
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000

0

Task Scheduling in Grid Environment Using
Simulated Annealing and Genetic Algorithm

Wael Abdulal1, Ahmad Jabas1, S. Ramachandram1 and Omar Al Jadaan2

1Department of Computer Science and Engineering, Osmania University
2Medical and Health Sciences University

1India
2United Arab Emirates

1. Introduction

Grid computing enables access to geographically and administratively dispersed networked
resources and delivers functionality of those resources to individual users. Grid computing
systems are about sharing computational resources, software and data at a large scale. The
main issue in grid system is to achieve high performance of grid resources. It requires
techniques to efficiently and adaptively allocate tasks and applications to available resources
in a large scale, highly heterogeneous and dynamic environment.

In order to understand grid systems, three terms are reviewed as shown below:

1. Virtualization: The Virtualization term in grids refers to seamless integration of
geographically distributed and heterogeneous systems, which enables users to use the
grid services transparently. Therefore, they should not be aware of the location of

��������	�
�

����

����

Fig. 1. Two virtual organizations are formed by combining a three real organizations

5

www.intechopen.com

2 Will-be-set-by-IN-TECH

computing resources and have to submit their service request at just one point of entry
to the grid system. Foster introduced the concept of Virtual Organization (VO) (Foster
et al., 2001). He defines VO as a “dynamic collection of multiple organizations providing
flexible, secure, coordinated resource sharing”. Figure 1 shows three actual organizations
with both computational and data resources to share across organizational boundaries.
Moreover, the same figure forms two VOs, A and B, each of them can have access
to a subset of resources in each of the organizations (Moallem, 2009). Virtualization
is a mechanism that improves the usability of grid computing systems by providing
environment customization to users.

2. Heterogeneity: The organizations that form part of VO may have different resources such
as hardware, operating system and network bandwidth. Accordingly, VO is considered as
a collection of heterogeneous resources of organizations.

3. Dynamism: In the grid system, organizations or their resources can join or leave VO
depending on their requirements or functional status.

Grid systems provide the ability to perform higher throughput computing by usage of
many networked computers to distribute process execution across a parallel infrastructure.
Nowadays, organizations around the world are utilizing grid computing in such diverse areas
as collaborative scientific research, drug discovery, financial risk analysis, product design and
3−D seismic imaging in the oil and gas industry (Dimitri et al., 2005).

Interestingly, task scheduling in grid has been paid a lot of attention over the past few
years. The important goal of task scheduling is to efficiently allocate tasks as fast as possible
to avialable resources in a global, heterogeneous and dynamic environment. Kousalya
pointed out that the grid scheduling consists of three stages: First, resource discovery
and filtering. Second, resource selection and scheduling according to certain objective.
Third, task submission. The third stage includes the file staging and cleanup (Kousalya &
Balasubramanie, 2009; 2008). High performance computing and high throughput computing
are the two different goals of grid scheduling algorithm. The main aim of the high
performance computing is to minimize the execution time of the application. Allocation of
resources to a large number of tasks in grid computing environment presents more difficulty
than in conventional computational environments.

The scheduling problem is well known NP-complete (Garey & Johnson, 1979). It is a
combinatorial optimization problem by nature. Many algorithms are proposed for task
scheduling in grid environments. In general, the existing heuristic mapping can be divided
into two categories (Jinquan et al., 2005):

First, online mode, where the scheduler is always in ready mode. Whenever a new task arrives
to the scheduler, it is immediately allocated to one of the existing resources required by that
task. Each task is considered only once for matching and scheduling.

Second, batch mode, the tasks and resources are collected and mapped at prescheduled
time. This mode takes better decision because the scheduler knows the full details of the
available tasks and resources. This chapter proposes a heuristic algorithm that falls in batch
mode Jinquan et al. (2005).

However, this chapter studies the problem of minimizing makespan, i.e., the total execution
time of the schedule in grid environment. The proposed Mutation-based Simulated Annealing
(MSA) algorithm is proved to have high performance computing scheduling algorithm. MSA
algorithm will be studied for random and Expected Time to Compute (ETC) Models.

90 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm 3

2. Related works

One salient issue in grid is to design efficient schedulers, which will be used as a part of
middleware services to provide efficient planning of users’ tasks to grid resources. Various
scheduling approaches that were suggested in classical parallel systems literature are adopted
for the grid systems with appropriate modifications. Although these modifications made
them suitable for execution in grid environment, these approaches failed to deliver on the
performance factor. For this reason, Genetic Algorithm (GA) and Simulated Annealing (SA)
algorithm, among others, used to solve difficulties of task scheduling in grid environment.
They gave reasonable solutions comparing with classical scheduling algorithms. GA solutions
for grid scheduling are addressed in several works (Abraham et al., 2000; Carretero & Xhafa,
2006; Abraham et al., 2008; Martino & Mililotti, 2002; Martino, 2003; Y. Gao et al., 2005). These
studies ignored how to speed up convergence and shorten the search time of GA.

Furthermore, SA algorithm was studied in previous works Fidanova (2006); Manal et al.
(2011). These works show important results and high quality solutions indicating that SA
is a powerful technique and can be used to solve grid scheduling problem. Moreover, Jadaan,
in Jadaan et al. (2009; 2010; 2011), exposed the importance of rank in GA.

The authors Wook& Park (2005) proved that both GA and SA algorithms have complementary
strengths and weaknesses, accordingly, they proposed a new SA-selection to enhance GA
performance to solve combinatorial optimization problem. The population size which they
use is big that makes time consumed by algorithm large, specially when problem size
increases. While Kazem tried to solve a static task scheduling problem in grid computing
using a modified SA (Kazem et al., 2008). Prado propose a fuzzy scheduler obtained by
means of evolving a fuzzy scheduler to improve the overall response time for the entire
workflow (Prado et al., 2009). Rules of this evolutionary fuzzy system is obtained using
genetic learning process based on Pittsburgh approach.

Wael proposed an algorithm that minimizes makespan, flowtime and time to release as well as
it maximizes reliability of grid resources (Wael & Ramachandram, 2011). It takes transmission
time and waiting time in resource queue into account. It uses stochastic universal sampling
selection and single exchange mutation to outperform other GAs.

Lee et al. (2011) provided Hierarchical Load Balanced Algorithm (HLBA) for Grid
environment. He used the system load as a parameter in determining a balance threshold.
the scheduler adapts the balance threshold dynamically when the system load changes. The
loads of resource are CPU utilization, network utilization and memory utilization.

P.K. Suri & Singh Manpreet (2010) proposed a Dynamic Load Balancing Algorithm (DLBA)
which performs an intra-cluster and inter cluster load balancing. Intra-cluster load balancing
is performed depending on the Cluster Manager (CM). CM decides whether to start the local
balancing based on the current workload of the cluster which is estimated from the resources
below it. Inter-cluster load balancing is done when some CMs fail to balance their workload.
In this case, the tasks of the overloaded cluster will be transferred to another cluster which is
underloaded. In order to check the cluster overloading, they introduced a balanced threshold.
If the load of cluster is larger than balanced threshold, load balancing will be executed. The
value of balanced threshold is fixed. Therefore, the balanced threshold is not appropriate for
the dynamic characteristics in the grid system.

Chang et al. (2009) introduced Balanced Ant Colony Optimization algorithm (BACO) to
choose suitable resources to execute tasks according to resources status. The pheromone

91Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm

www.intechopen.com

4 Will-be-set-by-IN-TECH

update functions perform balancing to the system load. While local pheromone update
function updates the status of the selected resource after tasks assignment. Global pheromone
update the status of each resource for all tasks after completion of all tasks.

In this chapter MSA maintains two solutions at a time, and it uses single exchange mutation
operator as well as random-MCT heuristic (demonstrated in subsection 5.2).

Previous works, namely, Wael et al. (2009c;b;a) considered the minimization of the makespan
using GA based on Rank Roullete Wheel Selection (RRWSGA). They use standard deviation
of fitness function as a termination condition of the algorithm. The aim of using standard
deviation is to shorten the the time consumed by the algorithm with taking into account
reasonable performance of Computing resources (97%).

Yin introduced GA which used standard deviation less than (0.1) as stopping criterion to
limit the number of iterations of GA (Yin et al., 2007). This algorithm has drawbacks such
as low quality solutions (almost same as low quality solutions of standard GA), generating
initialization population randomly (even though the time consumed by algorithm is small
comparing with standard GA), and mutation depends on exchange of every gene in the
chromosome. This mutation will destroy the good information in subsequent chromosomes
in next generations. In order to illustrate the usefulness of this work, next section explains the
motivation behind it.

3. Motivation

The motivation of this chapter is to develop a grid scheduling algorithm that can introduce
a high utilization of grid resources, speed up convergence to the optimal or sub-optimal
solution, shorten time consumed by algorithm as much as possible, improve load balancing
of grid resources to the best optimization level, and minimize the schedule length, i.e.,
makespan.

The quality of solution produced by Yin’s algorithm for grid scheduling is low. In other
words, Yin proposed GA where mutation with all genes of chromosome are changed (Yin
et al., 2007). This type of mutation is not always suitable to solve complex optimization
problem such as grid task scheduling. It destroys the information in the chromosomes and
does not help to find the optimal or near-optimal solution for the problem at hand. Moreover,
the population’s initialization of Yin’s algorithm is generated randomly without using any
heuristic in initialization phase of GA. The heuristics allow GA to search closer to the optimal
solution area reducing the time consumed by an algorithm to reach the reasonable level of
solution.
The four subfigures 2(a), 2(b), 2(c) and 2(d) show that the single exchange mutation (two
genes exchanges), represented by dashed curves, approaches the optimal solution faster than
the all genes changed mutation, represented by straight curves, in terms of the number of
generations. Furthermore, subfigures 2(c) and 2(d) highlight the importance of using heuristic
algorithm random-MCT (demonstrated in subsection 5.2) at the initialization stage of GA.

In this chapter, two models are introduced in term of random initialization of tasks and
resources. First, Random Model (RM), which follows the uniform distribution in generating
the matrix EETij with low-value ranges for computing capacities of resources and the
workload of tasks. Second model, Expected Time to Compute (ETC) 11, in which the workload
of tasks and computing resource capacity are generated randomly, in different ranges, low and

92 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm 5

0 100 200 300 400 500 600 700 800 900 1000
350

400

450

500

550

600

650

700

750

800

850

genNo

M
a

k
e

s
p

a
n

All genes exchange

Two genes exchange

(a) Makespan results with one point crossover and
random initialization of GA

0 100 200 300 400 500 600 700 800 900 1000
400

500

600

700

800

900

1000

genNo

M
a

k
e

s
p

a
n

All genes exchange

Two genes exchange

(b) Makespan results with two points crossover
and random initialization of GA

0 100 200 300 400 500 600 700 800 900 1000
319

320

321

322

323

324

325

326

327

328

329

330

genNo

M
a

k
e

s
p

a
n

All genes exchange

Two genes exchange

(c) Makespan results with Random-MCT and one
point crossover

0 100 200 300 400 500 600 700 800 900 1000
318

320

322

324

326

328

330

genNo

M
a

k
e

s
p

a
n

All genes exchange

Two genes exchange

(d) Makespan results with Random-MCT and two
points crossover

Fig. 2. Makespan results of experiment 8 (mentioned in table 3) which consists of 1000 tasks
and 50 resources with one/two point(s) crossover, with/without Random-MCT, and two/all
genes exchanged.

high. Figure 3 shows the relationships among RM and ETC models, on one hand, and both
algorithms RGSGCS and MSA, on the another hand.

��	
	�� 	�����	
	��� �������	��������

Fig. 3. The relationship among RM/ETC model and the RGSGCS/MSA

4. Problem formulation

For any problem formulation is fundamental issue which help to understand the problem at
hand. This chapter considers a grid with sufficient arriving tasks to GA for scheduling. Let N
be the total number of tasks to be scheduled and Wi, where i = 1, 2, · · · , N, be the workload of

93Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm

www.intechopen.com

6 Will-be-set-by-IN-TECH

each task in number of cycles. The workload of tasks can be obtained by analyzing historical
data, such as determining the data size of a waiting task. Let M be the total number of
computing resources and CPj, where j = 1, 2, · · · , M, be the computing capacity of each
resource expressed in number of cycles per unit time. The Expected Execution Time EETij

of task Ti on resource Rj is defined in the following formula:

EETij =
Wi

CPj
(1)

5. Rank Genetic Scheduler for Grid Computing Systems (RGSGCS) algorithm

GA is a robust search technique that allows a high-quality solution to be derived from a large
search space in polynomial time, by applying the principle of evolution. In other words,
GA is used to solve optimization problems by imitating the genetic process of biological
organisms (Goldberg, 1989). In GA, a potential solution to a specific problem is represented
as a chromosome containing a series of genes. A set of chromosomes make up population.
GA evolves the population, that generates an optimal solution, using selection, crossover and
mutation operators.

Therefore, GA combines the exploitation of best solutions from past searches with the
exploration of new regions of the solution space. Any solution in the search space of the
problem is represented by a chromosome.

RGSGCS is GA for solving task scheduling in grid environment. It is presented in the
algorithm 2 and the flowchart 5, ((Wael et al., 2010) and (Wael et al., 2011)).

In order to successfully apply RGSGCS to solve the problem at hand, one needs to determine
the following :

1. The representation of possible solutions, or the chromosomal encoding.

2. The fitness function which accurately represents the value of the solution.

3. Genetic operators (i.e., selection, crossover, Mutation and Elitism) which have to be used
and the parameter values (population size, probability of applying operators, maximum
number of generatons, etc.), which are suitable.

The main steps in RGSGCS are as follows:

5.1 Chromosome representation of RGSGCS algorithm

In GA, a chromosome is represented by a series of genes. Each gene, in turn, represents an
index of computing resource Rj as shown below:

Chromosome = genei(Rj) (2)

Where i = 1, 2, · · · , N, and j = 1, 2, · · · , M. Figure 4 shows an example of the chromosome’s
representation consists of three resources and thirteen tasks.

							����	���					�				�					�					�				 					!				"					#				$				�%		��			��			��

�&���'(&	��� � � � �� � � � � �� ��

Fig. 4. Task-Resource Representation for the Grid Task Scheduling Problem

94 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm 7

���	�������
����	�
������������
�����

������
��		��������	�
�

�
��
��	���
��
!�

"!����	�
##��������
��	�
��

������"$��������	�	�
�

������	�
�%�	��
��	�
�

& '

"��	�������!�	��(�	��
��	�
����

"!����	�����	��
��	�
��

Fig. 5. Flow Chart of RGSGCS Algorithm

5.2 Population initialization of RGSGCS algorithm

One of the important steps in GA is initialization of population. This initialization supports
GA to find best solutions within the available search space. In this step, in GA, if bad solutions
are generated randomly, the algorithm provides bad solutions or local optimal solutions.
To overcome the posed problem, generating individuals using well-known heuristics in the
initial step of the algorithm is required. These heuristics generate near-optimal solutions and
the meta-heuristic algorithm combines these solutions in order to obtain better final solutions.

Scheduling heuristics such as Min-Min, Minimum Completion Time (MCT), Minimum
Execution Time (MET) (Braun et al., 2001), are proposed for independent tasks. Most of these
heuristics are based on the following two assumptions.

First, the expected execution time EETij is deterministic and does not vary with time.

Second, each task has exclusive use of the resource. Traditional MCT heuristic assigns
each task to the resource that completes it earliest. The new algorithm, Random-MCT, is
described below: For the first tasks in the grid, which their number equals to total resources
number in the grid, the resources are assigned randomly. The remaining tasks in the grid
are assigned according to earliest finishing time. Where RTj is the Ready Time of resource j.
The time complexity of Random-MCT heuristic is O(M.N). After completion of RGSGCS’s
initialization, the evaluation phase is introduced.

95Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm

www.intechopen.com

8 Will-be-set-by-IN-TECH

Algorithm 1 Random-MCT

1: for Ti = 1 to M tasks in the grid do
2: for all resources Rj in the grid do
3: Cij = EETij + RTj

4: find resource Rp randomly for Ti

5: attach Ti to Rp

6: end for
7: end for
8: for remaining tasks Ti in the grid do
9: for all resources Rj in the grid do

10: Cij = EETij + RTj

11: find resource Rp which will finish Ti earliest
12: attach Ti to Rp

13: end for
14: end for

Algorithm 2 RGSGCS

1: Generate Initial Population P of size N1 using Random-MCT (algorithm 1).
2: for g = 1 to MaximumGenerations do
3: Calculate the fitness of each chromosome using equations (3, 4 and 5)
4: Generate offspring Population from P
5: {Rank based Roulette Wheel Selection
6: Recombination and Mutation
7: Calculate the fitness of each chromosome using equations (3, 4 and 5) }
8: (elitism) Select the members of the combined population based on minimum fitness,

to make the population P of the next generation.
9: end for

5.3 The evaluation phase of RGSGCS algorithm

The evaluation phase evaluates the quality of resulted schedule depending on a fitness
equation. The fitness equation must be devised to determine the quality of a given
chromosome instance and always returns a single numerical value. In this chapter, the fitness
function is the makespan, i.e., the minimum completion time of the last finishing task. In
other words, makspan is the schedule length. The main goal is to maximize the throughput
of the grid by minimizing makespan through an intelligent load balancing. The makespan is
calculated using the equations 3 and 4.While the fitness function is expressed as in equation 5.

Cm = ∑
n

EETn,m (3)

makespan = Max{Cm} (4)

f itness = makespan (5)

Where m = 1, 2, · · · , M; n = 1, 2, · · · , N; M is the total number of resources; and N is the total
number of tasks. Cm is the sum of EET of each task Tn assigned to resource Rm, which denotes
the completion time of the last task on resource. After the completion of the evaluation Phase,
selection phase is used.

96 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm 9

�
�

�

�

��

���

	��

��
��

��

(a) Roulette Wheel Selection

�

�

�

�

	�

�
�

���

�	�

�

(b) Rank Selection

Fig. 6. Example of Roulette Wheel Selection and Rank Selection

5.4 Rank Roulette Wheel Selection (RRWS) of RGSGCS algorithm

This phase chooses chromosomes from a population for later breeding (crossover). RRWS
combines the advantages of two types of selections, namely, Rank Selection (RS) and Roulette
Wheel Selection (RWS).

5.4.1 Roulette Wheel Selection (RWS) of GA

GA uses proportional selection. The population of the next generation is determined by n
independent random experiments; the probability that chromosome xi is selected from the
pool (x1, x2, · · · , xm) to be a member of the next generation at each experiment is given by the
following equation:

RP(c) =
Fitness(c)

∑
N
n Fitness

; (6)

This process is also called roulette wheel selection. Where each chromosome of the population
is represented by a slice that is directly proportional to the chromosome’s fitness. A selection
step is a spin of the wheel, which in the long run tends to eliminate the least fit population
chromosomes. Figure 6 (a) explains the selection method of (RWS) (Obitko, 1998). A roulette
wheel where are placed all chromosomes in the population, every chromosome has its place
big accordingly to its fitness function. The procedure now is to assign to each chromosome a
part of roulette wheel then spin the wheel n time to select n individuals.

5.4.2 Rank Selection (RS) of GA

RWS has problem when the fitness value differs very much. In RS (as shown in figure 6 (b))
the worst value has fitness value equals to 1, the second worst value equals to 2, · · · , etc, and
the best will have fitness value equals to N (Obitko, 1998).

Therefore, the RGSGCS’s selection process is accomplished by applying RRWS (Wael et al.,
2009c; Jadaan et al., 2009), RRWS orders the chromosome’s fitness values of population in
ascending order, and save this order in array, say Rank. After that, it associates the probability
shown in equation(7) with each individual chromosome, calculates cumulative proportion of
each chromosome, and selects solutions from the population by repeated random sampling

97Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm

www.intechopen.com

10 Will-be-set-by-IN-TECH

based on cumulative proportion.

RP(c) =
Rank(c)

∑
N
n Rank

; (7)

RRWS determines how many and which individuals will be kept in the next generation. Next,
crossover operator and mutation operator are explained.

5.5 Two-point crossover operator of RGSGCS algorithm

Two-point crossover operator (figure 7) controls how to exchange genes between individuals.
Two chromosomes are selected randomly from mating pool. Where the middle part in each
chromosome is reversed between two parent chromosomes. It is applied to the chromosomes
from selection phase. After that, the mutation operator allows for random gene alteration of

������

����)���)����		�
)���

�����

��

��

������ �

������)�����		�
)�

�����

� � � �� � � � � �� ��

� � � �� � � � � �� ��

� � � �� � � � � �� ��

� � � �� � � � � �� ��

Fig. 7. Two-Point Crossover Operator

an individual.

5.6 Single exchange mutation operator of RGSGCS algorithm

In this phase, single exchange mutation operator (figure 8) is applied to the output of
crossover phase. Mutation operator exchanges only two genes according to a mutation rate
Pm. It is useful to avoid premature convergence of GA.

�&��'&	��������

���&'	��������

� � � �� � � � � �� ��

� � � �� � � � � �� ��

Fig. 8. One Exchange Mutation Operator

5.7 Elitism of RGSGCS algorithm

Besides the standard genetic operators (i.e., crossover and mutation operators). The elitism
Phase is used finally to preserve the best candidates for the next generation, so that the
algorithm always converges to the global optimum. It combines the parent population with
the modified population (the candidates generated by crossover and Mutation operators), and

98 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm 11

takes the best chromosomes. After this phase, the algorithm continues to the next iteration.
The algorithm terminates after it reaches the maximum generations number.

6. Time complexity analysis of RGSGCS algorithm

Time complexity analysis of RGSGCS algorithm can be analyzed step by step as shown in
table 1. From table 1 time complexity of RGSGCS algorithm is expressed as: O(Q.PS.N.M).
Where PS is population size, and Q is Maximum number of iterations of RGSGCS algorithm.

Phase Complexity

Initialization O(PS.M.N)

Selection O(PS2 + PS.log(PS) + 2PS)

Crossover O(PS.N)

Mutation O(PS)

Evaluation O(2.PS.N.M)

Elitisim O(PS + PS.log(PS))

RGSGCS algorithm O(Q.PS.N.M)

Table 1. Time complexity analysis of RGSGCS algorithm

7. Mutation based simulated annealing algorithm for minimizing makespan in grid

computing systems (MSA)

SA is a global optimization technique. It derived from the concept of metallurgy which
crystallizes the liquid to the required temperature. Traditional SA, as shown in figure 9
(Akella, 2009), explores globally, spending more time in regions which on average have fitter
solutions. In the later stages, the search is confined to a small area, and SA optimizes within
that area. In these final stages, it is similar to local search.

Instead of population which is used in GA, two solutions are maintained in MSA algorithm
at a time.

Interestingly, MSA works iteratively keeping two tentative chromosomes at every iteration.
For the first iteration, single exchange mutation operator is applied to initial chromosome,
with different genes to produce two new solutions. For the remaining iterations, First
chromosome is generated from the previous one by applying single exchange mutation
operator to it, while the second chromosome is generated by applying single exchange
mutation operator to initial chromosome (generated by Random-MCT algorithm 1), and each
one either replaces it or not depending on acceptance criterion. The acceptance criterion
works as follows: the old and the new solutions have an associated makespan Makespan,
determined by a fitness function. If the new solution is better than the old one, then it
will replace it, if it is worse, it replaces it with probability P. This probability depends on
the difference between their Makespan values and control parameter T named temperature.
This acceptance criterion provides a way of escaping from local minimum. Therefore, the
probability of moving to the new solution decreases exponentially as its fitness gets worse,
and also temperature gets lower. Usually temperature is gradually decreased so that uphill
movements (for minimization problem) become less and less as the run progresses.

99Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm

www.intechopen.com

12 Will-be-set-by-IN-TECH

Fig. 9. Convergence of Simulated Annealing.

In single exchange mutation operator, it picks up two genes of a chromosome selected
randomly, then exchanges resource indices between them if these indices are not the same
vaue (Wael et al., 2011). The MSA algorithm is described by algorithm 3. In the traditional SA,

Algorithm 3 MSA

1: Choose an initial chromosome s ∈ S using Random-MCT
2: i = 0, s∗ = s, Tinitial = 1000, best = Makespan(s)
3: ti = Tinitial

4: repeat
5: Generate chromosome s1 ∈ Neighbor(s) by using Single Exchange mutation.
6: Apply using Single Exchange mutation on initial chromosome s to generate

chromosome s2 .
7: Calculate Makespan(s1) and Makespan(s2).
8: for l = 1 to 2 do
9: ∆=exp(

Makespan(sl)−Makespan(s)
ti

)
10: if random[0,1] < ∆ then
11: s = sl

12: else
13: if Makespan(sl) > best then
14: s∗=sl

15: s = s∗

16: best = Makespan(s∗)
17: end if
18: end if
19: end for
20: ti+1=ti × 0.99;
21: until Neighbours is reached
22: return s∗, and best Makespan(s∗) // Where Makespan is makespan value of candidate

chromosome.

only one neighborhood solution is created in each temperature. The main difference between
MSA and traditional SA is that MSA creates two neighborhood solutions in each temperature
using single exchange mutation, and selects one of them according to the probability and the
fitness function. Applying this modification to the traditional SA causing MSA algorithm to

100 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm 13

find better solutions in less average time. Note that in table 2 stopping criterion is refered as
the total number of Neighbours. As Neighbours increases, more solutions will be evaluated
and larger areas of the search space may be searched. This enhances MSA chances to find the
global optimum.

In order to make additional comparison with other algorithms, Min-Min algorithm is chosen
as a benchmark because most related works evaluated this algorithm (Wael et al., 2011). The
idea of algorithm Min-Min is as follows: calculate the shortest execution time of every task,
select the shortest task to match a resource, then delete the task. Repeat the steps until all tasks
finished. This algorithm takes O(N2.M) time. While computational time complexity of MSA
algorithm is expressed as O(M.N+Q.M.N) or O(Q.M.N), where Q is total number of MSA
iterations.

8. Performance analysis of RGSGCS and MSA

In order to measure the final schedule of both algorithms MSA, and RGSGCS, the following
parameters are used:

First, Load Balancing Factor LBF, which is in the following equation:

LBF =
Makespan

mean(Cm)
− 1 (8)

Note that LBF measures load balancing of an algorithm’s solution, when LBF minimizes,
algorithm’s quality is better. Finally, when LBF equals to zero the load balancing of
algorithm’s solution is optimal. MSA algorithm needs to spend very less time to come up with
an optimal solution. Second, average resource utilization is given by the following equation:

U =
mean(Cm)

Makespan
(9)

Where m = 1, 2, · · · , M. However, according to the simulation results, it is proved that MSA
is effective in speeding up convergence while providing an optimal result.

9. Simulation results Of RGSGCS and MSA

The simulation results of algorithms RGSGCS, MSA and Min-Min of RM are shown in table 3
for eight different experiments. The reason of testing experimenting is to explore the dynamic
behavior of grid environment. For the experiment 1, workloads of tasks are (6, 12, 16, 20, 24, 28,
30, 36, 40, 42, 48, 52, 60) cycles, and the computing capacities of resources are (4, 3, 2) Cycle Per
Unit Time(CPUT). The computing capacities of resources, experiments 2 to 8 in the table 3,
diverse randomly from 2 to 8 CPUT for each resource. Furthrmore, the workload of tasks
ranges randomly from 10 to 150 cycles. The parameters of MSA and RGSGCS are listed in
table 2. MSA, Min-Min and RGSGCS are simulated using MATLAB. In table 3, the values
of makespan, average time and LBF for both algorithms RGSGCS and MSA are compiled
together for purpose of comparison. Table 3 and figures(10 (a), (b) and (c)) lay out that:

The average gains in time of MSA expressed as percentages are 97.66%, 91.03%, 96.83%, 89.6%,
93.35%, 90.95%, 92% and 92.29% for experiments 1 upto 8 respectively. Hence the total average
gain in time for all the experiments is 92.964%.

101Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm

www.intechopen.com

14 Will-be-set-by-IN-TECH

RGSGCS algorithm Parameters

Crossover Rate 0.8
Mutation Rate 0.1

Population Size for experiment 1 20

Population Size for experiment 2 80

Population Size for experiment 3 150

Population Size for experiment 4 250

Maximum Generations for experiments from 1 up to 3 1000

Population Size for experiments from 5 up to 8 TasksNo.

Maximum Generations for experiments from 4 up to 8 1500

MSA algorithm

Stopping Criterion for experiments 1 and 2 M ∗ N*100

Stopping Criterion for experiment 3 M ∗ N*20

Stopping Criterion for experiment 4 M ∗ N*10

Stopping Criterion for experiments 5 up to 8 M ∗ N*5

Initial Temperature 1000

Cooling rate 0.99

Table 2. Parameters used in RGSGCS/MSA

MSA algorithm has reduction in makespan value equals to eighteen (18) when it is compared
with algorithm Min-Min and equals to three (3) when it is compared with algorithm RGSGCS.
Moreover, LBF values of algorithms MSA, Min-Min and RGSGCS are in ranges [0–1.53],
[6.4–29.56] and [0–8.12] respectively.

From results discussed above, it can be concluded that MSA algorithm dynamically optimizes
output schedule closer to global optimal solution.

Note that the MSA algorithm outperforms RGSGCS algorithm within very less time to run
the algorithm. Depending on SA algorithm and random-MCT heuristic, MSA algorithm is
powerful when it is compared with RGSGCS algorithm, while RGSGCS algorithm has less
convergence to the optimal solution.

The results of the comparison among algorithms RGSGCS , Min-Min and MSA in each
experiment in the table 3, prove that MSA algorithm provides an effective way to enhance
the search performance, because it obtains an optimal schedule within a short time along with
high resource utilization.

Notably, the solutions of MSA algorithm are high quality and can be used for realistic
scheduling in grid environment. The simulation results are consistent with the performance
analysis in section 8, which clarifies that the improvement to the evolutionary process is
reasonable and effective.

10. Improvment in time consumed by algorithm of RGSGCS and MSA

According to the table 3, two genes exchanged in single exchange mutation has shown
good performance in both algorithms RGSGCS and MSA. Moreover, the times taken by both
algorithms RGSGCS and MSA are still big, and it is useful to get reasonable results along
with less time consumed by algorithms RGSGCS and MSA. One way to do this is to assign

102 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm 15

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

M
a

k
e

s
p

a
n

Expt.No.

MSA

RGSGCS

Min−Min

(a) Makespan values of MSA, Min-Min and
RGSGCS

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

TasksNo

L
o
a
d
 B

a
la

n
c
in

g
 F

a
c
to

r
(L

B
F

)

Min−Min

MSA

RGSGCS

(b) LBF values of MSA, Min-Min and RGSGCS

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Expt.No.

A
v
e

ra
g

e
 U

ti
liz

a
ti
o

n
 o

f
R

e
s
o

u
rc

e

MSA

RGSGCS

Min−Min

(c) Utilization of Resource of MSA, Min-Min
and RGSGCS

Fig. 10. Simulation Results of Random model

probability of crossover, probability of mutation, ppopulation size and maximum generations
number to the values 1 , 1, 50 and 1000, respectively in the experiments in table 3. Table 4
dispays new values of solution for both algorithms MSA and RGSGCS. This table provides
the results of MSA algorithm for two different termination criterions, namely T < e−300

for MSA(1) and T < e−50 for MSA(2). Note that, in tables 3, 4, MR denotes reduction in
makespan, which is difference between makespan values for both algorithms RGSGCS and
MSA. Two experiments 9 and 10 are added to ensure scalability of both algorithms MSA and
RGSGCS.

11. ETC model

The Expected Time to Compute (ETC) model is another model can also test performance of
MSA algorithm. Interestingly, ETC matrix model allows to capture important characteristics
of task scheduling. For example, ETC model introduces possible inconsistencies among tasks
and resources in grid system by assigning a large value to ETC(t, m) to indicate that task t is
incompatible with resource m.

Moreover, ETC matrix considers three factors: task heterogeneity, resource heterogeneity
and consistency. The task heterogeneity depends upon the various execution times of the

103Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm

www.intechopen.com

16 Will-be-set-by-IN-TECH

Algo. Makespan Time LBF MR Utilization

experiment 1 (13 tasks,3 resources)

MSA 46 0.43 0 100
Min-Min 56 0.012 29.56 10 77.18
RGSGCS 46 18.38 0 0 100

experiment 2 (50 tasks,10 resources)

MSA 94 5.78 0.317 99.68
Min-Min 112 0.072 27.35 18 78.5
RGSGCS 94.33 64.44 0.81 0.33 99.196

experiment 3 (100 tasks, 10 resources)

MSA 135.5 4.5 0.063 99.94
Min-Min 149.5 0.077 10.35 14 90.62
RGSGCS 136.5 142.1 0.75 1 99.25

experiment 4 (200 tasks, 50 resources)

MSA 61.14 41.12 1.53 98.49
Min-Min 72.5 0.36 27.87 11.36 78.2
RGSGCS 64 395 8.12 2.86 92.49

experiment 5 (400 tasks, 50 resources)

MSA 123.33 67.86 0.823 99.18
Min-Min 137.2 2.92 14.62 13.87 87.24
RGSGCS 125.75 1021 3.32 2.42 96.78

experiment 6 (600 tasks, 50 resources)

MSA 187.5 142.58 0.452 99.55
Min-Min 201 8.92 8.98 13.5 91.76
RGSGCS 190.5 1575 2.54 3 97.52

experiment 7 (800 tasks, 50 resources)

MSA 253.167 248.7 0.235 99.76
Min-Min 267.37 21.66 7.6 14.203 92.94
RGSGCS 255 2826 1.33 1.833 98.69

experiment 8 (1000 tasks, 50 resources)

MSA 315 380.14 0.108 99.89
Min-Min 329.5 41.46 6.4 14.5 93.98
RGSGCS 317.6 4928 1.19 2.6 98.82

Table 3. Simulation Results of MSA, Min-Min and RGSGCS with probability of crossover,
probability of mutation, population size and maximum generations number values taken
from table 2.

tasks. The two possible values are defined high and low. Similarly the resource heterogeneity
depends on the running time of a particular task across all the resources and again has two
values: high and low.

In the real scheduling, three different ETC consistencies are possible. They are consistent,
inconsistent and semi-consistent. The instances of benchmark problems are classified into
twelve (12) different types of ETC matrices, they are generated from model of Braun (Braun
et al., 2001). Each type is obtained by calculating the average value of makespan of ten
runs of each algorithm except Min-Min algorithm which it runs just once by default. The

104 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm 17

Algo. Makespan Time LBF MR Utilization

experiment 1 (13 tasks,3 resources)

MSA(1)/MSA(2) 46/46.5 5.49/0.964 0/1.45 100/98.57
RGSGCS 46 5.84 0 0/0.5 100

experiment 2 (50 tasks,10 resources)

MSA(1)/MSA(2) 94/94 7.277/1.31 0.34/0.32 99.63/99.68
RGSGCS 94 10.28 0.33 0/0 99.67

experiment 3 (100 tasks, 10 resources)

MSA(1)/MSA(2) 135.5/135.5 9.33/1.64 0.05/04 99.95/99.96
RGSGCS 136 16.39 0.38 0.5/0.5 99.63

experiment 4 (200 tasks, 50 resources)

MSA(1)/MSA(2) 61.5/64 31.66/5.587 2.66/6.37 97.79/94.01
RGSGCS 65 42.46 7.7 3.5/1 92.285

experiment 5 (400 tasks, 50 resources)

MSA(1)/MSA(2) 123.33/126 57.92/10.167 0.97/2.76 99.04/97.31
RGSGCS 127.75 76.01 2.42 4.42/1.75 95.46

experiment 6 (600 tasks, 50 resources)

MSA(1)/MSA(2) 188/192.5 84.02/14.78 0.66/2.86 99.34/97.22
RGSGCS 190.62 107.44 3.12 2.62/-1.88 97.89

experiment 7 (800 tasks, 50 resources)

MSA(1)/MSA(2) 255/261 109.9/19.23 0.69/2.86 99.32/97.22
RGSGCS 259 139.41 5.83 4/-2 97.52

experiment 8 (1000 tasks, 50 resources)

MSA(1)/MSA(2) 316/319 136.23/23.876 0.4/1.3 99.6/98.69
RGSGCS 318 170.81 1.13 2/-1 98.88

experiment 9 (2000 tasks, 50 resources)

MSA(1)/MSA(2) 629/635 268.23/46.94 0.37/1.1 99.63/98.9
RGSGCS 630 329.36 0.63 1/-5 99.38

experiment 10 (3000 tasks, 50 resources)

MSA(1)/MSA(2) 948/953 402.8/70.62 0.47/0.84 99.53/99.17
RGSGCS 947.33 488.68 0.48 -0.67/-5.67 99.52

Table 4. Simulation Results of MSA and RGSGCS with probability of crossover, probability of
mutation, population size and maximum generations number equal to 1 , 1, 50 and 1000,
respectively.

instances depend upon the above three factors as task heterogeneity, resource heterogeneity
and consistency. Instances are labeled as u-x-yyzz where:

1. u - is a uniform distribution, used to generate the matrix.

2. x - is a type of consistency.

(a) c - consistent. An ETC matrix is said to be consistent if a resource Ri execute a task Ti
faster than the resource Rk and Ri executes all other tasks faster than Rk.

(b) s - semi consistent. A semiconsistent ETC matrix is an inconsistent matrix which has a
sub matrix of a predefined size.

(c) i - inconsistent. An ETC matrix is said to be inconsistent if a resource Ri executes some
tasks faster than Rj and some slower.

105Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm

www.intechopen.com

18 Will-be-set-by-IN-TECH

3. yy - is used to indicate the heterogeneity of the tasks(hi-high, lo-low).

4. zz - is used to indicate the heterogeneity of the resources (hi-high, lo-low).

All the instances consist of 512 tasks and 16 resources. This Model is studied for the following
algorithms:

1. GANoX algorithm is the same algorithm 2, but without using crossover operator. Single
exchange mutation is used at probability of mutation equals to one.

2. PRRWSGA algorithm is the same algorithm 2, probability of crossover equals to 0.8,
probability of Mutation equals to 0.01, and full chromosome will be altered.

3. MSA-ETC is the same algorithm 3. Initial chromosome can be taken as the best run of 1000
runs of the algorithm 1. Moreover, stopping criterion which is used equals to (M × N ×
20);

4. Min-Min algorithm is pointed out in section 7.

Maximum Generation is 1000 and Population Size is 50 for both algorithms GANoX and
PRRWSGA. It can be seen from figures 11 (a), (b) and (c), and table 5, that MSA-ETC
has superior performance on all remaining algorithms, namely, Min-Min, GANoX, and
PRRWSGA, in terms of LBF, Makespan, ResourceUtilization, and time taken by the
algorithm. Saving in average time is about 90%, except when it is compared with Min-Min.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15
x 10

5

Case.No.

M
a
k
e
s
p
a
n

Min−Min

PRRWSGA

MSA

GANoX

(a) Makespan values of ETC model (sec.)

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Case.No.

L
o

a
d

 B
a

la
n

c
in

g
 F

a
c
to

r

Min−Min

PRRWSGA

MSA

GANoX

(b) LBF values of ETC model

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Case.No.

R
e
s
o
u
rc

e
 U

ti
liz

a
ti
o
n

Min−Min

PRRWSGA

MSA

GANoX

(c) Resource Utilization values of ETC model

Fig. 11. Simulation Results of ETC model

106 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm 19

Furthermore, the resource utilization value in range [0.9975-0.9999], and LBF value in range
[0.0025-0.000085]. From the analysis of time complexity of RGSGCS algorithm in the table 1,

ETC matrix / Algo. Min-Min MSA-ETC GANoX PRRWSGA

u − c − hihi 1462108.59 1407383.05 1408816.72 1423161.96
u − i − hihi 534521.65 517909.73 518207.61 522950.76
u − s − hihi 1337720.25 1295674.81 1297192.19 1311406.26
u − c − hilo 114600.52 110549.32 110774.58 110661.56
u − i − hilo 250758.61 243168.05 243295.24 244844.35
u − s − hilo 83094.47 80568.32 80680.07 81423.61
u − c − lolo 47104.35 45800.13 45822.55 46398.43
u − i − lolo 8659.29 8422.85 8430.91 8483.34
u − s − lolo 23337.57 22546.96 22561.49 22841.92
u − c − lohi 51556.38 49786.42 49907.59 50254.31
u − i − lohi 452016.81 438583.36 438728.74 443424.34
u − s − lohi 445906.75 431898.36 432666.09 437031.44

LBF 0.5379-0.0385 0.0025-0.000085 0.03-0.0008 0.14-0.002
ResourceUtilization 0.8365-0.963 0.9975-0.9999 0.971-0.999 0.876-0.99

Table 5. Simulation Results of ETC Model of Min-Min, MSA-ETC, GANoX, and PRRWSGA

the time complexity of GANoX algorithm and PRRWSGA algorithm is O(Q.PS.M.N), and for
MSA-ETC algorithm is O(Q.M.N).

As a result, MSA-ETC has less time complexity when it is compared with both algorithms
GANoX and PRRWSGA. In the study, the algorithm is designed and compared to different
grid environments. Using MSA-ETC it can get good workload balancing results.

The proposed MSA-ETC algorithm can consistently find better schedules for several
benchmark problems as compared to other techniques in the literature.

12. Conclusion

This chapter studies problem of minimizing makespan in grid environment. The MSA
algorithm introduces a high throughput computing scheduling algorithm. Moreover, it
provides solutions for allocation of independent tasks to grid computing resources, and
speeds up convergence. As a result load balancing for MSA algorithm is higher than RGSGCS
algorithm, and the gain of MSA algorithm in average time consumed by an algorithm is higher
than RGSGCS algorithm for both RM and ETC models, which makes MSA algorithm very
high QoS and more preferable for realistic scheduling in grid environment.

The initialization of MSA algorithm plays important role to find a good solution and to reduce
the time consumed by algorithm.

Furthermore, the improvments on the performance of MSA algorithm, and RGSGCS, give
another salient feature, which reduces the time consumed by algorithm to the low reasonable
level.

Regarding MSA algorithm for ETC Model, MSA algorithm has superior performance among
other algorithms along with resource utilization and load balancing factor values.

107Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm

www.intechopen.com

20 Will-be-set-by-IN-TECH

Other benefits of MSA algorithm include robustness and scalability features. the disadvantage
of MSA algorithm is that flowtime is higher more than Min-Min, RGSGCS, and GANoX.

It can be concluded that MSA algorithm is a powerful technique to solve problem of
minimizing makespan in grid environment with less time to be consumed by the intended
algorithm.

13. References

A. A. P. Kazem, A. M. Rahmani, & H. H. Aghdam. A modified simulated annealing algorithm
for static task scheduling in grid computing. In: The International Conference on
Computer Science and Information Technology, September 2008, pp. (623-627), IEEE,
ISBN 978-0-7695-3308-7, Singapore.

Abdulal, W., Jadaan, O. A, Ahmad Jabas, A. & S. Ramachandram. Genetic algorithm for grid
scheduling using best rank power. In: IEEE Nature & Biologically Inspired Computing
(NaBIC 2009), December 2009, pp. (181-186), IEEE, ISBN 978-1-4244-5053-4,
Coimbatore, India.

Abdulal, W., Jabas, A., Jadaan, O. A. & S. Ramachandram. An improved rank-based
genetic algorithm with limited iterations for grid scheduling. In: IEEE Symposium on
Industrial Electronics and Applications (ISIEA2009), October 2009, pp. (215-220), IEEE,
ISBN 978-1-4244-4681-0. Kuala Lumpur, Malaysia.

Abdulal, W., Jadaan, A. O., Jabas, A., Ramachandram, S., Kaiiali M. & C.R. Rao. Rank-based
genetic algorithm with limited iterations for grid scheduling. In: The First IEEE
International Conference on Computational Intelligence, Communication Systems, and
Networks (CICSyN2009), July 2009. pp. (29-34), ISBN 978-0-7695-3743-6, Indore, India.

Abdulal, W. & S. Ramachandram. Reliability-Aware Genetic Scheduling Algorithm in Grid
Environment. In: IEEE International Conference on Communication Systems and Network
Technologies, June 2011, pp. (673-677), IEEE, ISBN 978-0-7695-4437-3/11, Katra,
Jammu, India.

Abdulal, W., Jadaan, O. A., Jabas, A.& S. Ramachandram. Mutation Based Simulated
Annealing Algorithm for Minimizing Makespan in Grid Computing Systems. In:
IEEE International Conference on Network and Computer Science (ICNCS 2011). April
2011, Vol. 6. pp. (90-94), IEEE, ISBN 978-1-4244-8679-3, Kanyakumari, India.

Abdulal, W., Jadaan, o. A., Jabas, A. & S. Ramachandram. Rank based genetic scheduler for
grid computing systems. In: IEEE International Conference on Computational Intelligence
and Communication Networks (CICN2010), Nov. 2010, pp. (644-649), IEEE, ISBN
978-1-4244-8653-3, Bhopal, India.

Abraham, A., Rajkumar Buyya & Baikunth Nath. Nature’s heuristics for scheduling jobs on
computational grids. In: 8th IEEE International Conference on Advanced Computing
and Communications (ADCOM2000). www.buyya.com/papers/nhsjcg.pdf, pp.
(45-52).

Akella, P. http://www.ecs.umass.edu/ece/labs/vlsicad/ece665/slides/

SimulatedAnnealing.ppt.
Braun, Tracy D. and Siegel, Howard Jay and Beck, Noah and Bölöni, Lasislau L. and

Maheswaran, Muthucumara and Reuther, Albert I. and Robertson, James P. and
Theys, Mitchell D. and Yao, Bin and Hensgen, Debra and Freund, Richard F. A
comparison of eleven static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems, In: Journal of Parallel Distributing
Computing. June 2001, pp. (810-837), ISSN 0743-7315.

108 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm 21

C. Wook Han & J. Il Park. SA-selection-based genetic algorithm for the design of fuzzy
controller. In: International Journal of Control, Automation, and Systems, 2005, Vol. 3,
pp. (236-243).

Carretero, J. & Xhafa, F. Using Genetic Algorithms for Scheduling Jobs in Large Scale
Grid Applications. In: Journal of Technological and Economic Development. http://
citeseer.ist.psu.edu/, 2006, Vol. 12, pp. (11-17). ISSN 1392-8619 print/ISSN
1822-3613 Online.

Dimitri Bevc, Sergio, E. Zarantonello, Neena Kaushik, & Iulian Musat. (2005). Grid computing
for energy exploration. http://www.ogf.org.

Fatos Xhafa, Enrique Alba, Bernabé Dorronsoro, Bernat Duran, & Abraham, A. Efficient batch
job scheduling in grids using cellular memetic algorithms. In: Studies in Computational
Intelligence. Springer-Verlag, 2008, pp. (273-299), Berlin, Heidelberg

Fidanova, S. Simulated annealing for grid scheduling problem. In: International Symposium on
Modern Computing, 2006, Vol. 0, pp. (41-45).

Foster, I., Kesselman, C. & Steven Tuecke. The Anatomy of the Grid. (2001). In: International
Journal of Supercomputer Applications.

Garey, Michael R. and Johnson, David S. Computers and Intractability: A Guide to the Theory
of NP-Completeness. In: W. H. Freeman & Co., ISSN 0716710455, New York, NY, USA

Goldberg, D. E. In: Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, ISBN 0-201-15767-5, New York.

Jinquan, Z., Lina, Ni. & Changjun, J. A Heuristic Scheduling Strategy for Independent
Tasks on Grid. In: Eighth International Conference on High-Performance Computing in
Asia-Pacific Region, IEEE Computer Society, 2005, pp. (588-593). ISBN 0-7695-2486-9,
Washington, DC, USA.

Kesselman, C., & Foster, I. In: The Grid: Blueprint for a Future Computing Infrastructure, Morgan
Kaufmann Publishers.

K. Kousalya and P. Balasubramanie. To Improve Ant Algorithm’s Grid Scheduling Using
Local Search. In: International Journal Of Computational Cognition http://www.

yangsky.com/ijcc/pdf/ijcc747.pdf. Vol. 7, No. 4, Dec. 2009. pp. (47–57).
K. Kousalya and P. Balasubramanie. Ant Algorithm for Grid Scheduling Powered by Local

Search. In: International Journal Of Open Problems Compt. Math.. www.ijopcm.org/
files/IJOPCM(vol.1.3.5.D.8).pdf. Vol. 1, No. 3, Dec. 2008, pp. (222-240).

Moallem, A. Using Swarm Intelligence for Distributed Job Scheduling on the Grid.
http://library.usask.ca/theses/available/etd-04132009-123250/

unrestricted/thesis.pdf. In: University of Saskatchewan, March 2009.
Omar Al Jadaan, L. Rajamani, & C. Rao. Parameterless penalty function for solving

constrained evolutionary optimization. In: Hybrid Intelligent Models and Applications,
IEEE, pp. (56-63).

Omar Al Jadaan, Jabas, A., Abdulal, W., Rajamani, L., Zaiton, E., Rao, C.R. & C.R. Rao.
Engineering Case Studies Using Parameterless Penalty Non-dominated Ranked
Genetic Algorithm. In: The First IEEE International Conference on Computational
Intelligence, Communication Systems, and Networks (CICSyN2009), July 2009. pp.
(51-56), ISBN 978-0-7695-3743-6, Indore, India.

Omar Al Jadaan, Wael Abdulal, Hameed, M.A, & Ahmad Jabas. & C.R. Rao. Enhancing Data
Selection Using Genetic Algorithm. In: 2010 International Conference on Computational
Intelligence and Communication Networks (CICN), Nov. 2010. pp. (434 - 439), ISBN
978-1-4244-8653-3 , Bhopal, India.

109Task Scheduling in Grid Environment Using Simulated Annealing and Genetic Algorithm

www.intechopen.com

22 Will-be-set-by-IN-TECH

Omar Al Jadaan, Alla Alhaffa, Wael Abdulal & Ahmad Jabas. Rank Based Genetic Algorithm
for solving the Banking ATMś Location Problem using convolution. In: 2011
IEEE Symposium on Computers & Informatics (ISCI), March 2011. pp. (6–11), ISBN
978-1-61284-689-7, Kuala Lumpur, Malaysia.

Obitko, M. (1998). http://www.obitko.com/tutorials/genetic-algorithms/

selection.php.
P.K. Suri & Singh Manpreet. An efficient decentralized load balancing algorithm for grid.

In: IEEE 2nd International Advance Computing Conference. IEEE, pp. (10-13), ISBN
978-1-4244-4790-9 , Patiala, India.

Prado, R. P. and Galán, S. García and Yuste, A. J. and Expósito, J. E. and Santiago, A. J. and
Bruque, S .Evolutionary Fuzzy Scheduler for Grid Computing. In: Proceedings of the
10th International Work-Conference on Artificial Neural Networks: Part I: Bio-Inspired
Systems: Computational and Ambient Intelligence IWANN ’09, Springer-Verlag, pp.
(286–293). ISBN 978-3-642-02477-1, Berlin, Heidelberg.

Ruay-Shiung Chang, Jih-Sheng Chang, & Po-Sheng Lin. An ant algorithm for balanced job
scheduling in grids. In: Future Generation Computer Systems. Vol. 25, pp. (20-27), ISSN
0167-739X.

Suliman, M. O., Vellanki S.S. Kumar, & Abdulal, W. Optimization of Uncertain Construction
Time-Cost Trade off Problem Using Simulated Annealing Algorithm. In: World
Congress on information and Communication Technologies, Dec. 2011.

V. D. Martino & M. Mililotti. Scheduling in a grid computing environment using genetic
algorithm. In: The 16th IEEE International Parallel and Distributed Processing
Symposium, April 2002. pp. (235-239). ISBN 0-7695-1573-8.

V. D. Martino. Sub Optimal Scheduling in a Grid Using Genetic Algorithms. In: Seventeenth
International Symposium on Parallel and Distributed Processing. ftp://ftp.cs.

umanitoba.ca/pub/IPDPS03, 2003, IEEE Computer Society, ISBN 0-7695-1926-1,
Washington, DC, USA.

Y. Gao, H. Rong, & J. Z. Huang. Adaptive grid job scheduling with genetic algorithms. In:
Future Generation Computer Systems, January 2005, Vol. 21, No. 1, Elsevier Science
Publishers, pp. (151-161).

Yin, Hao and Wu, Huilin and Zhou, Jiliu. An Improved Genetic Algorithm with Limited
Iteration for Grid Scheduling. In: Sixth International Conference on Grid and Cooperative
Computing. IEEE Computer Society, pp. (221-227), ISBN 0-7695-2871-6, Washington,
DC, USA.

Yun-Han Lee, Seiven Leu, &Ruay-Shiung Chang. Improving job scheduling algorithms in a
grid environment. In: Future Generation Computer Systems. Vol. 27, pp. (991-998), ISSN
0167-739X.

110 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Grid Computing - Technology and Applications, Widespread

Coverage and New Horizons

Edited by Dr. Soha Maad

ISBN 978-953-51-0604-3

Hard cover, 354 pages

Publisher InTech

Published online 16, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Grid research, rooted in distributed and high performance computing, started in mid-to-late 1990s. Soon

afterwards, national and international research and development authorities realized the importance of the

Grid and gave it a primary position on their research and development agenda. The Grid evolved from tackling

data and compute-intensive problems, to addressing global-scale scientific projects, connecting businesses

across the supply chain, and becoming a World Wide Grid integrated in our daily routine activities. This book

tells the story of great potential, continued strength, and widespread international penetration of Grid

computing. It overviews latest advances in the field and traces the evolution of selected Grid applications. The

book highlights the international widespread coverage and unveils the future potential of the Grid.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Wael Abdulal, Ahmad Jabas, S. Ramachandram and Omar Al Jadaan (2012). Task Scheduling in Grid

Environment Using Simulated Annealing and Genetic Algorithm, Grid Computing - Technology and

Applications, Widespread Coverage and New Horizons, Dr. Soha Maad (Ed.), ISBN: 978-953-51-0604-3,

InTech, Available from: http://www.intechopen.com/books/grid-computing-technology-and-applications-

widespread-coverage-and-new-horizons/minimizing-makespan-in-grid-environment-using-simulated-

annealing-and-genetic-algorithm

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

