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Algebraic Reconstruction and Post-processing 
in Incomplete Data Computed Tomography: 

From X-rays to Laser Beams 

Alexander B. Konovalov, Dmitry V. Mogilenskikh, Vitaly V. Vlasov and 
Andrey N. Kiselev 

Russian Federal Nuclear Centre – Zababakhin Institute of Applied Physics 
Russia

1. Introduction 

Methods of computed tomography are well developed and widely used in medicine and 
industry. If tomographic data are complete, it is possible to reconstruct the images with sub-
millimeter resolution. If the data are incomplete, tomograms may blur, i.e. their resolution 
degrades, noise increases and artifacts form. The situation is worst if measurement data are 
so poor that the system of equations which describe the discrete reconstruction problem 
appears to be strongly underdetermined. In this situation, images of acceptable quality can 
be obtained with algorithms that regularize the solution and use a priori information about 
the object, and do post-processing of reconstructed tomograms also with the use of a priori 
information, as a rule. This chapter provides two examples demonstrating the 
reconstruction of the internal structure of an object from strongly incomplete measurement 
data: few-view computed tomography (FVCT) and diffuse optical tomography (DOT) of 
strongly scattering media. The problem of reconstruction from a small number of 
views (<10) arises, for example, in experimental plasma research (Pickalov & Melnikova, 
1995) or nondestructive testing (Subbarao et al., 1997). DOT is now deemed to hold much 
promise for cancer detection (Arridge, 1999; Hawrysz & Sevick-Muraca, 2000; Yodh & 
Chance, 1995). Here the strong incompleteness of data is caused by the fact that the number 
of source-receiver relations that define the number of measurements is strictly limited. 
Despite that these types of tomography use different wavelength bands (X-ray and near 
infrared) and different mathematical models (linear and non-linear), we think it is not only 
possible, but also interesting to consider them together because in both cases we successfully 
use similar reconstruction algorithms and similar post-processing methods. The unique 
possibility to do that comes from the fact that in case of DOT, we use a simplified 
reconstruction method (Konovalov et al., 2003; 2006b; 2007; Lyubimov et al., 2002; 2003) 
reducing the inverse problem to a solution of the integral equation with integration along a 
conditional photon average trajectory (PAT) – an analog of the Radon transform in 
projection tomography.  
In case of FVCT, we use actual data from measurements in a simple experimental 
radiography setup (Konovalov et al., 2006 ). The FVCT procedure is simulated by rotation 
of the object from exposure to exposure about the centre of the reconstruction region. For 
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objects, we use a spatial resolution test and an iron sphere with quasi-symmetric cracks 
resulted from shock compression.  
In case of DOT, we use model data from the numerical solution of a time-dependent 
diffusion equation with an instantaneous point source (time-domain measurement 
technique). We consider a traditional geometry where sources and receivers are on the 
boundary of a scattering object in the form of a flat layer (Konovalov et al., 2006b). The 
object contains periodic structures created by circular absorbing inhomogeneities.  
In both cases, the inverse problem is solved using algebraic reconstruction techniques 
(additive and multiplicative) which we modernized to attain the better convergence of the 
iterative reconstruction process (Konovalov et al., 2006 ; 2006b). Procedures used to 
calculate the weight matrices are described in detail. Solution correction formulas are 
modified with respect to distributions of weight sums and solution correction numbers over 
image elements. Weighted smoothing is performed at each iteration of solution 
approximation. We use a priori information on whether the solution is non-negative and on 
the presence of structure-free zones in the reconstruction region.  
For post-processing of reconstructed tomograms, we use space-varying restoration 
(Konovalov et al., 2007), methods for enhancing informativity of images based on its 
nonlinear color interpretation (Mogilenskikh, 2000) and methods for estimating image 
informativity based on binary operations and visualization algorithms (Mogilenskikh & 
Pavlov, 2002; Mogilenskikh, 2003).  
Results of investigation help decide how spatial resolution depends on the degree of data 
incompleteness and draw inferences on whether the modified reconstruction techniques are 
effective and on the investigated post-processing methods are capable of making 
tomograms more informative.  
The chapter is organized as follows. Section 2 gives a general formulation of the 
tomography problem. It is shown that the inverse problem of DOT, like the problem of 
reconstruction from X-ray projections, can be reduced to a solution of an integral equation 
with integration along the trajectory. The Section describes a discrete model of a 2D 
reconstruction problem and modernized algebraic techniques. Section 3 gives examples of 
2D reconstruction from experimental radiographic data and model diffusion projections 
from optical inhomegeneities. The Section makes a quantitative analysis of the spatial 
resolution of tomograms reconstructed from strongly incomplete data. Section 4 describes 
post-processing methods and gives examples of their use.  Section 5 draws inferences and 
outlines further research in the area.  

2. Generality of our approach to reconstruction from strongly incomplete 
data

2.1 From the Radon transform to the fundamental equation of the PAT method 

The problem of reconstruction in computed tomography is known to be formulated as 

follows: find the best estimation of a function of spatial coordinates )(rf , called an object 

function, from a discrete set of its measured projections. Generally, each projection can be 
written as a weighting integral 

∞
= rdfwg 3)()( rr , (1) 
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where )(rw  is a weighting function which depends on source and receiver positions in 

space, the type of actual physical measurements and the way of data recording.  
In transmission X-ray tomography where the spatial distribution of the extinction coefficient 

)(rμ  is reconstructed, it is usually assumed that the weighting function is unity along a line 

L  connecting a point source and a point receiver, and zero elsewhere. Then expression (1) 
turns into the linear integral

=
L

dlg )(rμ . (2) 

In computed tomography, it is known as the Radon transform. Integral (2) is inverted with a 
linear reconstruction model implemented with the use of both integral algorithms (Kak & 
Slanay, 1988) and algebraic techniques (Herman, 1980).  
Divergence of the probing beam in, for example, proton (Hanson, 1981; 1982) or diffraction 
(Devaney, 1983) tomography makes it necessary to consider not a line but a narrow 3D strip 
of a finite length. In this case, it may be needed to change from linear integration (2) to 
volume one (1) and pose restrictions on the use of the linear reconstruction model.  
Diffuse optical tomography (DOT) of strongly scattering media is the most demonstrative 
example of non-linear tomography. Laser beams used for probing undergo multiple 
scattering, so photon trajectories are not regular and photons are distributed in the entire 

volume V under study. As a result, each point in the volume significantly contributes to the 

detected signal. If, for example, we deal with absorbing inhomogeneities of tissues 
examined by pulsed probing with the time-domain measurement technique, integral (1), in 
the approximation of the perturbation theory by Born or Rytov, takes the form (Lyubimov et 
al., 2002; 2003)  

→=
V

a

t

ds rddtvPtg 3

0
)()],()0,(,[)( rrrr δμττ , (3) 

where t  is the time-gating delay of the receiver recording the signal, v  is the light velocity 

in the media, )],()0,(,[ tP ds rrr →τ  is the density of the conditional probability that a 

photon migrating from a space-time source point )0,( sr  to a space-time receiver point 

),( tdr  reaches an intermediate space point r  at time τ , and )(raδμ  is the distribution 

function of the absorbing inhomogeneities. Local linearization of the inverse problem of 
DOT is usually done with multi-step reconstruction algorithms based on the variational 
formulation of the radiation transport equation (or its diffusion approximation). The 
Newton-Raphson algorithm with the Levenberg-Marquardt iterative procedure (Arridge, 
1999) is a typical example of these algorithms. The multi-step algorithms provide a 
relatively high spatial resolution (~5 mm) for diffusion tomograms, but they are not as fast 
as required for real-time diagnostics because we have to solve a forward problem, i.e. the 
problem of propagation of radiation through matter, many times by adjusting at each 
linearization step the matrix of coefficients of a system of algebraic equations describing the 
discrete reconstruction model.  
There is a unique opportunity to accelerate the reconstruction procedure: to change in 
expression (3) from volume integration to integration along a conventional line connecting 
point source and point receiver. Using a probabilistic interpretation of light transfer by 
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means of the conditional probability density P , Lyubimov et al. (2002; 2003) proved that 
integral (3) could be presented as  

dl
lv

tg
L

Pa
=

)(

)(
)(

rδμ
, (4) 

where L  is a curve defined by coordinates of the mass centers of the instantaneous 

distributions P  in accordance with  

rdtP
V

ds
3)],()0,(,[)( →= rrrrR ττ , (5) 

which we call a photon average trajectory (PAT). Here l  is a distance along the PAT, )(lv  is 

the relative velocity of the mass center of the distribution P  along the PAT as a function of 

l ,            is the operator of averaging over the spatial distribution P . Integral equation (4) is 

a fundamental equation of the photon average trajectories method (PAT method) in case of 
time-domain measurement technique. It is an analog of Radon transform (2) and can be 
inverted with the fast algorithms of projection tomography. In other words, converting (3) 
into (4) offers an opportunity to change from multi-step to one-step reconstruction in the 
sense that the system of algebraic equations describing the discrete reconstruction model is 
only inverted once and hence, to achieve significant savings in computational time.  
Equation (4) has definitely a number of differences from equation (2), specifically:  
(a) Integration is performed along not a straight but curved line;  

(b) Under integral (4), there is a weighting distribution )(/1 lv  which depends on spatial 

coordinates; and 
(c) Trajectory integration is applied not to the object function itself, but to a function 

averaged over the spatial distribution P .
The latter means that the reconstructed image is degraded by a priori blur which requires 
additional work, i.e. post-processing of tomogram. With the above differences, it becomes 
clear that the inversion of equation (4) with the linear reconstruction model requires certain 
assumptions which may affect the quality of reconstructed images. Nevertheless, our earlier 
studies (Konovalov et al., 2003; 2006b; 2007; Lyubimov et al., 2002; 2003) and results 
presented in Sections 3 and 4 show that the PAT method is quite effective in the context of 
the tomogram quality versus reconstruction speed trade-off.  

2.2 Discrete image reconstruction model 

In medical applications of X-ray computed tomography, equation (2) is usually inverted by 
means of integral reconstruction algorithms such as the backprojection algorithm with 
convolution filtering (Kak & Slanay, 1988). In FVCT where the number of views is small, 
reconstruction with the integral algorithms gives aliasing artifacts which are present on 
tomograms as “rays” tangential to reproduced structures (Palamodov, 1990). Different 
smoothing and regularization methods can be applied to remove these artifacts which 
strongly restrict the resolution of small details. But the quality of reconstructed images still 
remains far from satisfactory.   
It is also difficult to invert equation (4) with integral algorithms. Here problems arise from 
not only incomplete data, but also from curved PATs. Our attempts to implement the 

P
⋅
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backprojection algorithm for diffusion tomograms (Konovalov et al., 2003; 2007; Lyubimov 
et al., 2003) are based on the assumption that the PATs are almost straight lines inside the 
scattering object. But with this approach it is impossible to reconstruct the spatial 
distribution of absorbing inhomogeneities near boundaries where photons escape from the 
object like an avalanche and the PATs strongly bend.  
In this case, both in FVCT and in DOT, it is appropriate to use iterative algebraic algorithms 
implementing a discrete reconstruction model. In this chapter, without loss of generality, we 
will only consider examples of 2D reconstruction, i.e. reconstructions of 2D images. The 
generalized discrete model of 2D reconstruction is formulated traditionally (Herman, 1980). 
Let us establish a Cartesian grid for square image elements so that it covers the object. 

Assume that the reconstructed object function takes a constant value klf  in an element with 

indices k  and l  (hereafter, ),( lk -cell). Let ijL  be a straight line or PAT connecting 

i -source and j -receiver, and ijg  be a projection measured by j -receiver from i -source.

Then the discrete reconstruction model can be characterized by a system of linear algebraic 
equations

,
,

=
lk

klijklij fWg , (6) 

where ijklW  is the weight contributed by the ),( lk -cell to the measured value ijg . In the 

traditional setup of 2D reconstruction, the weight ijklW  is proportional to the length of 

intersection of the trajectory ijL  with the ),( lk -cell (Herman, 1980; Lyubimov et al., 2002). 

i

Dj

Xxk Xxk +1

Xyl +1 Sijkl

Sijkl

 xk  xk +1

yl

yl +1

i

 j

a b 

Figure 1. Calculation of weights: (a) X-ray tomography; (b) DOT 

In this case, the matrix of coefficients of system (6) (hereafter,  weight matrix) appears to be 
highly sparce because each trajectory intersects very few cells. This fact markedly worsens 
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convergence of algorithms used to solve system (6) that is strongly underdetermined due to 
incomplete data. To reduce the number of zero elements in the matrix, we modernized the 

method for calculation of ijklW  having changed the infinite narrow trajectory by a strip of a 

finite width (Konovalov et al., 2006 ; 2006b). 
 In X-ray tomography, the strip is  long trapeze (Figure 1(a)). Its bases are source aperture 
(the linear size of the focal spot) and receiver aperture (as a rule, the intrinsic resolution of 
the recording system). In this case, the weights can be calculated with the formula  

δ/ijklijkl SW = , (7) 

where ijklS  is the area of intersection of the strip corresponding to i -source and j -receiver 

(hereafter, ),( ji -strip) with the ),( lk -cell, and δ  is the linear size of the cell. It is obvious 

that the calculation of  ijklS  for trapezoidal strips must not cause difficulty.  

The situation is more complicated in DOT. The configuration and size of the appropriate 
strip must be selected with account for the spatial distribution of the trajectories of photons 

migrating from the point )0,( sr  to the point ),( tdr . According to the above statistical 

model, the most probable trajectories are distributed in a zone defined by the standard root-
mean-square deviation (RMSD) from the PAT in accordance with the formula 

2/1
32

)],()0,(,[)()( →−=Δ rdtP
V

ds rrrRr τττ . (8) 

This zone is shaped as a banana (Lyubimov et al., 2002; Volkonskii, 1999) with vertices at the 
points of source and receiver localizations on the boundary of the scattering object. 

Therefore, for the ),( ji -strip we take a banana-shaped strip (Figure 1(b)) whose width is 

directly proportional to the RMSD: )()( τγτε Δ⋅= . The problem is thus reduced to finding 

statistical characteristics (5) and (8) of photon trajectories. Note that the exact analytical 

calculation of )(τR  and )(τΔ  is difficult for even simple configurations such as a circle or a 

flat layer. The use of numerical techniques is undesirable because of the necessity to save 
computational time. Therefore, a number of simplifying assumptions should be done. 
Lyubimov et al. (2002) and Volkonskii et al. (1999) propose to approximate the PAT by a 
three-segment broken line whose end segments are orthogonal to the boundary of the 
scattering object and the middle segment connects the end ones. This approach is effective if 
inhomogeneities are located inside the object, but causes distortions if inhomogeneities are 
near the boundaries where the PATs bend. In this chapter we configure banana-shaped 
strips in the geometry of a flat layer using a simplified analytical approach based on the 
analysis of PAT bending near a plane boundary. The approach uses the time-dependent 
radiation transport equation in the diffusion approximation. Konovalov et al. (2006b) 
showed that in the case where a instantaneous point source was in a homogeneous half-

space (a half-plane in 2D) 0≥y  at a point ),0( 0y  and a receiver was at a point )0,( 0x  on 

the boundary 0=y , coordinates of the mass center of the distribution P , moving from the 

source point to the receiver point could be expressed as  
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where 2
04 yKvt=α , K  is the diffusion coefficient of the media, )(erf ξ  is the probability 

integral. If assume that PAT bending near the plane (straight line) of a source S  is similar to 

bending near the plane (straight line) of a receiver D  and there is no influence of the 
opposite boundary, analytical expressions (9) can be easily used to construct the PAT for the 

flat layer geometry (Figure 2). Indeed, the mass center passes the distance SO  and the 

distance OD  during the time 2/t . If the mass center moved in the half-space 0≥y  from a 

point 0S  to the point D  through the point O , the time 2/t  would correspond to the 

distance OS0 .  Since component velocity along the X-axis is constant, the point 0S  lies on 

the perpendicular SS ′  to the media boundaries. The distance SS ′0  can be found through 

the numerical solution of the equation 2/
2/

dY
t

=
=τ

, where d  is the width of the layer, for 

0y  (see expressions (9)). After that the distance OD  is calculated with (9) and the distance 

SO  is obtained through its symmetric reflection about the point O .

x

 y
 S

 S0  O

 S ’ D

Figure 2. PAT construction for a flat layer Figure 3.  Geometry of data recording for a 
rectangular object 

Figure 3 shows the geometry of data recording we chosen for simulations. Red triangles 
denote the positions of sources and blue circles do the positions of receivers. It also shows, 

as examples, six average trajectories reproduced with the above algorithm for 3000=t  ps 

and optical parameters 066.0=K  cm and 0214.0=v  cm/ps. Blue lines show piecewise-

linear approximations of the PATs. Coordinates of the indicated sources and receivers (in 
centimeters) are as follows: S5 – (-2.52, 4), D17 – (-5, -4), D20 – (-3.06, -4), D23 – (-1.13, -4), 
D26 – (0.81, -4), D29 – (2.74, -4), D32 – (4.68, -4). In this chapter we study the probing regime 
in transmission, i.e. only relations between sources and receivers located on the opposite 
boundaries of the object are considered. The total number of average trajectories therefore 

2

-2

2 4-2-4 Xx, m

Yy, m
S5

D17 D20 D23 D26 D29 D32
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equals to 32×16 (32 sources and 16 receivers). In the reconstruction we will vary the number 
of sources to study how the spatial resolution depends on the degree of data 
incompleteness.  
High accuracy of RMSD calculation is not crucial for the construction of banana-shaped 
strips. Therefore, in accordance with the inference of Volkonskii et al. (1999) that RMSD is 
actually independent of the form of the object, we can use the following simple formula for 
infinite space:  

[ ] 2/1
/)(2)( ttKv τττ −≅Δ . (10) 

Boundaries of banana-shaped strips are defined as follows.  

(a) Define a set of discrete times }{ pτ .

(b) Construct perpendiculars to tangential lines at PAT points corresponding to times }{ pτ

(Figure 4).

(c) Lay off sections of the length )( pτε  in both directions along each perpendicular.  

(d) Construct lines connecting the points which we obtained for different }{ pτ .

Figure 4. Definition of boundaries for 
banana-shaped strip 

Figure 5. Definition of the discrete relative 

velocities of mass center of the distribution P

Boundaries of the strips are thus defined by piecewise-linear functions. To calculate the 

areas ijklS , we find the points where the strip boundaries intersect the sides of the cell. A 

polygon with vertices at the obtained points and cell nodes is treated as the intersection of 

the ),( ji -strip and the ),( lk -cell (Figure 1(b)). Weights are calculated with the formula  

)/( δijklijklijkl vSW =  (11) 

where ijklv  is the discrete velocity of the mass center of the distribution P  for the 

),( ji -strip and the ),( lk -cell. Analytically, the velocities )( pv τ  are determined through 
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differentiation of expressions (9). The array of discrete values }{ ijklv  is defined with the 

following algorithm.  

(a) Define a set of discrete times }{ pτ .

(b) Construct perpendiculars to tangential lines at points of ijL  corresponding to the 

times }{ pτ  (Figure 5).  

(c) Assign a loop for p , in which the following sequence of steps is performed:  

• Find cells where the ),( ji -strip intercepts a strip created by two neighbor 

perpendiculars corresponding to the times pτ  and 1+pτ . In Figure 5, these cells 

are shown in green.  

• To all cells found, assign a value which equals the velocity averaged over two 

times: 2/)]()([ 1++ pp vv ττ .

• If some value old
ijklv  has already been assigned to a cell, it is updated with the 

formula

1+

+⋅
=

N

vNv
v

new
ijkl

old
ijkl

ijkl , (12) 

where new
ijklv  is the new value and N  is the number of previous updates.  

Figure 6. The area of the object filled with banana-shaped strips for different values of 
coefficient γ : (a) – 0; (b) – 0.05; (c) – 0.15; and (d) – 0.25 

a b 

c d 
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(d) All PATs are searched sequentially and, for each of them, the procedure is repeated 
beginning from step (b).  

The proportionality coefficient )1,0(∈γ  which defines the width of the banana-shaped 

strip is selected from a condition dictating that all strips must sufficiently fill the area of the 
object. Figure 6 shows the filling of the rectangular object presented in Figure 3 for ratio of 
sources and receivers (hereafter, measurement ratio) 32×16 and γ  equal to 0, 0.05, 0.15, and 

0.25. In Figure 6(a), (b), and (c), there are extended regions with no strips (shown in blue). 
This means that, if the grid is of high resolution, there are cells where corrections won’t be 
introduced during the process of reconstruction. In Figure 6(d) these regions are very small 
in size which minimizes the probability that “dead” cells will appear. That is why we 
reconstruct the absorbing inhomogeneities embedded in the scattering object shown in 

Figure 3 using banana-shaped strips whose width is )(25.0)( ττε Δ= .

It should be noted that the problem of area filling in FVCT is not as decisive as in DOT if 
even the strips are very narrow. Despite the small number of views, the number of strips 
corresponding to one view is rather large (> 100).  

2.3 Algebraic reconstruction techniques and methods of their modification 

When selecting an algorithm to invert system (6), we must remember that in case of very 
incomplete data, the system appears to be strongly underdetermined. That is why the 
problem of solution regularization is of great importance in the context of the need to 
approximate the solution correctly and hence, to obtain tomograms which are free of 
artifacts. It is well known that the minimum of artifacts corresponds to the minimum of 
information contained in images. Under these circumstances, it seems appropriate to do 
reconstruction with an approach based on entropy optimization (Levine & Tribus, 1978). In 
this chapter we study the multiplicative algebraic reconstruction technique (MART) which 
implements the entropy maximum method. The problem of solution regularization is 

formulated as follows. Find the array of values }{ klf  which satisfies system (6) and the 

conditions  

maxln,0
,

→≥
lk

klklkl fff . (13) 

For the purpose of comparison and to demonstrate advantages of the MART, we also 
consider a well-known additive algebraic reconstruction technique (AART) which does not 
optimize entropy.  
Both MART and AART are based on an iterative procedure of correction of certain initial 

approximation }{
)0(

klf . At each )1( +s -iteration trajectories (strips) from one source only are 

considered. Thus, the correction is introduced into the elements of the approximation 

}{
)(s

klf  which correspond to the cells intersected by the given strips. Upon a transition from 

one iteration to another, the sources are searched cyclically. Original formulas for the 
correction of the s -th approximation to the solution are written as follows (Herman, 1980) 
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where )1,0(∈λ  is the parmeter which controls the rate of iterative process convergence and 

F
⋅  is the Frobenius norm. 

Our experience of using the algebraic techniques in FVCT (Konovalov et al., 2006a) and 
DOT (Konovalov et al., 2006b; Lyubimov et al., 2002) suggests that a number of 
modifications to formulas (14) are needed to improve convergence in case of strongly 
incomplete data.  So, expressions (14) does not allow for  
(a) the non-uniform distributions of weight sums and solution correction numbers over the 
cells; and 
(b) any a priori information on the spatial distribution of reproduced structures.  
As a result, both algorithms including the MART with regularization (13) often converge to 
a wrong solution. Because of the incorrect redistribution of intensity, images exhibit distinct 
artifacts which are often present in the regions where the structures are actually absent.  
To avoid these shortcomings, we here use the following formulas for modified algebraic 
techniques  
Step 1 
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where Lji ijklkl NWW =
,

~
 is the reduced weight sum for the ),( lk -cell, LN  is the total 

number of strips used in reconstruction, and w  is the matrix of correction factors which 

allow for a priori information on the object function (see below).  
Step 2 

,)norm()
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norm(
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+

+
=  (16) 

where the integer r  specifies the size rr ×  of the smoothing window, klA  is the number of 

corrections to the solution element corresponding to the ),( lk -cell, and  

−−= )(min)(max)(min)norm(
,,,

kl
lk

kl
lk

kl
lk

klkl ξξξξξ  (17) 

is the operator which normalizes the distributions }
~
{ klW  and }{ klA .
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Accounting for the distributions of reduced weight sums and correction numbers over the 
cells is most crucial for DOT where they are markedly non-uniform (Figure 7). Figure 8 
shows an example of reconstruction of the scattering object with two circular absorbing 
inhomogeneities 0.8 cm in diameters (see Section 3.2). Here and after the red triangles 
represent the localizations of the sources used for reconstruction. The Figure demonstrates 
advantages of the modified MART. We have bad results without taking into account the 

distributions }
~
{ klW  and }{ klA  (Figure 8 (b) and (c)).  

Figure 7. Distributions of reduced weight sums (a) and solution correction numbers (b) over 
137×100 grid which cover the object shown in Figure 3  

a

b c 

Figure 8. The 0.8-cm-in-diam absorbing inhomogeneities defined on a triangular mesh (a) 
and results of their reconstruction by the MART: without (b) and with (c) the distributions 

}
~
{ klW  and }{ klA

To use a priori information on the presence of structure-free zones in the reconstruction 
region, we developed an algorithm illustrated by Figure 9 which shows the reconstruction 
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of the middle section of the iron sphere compressed by an explosion from radiographic data 
(see Section 3.1). The algorithm is described by the following sequence of steps:  

(a) Reconstruct the image }{ 1
klf  from projections corresponding to the first source only 

(Figure 9 ( )).

a b 

c d 

Figure 9. Generation of a useful part of the tomogram: (a) – the image }{ 1
klf ; (b) – the image 

}
~
{ 2

klf ; (c) – the image }
~
{ 24

klf ; (d) – the set of multilevel regions  

b) Reconstruct the image }{ 2
klf  from projections corresponding to the second source only 

and compare it with the result obtained at step (a). Following from the result of the 

comparison, form the image }
~
{ 2

klf  such that ),min(
~ 212

klklkl fff =  for each ),( lk -cell

(Figure 9(b)).

 (c) Repeat step (b) for each following i -source forming the image }
~
{ i

klf  such that 

),
~

min(
~ 1 i

kl
i

kl
i

kl fff −=  (Figure 9(c)). Search all given sources.   
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(d) For the last image }
~
{ last

klf , define certain ascending sequence of relative thresholds 

M
m 1}{ε , the largest of which does not exceed, for example, 0.1-0.2 and determine correction 

factors }{ klw  using the following relations:  

.}
~

max{
~
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}
~

max{
~
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a b 

Figure 10. Reconstructions of the sphere section from 24 views by the MART without (a) and 

with (b) the correction factors }{ klw

Such a definition of the set of multilevel regions with values that monotonically decrease 
from unity to zero (Figure 9(d)) allows artifacts to be avoid in the structure-free zones, i.e. 

where the object function must be zero or close to zero. The effect of accounting for }{ klw  is 

demonstrated in Figure 10 which illustrates the reconstruction of the section of a sphere 
from 24 views by the MART. For visual demonstration, reconstructions are presented as 
surface plots.  
It should be noted that in the case of the AART, it is also appropriate to use a priori 
information on whether the reconstructed object function is non-negative. For this end, all 
negative elements in the solution approximation are changed by zeros at each iteration. In 
the case of the MART, this is not needed because the algorithm works with a priori positive 
values.

3. Examples of reconstruction of test objects and quantitative analysis of 
tomograms

3.1 Reconstruction of strongly absorbing structures from few X-ray views  

This section gives examples of 2D reconstruction of objects with strongly absorbing 
structures from experimental radiographic data. The objects include  
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(a) a foam plastic cylinder 6 cm in diameter with periodical spatial structures in the form of 
rows of coaxial thin steel rods whose diameters are 1.5, 2.5, 5 and 8 mm, and  
(b) an iron sphere 4.8 cm in diameter with lots of internal damages from shock compression.  
X-ray projections are detected with a simple experimental setup (Figure 11 (a)). The 
radiation source is a pocket-size betatron with a small focal spot (about 1 mm) and a 
relatively small effective energy of the photon spectrum (about 2 MeV). The recording 
system combines a luminescent amplifying screen and an X-ray film. The object is placed 
between the source and the recording system so as to ensure that the film fully covers the 
object’s shadow. To determine parameters of the characteristic curve of the recording system 
(photometric density versus exposure), we register the image of a step lead wedge with the 
object, as shown in Figure 11. Distances between the source and the object and between the 
source and the recording system are, respectively, 150 and 220 cm for the cylinder with 
periodic structures and 120 and 180 cm for the shocked sphere.  

1 2 3 4

1 - Recording system
2 - Wedge
3 - Test object
4 - Radiation source

a b 

Figure 11. Experimental setup (a) and X-ray photograph of the shocked iron sphere (b)  

To collect information, each film with the X-ray image is scanned using a laser scanner with 
a small focal spot. Digital data collected are converted from scanner counts into film 
exposures with a technique (Kozlovskii, 2006) developed and experimentally adjusted at 
Russian Federal Nuclear Center – Zababakhin Institute of Applied Physics. The technique is 
based on the approximation of the characteristic curve by the relation  

)lgexp(max0

c
HbaIII −⋅−+= , (19) 

where I  is the photometric density, H  is the exposure, 0I  is a parameter which 

characterizes the density of film fogging, maxI  is a parameter which characterizes the 

maximum density the film permits, a  and c  are inclination and shape parameters, and b

is a parameter which defines sensitivity of the recording system. The characteristic curve 

parameters I , maxI , a , b  and c  are found through solving the problem of optimization 

for the objective function  

min)(
1

2/1

1

2 →−
=

Z

i

meas
ii II

Z
, (20) 
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where iI  is the photometric density calculated by expression (19) for i -step on the wedge, 

meas
iI  is the experimental density found with the image of the step wedge (Figure 11(b)) and 

Z  is the number of steps on the wedge. 

MART AART 

12

8

6

4

Figure 12. Tomograms of a cross section of the cylinder with periodic structures 
reconstructed from 12, 8, 6, and 4 views 
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a b 

c d 

Figure 13. A photograph of the middle section of the sphere (a) and its reconstructions by 
the modified MART from 24 (b), 12 (c), and 8 (d) views 

 We assume that each X-ray in the conic beam is detected by a conventional receiver whose 
aperture is larger than the size of one cell of the digitized x-ray photograph. It is appropriate 
to take the aperture to be equal to the intrinsic resolution of the recording system. So, in 

order to calculate projections, we must average the exposures H  over aperture areas. 
Projections are calculated as  

)log( 0HHg −= , (21) 

where 0H  is film exposure without the object (background).  

Figure 12 shows the tomograms of a cross section of the cylinder with periodic structures 
reconstructed from the 1D arrays of projections by the modified MART and AART 
described in Section 2.3. On the left of the Figure there are the numbers of views used for the 
reconstruction. It is seen that the quality of reconstructions by the entropy optimizing 
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MART is a bit better than that of the images reconstructed by the AART. For the images 
shown in Figure 12, the visual resolution limit seems to be close to 1.5 mm because the row 
of 1.5-mm-diam rods is clearly seen in the upper images (MART, 12 and 8 views; AART, 
12 views) and hardly distinguishable in the others. The quantitative analysis of spatial 
resolution is given in Section 3.3.  
Figure 13 shows the tomograms of a middle section of the shocked sphere reconstructed by 
the modified MART in comparison with its photo taken after the sphere was cut with an 
elecroerosion machine. It is seen from Figure 13 (a) and (b) that 24 views allow quite 
accurate reproduction of a fine fracture pattern (characterizing the reproduction of high-
frequency structures) to be obtained. The images in Figure 13 (c) and (d) well reproduce the 
fracture pattern on whole, but small details are reproduced much worse compared with 
Figure 13(b). 
Tomograms presented in Figure 13 qualitatively differ from those in Figure 12: the spatial 
structures in the sphere “drop” in reconstruction, i.e. the structures in the center are 
reproduced less intensively than the structures near its boundary. This is caused by the effect 
of beam hardening (Kak & Slanay, 1988) which distinctly manifests itself in the reconstruction 
of strongly absorbing objects. This proves that tomograms need post-processing. 

3.2 Reconstruction of optical inhomogeneities embedded in strongly scattering media 
from model diffusion projections  

To demonstrate efficiency of the modified algebraic algorithms for one-step reconstruction 
of diffuse optical tomograms, we conduct a numerical experiment where we simulate 
scattering objects with absorbing inhomogeneities and calculate diffusion projections. Four 
square objects 11×8 cm2 in size (Figure 3) are considered. Light velocity in the media and 
diffusion and absorption coefficients are 0.0214 cm/ps and 0.066 cm and 0.05 cm-1,
respectively. Each object has two circular inhomogeneities of identical diameters; they are 
near the center at a distance of one diameter from each other. Diameters of inhomogeneities 
in different objects are 1.2, 1.0, 0.8 and 0.6 cm. The inhomogeneity absorption coefficient is 
equal to 0.075 cm-1. To simulate diffusion projections, we solve the time-dependent diffusion 
equation with the instantaneous point source  

[ ] ),(),()(),(
),(1 2 τδτϕδμμτϕ

τ

τϕ
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∂
 (22) 

for the photon density ),( τϕ r  by the finite element method. The signal of the receiver is 

found with the formula  
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where η∂∂  is the derivative in the direction of the outer normal to the boundary of the 

object at the receiver point drr = . Accordingly, the diffusion projection )(tg  is found as 

logarithm of the ratio of the non-perturbed signal )(0 tJ  calculated for the homogeneous 

medium to the signal )(tJ  perturbed due to inhomogeneities.  
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 MART AART 

1.2

1.0

0.8

0.6

Figure 14. Reconstructions of scattering objects for measurement ratio 32×16 

Figure 14 demonstrates the reconstructions of scattering objects by the modified MART and 
AART for measurement ratio 32×16 from diffusion projections calculated for the time-gating 

delay 300=t  ps. Diameters of inhomogeneities in cm are shown on the left of the Figure. It 

is seen that the AART that does not optimize entropy is a bit less accurate than the MART 
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in the reproduction of spatial structures. In all tomograms, inhomogeneities are deformed 
(elongated) because of averaging over the spatial distribution of photons. This makes it 
necessary to apply post-processing methods to neutralize such blur. To investigate how the 
degree of data incompleteness influences the quality of tomograms, we reconstruct 
scattering objects for measurement ratios 16×16, 8×16 and 4×16. As an example, Figure 15 
shows a reconstructed object with inhomogeneities 0.8 cm in diameter. The number of 
sources is given on the left of the Figure. It is seen that in case of 4 sources (the lower row of 
images), the inhomogeneities are falsely shifted and not resolved relative each other in the 
case of the AART. The quantitative analysis of spatial resolution is discussed in Section 3.3. 

 MART AART 

16

8

4

Figure 15. Reconstructions of the object with 0.8-cm-diam inhomogeneities for measurement 
ratios 16×16, 8×16, and 4×16 



Algebraic Reconstruction and Post-processing 
in Incomplete Data Computed Tomography: From X-rays to Laser Beams 507

3.3 Quantitative analysis of tomogram resolution  

In parallel beam projection tomography, the visualization system is usually described with a 
model of a linear filter invariant to spatial shift (Papoulis, 1968). The model allows the 
spatial resolution to be evaluated using a modulation transfer function (MTF) defined as the 
amplitude of system response to the harmonic signal. In the strict sense, the spatially 
invariant model is not applicable either in FVCT (because of fan beam geometry and 
strongly incomplete data), or in DOT (no regular straight photon trajectories). That is why, 
in this Section, we use the MTF only for the rough estimation of the resolution limit. On the 
contrary, in Section 4.1, blur of diffuse optical tomograms is neutralized with a spatially 
variant model which accounts for the dependence of spatial resolution on inhomogeneity 
localization.  
To estimate the resolution from images of periodical spatial structures, we use the standard 
technique described, for example, by Konovalov et al. (2006a) and Lyubimov et al. (2002). 
From the profile of each reconstructed row of rods (Figure 12) or inhomogeneities (Figure 14 
and Figure 15), we define the modulation transfer coefficient (MTC) as the average relative 
depth of the valley between peaks. The discrete spatial frequencies are assigned to diameters 
of the rods (inhomogeneities). A dependence of the MTC on spatial frequency is taken as an 
estimate to the MTF. Figure 16 (FVCT) and Figure 17 (DOT) illustrate the MTFs 
characterizing accuracy at which spatial structures are reconstructed from incomplete data 
by the modified MART and AART. It is seen that all curves from MART (red lines) run 
higher than those from AART (black lines), proving that the multiplicative algorithm that 
optimizes entropy is less restrictive in the reproduction of high-frequency spatial structures 
than the additive algorithm. So, for example, in reconstruction from 4 views (Figure 16(d)), 
20% contrast (the conventional visual resolution limit (Papoulis, 1968)) corresponds to 
spatial frequencies 3.4 and 1.9 cycles/cm, if MART and AART are used. That is, if we are 
limited to 4 views, only spatial structures whose linear sizes are larger than 1.5 and 2.6 mm 
can be resolved in images reconstructed by the multiplicative and additive algebraic 
algorithms, respectively. Table 1 contains the estimates of the spatial resolution limit 
obtained in this manner from Figure 16 and Figure 17. Digits in brackets present similar 
estimates from the blue curves constructed for MART tomograms after space-varying 
restoration (see Section 4.1).  

Reconstruction technique 
Tomography type Number of views (sources)

MART AART 

12 1.0 1.5 

8 1.2 1.6 

6 1.4 2.5 
FVC

4 1.5 2.6 

32 7.0 (6.0) 8.6 

16 8.1 (6.4) 10.0 

8 8.2 (6.8) 10.1 
DOT

4 9.0 (7.0) 12.6 

Table 1.  Estimated spatial resolution limit (in millimeters) for FVCT and DOT 
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Figure 16. FVCT: MTFs for MART (red lines) and AART (black lines): (a) – 12; (b) – 8; (c) – 6; 
and (d) - 4 views 
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Figure 17. DOT: MTFs for MART (red lines), AART (black lines), and MART after restoration 
(blue lines): (a) – 32×16; (b) – 16×16; (c) – 8×16; and (d) - 4×16 sources and receivers 

Analysis of data presented in the Table suggests that the use of the modified MART in FVCT 
helps get close to the resolution of medical X-ray tomography which uses the full set of 
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views. As for DOT, the resolution of the PAT method reached again with the modified 
MART is only slightly worse than the resolution of tomograms reconstructed by the multi-
step reconstruction algorithms (Arridge, 1999) and there is still hope to improve it through 
post-processing.  

4. Post-processing of tomograms 

4.1 Space-varying restoration  

As mentioned in Section 3.3, the strict description of the visualization system both in FVCT 
and DOT can only be made with a spatially variant blur model. In FVCT, spatial variance at 
a rough approximation can be neglected because the size of the object is small compared to 
source-object and object-receiver distances. In DOT, the strong dependence of structure 
reconstruction accuracy on structure localization directly follows from expressions (8) and 
(10) which characterize the theoretical limit of spatial resolution. The theoretical resolution 
tends to zero near boundaries. In the center, the resolution is worst and depends on the 
degree of data incompleteness (Table 1).  
The traditional approach (Fish et al., 1996) to the restoration of images degraded by spatially 
variant blur is based on the assumption that blur is approximately spatially invariant in 
small regions of the image. Each such region is restored with its own spatially invariant 
point spread function (PSF) and results are then sewn together to obtain the full true image. 
This approach gives blocking artifacts at the region boundaries and they need to be removed 
by some means or other. In this chapter we restore diffusion tomograms using the blur 
model of Nagy et al. (2004). In accordance with the model, the image is divided into a 
number of regions where the PSF is approximately spatially invariant. However, instead of 
deblurring each region separately and then combining restoration results, the method 
interpolates individual invariant PSFs and restores the entire image. The discrete restoration 

problem for a tomogram with blur f  is described by a system of linear algebraic equations  

zQf ⋅= , (24) 

where Q  is a large, ill-conditioned matrix describing the blurring operator and, z  is a 

discrete representation of the true image. Matrix Q  contains all non-zero elements of each 

of the spatially invariant PSF assigned to the individual regions of the tomogram. Q  also 

accounts for a priori information on the extrapolation of the restored image beyond its 
boundaries, i.e. boundary conditions. This is necessary to compensate for near-boundary 
artifacts caused by Gibbs effect. So, for example, in the case of reflexive boundary conditions 

that we use for restoration, Q  is the sum of the banded block Toeplitz matrix with banded 

Toeplitz blocks (Kamm & Nagy, 1998) and the banded block Hankel matrix with banded 
Hankel blocks (Ng et al., 1999).  
Each spatially invariant PSF assigned to an individual region of the diffusion tomogram is 
simulated by performing the following sequence of steps. 
(a) On a triangular mesh, we define a point inhomogeneity by three equal values in the 
nodes of a triangle located at the center of the region. The amplitude of the inhomogeneity is 

an order of magnitude larger than the amplitude )(raδμ .

 (b) Diffusion projections from the point inhomogeneity are simulated trough the solution of 
equation (22) with the finite element method.  
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(c) A tomogram with PSF is reconstructed from obtained model projections by the modified 
algebraic techniques described above.  
For the inversion of system (24), we selected the iterative residual norm steepest descent 
algorithm (Kaufman, 1993) that converges rather fast and has a semi-convergence with 

respect to the relative error zzz −s , where sz  is the approximation to z  on 

s  -iteration. This is of great importance for getting the regularized solution. Here we omit 

details of the procedure used to restore diffuse optical tomograms reconstructed by the PAT 
method. They can be found in (Konovalov et al., 2007).  

32 16

8 4

Figure 18. Results of space-varying restoration of MART-tomograms with 0.8-cm-diam 
inhomogeneities for measurement ratios 32×16, 16×16, 8×16, and 4×16 

Figure 18 shows some results of space-varying restoration of diffusion tomograms 
reconstructed by the MART and presented in Figure 14 and Figure 15. The corresponding 
number of sources used for reconstruction and simulation of individual PSFs is given on the 
left and on the right of Figure 18. For restoration, a tomogram is divided into two 
conditionally spatially invariant regions, each of them containing its own absorbing 
inhomogeneity. To simulate the PSF, we defined a point inhomogeneity in a triangle located 
in the center of the inhomogeneity. It is seen from the Figure that we succeeded to not only 
improve resolution, but also neutralize deformations in the inhomogeneity shape. After 
restoration, the structures are reproduced much better even through the data are ultimately 
incomplete (see right image at the bottom of Figure 18). Blue curves in Figure 17 show MTFs 
constructed from the profiles of restored MART-tomograms. The corresponding estimates of 
spatial resolution provided in Table 1 in brackets demonstrate a significant gain in 
resolution (more than 16% for measurement ratio 32×16) due to space-varying restoration.  
It should be noted that the problem of restoration of spatially variant blur is also needed in 
FVCT. However, to get the effect here, the PSF must be defined for each image cell, as the 
resolution in FVCT is much better than that in DOT (see Table 1). It is extremely difficult to 
do because of enormous requirements for computing and time resources. Search for an 
acceptable solution which will help implement a spatially variant model in FVCT is the 
subject of our short-term interest.  
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4.2 Post-processing based on nonlinear color interpretation  

The effect of gamma-quanta beam hardening (Figure 13) is caused by the polyenergetic 
spectrum of radiation source and dependence of the object function (extinction coefficient) on 
the photon energy. Existing methods for eliminating beam hardening artifacts fall into three 
categories: pre-processing of projection data (Brooks & Chiro, 1976; McDavid et al., 1977), 
iterative post-processing of reconstructed tomogram (Elbakri & Fessler, 2002; Yan et al., 
2000) and dual-energy imaging (Alvarez & Macovski, 1976; Kak & Slanay, 1988; Konovalov 
et al., 1999; 2000). The pre-processing methods are low efficient when high-contract structures 
are reconstructed. The most accurate iterative post-processing methods require, as a rule, 
extensive computation and turn out to be time-consuming. The dual-energy methods 
presuppose data recording for different spectra of radiation source, as well as additional 
calibration procedures to measure the effective photon energy (Konovalov et al., 1999; 2000). 

Figure 19. Results of application of linear (left) and nonlinear (right) palette to the images 
presented in Figure 13(b), (c), and (d) 
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For “flattening” the image intensity in order to compensate the beam hardening effect, we 
use simplified approach based on an application of the color interpretation methods. We 
consider the methods for creation of nonlinear color palettes and nonlinear statistical and 
analytical functions of correspondence between image intensity and color space. Detailed 
description of algorithms is given in (Mogilenskikh, 2000). This chapter is mainly focused on 
illustrative examples of their application.  
The color palette is the ordered set of colors from the color space where each color 
corresponds to its own ordinal number. If the palette is nonlinear, the set of colors form a 
curvilinear trajectory in the color space. For image visualization with the use of the color 
palette we should form the law of correspondence between image intensities and colors in 
the cells (hereafter, correspondence function, CF). The argument value of such function is 
the image intensity, and the function value is the color or the color index in the palette. The 
linear CF is usually applied. Figure 19 shows the result of application of the linear black-
and-white palette and the linear CF (left), as well as nonlinear palette including four basic 
colors (blue, yellow, red, and green) and the linear CF (right) to the tomograms given in 
Figure 13. It is seen that the fracture area is more obviously revealed in the second case. 
However, the linear CF does not always allow data interpretation to be informative enough. 
To enhance the image informativity, we use the nonlinear statistical and analytical CF. The 
algorithm for creating the nonlinear statistical CF can be briefly described by the following 
sequence of steps.  

(a) Form the linear CF and put color )( klfG  in conformity with image intensity klf  in the 

),( lk -cell.

(b) Calculate the number of cells )( kl
cells
G fN corresponding to each color of the palette and 

define the weights according to the formula 

+
=

cells
kl
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NfW

1)(
norm)( , (25) 

where colN  is a number of colors in the palette, cellsN  is a full number of image cells, and 

)(norm ⋅  is normalization operator (17).  

(c) Calculate the statistical CF in the form of a spline. The following 1st degree spline is used 
in our case: 

[ ] [ ] )()()()(norm)()( 1 klGklGklGklcolklkl
stat fWfWfWfNfGfG +−⋅−= + . (26) 

 (d) Form the nonlinear CF through addition of the statistical CF (step(c)) and the linear CF 
(step (a)). 
Left column of images in Figure 20 demonstrates the example of application of such 
nonlinear CF to tomograms given in Figure 13. Thus, it is possible to automatically 
distinguish informative contours of factures and simultaneously preserve intensity shades 
inside the image.  
The essence of analytical CF is in applying the nonlinear color coordinate scales to attain the 
correspondence between the color and the intensity in the cells. Elementary functions and 
their algebraic combinations are used for that. Right column of images in Figure 20 shows 

the result of application of exponential CF )60exp()( ffG =  to images given in Figure 19 
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on the left. The type of the function is selected on the basis of the a priori information on the 
homogeneity of high-density structures of the object, which helps to present the internal 
facture pattern in the palette of two colors: black and white. This allows the informative 
regions of cracks and their boundaries to be strongly distinguished.  

Figure 20. Results of application of statistical (left) and analytical (right) CF to the images 
presented in Figure 13 and 19 (on the left), respectively  
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a b 

c d 

Figure 21. The processed photograph of sphere section (a) and the results of binary 
operations with processed tomograms reconstructed from 24 (b), 12 (c), and 8 (d) views 

To estimate the accuracy of fracture pattern reproduction, we compare the results of 
tomogram post-processing with the etalon image obtained through processing of the photo 
presented in Figure 13(a). For comparison, a variety of methods based on binary operations 
and visualization algorithms (Mogilenskikh & Pavlov, 2002; Mogilenskikh, 2003) can be 
used. In our case, processing of the photo includes the construction of the same-level 
isolines, clearing of half-tones between the isolines, and filling of the isolines-bounded areas 
by black (Figure 21(a)). The processed photo is superimposed onto the processed 
tomograms given in Figure 20 on the right. As a result of binary operations, one obtains 
three-tone images presented in Figure 21(b), (c), and (d), where gray color characterizes the 
difference, and black and white – coincidence. The relations between gray areas and black 
area of the etalon image are equal to 0.03, 0.19, and 0.28, respectively. These quantitative 
estimates and visual analysis of Figure 21 show that the accuracy of reproduction of the fine 
fracture pattern seems to be unsatisfactory for reconstructions by 12 (Figure 21(c)) and 
8 views (Figure 21(d)). This conclusion is in agreement with the results of Table 1, which 
show that the spatial resolution limit is worse than 1.0 mm when the number of views does 
not exceed 12. 
The methods for creating the nonlinear CF are also efficient in the case of the diffusion 
tomagrams post-processing. The space-varying restoration of tomograms obviously 
improves but still reproduces incomplete profile of inhomogeneities. And as it follows from 
Figure 22, nonlinear-CF-based processing of restored tomogram of the scattering object with 
0.8-cm-diam inhomogeneities makes it possible to approach a “flat region” of the true profile. 



Algebraic Reconstruction and Post-processing 
in Incomplete Data Computed Tomography: From X-rays to Laser Beams 515

Figure 22. MART-tomogram with 0.8-cm-diam inhomogeneities and its profile after 

restoration (top), application of exponential CF )14exp()( ffG =  (center), and application 

of nonlinear statistical CF 

5. Conclusion 

In this chapter we consider two examples of algebraic reconstruction in incomplete data 
computed tomography: few-view X-ray computed tomography and one-step diffuse optical 
tomography. Multiplicative algebraic reconstruction technique optimizing the entropy 
allows the better quality of tomograms to be obtained. It is shown that, to enhance the 
convergence of iterative reconstruction procedure and to minimize the artifact level on 
tomograms, the conventional formulas of solution correction should be modified. The 
presented results of reconstruction demonstrate the efficiency of the following our 
modifications: 
(a) To calculate the weight matrix, we use not the lines but the narrow strips which provide 
the sufficient filling of the reconstruction area. 
(b) We take into account the non-uniformity of the distributions of the weight sums and the 
solution corrections numbers over the image elements. 
(c) We calculate the correction factors which account for a priori information on whether the 
solution is non-negative and on the presence of structure-free zones in the reconstruction area. 
For increasing the accuracy of spatial structures reproduction under conditions of the strong 
incompleteness of data, it is advisable to post-process the reconstructed tomograms with the 
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use of a priori information about the object. We demonstrate the efficiency of the methods of 
space-varying restoration and post-processing with nonlinear palette and nonlinear function of 
correspondence between the palette color and image intensity in the cells. As a result, we 
obtain the reproduction quality close to that of medical tomograms in the case of few-view 
tomography and close to quality of diffusion tomograms reconstructed by well-designed 
multi-step algorithms in the case of diffuse optical tomography. 
In conclusion it should be noted that, for calculation, we use a rather slow soft-ware 
medium like MATLAB and a Windows XP Intel PC with 1.7-GHz Pentium 4 processor and 
256-MB RAM. Computational time of the reconstruction-restoration procedure for diffuse 
optical tomograms is 1.5…2.5 minutes. These digits are better than those for multi-step 
reconstruction, but they do not satisfy the requirements of real-time medical explorations. In 
the future, it is interesting to optimize the duration of the diffuse optical image production. 
The implementation of a spatially variant blur model in few-view computed tomography is 
also the subject of our short-term interest. 

6. Acknowledgements 

The authors would like to thank S. P. Antipinskii, E. A. Averyaskin, S. A. Brichikov, V. V. 
Fedorov, D. M. Gorbachev, S. V. Kolchugin, E. V. Kovalev, E. A. Kozlov, V. M. Kryukov, 
I. V. Matveenko, A. V. Mikhaylov, L. A. Panchenko, V. N. Povyshev, G. N. Rykovanov, V. V. 
Smirnov, T. V. Stavrietskaya, V. I. Stavrietskii, T. A. Strizhenok, A. B. Zalozhenkov, and 
M. N. Zakharov for collaboration in X-ray radiography and few-view computed 
tomography. The authors also thank A. G. Kalintsev, O. V. Kravtsenyuk, V. V. Lyubimov, 
A. G. Murzin, and L. N. Soms whose contribution to theory of the photon average 
trajectories method cannot be overemphasized. 

7. References 

Alvarez, R. E. & Macovski, A. (1976). Energy-selective reconstruction in X-ray computerized 
tomography. Physics in Medicine & Biology, Vol. 21, No. 5, September 1976, pp. 733-
744.

Arridge, S. R. (1999). Optical tomography in medical imaging. Inverse Problems, Vol. 15, No. 2, 
April 1999, pp. R41–R93. 

Brooks, R. A. & Di Chiro, G. (1976). Beam hardening in X-ray reconstructive tomography. 
Physics in Medicine & Biology, Vol. 21, No. 3, May 1976, pp. 390-398. 

Devaney, A. J. (1983). A computer simulation study of diffraction tomography. IEEE 
Transaction on Biomedical Engineering, Vol. 30, No. 7, July 1983, pp. 377-386. 

Elbakri, I. A. & Fessler, J. A. (2002). Statistical image reconstruction for polyenergetic X-ray 
computed tomography. IEEE Transactions on Medical Imaging, Vol. 21, No. 2, February 
2002, pp. 89-99. 

Fish, D. A.; Grochmalicki, J. E. & Pike, R. (1996). Scanning singular-value-decomposition 
method for restoration of images with space-variant blur. Journal of the Optical Society 
of America A: Optics, Image Science & Vision, Vol. 13, No. 3, March 1996, pp. 464-469.  

Hanson, K. M.; Bradbury, J. N; Cannon, T. M.; Hutson, R. L.; Laubacher, D. B.; Macek, R. J.; 
Paciotti, M. A. & Taylor, C. A. (1981). Computed tomography using proton energy 
loss. Physics in Medicine & Biology, Vol. 26, No. 6, November 1981, pp. 965-983. 



Algebraic Reconstruction and Post-processing 
in Incomplete Data Computed Tomography: From X-rays to Laser Beams 517

Hanson, K. M.; Bradbury, J. N; Koeppe, R. A.; Macek, R. J.; Machen, D. R.; Morgado, R.; 
Paciotti, M. A.; Sandford, S. A. & Steward, V. W. (1982). Proton computed 
tomography of human specimens. Physics in Medicine & Biology, Vol. 27, No. 1, 
January 1982, pp. 25-36. 

Hawrysz, D. J. & Sevick-Muraca, E. M. (2000). Developments toward diagnostic breast cancer 
imaging using near-infrared optical measurements and fluorescent contrast agents. 
Neoplasia, Vol. 2, No. 5, September 2000, pp. 388-417. 

Herman, G. T. (1980). Image Reconstruction from Projections: The Fundamentals of Computerized 
Tomography, Academic, New York.  

Kak, A. C. & Slaney, M. (1988). Principles of Computerized Tomographic Imaging, IEEE Press, 
New York. 

Kamm, J. & Nagy, J. G. (1998). Kronecker product and SVD approximation in image 
restoration. Linear Algebra & Its Applications, Vol. 284, No. 1-3, November 1998, 
pp. 177-192. 

Kaufman, L. (1993). Maximum likelihood, least squares, and penalized least squares for PET. 
IEEE Transactions on Medical Imaging, Vol. 12, No. 2, February 1993, pp. 200–214. 

Konovalov, A. B.; Volegov, P. L.; Kochegarova, L. P. & Dmitrakov, Yu. L. (1999). 
Determination of component concentrations in mixtures of organic liquids using a 
computer tomograph. Journal of Analytical Chemistry, Vol. 54, No. 4, April 1999, 
pp. 315-319. 

Konovalov, A. B.; Volegov, P. L. & Dmitrakov, Yu. L. (2000). A simple method for CT-scanner 
calibration against evective photon energy. Instruments & Experimental Techniques,
Vol. 43, No. 3, May 2000, pp. 398-402. 

Konovalov, A. B.; Lyubimov, V. V.; Kutuzov, I. I.; Kravtsenyuk, O. V.; Murzin, A. G.; 
Mordvinov, G. B.; Soms, L. N. & Yavorskaya, L. M. (2003). Application of the 
transform algorithms to high-resolution image reconstruction in optical diffusion 
tomography of strongly scattering media. Journal of Electronic Imaging, Vol. 12, No. 4, 
October 2003, pp. 602-612. 

Konovalov, A. B.; Kiselev, A. N. & Vlasov, V. V. (2006a). Spatial resolution of few-view 
computed tomography using algebraic reconstruction techniques. Pattern Recognition 
& Image Analysis, Vol. 16, No. 2, April 2006, pp. 249-255. 

Konovalov, A. B.; Vlasov, V. V.; Kalintsev, A. G.; Kravtsenyuk, O. V. & Lyubimov, V. V. 
(2006b). Time-domain diffuse optical tomography using analytic statistical 
characteristics of photon trajectories. Quantum Electronics, Vol. 36, No. 11, November 
2006, pp. 1048-1055. 

Konovalov, A. B.; Vlasov, V. V.; Kravtsenyuk, O. V. & Lyubimov, V. V. (2007). Space-varying 
iterative restoration of diffuse optical tomograms reconstructed by the photon 
average trajectories method. EURASIP Journal on Advances in Signal Processing,
Vol. 2007, No. 1, January 2007, ID 34747.  

Kozlovskii, V. N. (2006). Information in Pulsed Radiography, RFNC−VNIITF publisher, Snezhinsk 
(in Russian). 

Levine, R. D. & Tribus, M. (1978). The Maximum Entropy Formalism, MIT, Cambridge, MA. 



Vision Systems: Applications 518

Lyubimov, V. V.; Kalintsev, A. G.; Konovalov, A. B.; Lyamtsev, O. V.; Kravtsenyuk, O.V.; 
Murzin, A. G.; Golubkina, O. V.; Mordvinov, G. B.; Soms, L. N. & Yavorskaya, L. M. 
(2002). Application of photon average trajectories method to real-time reconstruction 
of tissue inhomogeneities in diffuse optical tomography of strongly scattering media. 
Physics in Medicine & Biology, Vol. 47, No. 12, June 2002, pp. 2109-2128. 

Lyubimov, V. V.; Kravtsenyuk, O. V.; Kalintsev, A. G.; Murzin, A. G.; Soms, L. N.; Konovalov, 
A. B.; Kutuzov, I. I.; Golubkina O. V. & Yavorskaya, L. M. . (2003). The possibility of 
increasing the spatial resolution in diffusion optical tomography. Journal of Optical 
Technology, Vol. 70, No. 10, October 2003, pp. 715–720. 

McDavid, W. D.; Waggener, R. G.; Payne, W. H. & Dennis, M. J. (1977). Correction of spectral 
artifacts in cross-sectional reconstruction from X-rays. Medical Physics, Vol. 4, No. 1, 
January 1977, pp. 54-57. 

Mogilenskikh, D. V. (2000). Nonlinear color interpretation of physical processes, Proceedings of 
International Conference on Computer Graphics “Graphicon’2000”, pp. 201-211, Moscow, 
August-September 2000, Moscow State University publisher, Moscow. 

Mogilenskikh, D. V. & Pavlov, I. V. (2002). Color interpolation algorithms in visualizing results 
of numerical simulations, In: Visualization and Imaging in Transport Phenomena,
Sideman, S. & Landesberg, A. (Eds.), Annals of the New York Academy of Sciences,
Vol. 972, Part. 1, pp. 43-52, New York Academy of Sciences, New York. 

Mogilenskikh, D. V. (2003). “CONTOUR” algorithm for finding and visualizing flat sections of 
3D-objects, In: Computer Science and Its Applications, Kumar, V. et al. (Eds.), Lecture 
Notes in Computer Science, Vol. 2669, pp. 407-417, Springer-Verlag, Berlin/Heidelberg. 

Nagy, J. G.; Palmer, K. & Perrone, L. (2004). Iterative methods for image deblurring: a Matlab 
object oriented approach. Numerical Algorithms, Vol. 36, No. 1, May 2004, pp. 73–93. 

Ng, M. K.; Chan, R. H. & Tang, W.-C. (1999). A fast algorithm for deblurring models with 
Neumann boundary conditions. SIAM Journal on Scientific Computing, Vol. 21, No. 3, 
November-December 1999, pp. 851–866. 

Palamodov, V. P. (1990). Some singular problems in tomography, In: Mathematical Problems of 
Tomography, Gel’fand, I. M. et al. (Eds.), Transactions of Mathematical Monographs,
Vol. 81, pp. 123-139, American Mathematical Society, Providence, R. I. 

Papoulis, A. (1968). Systems and Transforms with Applications in Optics, McGraw-Hill, New 
York.  

Pickalov, V. V. & Melnikova, T. S. (1995). Plasma Tomography, Nauka, Novosibirsk (in Russian). 
Subbarao, P. M. V.; Munshi, P. & Muralidhar, K. (1997). Performance of iterative tomographic 

algorithms applied to non-destructive evaluation with limited data. Nondestructive 
Testing & Evaluation International, Vol. 30, No. 6, December 1997, pp. 359-370. 

Volkonskii, V. B.; Kravtsenyuk, O. V.; Lyubimov, V. V.; Mironov, E. P. & Murzin, A. G. (1999). 
The use of the statistical characteristics of the photons trajectories for the tomographic 
studies of the optical macroheterogeneities in strongly scattering objects. Optics & 
Spectroscopy, Vol. 86, No. 2, February 1999, pp. 253–260. 

Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Yen, S. Y. & Napel, S. (2000). Reconstruction 
algorithm for polychromatic CT imaging: application to beam hardening correction. 
IEEE Transactions on Medical Imaging, Vol. 19, No. 1, January 2000, pp. 1-11. 

Yodh, A. & Chance, B. (1995). Spectroscopy and imaging with diffusing light. Physics Today,
Vol. 48, No. 3, March 1995, pp.  34–40. 



Vision Systems: Applications

Edited by Goro Obinata and Ashish Dutta

ISBN 978-3-902613-01-1

Hard cover, 608 pages

Publisher I-Tech Education and Publishing

Published online 01, June, 2007

Published in print edition June, 2007

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Computer Vision is the most important key in developing autonomous navigation systems for interaction with

the environment. It also leads us to marvel at the functioning of our own vision system. In this book we have

collected the latest applications of vision research from around the world. It contains both the conventional

research areas like mobile robot navigation and map building, and more recent applications such as, micro

vision, etc.The fist seven chapters contain the newer applications of vision like micro vision, grasping using

vision, behavior based perception, inspection of railways and humanitarian demining. The later chapters deal

with applications of vision in mobile robot navigation, camera calibration, object detection in vision search, map

building, etc.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Alexander B. Konovalov, Dmitry V. Mogilenskikh, Vitaly V. Vlasov and Andrey N. Kiselev (2007). Algebraic

Reconstruction and Post-Processing in Incomplete Data Computed Tomography: from X-rays to Laser Beams,

Vision Systems: Applications, Goro Obinata and Ashish Dutta (Ed.), ISBN: 978-3-902613-01-1, InTech,

Available from:

http://www.intechopen.com/books/vision_systems_applications/algebraic_reconstruction_and_post-

processing_in_incomplete_data_computed_tomography__from_x-rays_to_



© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.


