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1. Introduction 

Nanotechnology development has allowed that nanomaterials can be used in biomedical 

applications, and nanometer sized objects can interact with biological entities like cells, 

virus, protein, enzyme, etc. For this reason, many research projects has been focused in the 

development of nanosystems, nanoparticles and nanodevices  for this applications. This area 

is relatively new, according to the ISI web of knowledge, the publications of the 

nanoparticles for biomedical applications started on 2000 year, and since that time they have 

increased exponentially (Figure 1). The nanoparticles (NPs) used for biomedical purposes 

generally include zero-dimensional nanospheres and one-dimensional nanowires and 

nanotubes.  

 

Fig. 1. Trends of Nanoparticles (NPs) in Biomedical application, information extracted from 
ISI  Web of Knowledge. 

Figure 2, extracted from ISI Web of Knowledge, shows the publications related to gold, 

silver, iron and magnetic nanoparticles for biomedical application. Magnetic nanoparticles  
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Fig. 2. Trends of silver, gold, iron and magnetic nanoparticles used in Biomedical 
applications, information extracted from ISI  Web of Knowledge 

are at the forefront as the most promising materials for clinical diagnostic and therapeutic 

applications. Magnetic nanoparticles (MNPs) are widely used for labeling and 

manipulating biomolecules, targeting drugs and genes, magnetic resonance imaging, as 

well as hyperthermia treatment (Varadan et al., 2008; Cornell and Schwertmann, 2003). 

Magnetite Nanoparticles (Fe3O4) are the most used magnetic material for biomedical 

applications because they have a high enough saturation magnetization to allow its 

manipulation with an external field, superparamagnetic behavior and ability to bond with 

different molecules to surface functionalized (Cullity and Graham, 2009; Neuberger et al., 

2005). In  biomedical applications, the characteristics of the magnetite nanoparticles have 

a significant advantage when they interact with biological molecules, therefore, many 

methods of synthesis have been developed  in order to control surface morphology, 

particle size, particle distribution, and chemical stability among others (An-Hui et al., 

2007;. Gao and Gu, 2009). 

2. Magnetic nanoparticles 

Many magnetic nanoparticles such as magnetite, strontium and cobalt ferrites, lantanium-

zinc ferrites, niquel, iron and some compounds with a rare earth like SmCo5 have been 

development (Pankhurst et al., 2003). Magnetite, Fe3O4  is the magnetic material most used 

in biomedical application due to its several interesting properties such as great chemical 

stability, low toxicity, and its magnetic saturation mentioned above for being manipulated 

with an external field, biocompatibility and the heating ability in presence of a field, which 

made it an interesting candidate for hyperthermia treatment (Sun et al., 2004) for this reason 

in recent years, much effort has been focused in the design and controlled synthesis of this 

material with certain shape and particle size. Many methods for synthesis of magnetite 

nanoparticles have been developed like co-precipitation, microemulsion, sol-gel, sputtering, 
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thermal decomposition, etc. With this variety of methods particles with different 

morphologies such as spheres, rods, wires and tubes has been obtained (Palla et al, 1999; 

Joralemon et al, 2005; Terrazas et al, 2010). However, the coprecipitation method is still the 

most popular method for their simplicity and easy way to manipulate the size and 

morphology of the particles by the use of templates, besides being a method whose raw 

materials are relatively inexpensive.  

Recent publications have been emphasized on the particle size control of magnetite 
nanoparticles, because under some critical value, the material exhibits a superparamagnetic 
behavior, this means that there is no hysteresis in the magnetization curves, which implies 
that the retentivity and coercivity are close  to zero (Cullity and Graham, 2009). Biomedical 
applications involve strict requirements on particle size, and it can be by using a chemical 
coprecipitation through the control of nucleation and growth process. Magnetite 
nanoparticles obtained by chemical coprecipitation method are produced by the 
precipitation of divalent (Fe+2) and trivalent (Fe+3) iron salts in an alkaline medium. The 
size and the number of nucleus are influenced by the alkaline medium and the addition 
velocity, which results in a nucleation and growing process; a fast nucleation will form high 
concentration of nuclei and small particles, while a slow nucleation will form low nuclei 
concentration generating larger nanoparticles (figure 3). 

 

Fig. 3. Schematic representation of nucleation and growth kinetics.  

2.1 Chemical coprecipitation 

As mentioned above, chemical co-precipitation consists in the precipitation of divalent (Fe+2) 
and trivalent (Fe+3) iron salts in an alkaline medium, maintaining a molar ratio of 1:2, by using 
ammonium hydroxide, ammonia or some other alkaline  solution to increase pH reaction that 
is required to magnetite formation. Commonly the addition of alkaline solution to divalent 
and trivalent iron solution is made slowly, drop by drop (titration) under vigorous agitation 
using a magnetic agitator. The initial solution of divalent and trivalent iron cations had acidic 
pH and after the titration is close to 12, a black precipitate is formed which indicates that the 
reaction has been completed. The chemical reaction that takes place during magnetite 
formation from iron salts solutions by increasing the pH can be represented in the following 
overall chemical equation (Cornell et al, 2003; Gnanaprakash et al, 2007): 
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 2Fe+3  +  Fe+2   +  8OH-1                     FeO.Fe2O3   +  4H2O (1) 

In general, the solubility of trivalent iron oxide (Fe+3) is smaller than the one observed on 
divalent iron oxides (Fe+2). The trivalent iron hydrolyzes and forms hydroxide species. The 
hydrolysis can be induced by heating up the solution. The complete hydrolysis corresponds 
to the formation of a trivalent iron oxide-hydroxide and it is represented according to the 
following chemical reaction: 

 (Fe(H2O)6)+3                    FeOOH   +   3H+   +   4H2O (2) 

The divalent iron cation in solution (Fe+2) reacts to form the divalent iron oxide in basic 
conditions (presence of hydroxyl ion OH-), which is presented in equation 3: 

 Fe+2    +    2OH-                 Fe(OH)2 (3) 

Under the reaction conditions, divalent iron hydroxide and trivalent iron oxide-hydroxide 
species were likely to be formed. This being established, it is suggested that the following 
chemical reaction mechanism occurred: trivalent iron cation hydrolyzes forming (FeOOH) 
as pH increases; under alkaline conditions divalent iron cation forms Fe(OH)2. Both 
chemical species reacted to each other at pH values of around 10 to 11, forming magnetite 
according to equation 4:    

 2FeOOH  +  Fe(OH)2                     Fe3O4  +  2H2O  (4) 

2.2 Chemical coprecipitation with fast injection 

The chemical coprecipitation with fast injection differs from conventional coprecipitation in 
the speed at pH of the reaction pH solution is increased; in order to favor magnetite 
formation abruptly. Divalent and trivalent iron salt solutions have an initial pH of 0 to 1. On 
the conventional coprecipitation method, the pH of the solution is increased by the addition 
of an alkaline solution drop by drop, which is considered slow speed; while on the rapid 
injection method, the pH of the solution is increased by adding the salt solution directly to 
ammonium hydroxide solution, speed to be considered rapid and explosive. The difference 
between both methods is schematically shown in figure 4. 

2.3 Chemical coprecipitation with reflux and aging conditions 

A trivalent iron solution is placed into a bowl flask and heated up to 80 ºC under refluxing 
conditions for a period of time of 2 hours. A precipitate is formed and separated from 
supernatant. Trivalent iron cation is hydrolyzed due to an increment of temperature 
promoting the hydrolysis and forming a trivalent iron oxide-hydroxide (FeOOH). After the 
2 hours of hydrolysis reaction, a yellowish precipitate is obtained. 

Another solution is prepared with divalent iron and urea. This solution is mixed with the 
previous precipitate and heated up to 90ºC-96ºC for 20 hours under refluxing conditions. 
The required pH condition is obtained through the slow decomposition of the urea when 
the temperature increases above 90ºC, this condition will increase the pH uniformly 
favoring a more slower nucleation in the solution (Terrazas et al., 2010).  

 (NH2)2CO  +  H2O                   2NH3   +   CO2 (5) 
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Fig. 4. Difference between conventional coprecipitation (a)  and coprecipitation with fast 
injection (b). 

 NH3   +   H2O                 NH4+   +   OH- (6) 

By the use of urea in the chemical coprecipitation with reflux and aging conditions method, 

the speed of pH increment is considerably slower than the one observed in the slow 

injection and rapid injection co-precipitation methods. The condition of slow and uniform 

pH increment and the reacting time of 20 hours under favorable conditions for magnetite 

formation, affect the nucleation and particle growth process making it very slow, which is 

reflected in the formation of bigger particles than those promoted in slow injection and 

rapid injection methods.  

The difference of these methodologies lies in the particle size and its distribution as is shown 

in figure 5. Magnetite obtained by coprecipitation with reflux and aging shows higher 

particle size and a wide particle size distribution. According to these results, magnetite 

obtained by coprecipitation with fast injection shows the smallest average particle size and 

the closest particle size distribution; differing from magnetite obtained by common 

coprecipitation, Table 1. 

The magnetite obtained using these three methodologies have a spherical particle shape 

with a superparamagnetic behavior, and their saturation magnetization is influenced by the 

particle size. Values of 55.9, 64.3 and 78.2 emu/g were obtained from nanoparticles with an 

average particle size of 16 nm, 27 nm and 200 nm respectively. The saturation magnetization 

increases when the particle sizes are larger. Hysteresis loops of the synthesized 

nanoparticles are shown in figure 6. 

Magnetite structure is an inverse spinel with a face center cubic unit based on 32 O-2- ions 

with a regularly cubic close packed along the [111] direction. There are eight formula units 

per unit cell. Magnetite differs from other iron oxides in that it contains both divalent and 

trivalent iron. Its formula is written as Fe III[Fe II Fe III]O4 and the brackets denote octahedral 

sites, tetrahedral Fe spins are directed antiparallel to octahedral Fe 3+ and Fe 2+ spins so  

NH4OH 
added drop 

by drop 

NH4OH 
Fe+2 y Fe+3 
solution 

Fe+2 y Fe+3 solution 
is added quickly 

(a) (b) 
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Fig. 5. Comparison of magnetite particle sizes and their distribution obtained by common 
coprecipitation (�), coprecipitation with fast injection (▲) and coprecipitation with reflux 
and aging (■) 

 

 

 

Common coprecipitation 

 

Coprecipitation with fast 
injection 

 

Coprecipitation with 
aging and reflux 

 

Average 
particle 
size (nm) 

27.6 16.2 206.9 

Standard 
Deviation 
(nm) 

8.2 4.4 58.9 

 

Table 1. Average particle size of magnetite obtained by different methodologies 
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Fig. 6. Hysteresis loops of magnetite obtained by common coprecipitation (a), with a fast 
injection (b) and aging and reflux(c) 

that the Fe 3+ moments cancel, leaving a spontaneous magnetization equivalent to one Fe 2+ 
moment per molecule, eight tetrahedral sites are occupied by trivalent iron, and the divalent 
and trivalent cations occupies the sixteen octahedral sites (Cornell and Schwertmann, 2003). 
X-ray diffraction is the most widely used technique to determine the crystalline structure of 
a material. However in the case of magnetite it can be  confusing because the magnetite has 
the same crystalline structure that maghemite, but this one has a interstitial voids, therefore  
by using XRD is not conclusive. The difference between the two materials is that some of the 
interstitial atomic positions of the maghemite are not fully occupied, and consecuently 
having atomic holes. In the case of magnetite, the infrared spectroscopy is very useful 
because this technique arises as a result of divalent and trivalent cations interaction with 
electromagnetic radiation, this interaction involves excitation for vibration or rotation of 
molecules in their ground electronic state, and they are associated with stretching 
deformation of the interatomic bonds and bending deformation of the interbond angles. 
FTIR spectroscopy provides a fast mean of identification.  

Infrared spectra of the magnetite shows the chareacteristic bands at 590 and 450cm-1 
approximately due to the Fe-O bond in tetrahedrical and octahedrical positions. Figure 7 
shows the infrared spectra of the magnetite with a different particle size, the band at 600 cm-

1 approximately is broadening when the particle size decreases. According to Nasrazadani 
(1993) this effect  indicates  an increment of cation vacancy in the lattice, this behavior 
corroborated with the decreased value of the lattice parameter, which is shown in table 2. 
These values are minor than the lattice parameter of defect free magnetite (8.396 A ), this 
small reduction is assumed to be due to the prevalence of a small amount of cation 
deficiency. 
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Fig. 7. Infrared spectra of the magnetite obtained by common coprecipitation (a), with a fast 
injection (b) and aging and reflux(c).  

 

Sample Method of Synthesis Particle size (nm) Lattice cell (A) 

Magnetite   Coprecipiation with aging and reflux 206.9 ± 58.9 8.34468 

Magnetite  Common coprecipitation 27.6 ± 8.2 8. 34270 

Magnetite  Coprecipitation with fast injection 16.2 ± 4.4 8. 33475 

Table 2. Variation of the magnetite lattice cell with a determined particle size 

Substitution of the cation on magnetic structures has been studied in order to improve the 
magnetic properties and FTIR spectroscopy is one of the techniques used in this kind of 
studies. In magnetite structure, the divalent iron is totally or partially replaced for 
strontium, cobalt, copper, nickel, manganese, cadmium, aluminum and gadolinium 
(Brabers et al., 1998). Figure 8 shows the infrared spectra of magnetite doped with cobalt; 
this cation occupies octahedral sites without changing inverse spinel crystal structure of 
magnetite.  
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Fig. 8. Infrared spectra of cobalt doped magnetite. 

3. Functionalization of magnetic nanoparticles 

One of the most important aspects of the nanoparticles for biomedical applications is the 
surface preparation of the nanoparticles in order to improve their biocompatibility with 
biological entities and provide chemical stability. The nanoparticles surfaces can be 
modified with a biocompatible or/and biodegradable polymeric coating. The polymer can 
be natural such as chitosan (C6H13NO5), collagen, folic acid (C19H19N7O6) or synthetic as 
dextran (H(C6H10O5)xOH), tetraethyl orthosilicate (SiC8H20O4), N-(2-aminoethyl-3-
aminopropyl) trimethoxysilane (C8H22N2O3Si), poly-lactic-co-glycolic acid ( PLGA), 
polyethylene glycol (C2nH4n+2On+1), etc. This surface modification needs to have a functional 
groups like: carboxyl (-COOH), hydroxyl (-OH), amine (-NH2), etc, with the capability to 
bond with a biological molecules. Table 3 shows a summary of recent publications of the 
most used coating materials for magnetite nanoparticles. 

One of the most used techniques to ensure that the functionalization of magnetic 
nanoparticles has occurred, is the Fourier infrared spectroscopy (FTIR) because of its 
simplicity and availability. This technique provides the information about the excitation of 
vibration or rotation of molecules in their ground electronic State. In magnetite structure, 
these vibration, are associated with the stretching deformation of the interatomic bond of  
the iron with other molecules. Magnetite with a silica (figure x, MS sample) shell is 
confirmed by the characteristic adsorption band at 1090 cm-1 due to silane group presence. 
When a aminosilane is used like a coating, the spectra (figure, MA sample) show the band at 
2943 cm-1  due to the stretching of C-H from methyl group (-CH2, -CH3), the  band at 1072 
cm-1 is due to the Si-O bond and the bands at 3309 and 1654 cm-1 are attributed to the amine  
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Material  Particle size 
(nm)  

Application Reference  

Silica  20-300  DNA separation, Drug 
delivery, Metal 

separation  in waste 

Schweoger et al, 2011; Chen et al, 
2011; Del Campo et al, 2001; 

Ajay and grupta, 2005 

Dextran 10-200 Drug delivery NMR 

imagines 

Liu et al, 2011; Quin et al, 2011; 

Catherine et al, 2003; Zhang et al 
,2007 

Polyethylene 
glycol (PET) 

10-50 NMR imagines, Gen 
delivery  

Kami et al, 2011; Phadatare et al, 
2011; Zang et al, 2008; 

Polyvinyl alcohol 
(PVA) 

10-50  NMR imagines, Drug 
delivery,  

Pardoe et al, 2001; Morteza et al, 
2009. 

Polyvinyl 
Pyrrolidone (PVP) 

10-20  Drug delivery Young-Lee et al, 2006 

poly-lactic-co-
glycolic acid 
(PLGA) 

250  Tissue  engineering, 

Cell targeting  

Schliehe et al, 2011; Chih-Hang 

et al, 2011; Mu andFeng,2001; 
Yoshida and. Babensee, 2006;   

Polystyrene (PS) 10-20  NMR imagines DNA 
separation 

McCarthy et al, 2011; Ramirez et 
al, 2003 

Methyl 
polymethacrylate 

10-50 o NMR imagines, Entities 
separation 

Gao et al, 2010; 

Polypyrrole  20-100   Protein  separation, 
Metal separation   

Madhumita et al, 2011; Ammar 
et al, 2004; Andreva et al, 2006; 

Cellulose 20-50    Drug delivery Huixia et al, 2011  

Chitosan 20-100 o Cell targeting, Tissue  

engineering, Drug 
delivery, hyperthermia 

Coroto et al, 2011; Arami et al, 

2011; Del campo et al, 2001; 

Gelatin 50-100 DNA separation, drug 

delivery 

Gaihre et al, 2009 

Starch 10-20  Cell Separation Dong-Hyun et al, 2009 

Table 3. Materials used in functionalization of magnetite nanoparticles.  

group (-NH2). A sample with a double coating silica-aminosilane (Figure 9, MSA sample) 
shows the band  of both materials, and a new band is shown at 802 cm-1 due to Si-O-Si bond. 
Using this information, a suggested mechanism of coated particles  can be proposed 
(Scheme 1) in magnetite-aminosilane shell, the silicon is bonded with the iron through the 
deprotonation of magnetite; when a silica shell is added before the aminosilane groups, the 
silicon is bonded in the same way with the magnetite and the silicon bonded with 
aminosilane trough S-O-S bond. 
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Fig. 9. FT spectra of magnetite (M), magnetite-aminosilane (MA) and magnetite-silica-
aminosilane (MSA) obtained by  reflux and aging method. 

 

Scheme 1. Suggested mechanism of coated magnetite nanoparticles 
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Chitosan is a natural polymeric material widely used in biomedical applications as 
coating in magnetic nanoparticles for biomedical applications. The spectra of this 
material, Figure 10 show bands at 1400 cm-1 due to C-O of the primary OH groups; at 
1600cm-1 due to the N-H; at 2943cm-1 due to the stretching of C-H from methyl group (-
CH2, -CH3) and the band at 1100cm-1 of the hydroxyl group of the piranosic ring of the 
chitosan beside the Fe-O bond due to octahedral sites of the magnetite. The band at 2250 
cm-1 is due to carbon dioxide air.  

 

Fig. 10. FT spectra of magnetite coated with a chitosan shell. 
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Fig. 11. FT spectra of magnetite coated with an adipic acid shell. 
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On the other hand adipic acid is a materials that has not been widely studied like a coating 
shell on magnetic nanoparticles; however, these materials have been widely used in drug 
delivery systems. In figure 11, the spectrum of the magnetite coated with this polymer 
shows the bands at 1415 y 1550cm-1 due to the symmetric and asymmetric carboxylate ion 
(COO-) and approximately at 600cm-1 the band due to the Fe-O bond in octahedral sites of 
the magnetite. 

4. Conclusions 

One of the most important aspects of nanoparticles in biomedical applications is their 
surface functionalization in order to improve their biocompatibility with biological entities, 
and Fourier infrared spectroscopy (FTIR) is very useful technique that provides information 
about iron oxides in their ground electronic state, and when this material is bonding with a 
polymeric coating provides information about mechanism of functionalized magnetic 
nanoparticles. This technique is widely used in characterization nanoparticles due to its 
simplicity and availability. In magnetite structure it provides information about the 
excitation of vibration or rotation of the trivalent and divalent iron cations and allows 
knowing the occupied sites when the divalent iron is replaced with other cations. 
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