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1. Introduction  

Current trends in neuroscience research are heavily focused on new technologies to study 

and interact with the human brain. Specifically, three-dimensional (3D) virtual environment 

(VE) systems have been identified as technology with good potential to serve in both 

research and applied settings. For the purpose of this chapter, a virtual environment is 

defined as a computer with displays and controls configured to immerse the operator in a 

predominantly graphical environment containing 3D objects in 3D space. The operator can 

manipulate virtually displayed objects in real time using a variety of motor output channels 

or input devices. The use of VEs has almost exclusively been limited to experimental 

processes, utilizing cumbersome equipment well suited for the laboratory, but unrealistic 

for use in everyday applications. As the evolution of computer technology continues, the 

possibility of creating an affordable system capable of producing a high-quality 3D virtual 

experience for home or office applications comes nearer to fruition. However, in order to 

improve the success and the cost-to-benefit ratio of such a system, more precise information 

regarding the use of VEs by a broad population of users is needed. The goal of this chapter 

is to review knowledge relating to the use of visual feedback for human performance in 

virtual environments, and how this changes across the lifespan. Further, we will discuss 

future experiments we believe will contribute to this area of research by examining the role 

of luminance contrast for upper extremity performance in a virtual environment. 

2. Background 

The following sections identify the well-known physiologic changes that occur in the 
sensorimotor system as part of the natural human aging process. Further, we discuss some 
of the limited work that has been done to understand the implications of these changes for 
the design of VEs. 

2.1 Changes to the human sensorimotor system across the lifespan  

The human body is a constantly changing entity throughout the lifespan. Most physiologic 
processes begin to decline at a rate of 1% per year beginning around age 30, and the 
sensorimotor system is no exception (Schut, 1998). There is a general indication from the 
research that both the processing of afferent information and the production of efferent 
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signals steadily change as a function of age. Multiple authors demonstrate physical changes 
in brain tissues (Andersen, Gundersen, & Pakkenberg, 2003; Kuo & Lipsitz, 2004; Raz & 
Rodrigue, 2006), changes in excitability of the corticospinal tract and anterior horn cells 
(Rossini, Desiato, & Caramia, 1992), and changes in neurotransmitter systems. There is a 
general loss of neural substrate, including grey and white matter. This has been 
demonstrated in both the cerebral cortex (Raz & Rodrigue, 2006) and the cerebellum 
(Andersen et al., 2003). These tissue changes then result in a myriad of functional changes 
within the central nervous system (CNS). There is a general deterioration of motor planning 
capabilities (Sterr & Dean, 2008;Yan, Thomas, & Stelmach, 1998) and feed-forward 
anticipatory control (Hwang et al., 2008) with aging. Along with this decrease in planning 
ability, there also appears to be slowing of central processing (Chaput & Proteau, 1996; Inui, 
1997; Light, 1990; Shields et al., 2005). This change in processing is partially due to 
neurophysiologic changes within the CNS resulting in a decrease in the available resources 
of the processing pool (Craik & McDowd, 1987; Schut, 1998). Loss of attentional resources 
also contributes to this slowing of central processing (Goble et al., 2008; Kluger et al., 1997; 
Sparrow, Begg, & Parker, 2006). This in itself results from a multifactorial process relating to 
neurophysiologic changes in the CNS and degradation of afferent information arriving from 
compromised peripheral receptors (Chaput & Proteau, 1996; Goble et al., 2008). The result of 
these attentional and processing changes is a decline in the ability to integrate multiple 
sensory modalities causing a relative decrease in the use of proprioceptive feedback and an 
increased use of vision (Adamo, Martin, & Brown, 2007; Chaput & Proteau, 1996; Goble et 
al., 2008; Lemay, Bertram, & Stelmach, 2004). This shift to the use of visual resources is due 
to the tendency of the CNS to re-weight sensory information when one source of feedback is 
compromised (Horak & Hlavacka, 2001), as well as a general systems neuroplasticity effect 
(Heuninckx, Wenderoth, & Swinnen, 2008; Romero et al., 2003). These compensatory 
neuroplastic changes are the end manifestation of the normal aging process within the CNS. 

The peripheral nervous system (PNS) undergoes concordant neurophysiologic changes as 

well (Chaput & Proteau, 1996; Goble et al., 2008; Roos, Rice, & Vandervoort, 1997). These 

changes occur in both the afferent and efferent pathways. Studies have shown both a 

decrease in number and density of proprioceptors (Goble et al., 2008), as well as a slowing of 

sensory receptors in general (Light, 1990). In the efferent systems, research demonstrates a 

loss of motor units and a decrease in firing rate and increased discharge variability of intact 

motor units (Roos et al., 1997). The available literature also demonstrates a loss of larger 

motor neurons resulting in a net decrease of alpha motor neurons, a slowing in the 

conduction velocity of remaining motor neurons, and changes in the excitability of alpha 

motor neurons (Leonard et al., 1997; Roos et al., 1997). 

The changes in the CNS and PNS with age are accompanied by changes in the muscular 
system as well. In the aging adult, research shows a loss of muscle fibers and a decrease in 
size of remaining fibers resulting in a net loss of muscle mass (Roos et al., 1997). Changes in 
motor units in the PNS result in fiber type changes, causing a loss of fast-twitch fibers and a 
proportional increase of slow-twitch fibers. 

Transformations in the sensorimotor system have a resultant detrimental effect on motor 
performance in daily life. This decrease has a physiologic basis in aging and is amplified by 
disuse and dysfunction. In general, aging adults demonstrate decreases in movement speed 
(Light, 1990; Mankovsky, Mints, & Lisenyuk, 1982; Poston et al., 2008; Yan et al., 1998), 
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accuracy of movement (Chaput & Proteau, 1996), reaction time (Light, 1990; Sparrow et al., 
2006; Yan et al., 1998), strength (Roos et al., 1997; Vandervoort, 2002), hand dexterity 
(Contreras-Vidal, Teulings, & Stelmach, 1998; Seidler, Alberts, & Stelmach, 2002), and 
postural control (Jonsson, Henriksson, & Hirschfeld, 2007; Koceja, Allway, & Earles, 1999; 
Mourey et al., 1998; Romero & Stelmach, 2003). En masse, these changes have the potential 
to contribute to a spiral of disuse and loss of function that often characterizes the process of 
aging. Due to the tendency for visual dominance in aged humans  (Lemay et al., 2004), and 
the task specificity of human movement (Proteau, 1992), the fact that visual sensory 
feedback is much less rich in a virtual than natural environment makes it imperative to 
study human performance in such surroundings. Research is needed to improve our 
understanding of sensorimotor changes, and their consequences for performance, for an 
aging population interacting in three-dimensional environments.  

2.2 Three-dimensional virtual environments and human computer interaction (HCI) 
across the lifespan 

Today, the users of computers include people from all age groups. Very little information is 

available on how the performance of individuals in a VE changes throughout the lifespan as 

a function of the natural aging process. Prior to designing programs for individuals in 

special subgroups, such as rehabilitation programs designed for patients with neurological 

lesions, it will be important to understand what age-specific requirements will be beneficial 

to the user. For instance, because there is a paucity of information on how healthy adults 

in the older age groups commonly affected by stroke interact in VEs, it is likely that a 

system designed as an adjunct to standard rehabilitation will struggle to gain success 

without a foundation of baseline knowledge. This level of information regarding subjects 

of various age groups will greatly assist in producing successful, cost-effective VEs. 

Unfortunately, although computers have been commonplace in homes and work-

environments for decades, the literature on interface design as it relates to age is only very 

recent, and is limited in scope. Early computer interface design relied primarily on the 

intuition of the designer (Hawthorn, 2001; Hawthorn, 2007). There was a distinct disparity 

between what designers recognized as necessary interface components and what was 

truly usable by the lay population. As access to computer technology improved and 

allowed the spread of computers into the hands of consumers, a necessary change to user-

centered design followed. Typically, however, in order to be a feasible process, the 

representative users must have a basic level of proficiency with computer skills and 

language. This resulted in a general exclusion of both young and old age groups from the 

design process. In the late 1990’s, interest in age-specific design increased, and there is 

now a reasonable body of knowledge on the design of standard computer interface 

systems for various age groups.  

While the bulk of age-specific computer design information relates to ways to improve 

cognitive performance through specific training or tutorial methods (Hawthorn, 2007), there 

is some scientific literature which explores the areas of human motor control (Laursen, 

Jensen, & Ratkevicius, 2001; Smith, Sharit, & Czaja, 1999). Most of this information centers 

on the input device, specifically mouse usage in older adults. Smith et al. (1999) reported 

that there are many age-related changes in performance, and in general, it is quite difficult 

for older individuals to use a mouse. The act of double-clicking seems to consistently be the 
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most problematic. Difficulty with cursor control is also named as a top complaint among 

older individuals (Hawthorn, 2001; Hawthorn, 2007). It has also been shown that 

performance within a standard computer interface is slower and results in a greater number 

of errors with increased age of the operator. These specific limitations point to the need to 

develop new interfaces that capitalize on natural manipulation, thereby eliminating 

difficulties with the functional abstraction of input devices. 

Contrary to standard computer interface systems, little is known about the age-related 
variance of HCI within three-dimensional virtual environments. The literature in this subject 
area is nearly non-existent. There is some evidence of age-related differences in performance 
between children and adults, as well as young adults and older participants. This research 
indicates relevant disparities in reactions to environmental immersion, usage of various 
input devices, size estimation ability, navigational skills and completion time for gross 
motor tasks (Allen et al., 2000). According to these authors, “these results highlight the 
importance of considering age differences when designing for the population at large.”  
Currently, the International Encyclopedia of Ergonomics and Human Factors (Karwowski, 
2006) leaves the explanation of age-related differences in virtual environments to a short, 
two sentence description recommending that equipment be tailored to physically fit the 
smaller frames of children, and for designers to take into consideration the changes in 
sensory and motor functions of the elderly. Other than these works, very little specific 
knowledge regarding age and motor control in virtual environments has been elicited 
through research, especially as it relates to precision movements with the upper extremities. 
This fact has led us to begin a series of experiments investigating the use of vision for 
precise sensorimotor control of the upper extremity in virtual environments, and how that 
usage changes as a function of age.  

3. Research methods, design, and results 

In the next sections, we describe the specific methodology used in our lab, followed by a 

brief review of the most recent findings. 

3.1 Physical apparatus 

For our research, we utilize a tabletop virtual environment located in the Human Motor 

Behavior laboratory at the University of Wisconsin-Madison (Figure 1). This system has 

been used in a number of studies investigating the role of visual feedback for upper 

extremity movement in young adults, as well as the first phase of data collection on subjects 

across the lifespan. This single-user VE is specifically designed to permit detailed and highly 

accurate kinematic measurements of human performance. Paradigms from the Human 

Motor Control and Biomechanics disciplines are used to provide detailed descriptions of 

human movement and to make inferences about the cognitive processes controlling those 

movements. More recently, our research has focused on how these processes change 

throughout the lifespan. Our virtual environment has been designed to focus on natural 

manipulation, allowing users to employ their hands to manipulate and explore augmented 

objects located within the desktop environment (i.e. Tangible user interface or TUI) 

(MacLean, 1996; Mason & MacKenzie, 2002; Mason et al., 2001; Sturman & Zeltzer, 1993; Y. 

Wang & MacKenzie, 2000).  
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Fig. 1. Wisconsin virtual environment (WiscVE). Panel A shows the apparatus with 

downward facing monitor projecting to the mirror. Images are then reflected up to the user 

wearing stereoscopic LCD shutter goggles, and thus the images appear at the level of the 

actual work surface below. Panels B and C demonstrate a reach to grasp task commonly 

utilized in this environment. The hand and physical cube are instrumented with light emitting 

diodes (LEDs) that are tracked by the VisualEyez (PTI Phoenix, Inc) system, not shown. 

This type of interface gives investigators complete control over the three-dimensional visual 
scene (important in generalizeability to natural environments), and makes for maximal use 
of the naturalness, dexterity and adaptability of the human hand for the control of computer 
mediated tasks (Sturman & Zeltzer, 1993). The use of such a tangible user interface removes 
many of the implicit difficulties encountered with standard computer input devices due to 
natural aging processes (Smith et al., 1999). The exploitation of these abilities in computer-
generated environments is believed to lead to better overall performance and increased 
richness of interaction for a variety of applications (Hendrix & Barfield, 1996; Ishii & Ullmer, 
1997; Slater, Usoh, & Steed, 1995). Furthermore, this type of direct-manipulation 
environment capitalizes on the user’s pre-existing abilities and expectations, as the human 
hand provides the most familiar means of interacting with one’s environment (Schmidt & 
Lee, 1999; Schneiderman, 1983). Such an environment is suitable for applications in 
simulation, gaming/entertainment, training, visualization of complex data structures, 
rehabilitation and learning (measurement and presentation of data regarding movement 
disorders). This allows for ease of translation of our data to marketable applications. 

The VE provides a head-coupled, stereoscopic experience to a single user, allowing the user 

to grasp and manipulate augmented objects. The system is configured as follows (Figure 1): 

 3-D motion information (e.g. movement of the subject’s hand, head and physical objects 
within the environment) is monitored by a VisualEyez (PTI Phoenix, Inc.) motion 
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analysis system connected to a Windows PC workstation. The VisualEyez system 
monitors the 3-D positions of small infrared light emitting diodes (LEDs) located on 
landmarks of interest. We typically utilize the tips of the thumb and index finger along 
with the radial styloid at the wrist to demarcate the hand. Objects in the environment 
are also equipped with three LEDs for motion tracking.  

 Once the motion information is obtained by the VisualEyez system, it is broadcast on a 
subnetwork to a scene rendering Linux-based PC. 

 Using the motion capture information the scene is calculated and then rendered on a 
downward facing CRT monitor, placed parallel to a work surface. A half-silvered 
mirror is placed parallel to the computer monitor, midway between the screen and the 
workspace. The image on the computer monitor is reflected in the mirror and is 
perceived by subjects, wearing stereoscopic goggles, as if it were a three-dimensional 
object located in the workspace below the mirror. 

3.2 Human performance measurement 

Human motor control, biomechanics and neuroscience research has provided a 
comprehensive description of how humans reach to grasp and manipulate objects in natural 
environments under a variety of sensory and environmental conditions (MacKenzie & 
Iberall, 1994). By using the same measurement techniques as those employed to monitor 
human performance in natural environments we can compare movement in virtual 
environments to decades of existing human performance literature. The comparisons allow 
the development of comprehensive cognitive models of human performance under various 
sensory feedback conditions. Simple timing measures such as reaction time and movement 
time provide a general description of upper limb movements. However, in motor control 
studies, more complex three-dimensional kinematic measures such as displacement profiles, 
movement velocity, deceleration time, and the formation of the grasp aperture (distance 
between the index finger and thumb for a precision pinch grip) have also been used to 
characterize object acquisition movements (MacKenzie & Iberall, 1994). By observing 
regularities in the 3D kinematic information, inferences can be made regarding how 
movements are planned and performed by the neuromotor control system. This detailed 
movement information essentially provides a window into the motor control system and 
allows the determination of what sensory feedback characteristics are important for 
movement planning and production. 

3.3 Preliminary experiments: Understanding vision for motor performance in virtual 
environments across the lifespan 

In a study investigating the role of visual feedback about the hand for the control of reach 

to grasp movements, Mason and Bernardin (2009) demonstrated that young healthy 

adults could utilize very simple visual feedback of their fingertips to improve motor 

performance when compared to a condition in which no visual feedback of self was 

present. The crude visual representation consisted of two 10 mm yellow spheres 

representing the thumb and index finger tips (see Figure 2B for example). The visual 

representation of the hand was always provided with moderate contrast. Mason and 

Bernardin (2009) also noted that vision of the hand was not necessary throughout the 

movement, but only up to movement onset. If vision of the hand was completely 
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removed, performance deteriorated. The results of this work shed light on ways to 

minimize the amount of visual feedback necessary for successful control of precision 

upper extremity movements in virtual environments. While the rendering of complex 

images capable of simulating the full human hand is now possible in VEs, it remains 

problematic in two ways. First, the motion capture and computing technology can result 

in significant increases in equipment costs to render a realistic hand. More importantly, 

the complexity of the rendering process generally results in significant latency problems, 

with time lags on the scale of 150+ ms from the movement of the real hand to its 

represented movement within the virtual environment (Wang & Popović, 2009). Latencies 

of this magnitude can have a significant negative impact on human performance (Ellis et 

al., 1997). Further, time delays in the range of 16-33 ms become noticeable to subjects 

when performing simple visual tasks in virtual reality (Mania et al., 2004). As a result of 

these problems, a key area of research in the development of successful, cost-effective VEs 

must relate to simulator validity. That is, the degree of realism the environment provides 

in approximating a real situation. Simulator validity has been identified as a key 

parameter for the effectiveness of learning in training simulations  (Issenberg et al., 2005). 

This is extremely important in applications such as neurologic rehabilitation, where the 

ultimate goal is to ensure that practice in the virtual environment will carry over to 

function in activities of daily living. We must identify the minimal features of sensory 

feedback required for valid simulations so that humans can interact in ways sufficiently 

similar to movements in natural environments. In their initial study, Mason and 

Bernardin (2009) identified some sufficient visual feedback parameters for young adults. 

We conducted a follow up study using a similar paradigm to see if these results 

generalize to older and younger user groups.1  

In our follow-up study, participants were asked to reach from a designated start position to 

grasp and lift a target cube. We manipulated three variables. The first was age group 

membership: children (7-12 years), young adults (18-30 years), middle age adults (40-50 

years) and senior adults (60+ years). Each of these groups included 12 participants. Second, 

we manipulated target distance by placing the target object at either 7.5cm or 15cm from the 

start mark. Finally we varied visual feedback of the hand by providing the subject with one 

of five visual feedback conditions (Figure 2). In the no vision (NV) condition, the subject was 

not given any graphical feedback about the position of the hand. In the full vision crude 

(FVC) condition, graphical feedback about hand position (10mm spheres at the fingertips) 

was provided throughout the entire reach-to-grasp movement. For the vision up to peak 

velocity (VPV) condition, graphical feedback about hand position was extinguished once 

peak velocity of the wrist was reached. In the vision until movement onset (VMO) 

condition, graphical feedback of the hand was extinguished at the start of movement. For 

these conditions, subjects were prevented from seeing the real workspace below the mirror 

so that vision of the actual limb and surrounding environment was absent. For the final 

condition (full vision or FV), subjects were given full vision of the real hand as in a natural 

environment. Computer rendered graphical information about the target size and location 

was always available. All visual feedback was presented with visual stimuli of moderate 

contrast in relation to the background.  

                                                 
1 A preliminary version of these results were published elsewhere (Grabowski & Mason, 2011). 
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Fig. 2. Visual conditions. A) No vision-NV B) Vision to movement onset-VMO C) Vision to 
peak velocity – VPV D) Full vision crude-FVC E) Full vision-FV. 

Results - Transport Component: Movement time results for young adults showed that crude 

feedback of the hand (both FVC and VPV) resulted in performance that was not different 

from performance under natural viewing conditions (FV) (Figure 3B). Conditions where this 

feedback was provided only to movement onset or not at all (VMO and NV) showed distinct 

performance deterioration. This pattern of results has been replicated several times in our 

lab (Mason, 2007; Mason & Bernardin, 2008; Mason & Bernardin, 2009). Older adults did not 

show any differences between visual conditions, indicating that they used a transport 

strategy that was independent of visual feedback of self (Figure 3D). While this strategy was 

effective for performance of the current experimental task, it could result in significant 

limitations with more complex and continuous tasks. For middle age adults and children 

(Figure 3C and 3A respectively), results indicated that they make use of full visual feedback 

of their moving limb to improve performance, but use of any crude feedback failed to 

provide significant performance enhancements.  

The peak velocity of the transport varied with visual condition for all age groups, but 

children showed the most distinct effect (Figure 4). All conditions with altered feedback 

(FVC, VPV, VMO, and NV) had significantly lower peak velocities when compared to the 

natural viewing conditions (FV). Peak-velocity is determined by feed-forward motor 

planning mechanisms. Therefore, since slower movements are more accurate, it appears that 

children used a pre-planned strategy of slowing their reach to enhance the accuracy of their 

transport when they were only provided with crude visual feedback or no visual feedback.  

Finally the results from the limb deceleration data, which give an indication of the portion of 

movement allotted for closed-loop sensory feedback processing, shed light on the same 

phenomenon mentioned previously in older adults: this age group did not alter their 

movement patterns based on the visual feedback conditions provided. This finding is  
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Fig. 3. Effect of visual condition manipulations on average movement times (error bars show 
±SE) and mean age ±SE is shown in parentheses: A) Children F4,44=10.09, p<0.01 B) Young 
adult F4,44=7.24, p<0.01 C) Middle age adults F4,44= 4.23, p<0.01 D) Senior adult F4,44= 1.86, 
p=0.19. In young adults, FV was significantly faster than VMO and NV, but not different from 
the other simple feedback conditions (FVC and VPV). Also of note is the lack of any discernable 
condition effect in the group of older adults. Adapted from (Grabowski & Mason, 2011). 

 

Fig. 4. Peak velocity results for children, F4,44=5.32, p<0.01. All conditions show a slowing 
compared to the natural viewing in the FV condition. 

www.intechopen.com



 
Virtual Reality and Environments 

 

160 

consistent with previous work on age and motor control showing that for faster movements, 
older adults rely on modes of control that are minimally dependent on sensory feedback 
(Chaput & Proteau, 1996). These results can be interpreted as a manifestation of slowed 
central processing of sensory information. 

 

Fig. 5. Time spent in deceleration as a percentage of total movement time. A) Senior adult, 
F4,44=1.84, p=0.15 and B) Young adult , F4,44=13.70, p<0.01. 

Results – Grasp component: To quantify formation of the grasp component we analyzed peak 
grasp apertures. Grasp aperture gives an indication of the precision requirements of a task, 
with larger apertures considered a compensatory strategy present in more demanding tasks 
with higher levels of uncertainty. In young adults apertures were significantly smaller in the 
FV, FVC, and VPV when compared to the condition where no visual feedback of the hand 
was provided (NV). This replicates the results found for movement time and indicates that 
young adults were able to use some limited visual feedback to reduce uncertainty in 
planning their grasp. In contrast, older adults used a markedly larger grasp aperture than 
the rest of the cohorts, and showed a minimal condition effect. Middle age adults did show 
an effect on grasp measures when provided with crude visual feedback of the hand 
throughout the movement (FVC). This condition resulted in apertures that were 
significantly smaller than in the no feedback condition (NV). No other condition resulted in 
smaller apertures than NV (Figure 5). Therefore, it appears that for middle age adults, the 
condition with crude feedback available throughout the movement simplified the 
sensorimotor requirements even more than when participants were provided with natural 
viewing conditions (FV).  

Further inspection of the grasp aperture results shows that, although not statistically 
significant, the FVC condition resulted in the smallest average grasp apertures for all four 
age groups. These results provide preliminary evidence that luminance contrast may be an 
important variable for reducing movement complexity when grasping objects in a virtual 
environment. In our experiment, due to room lighting, the luminance contrast between the 
real limb and the background was low in the FV condition. Therefore, aperture planning in 
this condition may have been more difficult  than in the FVC condition where the graphical 
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representation of the fingertips provided greater luminance contrast. All other conditions 
either had a low contrast representation (FV) or no representation at all (VPV, VMO, NV). 
Therefore, the quality of the visual representation, specifically the luminance contrast, may 
serve as a means to further reduce task demands and uncertainty.  

 

Fig. 6. Effect of visual condition on average peak grasp apertures (error bars show ±SE): A) 
Children F4,44=3.061,p=0.102 B) Young adults F4,44=10.011,p<0.001 C) Middle age adults 
F4,44=4.144 p=0.022 D) Senior adults F4,44=1.207,p= 0.320. For young and middle age adults, 
aperture in FVC was significantly smaller than in NV. For children and seniors FVC also 
had the smallest mean aperture, although this did not reach significance at the p<0.05 level. 
Also of note is that in young adults, FV and VPV also had significantly smaller apertures 
than NV. Note the general lack of visual condition effect among seniors. Adapted from 
(Grabowski & Mason, 2011). 

To summarize, there are a few key findings from these two studies. First, young adults were 
quite adept at utilizing limited visual feedback for the control of precision grasp tasks in 
virtual environments. In contrast, senior adults could not make use of limited visual 
feedback and tended to rely on a feed-forward strategy. While this strategy allowed the 
older adults to be successful with the experimental task, it may limit the nature of their 
interactions in such environments when tasks become more complex. Children and senior 
adults both appeared to make compensatory adjustments in their motor planning for the 
demands of the experimental task, however they involved different components of the 
movement. Children altered the transport of their hand in space by using lower peak 
velocities. Senior adults used a very large grasp configuration to compensate for task 
uncertainty. Finally, aperture results indicated that there could potentially be some 
enhancement in performance when augmented feedback about the hand (i.e. the crude 
finger representation) contrasts at least moderately with the background environment. This 
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was most pronounced in middle age adults, but weakly present in all age groups. While 
there are many directions to head with future research, the finding regarding the possibility 
of performance enhancement through the manipulation of luminance contrast is one 
particular area of interest. 

4. Future directions 

In the final sections, we will develop a theoretical basis for the importance of understanding 
the role of luminance contrast for precise, visually guided movements of the upper 
extremities. Following this, we briefly describe our next set of experiments aimed at a 
deeper understanding of the role of vision for motor performance in virtual environments 
across the lifespan. 

4.1 Contrast sensitivity and tuning of neuronal populations 

The neural processing of sensory information is described by the tuning of neuronal 

populations to specific stimuli (Desimone & Duncan, 1995). Within areas of the visual cortex, 

groups of neurons fire in response to the presence of afferent information. This firing rate is 

tuned to specific aspects of the stimulus, thereby increasing the precision by which the system 

can differentiate visual information. Within neuronal populations, firing rates differ among 

neurons. Some neurons will fire constantly with the presence of a stimulus, known as tonic 

firing. Other neurons fire rapidly at the onset of the stimulus, and rapidly decrease activity 

thereafter; this is known as phasic activity. This phasic activity makes the general sensorimotor 

system particularly sensitive to changes in stimulation. The visual cortex is no exception. 

Phasic neurons located within the visual cortex are sensitive to areas within the visual scene 

that are actively changing. It is simple to understand this in the case of a moving object, 

however the border of a stationary object also has this effect. Specifically, when the eye is 

moving and a stationary image passes over the moving retina, the border of the stationary 

object causes the visual scene to abruptly change, and phasic neurons react accordingly.  

Sensitivity to object borders is dependent on the visual contrast between the object and its 

background. Contrast is described by two characteristics, luminance (brightness) and 

chromaticity (color), which are processed differently in the dorsal and ventral visual 

streams. The two visual stream hypothesis put forth by Goodale and Milner has a wide 

breadth of experimental support in explaining multiple functions for visual processing 

(Goodale and Milner 1992 as cited in Milner & Goodale, 2008). Briefly, the ventral stream 

includes structures along the pathway from the visual cortex in the occipital lobe to the 

inferotemporal lobe. This circuit has been implicated in the use of vision for perception of 

the surrounding environment, allowing the conscious experience of seeing the world 

around us. The dorsal stream includes the pathway from the visual cortex to the posterior 

parietal lobe. This pathway is responsible for the visuomanual transformations that allow 

visual information to guide our motor system in interacting with the surrounding 

environment. The neuronal structure of the ventral stream allows for high spatial resolution 

and sensitivity to chromaticity (Wade et al., 2002). Processing of color information in the 

ventral stream plays a role in the perception of objects (Kleinholdermann et al., 2009; 

Morrone, Denti, & Spinelli, 2002). The role of color contrast in visual processing for motor 

output has not been clearly elucidated, but it appears the strict dichotomous notion of the 
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two visual stream hypothesis may be overly rigid. Recent investigation has shown that for 

simple eye movements and pointing tasks, color information can be used to guide 

movement (White, Kerzel, & Gegenfurtner, 2006). Pisella, Arzi, and Rossetti (1998) 

studied the ability of humans to utilize color information to quickly update their 

movements in a perturbation paradigm. While movement reorganization was possible 

utilizing only color information, the results showed a distinct slowing of movement 

reorganization. Brenner and Smeets (2004) also studied a similar paradigm, finding that 

color could in fact be utilized rather quickly for task reorganization; however, they still 

showed a minor slowing compared with movement reorganization based on luminance 

information. Luminance contrast, while also important in perception, may have more 

direct implications for motor output. Motion sensitivity is dependent on contrast 

sensitivity and motion sensitivity is a hallmark of the neuronal structure of the dorsal 

stream (Born & Bradley, 2005). Therefore luminance contrast may be an important source 

of visual sensory feedback for motor output.  

Properties of visual feedback are used both in the planning and online control of movement. 
The specific role of luminance contrast for such processes has not been clearly identified, 
and previous study of this topic is sparse. Recently Braun et al. (2008) investigated whether 
initiation of eye movements differed when tracking two types of targets, one with 
luminance contrast compared to the background and one isoluminant with the background 
(i.e. defined by color only). They showed a strong and significant effect of target contrast on 
speed of eye movement initiation, with tracking of isoluminant targets delayed by 50 ms. 
They also showed lower eye accelerations to these no-contrast targets. For upper extremity 
control, studies have shown mixed results. White, Kerzel, and Gegenfurtner (2006) showed 
that there was no difference in accuracy or response latency when comparing simple rapid 
aiming movements to targets of high luminance contrast versus isoluminant targets. In a 
more complex task, Kleinholdermann et al. (2009) looked at the influence of the target 
object’s luminance contrast as subjects performed reach to grasp movements within a 
desktop augmented (physical object with graphical overlay) environment. Participants were 
not provided with a head-coupled stereoscopic view, nor were they provided any visual 
representation of the hand. They were given a view of the environment that included only a 
virtual image overlaying the actual target disk. The independent variables controlled by the 
experimenters were the visual properties of chromatic and luminance contrast between the 
target object and the environment background. The results of this study showed only a 
minimal effect of luminance contrast on the formation of grasp aperture. They concluded 
that isoluminant targets were as suitable for the motor planning of grasp as targets defined 
by a luminance contrast or a luminance plus chromatic contrast. However, because current 
theories of motor control rest on the premise that object location can be precisely identified 
in relation to limb location (Wolpert, Miall, & Kawato, 1998) we contend that the lack of 
visual feedback about the limb likely resulted in a ceiling effect for a number of performance 
measures used by Kleinholdermann et al. Given that neuronal tuning properties make the 
visual system particularly sensitive to change, it is logical that some property involving a 
change in visual stimulus may be especially useful in this quick, precise identification of 
object and limb spatial location. Luminance contrast is such a property. Future 
experiments should expand upon the work of Kleinholdermann et al. by examining the 
role of luminance contrast of both the target object and the effector limb for upper 
extremity performance. Further, the Kleinholdermann et al. paper focused predominantly 
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on motor planning. Future studies should examine kinematic findings at a deeper level to 
understand the use of vision in both open and closed loop functions. Additionally, since 
the treatment of visual contrast information by the CNS changes with time, as discussed 
in the next section, new studies must focus on delineating the role of such information for 
populations differing by age. 

4.2 Aging and luminance contrast 

While there are changes at the ocular level with age, the predominant cause of functional 

decline is due to a slowing of central processing in the brain (Chaput & Proteau, 1996; Inui, 

1997; Light, 1990; Shields et al., 2005). The slowing of temporal processing has been 

specifically implicated in the decline of luminance contrast sensitivity in adults over 60. 

Motion sensitivity, which is dependent on contrast sensitivity, also declines with age 

(Spering et al., 2005; Trick & Silverman, 1991). Motion sensitivity is also known to be directly 

linked to function of dopaminergic circuitry, a system known to play a major role in the 

aging process (Wild-Wall et al., 2008). Despite these declines, older adults become more 

dependent on vision over time, resulting from the relative sparing of visual resources when 

compared to other sources of sensory feedback (Adamo et al., 2007; Chaput & Proteau, 1996; 

Goble et al., 2008; Lemay et al., 2004). The important concept to note is that this sparing of 

neurons in the visual systems results in a greater amount of substrate available for positive 

neuroplastic changes relating to motor output. Indeed, such positive changes have been 

documented in older adults when trained via the visual system to improve speed of 

processing (Ball, Edwards, & Ross, 2007; Edwards et al., 2005; Long & Rourke, 1989; Zhou et 

al., 2006). The key question to consider is how might this potential for plastic changes be 

manipulated and optimized?  Given that the processing of luminance contrast information is 

linked in multiple ways with speed of processing, and speed of processing is a central theme 

in aging related functional decline, this visual property may be a useful means to answer the 

plasticity question. We believe a number of attributes of 3D VEs make them an ideal tool to 

aid in investigating this question, and believe design of VEs will directly benefit from the 

information gained. Therefore, we intend to investigate changes in sensorimotor processing 

of luminance contrast in older adults compared to younger adults. The information gained 

from this study will be directly applicable to development of technologies to rehabilitate 

and enhance function in aging and neurologically compromised adults. 

4.3 Future research aims 

Aim 1 is to test the hypothesis that luminance contrasts of target and limb have an effect on 

upper extremity kinematics in a virtual environment. This will be investigated using the 

methodology described previously with a reach to grasp paradigm. We will test a 

population of adults age 18-25 without history of visual or upper extremity sensorimotor 

dysfunction. We intend to study five contrast levels ranging from very low to very high. 

Based on previous studies of visual feedback, we believe that low levels of luminance 

contrast will negatively affect kinematic markers of upper extremity performance, for 

example slowed movement time, when compared to moderate and high levels. We also 

believe that high levels of contrast will not have a significant effect on performance 

measures when compared to the moderate level for this group of participants.  
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Aim 2 is to test the interaction of age with visual contrast between the limb/target and 

background environment. We will use the same reach to grasp paradigm, but collect data on 

a group of healthy adults age 18-25, a middle age group 40-50, and a group of healthy adults 

age 60+. We believe that older adults will only effectively use visual feedback of self in the 

highest contrast condition. This will allow inferences about the age-related processing of 

luminance contrast as a visual feedback parameter for motor performance. 

4.3.1 Application of results 

We anticipate the results of this line of research will have implications in numerous fields. 
First, the information gained will have direct bearing on computer science for the user-
specific design of next generation 3D virtual environments. As the world population 
continues to age, understanding of how to enhance performance with computer interfaces 
must take into account the physiologic changes that occur over time. Luminance contrast 
appears to be an important factor in upper extremity control, and one that is known to play 
a role in performance changes with age in natural environments. It stands to reason then 
that performance in a primarily visual environment, such as a 3D VE, will rely heavily on 
the neural processing of contrast. Secondly, we believe the field of rehabilitation will benefit 
indirectly through improvements in user-centered design. Currently, 3D VEs are regularly 
studied as a means to improve upon current practices in rehabilitation of patients post-
stroke. Unfortunately, one barrier to success continues to be usability and provision of cost-
effective, age-appropriate sensory feedback. Information on performance changes in older 
adults related to manipulation of luminance contrast may be of use to both program 
designers and rehab clinicians. For example, if older adults perform movements in VEs 
under certain contrast conditions in a manner equivalent to a natural environment, rehab 
clinicians may want to capitalize on such parameters to improve functional carryover of 
training to activities of daily living. Lastly, we believe results from our current and future 
study will contribute to the fields of gerontology and behavioural neuroscience by 
expanding our knowledge of visual processing and motor behaviour across the lifespan. 

5. Conclusion 

User-centered design of virtual environments continues to be an under-studied area with 

regard to both old and young users. Knowledge of human performance, and the nature of 

the sensory feedback that guides it, will be imperative in the successful, cost-effective design 

of tangible user interfaces intended for use by these populations. Recent work has shown 

that young adults can utilize visual information provided in virtual environments 

differently than both older adults and young children, and therefore more specific age-

group studies are needed. Future studies will focus on specific parameters of visual 

feedback, such as luminance contrast, and how the provision of such properties in virtual 

environments impacts the performance of the user. 
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