare realizations proposed in literature, these parameters have been simplified, and often 
the impedance matching has been sacrificed to obtain a feasible material. The metamaterial 
based design encountered in this case the problem of reflection losses, and are already 
comparable to existing solutions that have proved their performances, for example in the 
field of antennas. Another difficulty is the narrow bandwidth of the metamaterials used, in 
particular those based on resonant structures of the type of split ring resonators of Pendry. 
In reality this is not really a problem, because broadband metamaterials can be realized from 
composite metamaterials [Djermoun, 2007], or by using all dielectric structures.  
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