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On the Modelling of Spur and  
Helical Gear Dynamic Behaviour 

Philippe Velex 
University of Lyon, INSA Lyon, LaMCoS UMR CNRS,  

France 

1. Introduction 

This chapter is aimed at introducing the fundamentals of spur and helical gear dynamics. 
Using three-dimensional lumped models and a thin-slice approach for mesh elasticity, the 
general equations of motion for single-stage spur or helical gears are presented. Some 
particular cases including the classic one degree-of-freedom model are examined in order to 
introduce and illustrate the basic phenomena. The interest of the concept of transmission 
errors is analysed and a number of practical considerations are deduced. Emphasis is 
deliberately placed on analytical results which, although approximate, allow a clearer 
understanding of gear dynamics than that provided by extensive numerical simulations. 
Some extensions towards continuous models are presented. 

2. Nomenclature 

b : face width 

,m rC C : pinion, gear torque 

 e M , ( )MAXE t : composite normal deviation at M , maximum of  e M  at time t . 

, *E E : actual and normalized depth of modification at tooth tips 

       
 ,L t

t k M e M dM e

q

F V M : time-varying, possibly non-linear forcing term associated 

with tooth shape modifications and errors 

0 0
TG V V  

 H x : unit Heaviside step function (    1 1; 0H x if x H x otherwise   ) 

mk ,  ,k t q : average and time-varying, non-linear mesh stiffness 

    1mk t k t  , linear time-varying mesh stiffness 

0k : mesh stiffness per unit of contact length 

 k M , mesh stiffness per unit of contact length at M  

pk : modal stiffness associated with ( p , pΦ ) 

       
 ,

T

L t

t k M dM    G

q

K V M V M : time-varying, possibly non-linear gear mesh 

stiffness matrix 
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 ,L t q : time-varying, possibly non-linear, contact length 

cos
m

b

b
L  

 :  average contact length 

02 01
2 2
1 02 2 01

I I
m

Rb I Rb I





: equivalent mass 

pm : modal mass associated with ( p , pΦ ) 

1n : outward unit normal vector with respect to pinion flanks 

NLTE : no-load transmission error 

1 2,O O : pinion, gear centre 

aPb : apparent base pitch 

1 2,Rb Rb : base radius of pinion, of gear 

 , ,s t z : coordinate system attached to the pinion-gear centre line, see Figs. 1&2 

mT : mesh period. 

TE , STE : transmission error, quasi-static transmission error under load 

  0V M ,V , structural vector, averaged structural vector 

W : projection vector for the expression of transmission error, see (44-1) 

 , ,X Y z : coordinate system associated with the base plane, see Fig. 2 

10 0X K F : static solution with averaged mesh stiffness (constant) 

SX , DX X : quasi-static, dynamic and total (elastic) displacement vector (time-dependent) 

1 2,Z Z : tooth number on pinion, on gear 

 : small parameter representative of mesh stiffness variations, see (30) 

p : apparent pressure angle 

b : base helix angle 

S
m

m

F

k
   T

0V X : static mesh deflection with average mesh stiffness 

     MAXe M E t e M   :  instantaneous initial equivalent normal gap at M  

 M : mesh deflection at point M 

 : theoretical profile contact ratio 

 : overlap contact ratio 

1 0

Cm

Rb b k
  , deflection of reference 

pΦ : thp eigenvector of the system with constant averaged stiffness matrix 

P : damping factor associated with the thp eigenfrequency 

 : dimensionless extent of profile modification (measured on base plane) 

m

t

T
  , dimensionless time 

p : thp eigenfrequency of the system with constant averaged stiffness matrix 
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1

p

pn
n


 


, dimensionless eigenfrequency 

1 2,  : pinion, gear angular velocity 

A : vector A completed by zeros to the total system dimension 

   *

m


  , normalized displacement with respect to the average static mesh deflection 

   
ˆ

mk


  , normalized stiffness with respect to the average mesh stiffness 

3. Three-dimensional lumped parameter models of spur and helical gears 

3.1 Rigid-body rotations – State of reference 

It is well-known that the speed ratio for a pinion-gear pair with perfect involute spur or 

helical teeth is constant as long as deflections can be neglected. However, shape errors are 
present to some extent in all gears as a result of machining inaccuracy, thermal distortions 

after heat treatment, etc. Having said this, some shape modifications from ideal tooth flanks 
are often necessary (profile and/or lead modifications, topping) in order to compensate for 

elastic or thermal distortions, deflections, misalignments, positioning errors, etc. From a 
simulation point of view, rigid-body rotations will be considered as the references in the 

vicinity of which, small elastic displacements can be superimposed. It is therefore crucial to 
characterise rigid-boy motion transfer between a pinion and a gear with tooth errors and/or 

shape modifications. In what follows, e(M) represents the equivalent normal deviation at the 
potential point of contact M (sum of the deviations on the pinion and on the gear) and is 

conventionally positive for an excess of material and negative when, on the contrary, some 
material is removed from the ideal geometry. For rigid-body conditions (or alternatively 

under no-load), contacts will consequently occur at the locations on the contact lines where 
e(M) is maximum and the velocity transfer from the pinion to the gear is modified compared 

with ideal gears such that: 

        1 1 2 2 cos 0MAX
b

dE t
Rb Rb

dt
 (1) 

where    max ( )MAX ME t e M  with max ( )M , maximum over all the potential point of 

contact at time t 

The difference with respect to ideal motion transfer is often related to the notion of no-load 
transmission error NLTE via: 

    


     1 1 2 2

1

cos
MAX

b

dE td
NLTE Rb Rb

dt dt
 (2) 

Using the Kinetic Energy Theorem, the rigid-body dynamic behaviour for frictionless gears 
is controlled by: 

 1 1 1 2 2 2 1 2m rJ J C C           (3) 
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with 1 2,J J : the polar moments of inertia of the pinion shaft line and the gear shaft line 

respectively. ,m rC C : pinion and gear torques. 

The system with 4 unknowns ( 1 2, , ,m rC C  ) is characterised by equations (2) - (3) only, and 

2 parameters have to be imposed. 

3.2 Deformed state – Principles 

Modular models based on the definition of gear elements (pinion-gear pairs), shaft elements 
and lumped parameter elements (mass, inertia, stiffness) have proved to be effective in the 
simulation of complex gear units (Küçükay, 1987), (Baud & Velex, 2002). In this section, the 
theoretical foundations upon which classic gear elements are based are presented and the 
corresponding elemental stiffness and mass matrices along with the possible elemental 
forcing term vectors are derived and explicitly given. The simplest and most frequently 
used 3D representation corresponds to the pinion-gear model shown in Figure 1. Assuming 
that the geometry is not affected by deflections (small displacements hypothesis) and 
provided that mesh elasticity (and to a certain extent, gear body elasticity) can be transferred 
onto the base plane, a rigid-body approach can be employed. The pinion and the gear can 
therefore be assimilated to two rigid cylinders with 6 degrees of freedom each, which are 
connected by a stiffness element or a distribution of stiffness elements (the discussion of the 
issues associated with damping and energy dissipation will be dealt with in section 4.3). 
From a physical point of view, the 12 degrees of freedom of a pair represent the generalised 
displacements of i) traction: 1 2,u u  (axial displacements), ii) bending: 1 1 2 2, , ,v w v w  
(translations in two perpendicular directions of the pinion/gear centre), 1 1 2 2, , ,     
(bending rotations which can be assimilated to misalignment angles) and finally, iii) torsion:  

 

Fig. 1. A 3D lumped parameter model of pinion-gear pair. 
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1 2,   which are small angles associated with deflections superimposed on rigid-body 

rotations  1 1

0

t

d    (pinion) and  2 2

0

t

d    (gear). Following Velex and Maatar 

(1996), screws of infinitesimal displacements are introduced whose co-ordinates for solid k  

(conventionally k=1 for the pinion, k=2 for the gear) can be expressed in two privileged 

coordinate systems: i)  , ,s t z  such that z  is in the shaft axis direction (from the motor to 

the load machine), s  is in the centre-line direction from the pinion centre to the gear centre 

and  t z s  (Fig. 1) or, ii)  , ,X Y z  attached to the base plane (Fig. 1): 

      k k k k k k
k

k k k k k k

v w u V W u
S or

   
            
                

k k k k

k k

u O s t z u O X Y z

ω s t z ω X Y z
   k=1,2 (4) 

where 1 2,O O are the pinion and gear centres respectively 

3.3 Deflection at a point of contact – Structural vectors for external gears 

Depending on the direction of rotation, the direction of the base plane changes as illustrated 

in Figure 2 where the thicker line corresponds to a positive rotation of the pinion and the 

finer line to a negative pinion rotation about axis  1 ,O z . 

(1)Y  

s  

 1
X  

z  

O1 O2 M

(2)X

p

t  2
Y

 

Fig. 2. Directions of rotation and planes (lines) of action. (the thicker line corresponds to a 
positive rotation of pinion) 

For a given helical gear, the sign of the helix angle on the base plane depends also on the 
direction of rotation and, here again; two configurations are possible as shown in Figure 3. 

Since a rigid-body mechanics approach is considered, contact deflections correspond to the 

interpenetrations of the parts which are deduced from the contributions of the degrees-of-

freedom and the initial separations both measured in the normal direction with respect to 

the tooth flanks. Assuming that all the contacts occur in the theoretical base plane (or plane 

of action), the normal deflection  M at any point M , potential point of contact, is 

therefore expressed as:  

        1. .M e M   1 1 2u M n u M n  (5) 
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z

A contact line 

 2
X  

1
n

b

 1
X

z  

1
n

b 1p

2p


M

 

Fig. 3. Helix angles on the base plane. 

where      max ( )Me M e M e M    is the equivalent  initial normal gap at M  caused by 

tooth modifications and/or errors for example, 1n is the outward unit normal vector to 

pinion tooth flanks (Fig.3) 

Using the shifting property of screws, one obtains the expression of  M  in terms of the 

screw co-ordinates as: 

            1. . . .M e M       1 1 1 1 1 1 2 2 2 2 1u O n ω O M n u O n ω O M n  (6) 

which is finally expressed as: 

  

 

   .

T

M e M

  
         
  

      

1 1 1

1 1 1

1 2 2

2 1 2

n u O

O M n ω
n u O

O M n ω

 (7) 

or, in a matrix form: 

      T
M e M  V M q  (8) 

where  V M  is a structural vector which accounts for gear geometry (Küçükay, 1987) and 

q  is the vector of the  pinion-gear pair degrees of freedom (superscript T refers to the transpose 

of vectors and matrices)  

The simplest expression is that derived in the  , ,X Y z  coordinate system associated with 

the base plane leading to: 

 
 

 
1 1 1

2 2 2

cos , 0, sin , sin , sin , cos ,

cos , 0, sin , sin , sin , cos

T

b b b b b

b b b b b

Rb p Rb

Rb p Rb

          

          

  

    

V M
 

 1 1 1 1 1 1 2 2 2 2 2 2
T V W u V W u     q  (9) 
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where 1 2,Rb Rb are the pinion, gear base radii; b  is the base helix angle (always considered as 

positive in this context); 1 2, ,p p  are defined in Figure 3; 1    depending on the sign of the 

helix angle; 1    for a positive rotation of the pinion and 1    for a negative rotation of 

the pinion. 

An alternative form of interest is obtained when projecting in the  , ,s t z frame attached to 

the pinion-gear centre line: 

   
 

 

1 1

1 1 1

2 2

2 2

cos sin , cos cos , sin , sin sin sin cos

sin cos sin sin , cos , cos sin , cos cos ,

sin , sin sin sin cos

sin cos

T

b P b p b b p b p

b p b p b b P b p

b b p b p

b p

Rb p

Rb p Rb

Rb p

Rb p

               

             

          

    

   

      
   

  

V M

  2sin sin , cosb p bRb     

 

 1 1 1 1 1 1 2 2 2 2 2 2
T v w u v w u     q  (10) 

3.4 Mesh stiffness matrix and forcing terms for external gears 

For a given direction of rotation, the usual contact conditions in gears correspond to single-

sided contacts between the mating flanks which do not account for momentary tooth 

separations which may appear if dynamic displacements are large (of the same order of 

magnitude as static displacements). A review of the mesh stiffness models is beyond the 

scope of this chapter but one usually separates the simulations accounting for elastic 

convection (i.e., the deflection at one point M depends on the entire load distribution on the 

tooth or all the mating teeth (Seager, 1967)) from the simpler (and classic) thin-slice 

approach (the deflection at point M depends on the load at the same point only). A 

discussion of the limits of this theory can be found in Haddad (1991), Ajmi & Velex (2005) 

but it seems that, for solid gears, it is sufficiently accurate as far as dynamic phenomena 

such as critical speeds are considered as opposed to exact load or stress distributions in the 

teeth which are more dependent on local conditions. Neglecting contact damping and 

friction forces compared with the normal elastic components on tooth flanks, the elemental 

force transmitted from the pinion onto the gear at one point of contact M reads: 

      k M M dM 1 / 2 1dF M n  (11) 

with  k M : mesh stiffness at point M per unit of contact length 

The resulting total mesh force and moment at the gear centre 2O  are deduced by integrating 

over the time-varying and possibly deflection-dependent contact length  ,L t q  as: 

  
   

 

     
 

,

1/2

,

L t

L t

k M M dM

F
k M M dM

  



  






1 / 2 1

q

1 / 2 2 2 1

q

F n

M O O M n
 (12-1) 
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Conversely the mesh force wrench at the pinion centre 1O is: 

  
   

 

     
 

,

2/1

,

L t

L t

k M M dM

F
k M M dM

   



   






2 / 1 1

q

2 / 1 1 1 1

q

F n

M O O M n
 (12-2) 

The mesh inter-force wrench can be deduced in a compact form as: 

  
 
 

     
 

2/1

,1/2

M

L t

F
F k M M dM

F

   



q

V M  (13) 

and introducing the contact normal deflection      T
M e M  V M q  finally leads to: 

      MF t t    G eK q F  (14) 

where        
 ,

T

L t

t k M dM    G

q

K V M V M  is the time-varying gear mesh stiffness matrix 

       
 ,L t

t k M e M dM e

q

F V M  is the excitation vector associated with tooth shape 

modifications and errors 

3.5 Mass matrix of external gear elements – Additional forcing (inertial) terms 

For solid k (pinion or gear), the dynamic sum with respect to the inertial frame can be 

expressed as: 

    2 2sin cos cos sink k k k k k k k k k k k k k k km v e e w e e u                
0
kΣ s t z     (15) 

where km and ke are respectively the mass and the eccentricity of solid k  

A simple expression of the dynamic moment at point kO can be obtained by assuming that 

kO is the centre of inertia of solid k  and neglecting gyroscopic components (complementary 

information can be found in specialised textbooks on rotor dynamics (see for instance 

(Lalanne & Ferraris, 1998)): 

    0k k k k k k k kO I I I      0
kδ s t z   (16) 

where kI is the cross section moment of inertia and 0kI is the polar moment of solid k 

Using the same DOF arrangement as for the stiffness matrices, a mass matrix for the pinion-

gear system can be deduced as (note that the same mass matrix is obtained in the 

 , ,X Y z coordinate system): 

    1 1 1 1 1 01 2 2 2 2 2 02, , , , , , , , , , ,m m m I I I m m m I I IGM diag  (17-1) 
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along with a forcing term associated with inertial forces (whose expression in  , ,X Y z  has 
the same form on the condition that angles 1,2 are measured from X and Y ): 

     
   

2 2
1 1 1 1 1 1 1 1 1 1 1 1 01 1

2 2
2 2 2 2 2 2 2 2 2 2 2 2 02 2

sin cos cos sin 0 0 0

sin cos cos sin 0 0 0

t m e m e I

m e m e I

           

          

GF
  

  
 (17-2) 

3.6 Usual simplifications 

Examining the components of the structural vectors in (9) and (10), it can be noticed that 

most of them are independent of the position of the point of contact M with the exception of 

those related to bending slopes 1,2  or 1,2 1,2,  . Their influence is usually discarded 

especially for narrow-faced gears so that the mesh stiffness matrix can be simplified as: 

    
 

 0 0

,

,T

L t

t k M dM k t     G

q

K V V q G  (18) 

where 0V  represents an average structural vector and  ,k t q is the time-varying, possibly 

non-linear, mesh stiffness function (scalar) which plays a fundamental role in gear dynamics. 

3.6.1 Classic one-DOF torsional model 

 ,k t q

2V

1

2

pinion 

gear 

 

Fig. 4. Basic torsional model. 

Considering the torsional degrees-of-freedom only (Figure 4), the structural vector reads 
(keeping solely the non-zero components): 

   1

2

cos b

Rb

Rb





 

   
 

0V M V  (19) 

and the following differential system is derived  2 1  : 

 

 

   
 

2
01 12 1 1 21

1 2 2
02 21 2 22

1 01 1

2 02 2,

0
, , cos

0

cos

b

b

L t

I Rb Rb Rb
k t

I Rb Rb Rb

Cm Rb I
k M e M dM

Cr Rb I


  




 



      
       

     
    

             

q







 (20) 
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Note that the determinant of the stiffness matrix is zero which indicates a rigid-body mode 

(the mass matrix being diagonal). After multiplying the first line in (20) by 1 02Rb I , the second 

line by 2 01Rb I , adding the two equations and dividing all the terms by  2 2
10 2 20 1I Rb I Rb , the 

semi-definite system (20) is transformed into the differential equation: 

      
 

 
2

2

,

, cost b

L t x

d
mx k t x x F k M e M dM NLTE

dt
      

   (21) 

With 1 1 2 2x Rb Rb   , relative apparent displacement 

02 01
2 2
1 02 2 01

I I
m

Rb I Rb I





, equivalent mass 

2 02
1 2

2

I

Rb
    when the pinion speed 1  and the output torque rC  are supposed to be 

constant. 

3.6.2 A simple torsional-flexural model for spur gears 

The simplest model which accounts for torsion and bending in spur gears is shown in 

Figure 5. It comprises 4 degrees of freedom, namely: 2 translations in the direction of the line 

of action 1 2,V V (at pinion and gear centres respectively) and 2 rotations about the pinion and 

gear axes of rotation 1 2,  . Because of the introduction of bending DOFs, some supports 

(bearing/shaft equivalent stiffness elements for instance) must be added. 

 ,k t q

1k

2k1V

2V

1

2

 

Fig. 5. Simplified torsional-flexural spur gear model. 

The general expression of the structural vector  V M  (9) reduces to: 

 1 21 1T Rb Rb  0V  (22) 

Re-writing the degree of freedom vector as 1 1 1 2 2 2*T v Rb v Rb q , the following 

parametrically excited differential system is obtained for linear free vibrations: 

  t Mq* K q* 0  (23-1) 
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       
     

   
 

1 1

2
01 1

2 2

2
02 2

; ( )

m k t k k t k t k t

I Rb k t k t k t
t

m k t k k t

I Rb k t

 




   
          
  
    

M K  (23-2) 

Remark: The system is ill-conditioned since rigid-body rotations are still possible (no unique 
static solution). In the context of 3D models with many degrees of freedom, it is not 
interesting to solve for the normal approach 1 1 2 1Rb Rb   as is done for single DOF models. 

The problem can be resolved by introducing additional torsional stiffness element(s) which 
can represent shafts; couplings etc. thus eliminating rigid-body rotations. 

4. Mesh stiffness models – Parametric excitations 

4.1 Classic thin-slice approaches 

From the results in section 2-5, it can be observed that, in the context of gear dynamic 

simulations, the mesh stiffness function defined as    
 ,

,
L t

k t k M dM 
q

q plays a key role. 

This function stems from a ‘thin-slice’ approach whereby the contact lines between the 
mating teeth are divided in a number of independent stiffness elements (with the limiting 
case presented here of an infinite set of non-linear time-varying elemental stiffness elements) 
as schematically represented in Figure 6. 

 

C o ntact

 

Fig. 6. ‘Thin-slice’ model for time-varying mesh stiffness. 

Since the positions of the teeth (and consequently the contact lines) evolve with time (or 
angular positions), the profiles slide with respect to each other and the stiffness varies 
because of the contact length and the individual tooth stiffness evolutions.  The definition of 
mesh stiffness has generated considerable interest but mostly with the objective of 
calculating accurate static tooth load distributions and stress distributions. It has been 
shown by Ajmi and Velex (2005) that a classic ‘thin-slice’ model is sufficient for dynamic 
calculations as long as local disturbances (especially near the tooth edges) can be ignored. In 
this context, Weber and Banascheck (1953) proposed a analytical method of calculating tooth 
deflections of spur gears by superimposing displacements which arise from i) the contact 
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between the teeth, ii) the tooth itself considered as a beam and, iii) the gear body (or 
foundation) influence. An analytical expression of the contact compliance was obtained 
using the 2D Hertzian theory for cylinders in contact which is singular as far as the normal 
approach between the parts (contact deflection) is concerned. The other widely-used 
formulae for tooth contact deflection comprise the analytical formula of Lundberg (1939), 
the approximate Hertzian approach originally used at Hamilton Standard (Cornell, 1981) 
and the semi-empirical formula developed by Palmgren (1959) for rollers. The tooth bending 
radial and tangential displacements were derived by equating the work produced by one 
individual force acting on the tooth profile and the strain energy of the tooth assimilated to a 
cantilever of variable thickness. Extensions and variants of the methodology were 
introduced by Attia (1964), Cornell (1981) and O’Donnell (1960, 1963) with regard to the 
foundation effects. Gear body contributions were initially evaluated by approximating them 
as part of an elastic semi-infinite plane loaded by the reactions at the junction with the tooth. 
A more accurate expression for this base deflection has been proposed by Sainsot et al. 
(2004) where the gear body is simulated by an elastic annulus instead of a half-plane. Figure 
7 shows two examples of mesh stiffness functions (no contact loss) calculated by combining 
Weber’s and Lundberg’s results for a spur and a helical gear example. It can be observed 
that the stiffness fluctuations are stronger in the case of conventional spur gears compared 
with helical gears for which the contact variations between the teeth are smoother. 

 
a - Spur gear 

 
b - Helical gear  30    

Fig. 7. Examples of mesh stiffness functions for errorless gears. 
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Although the results above are based on simplified bi-dimensional approaches, they are still 
widely used in gear design. For example, the mesh stiffness formulae in the ISO standard 
6336 stem from Weber’s analytical formulae which were modified to bring the values in 
closer agreement with the experimental results. Another important simplification brought 
by the ISO formulae is that the mesh stiffness per unit of contact length k0 is considered as 
approximately constant so that the following approximation can be introduced: 

  
   

 0 0

, ,

,
L t L t

k M dM k dM k L t  
q q

q  (24) 

where  ,L t q is the time-varying (possibly non-linear) contact length. 

4.2 Contact length variations for external spur and helical gears 

Considering involute profiles, the contact lines in the base plane are inclined by the base 

helix angle b  (Figure 8) which is nil for spur gears. All contact lines are spaced by integer 

multiples of the apparent base pitch aPb  and, when the pinion and the gear rotate, they all 

undergo a translation in the X direction at a speed equal to 1 1Rb  . 

aPb

2T

a
Pb

Contact line 

z  
a

Pb

b

1
T  '

2T
'
1T

X  

b  

 

Fig. 8. Base plane and contact lines ( b : face width; z : axial direction (direction of the axes 

of rotation); 1 2,T T : points of tangency on pinion and gear base circles and ' '
1 2,T T : limits of 

the contact area on base plane). 

It transpires from this geometrical representation that the total length of contact between the 

pinion and the gear is likely to vary with time and, based on the simple stiffness equation 

(24), that mesh stiffness is time-varying and, consequently, contributes to the system 

excitation via parametric excitations. 

The extent of action on the base plane is an important property measured by the contact 

ratio  which, in simple terms, represents the ‘average number’ of tooth pairs in contact 

(possibly non integer) and is defined by: 
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2 2 2 2' '

1 1 2 21 2
sin

cos

p

a p

Ra Rb Ra Rb ET T

Pb m





 
   

   (25-1) 

with 1 2,Ra Ra : external radius of pinion, of gear; 1 2,Rb Rb : base radius of pinion, of gear; 

1 2E O O


: centre distance 

In the case of helical gears, the overlap due to the helix is taken into account by introducing 

the overlap ratio  defined as: 

 
tan 1 tan

cos
b b

a p

b b

Pb m


 
 

   (25-2) 

and the sum      is defined as the total contact ratio. 

Introducing the dimensionless time 
m

t

T
  where 

1 1

a
m

Pb
T

Rb



 is the mesh period i.e. the 

time needed for a contact line to move by a base pitch on the base plane, a closed form 

expression of the contact length  L  for ideal gears is obtained under the form (Maatar & 

Velex, 1996), (Velex et al., 2011): 

 
        

1

1 2 cos 2
km

L
Sinc k Sinc k k

L
   


     





     (26) 

with:
cos

m

b

b
L  

 , average contact length 

   sin x
Sinc x

x




 is the classic sine cardinal function which is represented in Figure 9. 

 

Fig. 9. Evolutions of    sin x
Sinc x

x




 . 
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The following conclusions can be drawn: 

a. for spur gears, 0   and   1Sinc k    

b. it can observed that the time-varying part of the contact length disappears when either 

  or  is an integer 

c. harmonic analysis is possible by setting 1,2,...k   in (27) and it is possible to represent 

the contact length variations for all possible values of profile and overlap contact ratios 

on a unique diagram. Figure 10 represents the RMS of contact length variations for a 

realistic range of contact and overlap ratios. It  shows that: 

- contact length variations are significant when  is below 2 and  below 1 

- contact length is constant when 2   ( 1   has to avoided for a continuous 

motion transfer) and /or 1   

- for overlap ratios   above 1, contact length variations are very limited. 

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5



0.3

0.25

0.2

0.15

0.1

0.05

0.05

0.05

0.05

0.1

0.15

0.2



 

Fig. 10. Contour plot of the R.M.S. of  / mL L  for a range of profile and transverse contact 

ratios. 

4.3 Approximate expressions – Orders of magnitude 

Mesh stiffness can be determined using the Finite Elements Method but it is interesting to 

have orders of magnitude or approximate values at the design stage.  For solid gears made 

of steel, an order of magnitude of the mesh stiffness per unit of contact length 0k  is  1.3 
1010  N/m². More accurate expressions can be derived from the ISO 6336 standard which, 

for solid gears, gives: 

 0

0.8
cosk

q
  (27) 
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with  

 : helix angle (on pitch cylinder) 

2 22 3 1 2
1 4 1 5 6 2 7 8 1 9 2

1 2 1 2

C C x x
q C C x C C x C C x C x

Zn Zn Zn Zn
          

coefficients 1 9,...,C C  have been tabulated  and are listed in Table 1 below 

3cos
i

i

Z
Zn


 , 1,2i   are the number of teeth of the equivalent virtual spur pinion ( 1i  ) 

and gear ( 2i  ). 

ix  , 1,2i  , are the profile shift coefficients on pinion( 1i  ) and gear( 2i  ) 

 

1C  2C  3C  4C  5C  6C  7C  8C  9C  

0,04723 0,15551 0,25791 -0,00635 -0,11654 -0,00193 -0,24188 0,00529 0,00182 

Table 1. Tabulated coefficients for mesh stiffness calculations according to ISO 6336. 

5. Equations of motion – Dynamic behaviour 

5.1 Differential system 

The equations of motion for undamped systems are derived by assembling all the elemental 
matrices and forcing term vectors associated with the gears but also the supporting 
members (shafts, bearings, casing, etc.) leading to a parametrically excited non-linear 
differential system of the form:  

         1,2, , , ,t t e M t        0 1 2M X K X X F F X F   (28) 

where X is the total DOF vector,  M  and  ,t  K X  are the global mass and stiffness 

matrices. Note that, because of the contact conditions between the teeth, the stiffness matrix 

can be non-linear (partial or total contact losses may occur depending on shape deviations 

and speed regimes). 0F comprises the constant nominal torques;   , ,t e M1F X includes the 

contributions of shape deviations (errors, shape modifications, etc.);  1,2,t 2F
  represents 

the inertial effects due to unsteady rotational speeds 

5.2 Linear behaviour – Modal analysis 

Considering linear (or quasi-linear) behaviour, the differential system can be re-written as: 

           1,2, ,t t t e M t        0 1 2M X K X F F F   (29) 

The time variations in the stiffness matrix  t  K are caused by the meshing and, using the 

formulation based on structural vectors, the constant and time-varying components can be 

separated as: 

          
 

0

T

L

k M dM


     K t K V M V M  (30) 
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where  V M is the extended structural vector: structural vector completed by zeros to the 

total number of DOF of the model 

Using an averaged structural vector as in (18): 

  0

0

1 mT

m

M dt
T

 V V  (31) 

(30) can be simplified as: 

      
 

   0 0 0 0 0 0
T T

m

L t

k M dM k t       K t K V V K V V  (32) 

The separation of the average and time-varying contributions in the mesh stiffness function 

as     1mk t k t   leads to the following state equations: 

            0 0 0 1,21 , ,T
mk t t e M t          0 1 2M X K V V X F F F   (33) 

For most gears,  is usually a small parameter ( 1  ) and an asymptotic expansion of the 

solution can be sought as a straightforward expansion of the form: 

 2
0 1 2 ...    X X X X  (34) 

which, when re-injected into (33) and after identifying like order terms leads to the 
following series of constant coefficient differential systems: 

Main order: 

         0 0 0 0 0 1,2, ,T
mk t e M t        0 1 2M X K V V X F F F   (35-1) 

th  order: 

      0 0 0 0 0 1
T T

m mk k t      M X K V V X V V X  
  (35-2) 

Interestingly, the left-hand sides of all the differential systems are identical and the analysis 

of the eigenvalues and corresponding eigenvectors of the homogeneous systems will 

provide useful information on the dynamic behaviour of the geared systems under 

consideration (critical speeds, modeshapes). 

The following system is considered (the influence of damping on critical speeds being 
ignored): 

    0 mk    
T

0 0M X K V V X 0 
  (36) 

from which the eigenvalues and eigenvectors are determined. The technical problems 

associated with the solution of (36) are not examined here and the reader may refer to 

specialised textbooks. It is further assumed that a set of real eigenvalues p and real 

orthogonal eigenvectors PΦ have been determined which, to a great extent, control the gear 

set dynamic behaviour. 
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Focusing on dynamic tooth loads, it is interesting to introduce the percentage of modal 

strain energy stored in the gear mesh which, for a given pair ( p , PΦ ), is defined as: 

 
 

0 0 2

0 0 0

T T

m
p m pT T

pm

k
k v

kk
 



 
  

p p

p p

Φ V V Φ
Φ K V V Φ

 (37) 

with T T
pv  p pΦ V V Φ  

,m pk k : average mesh stiffness and modal stiffness associated with ( p , pΦ ) 

It as been shown (Velex & Berthe., 1989) that p  is a reliable indicator of the severity of one 

frequency with regard to the pinion-gear mesh and it can be used to identify the potentially 

critical speeds p for tooth loading which are those with the largest percentages of modal 

strain energy in the tooth mesh. If the only excitations are those generated by the meshing 

(the mesh frequency is 1 1Z  ), the tooth critical speeds can be expressed in terms of pinion 

speed as: 

 1 1/ 1,2,...p kZ k    (38) 

Based on the contact length variations and on the transmission error spectrum, the relative 
severity of the excitations can be anticipated. 

Remark: The critical frequencies are supposed to be constant over the speed range 
(gyroscopic effects are neglected). Note that some variations can appear with the evolution 
of the torque versus speed (a change in the torque or load can modify the average mesh 
stiffness especially for modified teeth). 

For the one DOF tosional model in Figure 4, there is a single critical frequency mk m  
 

whose expression can be developed for solid gears of identical face width leading to: 

 2
1 2

1

cos
cos 1

p

b

b
u

k MZ B



 

    (39) 

where 1,2,...k   represents the harmonic order; 08k


   (  is the density), for steel gears 

3210  1ms ; M is the module (in meter); B is the pinion or gear thickness (supposed 

identical); b is the effective contact width (which can be shorter than B because of chamfers 

for example); 1

2

Z
u

Z
 , speed ratio. 

5.3 Dynamic response 

5.3.1 The problem of damping 

Energy dissipation is present in all geared systems and the amount of damping largely 
controls the amplification at critical speeds. Unfortunately, the prediction of damping is still 
a challenge and, most of the time; it is adjusted in order to fit with experimental evidence. 
Two classical procedures are frequently employed: 
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a. the assumption of proportional damping (Rayleigh’s damping) which, in this case, 
leads to: 

      0 0 0
T

ma b k    C M K V V  (40) 

with: ,a b , two constants to be adjusted from experimental results 

b. the use of (a limited number of) modal damping factors p : 

The damping matrix is supposed to be orthogonal with respect to the mode-shapes of the 

undamped system with the averaged stiffness matrix such that: 

   2T
P p pk m  p pΦ C Φ  (41-1) 

   0T p qΦ C Φ  (41-2) 

with:  p : modal damping factor associated with mode p  

 ,p pk m  : modal stiffness and mass associated with mode p  

or introducing the modal damping matrix  ΦC : 

    2 P p pdiag k m  ΦC , 1, modp N  (41-3) 

Following Graig (1981), the damping matrix can be deduced by a truncated summation on a 

limited number of modes Nr leading to the formula: 

        
1

2Nr Tp p

p p
p pm

 

 

C M Φ M Φ  (42) 

with: 
p

p

p

k

m
 



  

Regardless of the technique employed, it should be stressed that both (41) and (42) depend 

on estimated or measured modal damping factors P  for which the data in the literature is 

rather sparse. It seems that 0.02 0.1P   corresponds to the range of variation for modes 

with significant percentages of strain energy in the meshing teeth. The methods also rely on 

the assumption of orthogonal mode shapes which is realistic when the modal density 

(number of modes per frequency range) is moderate so that inter-modal couplings can be 

neglected.  

5.3.2 Linear response 

Based on the previous developments, the linear response of gears to mesh parametric 

excitations can be qualitatively assessed. Response peaks are to be expected at all tooth 

critical speeds and every sub-harmonic of these critical speeds because mesh stiffness time 
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variations may exhibit several harmonics with significant amplitudes. Figure 11, taken from 

Cai and Hayashi (1994), is a clear example of such typical dynamic response curves when 

the gear dynamic behaviour is dominated by one major tooth frequency n  (and can be 

simulated by using the classic one DOF model). The amplifications associated with each 

peak depends on i) the excitation amplitude (Eq. (27) can provide some information on the 

amplitude associated with each mesh frequency harmonic) and ii) the level of damping for 

this frequency.  For more complex gear sets, interactions between several frequencies can 

happen but, as far as the author is aware, the number of frequencies exhibiting a significant 

percentage of modal strain energy in the tooth mesh seems very limited (frequently less 

than 5) thus making it possible to anticipate the potential dangerous frequency coincidences 

for tooth durability. 

 

Fig. 11. Examples of dynamic response curves (Cay & Hayashi, 1994). 

5.3.3 Contact condition – Contact losses and shocks 

Only compressive contact forces can exist on tooth flanks and using (11), this imposes the 
following unilateral condition in case of contact at point M: 

       0k M M dM   1 / 2 1dF M n  (43) 

or, more simply, a positive mesh deflection  M . 

If   0M  , the contact at M is lost (permanently or temporarily) and the associated contact 

force is nil.  These constraints can be incorporated in the contact force expression by 
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introducing the unit Heaviside step function  H x  such that   1H x   if 0x   and 

  0H x   otherwise. Finally, one obtains: 

         k M M H M dM  1 / 2 1dF M n  (44) 

It can observed that contact losses are related to the sign of    0
TM e M  V X , from 

which, it can be deduced that two cases have to be considered:  

a.  e M is larger than the normal approach 0
TV X  which, typically, corresponds to large 

amplitudes of tooth modifications reducing the actual contact patterns, to spalls on the 

flanks (pitting) where contact can be lost, etc. 

b. the amplitude of the dynamic displacement X is sufficiently large so that the teeth can 

separate ( X is periodic and can become negative in some part of the cycle). 

Momentary contact losses can therefore occur when vibration amplitudes are sufficiently 

large; they are followed by a sequence of free flight within the tooth clearance until the teeth 

collide either on the driving flanks or on the back of the teeth (back strike). Such shocks are 

particularly noisy (rattle noise) and should be avoided whenever possible. Analytical 

investigations are possible using harmonic balance methods and approximations of H(x) 

(Singh et al., 1989), (Comparin & Singh, 1989), (Kahraman & Singh, 1990), (Kahraman & 

Singh, 1991), and numerical integrations can be performed by time-step schemes (Runge-

Kutta, Newmark, etc.). The most important conclusions are: 

a. contact losses move the tooth critical frequencies towards the lower speeds (softening 
effect) which means that predictions based on a purely linear approach might be 
irrelevant. The phenomenon can be observed in Fig. 11 where the experimental peaks 
are at lower speed than those predicted by the linear theory.  

 

Fig. 12. Dynamic response curves by numerical simulations – Amplitude jumps – Influence 
of the initial conditions (speed up vs speed down), 2% of the critical damping, Spur gears 

1 30Z  , 2 45Z  , 2M mm , standard tooth proportions. 
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b. When contact losses occur, response curves exhibit amplitude jumps (sudden 
amplitude variations for a small speed variation), 

c. Because of a possibly strong sensitivity to initial conditions, several solutions may exist 
depending on the kinematic conditions i.e., speed is either increased or decreased 

d. damping reduces the importance of the frequency shift and the magnification at critical 
tooth frequency. 

These phenomena are illustrated in the response curves in Figure 12. 

6. Transmission errors 

6.1 Definitions 

The concept of transmission error (TE) was first introduced by Harris (1958) in relation to 

the study of gear dynamic tooth forces. He realised that, for high speed applications, the 

problem was one of continuous vibrations rather than a series of impacts as had been 

thought before. Harris showed that the measure of departure from perfect motion transfer 

between two gears (which is the definition of TE) was strongly correlated with excitations 

and dynamic responses. TE is classically defined as the deviation in the position of the 

driven gear (for any given position of the driving gear), relative to the position that the 

driven gear would occupy if both gears were geometrically perfect and rigid.  

NB: The concept embodies both rigid-body and elastic displacements which can sometimes be 
confusing. 

Figure 13 illustrates the concept of transmission error which (either at no-load or under 

load) can be expressed as angular deviations usually measured (calculated) on the driven 

member (gear) or as distances on the base plane. 

 

 

Fig. 13. Concept of transmission error and possible expressions (after Munro, (1989)). 

Figures 14 and 15 show typical quasi-static T.E. traces for spur and helical gears 
respectively. The dominant features are a cyclic variation at tooth frequency (mesh 
frequency) and higher harmonics combined with a longer term error repeating over one 
revolution of one or both gears. 
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Fig. 14. Examples of quasi-static T.E. measurements and simulations – Spur gear  
(Velex and Maatar, 1996). 

 

Fig. 15. T.E. measurements at various loads – Helical gear example. 
NASA measurements from www.grc.nasa.gov/WWW/RT2001/5000/5950oswald1.html. 

6.2 No-load transmission error (NLTE) 

No-load T.E. (NLTE) has already been introduced in (2); it can be linked to the results of gear 
testing equipment (single flank gear tester) and is representative of geometrical deviations. 
From a mathematical point of view, NLTE is derived by integrating (2) and is expressed as: 

 
 

cos
MAX

b

E t
NLTE


    (45) 

6.3 Transmission errors under load 

The concept of transmission error under load (TE) is clear when using the classic single 
degree of freedom torsional model (as Harris did) since it directly relies on the angles of 
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torsion of the pinion and the gear. For other models (even purely torsional ones), the 

definition of TE is ambiguous or at least not intrinsic because it depends on the chosen 
cross-sections (or nodes) of reference for measuring or calculating deviations between actual 
and perfect rotation transfers from the pinion to the gear. Following Velex and Ajmi (2006), 
transmission error can be defined by extrapolating the usual experimental practice based on 
encoders or accelerometers, i.e., from the actual total angles of rotation, either measured or 
calculated at one section of reference on the pinion shaft (subscript I) and on the gear shaft 

(subscript II). TE as a displacement on the base plane reads therefore: 

 1 1 2 2 1 2

0 0

t t

I II I IITE Rb d Rb d Rb Rb NLTE     
   

           
   
   (46) 

with  , a dummy integration variable and ,I II  , the torsional perturbations with respect to 

rigid-body rotations (degrees of freedom) at node I  on the pinion shaft and at node II on the 

gear shaft. 

Introducing a projection vector W of components 1Rb and 2Rb  at the positions 
corresponding to the torsional degrees of freedom at nodes I and II and with zeros 
elsewhere, transmission error under load can finally be expressed as: 

 TTE NLTE W X  (47-1) 

which, for the one DOF model, reduces to: 

 TE x NLTE   (47-2) 

6.4 Equations of motion in terms of transmission errors 

For the sake of clarity the developments are conducted on the one-DOF torsional model. 

Assuming that the dynamic contact conditions are the same as those at very low speed, one 

obtains from (21) the following equation for quasi-static conditions (i.e., when 1  shrinks to 

zero): 

      
 ,

, cosS t b

L t x

k t x x F k M e M dM      (48) 

which, re-injected in the dynamic equation (21), gives: 

      
2

2
, , S

d
mx k t x x k t x x NLTE

dt
     (49) 

From (47-2), quasi-static transmission error under load can be introduced such that 

S Sx TE NLTE   and the equation of motion is transformed into: 

       
2

2
, , S

d
mx k t x x k t x TE NLTE NLTE

dt
      (50) 

An alternative form of interest can be derived by introducing the dynamic displacement 

Dx defined by S Dx x x   as: 
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        
2 2

2 2
,D D S

d d
mx k t x x m TE m NLTE

dt dt
        (51) 

The theory for 3D models is more complicated mainly because there is no one to one 

correspondence between transmission error and the degree of freedom vector. It can be 

demonstrated (Velex and Ajmi, 2006) that, under the same conditions as for the one DOF 

model, the corresponding differential system is: 

            
2 2

2 2
2

1ˆ ˆ,D D S

d d
t TE NLTE

dt Rb dt

 
        

 
PM X K X X M D I M D  (52) 

where 
1ˆ cosm bk 


   D K V , D S X X X , dynamic displacement vector 

6.5 Practical consequences 

From (51) and (52), it appears that the excitations in geared systems are mainly controlled by 

the fluctuations of the quasi-static transmission error and those of the no-load transmission 

error as long as the contact conditions on the teeth are close to the quasi-static conditions 

(this hypothesis is not verified in the presence of amplitude jumps and shocks). The typical 

frequency contents of NLTE mostly comprise low-frequency component associated with 

run-out, eccentricities whose contributions to the second-order time-derivative of NLTE can 

be neglected. It can therefore be postulated that the mesh excitations are dominated by 

 
2

2 S

d
TE

dt
. This point has a considerable practical importance as it shows that reducing the 

dynamic response amplitudes is, to a certain extent, equivalent to reducing the fluctuations 

of STE . Profile and lead modifications are one way to reach this objective. Equation (50) 

stresses the fact that, when total displacements have to be determined, the forcing terms are 

proportional to the product of the mesh stiffness and the difference between STE  and 

NLTE  (and not STE !). It has been demonstrated by Velex et al. (2011) that a unique 

dimensionless equation for quasi-static transmission error independent of the number of 

degrees of freedom can be derived under the form: 

        
 

*

,

ˆ ˆcos , 1 *b S

L t

k t TE t k M e M dM   
S

S

X

X  (53) 

with ˆ

m

A
A

k
 , *

m

A
A


 , for any generic variable A (normalization with respect to the average 

mesh stiffness and the average static deflection). 

Assuming that the mesh stiffness per unit of contact length is approximately constant (see 

section 2-5), analytical expressions for symmetric profile modifications (identical on pinion 

and gear tooth tips as defined in Fig. 16) rendering  STE t constant (hence cancelling most 

of the excitations in the gear system) valid for spur and helical gears with 2  can be 

found under the form: 
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1

2 1
E






  
 (54) 

submitted to the condition 
1

2








   

with E : tip relief amplitude;  : dimensionless extent of modification (such that the length 

of modification on the base plane is aPb ) and
1 0

Cm

Rb b k
  : deflection of reference.  

Extent of 

modification 

Limit of active 

profile 

Tip relief 

amplitude *E

Tooth tip 

  

Direction of line of 

action (base plane) 

 

Fig. 16. Definition of profile relief parameters 

Based on these theoretical results, it can be shown that quasi-static transmission error 
fluctuations for ideal gears with profile relief depend on a very limited number of parameters: 
i) the profile and lead contact ratios which account for gear geometry and ii) the normalised 
depth and extent of modification. These findings, even though approximate, suggest that 
rather general performance diagrams can be constructed which all exhibit a zone of minimum 
TE variations defined by (54) as illustrated in Figure 17 (Velex et al., 2011).It is to be noticed 
that similar results have been obtained by a number of authors using very different models 
(Velex & Maatar, 1996), (Sundaresan et al., 1991), (Komori et al., 2003), etc. 

The dynamic factor defined as the maximum dynamic tooth load to the maximum static 
tooth load ratio is another important factor in terms of stress and reliability. Here again, an 
approximate expression can be derived from (51-52) by using the same asymptotic 
expansion as in (34) and keeping first-order terms only (Velex & Ajmi, 2007). Assuming that  
TES and NLTE are periodic functions of a period equal to one pinion revolution; all forcing 
terms can be decomposed into a Fourier series of the form: 

         
2 2

2 2
1 1 12 2

12

1ˆ ˆ * sin * cosS n n
n

d d
TE NLTE n A n t B n t

dt Rb dt 

 
        

 
PM D I M D  (55) 

and an approximate expression of the dimensionless dynamic tooth load can be derived 
under the form: 

      1D
p p pn

pS

F t
r t k t

F
    


 (56) 
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Fig. 17. Example of performance diagram: contour lines of the RMS of quasi-static 

transmission error under load - Spur gear   1.67. 

with 

 
   

   

   

   

2 2

1 12 22 2 2 2
2 21

* 1 2 * * 1 2 *
sin cos

1 4 1 4

n pn n p pn n pn n p pn

pn
n

pn p pn pn p pn

A B B A
t n t n t

     

     

                
            

  

1

p

pn
n


 


 

Equation (56) makes it possible to estimate dynamic tooth loads with minimum 

computational effort provided that the modal properties of the system with averaged 

stiffness matrix and the spectrum of STE (predominantly) are known. One can notice that 

the individual contribution of a given mode is directly related to its percentage of strain 

energy in the meshing teeth and to the ratio of its modal stiffness to the average mesh 

stiffness. These properties can be used for identifying the usually limited number of critical 

mode shapes and frequencies with respect to tooth contact loads. They may also serve to test 

the structural modifications aimed at avoiding critical loading conditions over a range of 

speeds. It is worth noting that, since  is supposed to be a small parameter, the proposed 

methodology is more suited for helical gears. 

  
 

*E  

Based 

on 54) 
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7. Towards continuous models 

7.1 Pinion, gear distortions 

In the case of wide-faced gears, gear body deflections (especially those of the pinion) cannot 
be neglected and the torsion/bending distortions must be modelled since they can strongly 
affect the contact conditions between the teeth. For solid gears, one of the simplest 
approaches consists in modelling gear bodies by two node shaft finite elements in bending, 
torsion and traction as described in Ajmi and Velex (2005) which are connected to the same 
mesh interface model as that described in section 3 and Fig. 6. Assuming that any transverse 
section of the pinion or gear body originally plane remains plane after deformation (a 
fundamental hypothesis in Strength of Materials), gear bodies can then be sliced into elemental 
discs and infinitesimal gear elements using the same principles as those presented in section 2. 
The degrees of freedom of every infinitesimal gear element are expressed by using the shape 
functions of the two-node, six DOFs per node shaft element. By so doing, all the auxiliary 
DOFs attributed at every infinitesimal pinion and gear are condensed in terms of the degrees 
of freedom of the shaft nodes leading to a (global) gear element with 24 DOFs. 

7.2 Thin-rimmed applications 

The approach in 6.1 is valid for solid gears but is irrelevant for deformable structures such 
as thin-rimmed gears in aeronautical applications for example where the displacement field 
cannot be approximated by simple polynomial functions as is the case for shafts. Most of the 
attempts rely on the Finite Element Method applied to 2D cases (Parker et al., 2000), 
(Kahraman et al., 2003) but actual 3D dynamic calculations are still challenging and do not 
lend themselves to extensive parameter analyses often required at the design stage. An  

 

Fig. 18. Example of hybrid model used in gear dynamics (Bettaieb et al., 2007). 
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alternative to these time-consuming methods is to use hybrid FE/lumped models as 
described by Bettaieb et al, (2007). Figure 18 shows an example of such a model which 
combines i) shaft elements for the pinion shaft and pinion body, ii) lumped parameter 
elements for the bearings and finally iii) a FE model of the gear + shaft assembly which is 
sub-structured and connected to the pinion by a time-varying, non-linear Pasternak 
foundation model for the mesh stiffness. The computational time is reduced but the 
modelling issues at the interfaces between the various sub-models are not simple.  

8. Conclusion 

A systematic formulation has been presented which leads to the definition of gear elements 
with all 6 rigid-body degrees-of-freedom and time-varying, possibly non-linear, mesh 
stiffness functions. Based on some simplifications, a number of original analytical results 
have been derived which illustrate the basic phenomena encountered in gear dynamics. 
Such results provide approximate quantitative information on tooth critical frequencies and 
mesh excitations held to be useful at the design stage.  

Gear vibration analysis may be said to have started in the late 50’s and covers a broad range 
of research topics and applications which cannot all be dealt with in this chapter: multi-
mesh gears, power losses and friction, bearing-shaft-gear interactions, etc. to name but a 
few. Gearing forms part of traditional mechanics and one obvious drawback of this long 
standing presence is a definite sense of déjà vu and the consequent temptation to construe 
that, from a research perspective, gear behaviour is perfectly understood and no longer 
worthy of study (Velex & Singh, 2010). At the same time, there is general agreement that 
although gears have been around for centuries, they will undoubtedly survive long into the 
21st century in all kinds of machinery and vehicles.  

Looking into the future of gear dynamics, the characterisation of damping in geared sets is a 
priority since this controls the dynamic load and stress amplitudes to a considerable extent. 
Interestingly, the urgent need for a better understanding and modelling of damping in gears 
was the final conclusion of the classic paper by Gregory et al. (1963-64). Almost half a century 
later, new findings in this area are very limited with the exception of the results of Li & 
Kahraman (2011) and this point certainly remains topical. A plethora of dynamic models can 
be found in the literature often relying on widely different hypotheses. In contrast, 
experimental results are rather sparse and there is certainly an urgent need for validated 
models beyond the classic results of Munro (1962), Gregory et al. (1963), Kubo (1978), Küçükay 
(1984 &87),  Choy et al. (1989), Cai & Hayashi (1994), Kahraman & Blankenship (1997), Baud & 
Velex (2002), Kubur et al. (2004), etc. especially for complex multi-mesh systems. Finally, the 
study of gear dynamics and noise requires multi-scale, multi-disciplinary approaches 
embracing non-linear vibrations, tribology, fluid dynamics etc. The implications of this are 
clear; far greater flexibility will be needed, thus breaking down the traditional boundaries 
separating mechanical engineering, the science of materials and chemistry.  
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