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1. Introduction  

Recently, there has been an increasing interest on modern machine vision systems for 
industrial and commercial purposes. More and more products are introduced in the market, 
which are making use of visual information captured by a camera in order to perform a 
specific task. Such machine vision systems are used for detecting and/or recognizing a face 
in an unconstrained environment for security purposes, for analysing the emotional states of 
a human by processing his facial expressions or for providing a vision based interface in the 
context of the human computer interaction (HCI) etc..  

In almost all the modern machine vision systems there is a common processing procedure 
called feature extraction, dealing with the appropriate representation of the visual information. 
This task has two main objectives simultaneously, the compact description of the useful 
information by a set of numbers (features), by keeping the dimension as low as possible. 

Image moments constitute an important feature extraction method (FEM) which generates 
high discriminative features, able to capture the particular characteristics of the described 
pattern, which distinguish it among similar or totally different objects. Their ability to fully 
describe an image by encoding its contents in a compact way makes them suitable for many 
disciplines of the engineering life, such as image analysis (Sim et al., 2004), image 
watermarking (Papakostas et al., 2010a) and pattern recognition (Papakostas et al., 2007, 
2009a, 2010b).  

Among the several moment families introduced in the past, the orthogonal moments are 
the most popular moments widely used in many applications, owing to their 
orthogonality property that comes from the nature of the polynomials used as kernel 
functions, which they constitute an orthogonal base. As a result, the orthogonal moments 
have minimum information redundancy meaning that different moment orders describe 
different parts of the image.  

In order to use the moments to classify visual objects, they have to ensure high recognition 
rates for all possible object’s orientations. This requirement constitutes a significant 
operational feature of each modern pattern recognition system and it can be satisfied during 
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the feature extraction stage, by making the moments invariant under the basic geometric 
transformations of rotation, scaling and translation. 

The most well known orthogonal moment families are: Zernike, Pseudo-Zernike, Legendre, 
Fourier-Mellin, Tchebichef, Krawtchouk, with the last two ones belonging to the discrete 
type moments since they are defined directly to the image coordinate space, while the first 
ones are defined in the continuous space. 

Another orthogonal moment family that deserves special attention is the wavelet moments 
that use an orthogonal wavelet function as kernel. These moments combine the advantages 
of the wavelet and moment analyses in order to construct moment descriptors with 
improved pattern representation capabilities (Feng et al., 2009).  

This chapter discusses the main theoretical aspects of the wavelet moments and their 
corresponding invariants, while their performance in describing and distinguishing several 
patterns in different machine vision applications is studied experimentally. 

2. Orthogonal image moments 

A general formulation of the (n+m)th order orthogonal image moment of a NxN image with 
intensity function f(x,y) is given as follows: 

 ( ) ( )
1 1

, ,
N N

nm nm i j i j
i j

M NF Kernel x y f x y
= =

= ×∑∑  (1) 

where Kernelnm(.) corresponds to the moment’s kernel consisting of specific polynomials of 
order n and repetition m, which constitute the orthogonal basis and NF is a normalization 
factor. The type of Kernel’s polynomial gives the name to the moment family by resulting to 
a wide range of moment types. Based on the above equation (1) the image moments are the 
projection of the intensity function f(x,y) of the image on the coordinate system of the 
kernel's polynomials.  

The first introduction of orthogonal moments in image analysis, due to Teague (Teague, 
1980), made use of Legendre and Zernike moments in image processing. Other families of 
orthogonal moments have been proposed over the years, such as Pseudo-Zernike, Fourier-
Mellin etc. moments, which better describe the image in process and ensure robustness 
under arbitrarily intense noise levels. 

However, these moments present some approximation errors due to the fact that the kernel 
polynomials are defined in a continuous space and an approximated version of them is used 
in order to compute the moments of an image. This fact is the source of an approximation 
error (Liao & Pawlak, 1998) which affects the overall properties of the derived moments and 
mainly their description abilities. Moreover, some of the above moments are defined inside 
the unit disc, where their polynomials satisfy the orthogonality condition. Therefore, a prior 
coordinates’ transformation is required so that the image coordinates lie inside the unit disc. 
This transformation is another source of approximation error (Liao & Pawlak, 1998) that 
further degrades the moments’ properties. 

The following Table 1, summarizes the main characteristics of the most used moment 
families.   
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Apart from some remarkable attempts to compute the theoretical image moment values 
(Wee & Paramesran, 2007), new moment families with discrete polynomial kernels 
(Tchebichef and Krawtchouk moments) have been proposed, which permit the direct 
computation of the image moments in the discrete domain. 

It is worth pointing out that the main subject of this chapter is the introduction of a 
particular moment family, the wavelet moments and the investigation of their classification 
capabilities as compared to the traditional moment types. 

However, before introducing the wavelet moments, it is useful to discuss two important 
properties of the moments that determine their utility in recognizing patterns.  

2.1 Information description 

As it has already been mentioned in the introduction, the moments have the ability to carry 

information of an image with minimum redundancy, while they are capable to enclose 

distinctive information that uniquely describes the image’s content. Due to these properties, 

once a finite number of moments up to a specific order nmax is computed, the original image 

can be reconstructed by applying a simple formula, inverse to (1), of the following form: 

 ( ) ( )
n n

nm nm
n m

f x y Kernel x y M
max

0 0

ˆ , ,
= =

= ∑ ∑  (2) 

where Kernelnm(.) is the same kernel of (1) used to compute moment Mnm.  

Theoretically speaking, if one computes all image moments and uses them in (2), the 

reconstructed image will be identical to the original one with minimum reconstruction error. 

2.2 Invariant description 

Apart from the ability of the moments to describe the content of an image in a statistical 

fashion and to reconstruct it perfectly (orthogonal moments) according to (2), they can also 

be used to distinguish a set of patterns belonging to different categories (classes). This 

property makes them suitable for many artificial intelligence applications such as 

biometrics, visual inspection or surveillance, quality control, robotic vision and guidance, 

biomedical diagnosis, mechanical fault diagnosis etc. However, in order to use the moments 

to classify visual objects, they have to ensure high recognition rates for all possible object’s 

orientations. This requirement constitutes a significant operational feature of each modern 

pattern recognition system and it can be satisfied during the feature extraction stage, where 

discriminative information of the objects is retrieved. 

Mainly, two methodologies used to ensure invariance under common geometric 

transformations such as rotation, scaling and translation, either by image coordinates 

normalization and description through the geometric moment invariants (Mukundan & 

Ramakrishnan, 1998; Zhu et al., 2007) or by developing new computation formulas which 

incorporate these useful properties inherently (Zhu et al., 2007).  

However, the former strategy is usually applied for deriving the moment invariants of each 

moment family, since it can be applied in each moment family in a similar way. 
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According to this method and by applying coordinates normalization (Rothe et al., 1996) the 
Geometric Moment Invariants (GMIs) of the following form, are constructed:  

 
( ) ( )

( ) ( )

M N
n

nm
x y

m

GMI GM x x y y

y y x x f x y
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where x y( , )  are the coordinates of the image’s centroid, GMnm are the geometric moments 

and μnm are the central moments defined as: 

 ( )
N N

n m
nm

x y

GM x y f x y
1 1

0 0

,
− −

= =

= ∑ ∑  (5) 

 ( ) ( )
N N

mn
nm

x y

x x y y f x y
1 1

0 0

( , )µ
− −

= =

= − −∑ ∑  (6) 

which are translation invariant. The value of angle θ is limited to o o45 45θ− ≤ ≤  and 

additional modifications (Mukundan & Ramakrishnan, 1998) have to be performed in order 

to extent θ into the range o o0 360θ≤ ≤ .  

By expressing each moment family in terms of geometric moment invariants the 

corresponding invariants can be derived. For example, Zernike moments are expressed 

(Wee & Paramesran, 2007) in terms of GMIs as follows: 

  
n s m

i
nm nmk k i j i j

k m i j

s mn
ZMI B w GMI

i j 2 ,2
0 0

1

π
− − +

= = =

⎛ ⎞⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑∑  (7) 

where n is a non-negative integer and m is a non zero integer subject to the constraints n-

|m| even and |m|≤ n and  
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 (8) 
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3. Wavelet-based moment descriptors 

In the same way as the continuous radial orthogonal moments such as Zernike, Pseudo-
Zernike and Fourier-Mellin ones are defined in a continuous form (9), one can define the 
wavelet moments by replacing the function gn(r) with a wavelet basis functions.  

 ( ) ( )jm
nm nM g r e f r rdrd,θ θ θ−= ∫∫  (9) 

Based on Table 1 it can be deduced that by choosing the appropriate function gn(r), the 
Zernike, Pseudo-Zernike and Fourier moments are derived. If one chooses wavelet basis 
functions of the following form 

 ( )a b

r b
r

aa
,

1
ψ ψ

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (10) 

where a b,+∈ℜ ∈ℜ  are the dilation and translation parameters and ( )ψ ⋅ the mother wavelet 

that is used to generate the whole basis. 

Two widely used mother wavelet functions are the cubic B-spline and the Mexican hat 
functions defined as follows: 

Cubic B-spline Mother Wavelet ( )
( )

( )( )

( )

( )w

r
n

n

w

a
r f r e

n

2

2

2 1
1

2 1

0

4
cos 2 2 1

2 1

σ
ψ σ π

π

⎛ ⎞−⎜ ⎟−+ ⎜ ⎟+⎝ ⎠= − ×
+

 (11)

where 

 

w

n

a

f0

2

3

0.697066

0.409177

0.561145σ

=⎧ ⎫
⎪ ⎪=⎪ ⎪
⎨ ⎬=⎪ ⎪
⎪ ⎪=⎩ ⎭

 (12)  

Mexican Hat Mother Wavelet ( )
r

r
r e

2

2
2

21/4
2

2
1

3

σψ π
σ σ

⎛ ⎞
−⎜ ⎟⎜ ⎟− ⎝ ⎠

⎛ ⎞
= − ×⎜ ⎟⎜ ⎟

⎝ ⎠
 (13)

with σ=1. 

The main characteristic of the above wavelet functions is that by adjusting the a,b 

parameters a basis functions consisting of dilated (scaled) and translated versions of the 

mother wavelets can be derived. 

The graphical presentation of the above two mother wavelet functions for the above set of 

their parameters, is illustrated in the following Fig.1 

Since the a,b parameters are usually discrete (this is mandatory for the case of the resulted 

moments), a discretization procedure needs to be applied. Such a common method (Shen & 

Ip, 1999) that also takes into consideration the restriction of r 1≤ , applies the following 

relations. 
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m m

m m m

a a m

b b n a n n

0

1
0 0

0.5 , 0,1,2,3...

0.5 0.5 , 0,1,...,2 +

= = =

= × × = × × =
 (14) 

With the above the wavelet basis is constructed by a modified formula of (10) having the form: 

 ( ) ( )m m
mn r r n/22 2 0.5ψ ψ= −  (15) 

It has to be noted that the selection of b0 to 0.5 causes oversampling, something which adds 
significant information redundancy when the wavelet moments are used to reconstruct the 
initial image, but it doesn’t seriously affect their recognition capabilities. Moreover, in order 
to reduce this affection a feature selection procedure can be applied to keep only the useful 
features, by discarding the redundant ones. 

 
(a) 

 
(b) 

Fig. 1. Plots of (a) cubic B-spline and (b) Mexican hat mother wavelet functions. 
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Based on the previous analysis and by following the nomenclature of Table 1, the wavelet 

moments of a NxN image f(x,y) are defined in the unit disc ( r 1≤ ) as follows: 

 ( ) ( )
N N

jq
mnq mn

x y

W r e f r
1 1

,θψ θ−

= =

= ∑∑  (16) 

with r x y y x2 2 , arctan( / )θ= + = . 

The corresponding wavelet moment invariants can be derived by applying the 
methodologies presented in section 2.2. An important property of the radial moments 
defined by (9) is that their amplitudes are rotation invariant. The translation invariants are 
achieved by moving the origin to the mass center (x0,y0) of the image, while scaling 
invariance is obtained by resizing the image to a fixed size having a predefined area (by a 

factor a M area00 /= ) by using the zeroth geometric moment order (M00). 

The inherent properties of the wavelet moments coming from the wavelet analysis (Strang & 
Nguyen, 1997), according to which a signal is breaking up into shifted and scaled versions 
of the base wavelet (mother wavelet), make them appropriate in describing the coarse and 
fine information of an image. This description has the advantage to study a signal on a time-
scale domain by providing time and frequency (there is a relation between scale and 
frequency), useful information of the signal simultaneously. 

4. Experimental study 

In order to investigate the discrimination power of the wavelet moments, four machine 
vision experiments have been arranged by using some well-known benchmark datasets. The 
following Table 2, summarizes the main characteristics of the datasets being used, from 
different application fields (object, face, facial expression and hand posture recognition). 
Moreover, Fig. 2, illustrates six pattern samples from each dataset. 

 

Dataset 
Type 

Num. 
Classes

Instances 
/ Class 

Total 
Instances ID Name 

D1 COIL (Nene et al., 1996) computer vision 10 12 120 

D2 
ORL (Samaria & Harter, 
1994) 

face  recognition 40 10 400 

D3 
JAFFE (Lyons et al., 
1998) 

facial expression 
recognition 

7 30,29,32,31,30,31,30 213 

D4 
TRIESCH I (Triesch & 
von der Malsburg, 1996)

hand posture 
recognition 

10 
24 (only the dark 

background) 
240 

Table 2. Characteristics of the benchmark datasets. 

Since the wavelet moment invariants are constructed by applying the same methods as in 

the case of the other moment families and therefore their performance in recognizing 

geometrical degraded images is highly depended on the representation capabilities of the 

wavelet moments, it is decided to investigate only the discrimination power of the wavelet 

moments under invariant conditions.    
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Fig. 2. Six pattern samples of the D1 (1st row), D2 (2nd row), D3 (3rd row) and D4 (4th row) 
datasets. 

The performance of the wavelet moments (WMs) is compared to this of the well-known 
Zernike (ZMs), Pseudo-Zernike (PZMs), Fourier-Mellin (FMs), Legendre (LMs), Tchebichef 
(TMs) and Krawtchouk (KMs) ones. In this way, for each dataset, a set of moments up to a 
specific order per moment family is computed, by resulting to feature vectors of the same 
length. It is decided to construct feature vectors of 16 moments length which correspond to 
different order per moment family (ZMs(6th), PZMs(5th), FMs(3rd), LMs(3rd), TMs(3rd), 
KMs(3rd), WMs(1st) ). Moreover, the wavelet moments are studied under two different 
configurations in relation to the used mother wavelet (WMs-1 uses the cubic B-spline and 
WMs-2 the Mexican hat mother wavelets respectively).  

Furthermore, the Minimum Distance classifier (Kuncheva, 2004) is used to compute the 
classification performance of each moment feature vector. This classifier operates by 
measuring the distance of each sample from the patterns that represent the classes’ centre. 
The sample is decided to belong to the specific class having less distance from its pattern. 
For the purpose of the experiments the Euclidean distance is used to measure the distance of 
the samples from the centre classes, having the following form: 

Euclidean Distance ( ) ( )
n

i i
i

d p s
2

1

,
=

= −∑p s  (17)

The above formula measures the distance between two vectors the pattern p=[p1,p2,p3,…pn] 
and the sample s=[s1,s2,s3,…,sn], which are defined in the Rn space. The following Table 3 
and Table 4, summarize the classification rates (18) of the studied moment families for 
different set of training data used to determine the classes’ centres (percent of the entire data 
– 25%, 50%, 75%, 100%).  

 
number of correctclassifiedsamples

CRate
totalnumber of samples

=  (18) 
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Moment 
Family 

Datasets 

 D1 D2 D3 D4 

 25% 50% 25% 50% 25% 50% 25% 50% 

ZMs 0.6370 0.7235 0.6576 0.6964 0.2004 0.2055 0.0857 0.1014 

PZMs 0.5912 0.6305 0.6247 0.6657 0.2130 0.2257 0.0906 0.1001 

FMs 0.5720 0.6000 0.6068 0.6354 0.1837 0.1965 0.0746 0.0872 

LMs 0.4713 0.5158 0.7770 0.8124 0.2392 0.2547 0.0686 0.0678 

TMs 0.4688 0.5055 0.7772 0.8073 0.2385 0.2557 0.0689 0.0678 

KMs 0.5079 0.5915 0.3999 0.4193 0.2090 0.2348 0.0759 0.0823 

WMs – 1 0.2829 0.2862 0.2252 0.2228 0.1521 0.1616 0.0715 0.0758 

WMs – 2 0.2723 0.2807 0.2206 0.2219 0.1532 0.1643 0.0682 0.0790 

Table 3. Classification performance of the moment descriptors.                     

 

Moment 
Family 

Datasets 

 D1 D2 D3 D4 

 75% 100% 75% 100% 75% 100% 75% 100% 

ZMs 0.7543 0.8083 0.7289 0.8175 0.2060 0.2723 0.1150 0.2625 

PZMs 0.6683 0.7417 0.6857 0.7675 0.2385 0.3333 0.1154 0.2958 

FMs 0.6207 0.7000 0.6396 0.7525 0.2098 0.2723 0.0983 0.2792 

LMs 0.5457 0.7833 0.8319 0.8975 0.2562 0.3192 0.0681 0.1625 

TMs 0.5287 0.7833 0.8241 0.8900 0.2719 0.3192 0.0727 0.1583 

KMs 0.5940 0.7250 0.4206 0.5550 0.2383 0.3146 0.0854 0.2750 

WMs – 1 0.2887 0.3000 0.2146 0.2425 0.1717 0.1784 0.0844 0.1542 

WMs – 2 0.2960 0.3083 0.2136 0.2425 0.1702 0.1784 0.0846 0.1500 

Table 4. Classification performance of the moment descriptors. 

From the above results it is deduced that the percent of the dataset used to determine the 

classes’ centres is crucial to the recognition performance of all the moment families. The 

performance of the wavelet moments is very low when compared to the other families. This 

behaviour is justified by the chosen order (1st) that produces less discriminant features. It 

seems that the existence of the third parameter (n=0,1,…,2m+1) does not add significant 

discriminative information to the feature vector, compared to that enclosed by the m and q 

parameters. As far as the performance of the other moment families is concerned, the 

experiments show that each moment family behaves differently in each dataset (highest 

rates: D1(ZMs), D2(LMs), D3(PZMs), D4(PZMs)) with the Pseudo-Zernike moments being 

the most efficient.  

It is worth mentioning that the above rates are not optimized and they can be increased by 
using a more sophisticated classification scheme (e.g. neural classifier) or by constructing 
larger or appropriate selected feature vectors. 

Besides the classification performance of the compared moment families discussed 
previously, it is also interesting to analyse their computational load. In almost all the non 
wavelet moment families (PZMs, FMs, LMs, TMs and KMs) the number of independent 
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moments that are computed up to the pth order is equal to (p+1)2, while in the case of ZMs is 
(p+1)*(p+2)/2 due to some constraints. On the other hand the number of wavelet moments 
that is computed for the pth order is (p+1)2 * (2p+1+1) due to the third parameter (n) of (16) 
defined in (14). From this analysis it is obvious that if a common computation algorithm is 
applied to all the moment families, the time needed to compute the wavelet moments up to 
a specific order (p) is considerable higher.  

5. Discussion – Open issues 

The previous analysis constitutes the first study of the wavelet moments’ classification 
performance in well-known machine vision benchmarks. The experimental results highlight 
an important weakness of the wavelet moments; the computation of many features for a 
given order (due to the third parameter), which do not carry enough discriminative 
information of the patterns. On the other hand, this additional parameter adds an extra 
degree of freedom to the overall computation which needs to be manipulated appropriately. 
The usage of a feature selection mechanism can significantly improve the classification 
capabilities of the wavelet moments by keeping only the useful features from a large pool. In 
this way, the multiresolution nature of the wavelet analysis can be exploited in order to 
capture the discriminative information in different discrimination levels.  

Moreover, it has to be noted that a fast and accurate algorithm for the computation of the 
wavelet moments need to be developed, since their computation overhead is very high, 
compared to the other moment families, due to the presence of the third configuration 
parameter.   
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