
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



10 

Precision Position Control of Servo  
Systems Using Adaptive Back-Stepping  

and Recurrent Fuzzy Neural Networks 

Jong Shik Kim, Han Me Kim and Seong Ik Han 
School of Mechanical Engineering, Pusan National University,  

Republic of Korea 

1. Introduction  

To improve product quality in high-tech industrial fields and in precision product 

processes, high precision position control systems have been developed. However, high 

precision position control systems have been faced with a friction problem that exists 

between the contact surfaces of two materials and produces an obstacle to the precise 

motion, because the friction is very sensitive to nonlinear time-varying effects such as 

temperature, lubrication condition, material texture, and contamination degree. Thus, the 

tracking performance of servo systems can be seriously deteriorated because of the 

nonlinear friction characteristics. 

To overcome the friction problem and to obtain high performance of servo control systems, 

an appropriate friction model (Olsson, 1998) to describe the nonlinear friction characteristics 

is required. The LuGre model (Canudas de Wit, 1995) is a representative model. Researchers 

have used this model because it has a simple structure to be implemented in the design of 

the controller and can represent most of the friction characteristics except the pre-sliding 

characteristic. 

Model-based control methods for precision position control can be divided into two 

methods. The first one is the friction feed-forward compensation scheme, which needs the 

identification of the nonlinear friction phenomena (Olsson, 1998)(Canudas de Wit, 1995). 

However, it takes a long time and much effort to identify the nonlinear friction. In addition, 

even with successful completion of the friction identification process, it is difficult to achieve 

desirable tracking performance due to the nonlinear friction characteristics. Therefore, to 

achieve desirable tracking performance of servo systems, a robust control scheme should be 

used simultaneously with the friction feed-forward compensator (Lee, 2004). 

The second method is the real time estimation scheme for nonlinear friction coefficients, 

which is called as the adaptive friction control scheme. This method can actively cope with 

the variation of the nonlinear friction, which has been proved and studied through 

experiments (Canudas de Wit, 1997)(Lischinsky, 1999)(Ha, 2000)(Tan, 1999). However, to 

generate the adaptation rules for the friction coefficients based on the LuGre friction model, 

a detailed mathematical approach is required. In addition, since the mathematical model of 
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the nonlinear friction may include system uncertainties such as unmodeled dynamics, 

which can cause an undesirable position tracking error of servo systems. 

To compensate these system uncertainties and to improve tracking performance, artificial 
intelligent algorithms such as fuzzy logic and neural networks have been applied because of 
their advantages to cope with system uncertainties (Wai, 2003)(Leu, 1997)(Peng, 2007)(Lin, 
2006). In general, fuzzy logic and neural network algorithms are effective in inferring 
ambiguous information because of their logicality such as adaptation for learning ability, 
capacity for experiences, and parallel process ability (Lin, 1996). The fuzzy neural 
network(FNN) combining the advantages of fuzzy logic and neural network algorithms was 
presented (Leu, 1997)(Peng, 2007). However, in real applications, the FNN has a static 
problem due to its feed-forward network characteristics. Therefore, to overcome this static 
problem of the FNN, the recurrent fuzzy neural network(RFNN) with robust characteristics 
due to its feed-back structure was presented (Peng, 2007)(Lin, 2006)(Lin, 2004). 

In this paper, an adaptive back-stepping control scheme with the RFNN technique is 
proposed so that servo systems with nonlinear friction uncertainties can achieve higher 
precision position tracking performance. A dual adaptive friction observer is also designed 
to observer the internal states of the nonlinear friction model. The position tracking 
performance of the proposed control system is evaluated through experiments. 

The organization of this paper is as follows: In section 2, the dynamic equations for the 
position servo system with the LuGre friction model are described. In section 3, to estimate 
the unknown friction coefficients and to overcome system uncertainties in a position servo 
system, the adaptive back-stepping controller based on the dual friction observer and the 
recurrent fuzzy neural networks are designed. In section 4, the experimental results of the 
tracking performance, the observation of the states, and the estimation of the friction 
coefficients are shown. Finally, the conclusion is given in section 5. 

2. Modeling of a position servo system 

The layout of a position servo system consists of mass, linear motion guide, ball-screw, and 
servo motor as shown in Fig. 1. The dynamic equation for the position servo system can be 
briefly represented as 

 f dJ u T T     (1) 

where J  is the moment of inertia of the servo system,   is the angular acceleration of the 

screw, u  is the control input torque, fT  is the friction torque, and dT  is the disturbance 

torque due to system uncertainties. 

 

Fig. 1. Layout of the position servo system 
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The LuGre model is used for modeling the friction in the position servo system. The LuGre 
model can describe the nonlinear friction characteristics between two contact surfaces in a 
mechanical system. As shown in Fig. 2, the relative motion between two contact surfaces can 
be represented by bristles. 

 

Fig. 2. Friction interfaces with bristles between two surfaces 

The stiffness and damping of bristles can be modeled with springs and dampers, 
respectively. Canudas de Wit represented the average deflection of bristles by a state 
variable z  as follows (Canudas de Wit, 1997) : 

 0 ( ) ,z h z       (2) 

  
| |

( )
( )

h
g






   (3) 

where 

2( / )( ) ( ) st
c s cg T T T e     

 
 

and   is the generalized velocity, st  is the Stribeck velocity, 0  is the nominal static 

friction parameter, sT  is the static friction torque, and cT  is the Coulomb friction torque. 

Also, the friction torque fT  was represented as 

 0 1 2fT z z         (4) 

where 0 , 1 , and 2 are the bristle stiffness coefficient, bristle damping coefficient, and 

viscous damping coefficient, respectively. The function ( )g   is assumed to be known and to 

be a positive value, and it depends on some factors such as material properties and 

temperature. In order to consider the friction torque variations due to the contact condition 

of the position servo system, the coefficients 0 , 1 , and 2  are assumed to be 

independent unknown positive constants. 

Substituting Eqs. (2), (3), and (4) into Eq. (1), the dynamic equation for the position servo 
system with friction can be expressed as 
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 0 3 4( ) dJ u z h z T             (5) 

where 

3 0 1   , 4 1 2    . 

3. Design of an adaptive control system 

System uncertainties such as high nonlinear friction characteristics according to the 

operation condition should be considered in precise position servo systems. Thus, feedback 

linearization and robust control schemes can be considered to reject system nonlinearity and 

have robustness to unmodeled dynamics, respectively. However, the robust control schemes 

may not be appropriate for precise position control because these schemes require some 

premises on bounded uncertainties and bounded disturbance. In addition, if the information 

on system uncertainties is not included in the control scheme, the feedback linearization 

scheme may not achieve high precision position tracking performance and make servo 

systems unstabilize. To overcome these problems in position control servo systems, it is 

desirable to apply an adaptive control scheme. 

3.1 Design of back-stepping controller 

The back-stepping control(BSC) system can be designed step by step as follows (Krstic, 
1995): 

Step 1. To achieve the desired tracking performance, the tracking error is defined by the new 

state 1y  as 

 1 ry     (6) 

where r  is the reference input. The derivative of 1y  is expressed as 

 1 .ry       (7) 

We define a stabilizing function 1  as 

 1 1 1r k y     (8) 

where 1k  is a positive constant. The Lyapunov control function (LCF) 1V  is selected as 

 2
1 1

1

2
V y  (9) 

Then, the derivative of 1V  is expressed as 

 2
1 1 1 1 1 1 1 1 2 1 1( )V y y y k y y y k y          (10) 

where 2 1.y     
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Step 2. The velocity tracking error is defined by the new state 2y  as 

 2 1.y     (11) 

The derivative of 2y  can be obtained as 

 2 1 0 3 4 1

1
( ( ) ) .dy u z h z T

J
                    (12) 

 

From Eq. (12), in order to select a feedback control law that can guarantee system stability, 

the LCF for Eq. (11) is selected as 

 2
2 1 2

1
.

2
V V y   (13) 

The derivative of 2V  can be represented as 

 2
2 1 2 2 1 1 2 1 0 3 4 1

1
[ ( ( ) ) ].dV V y y k y y y u z h z T

J
                     (14) 

If the last term in Eq. (14) is defined as 

 1 0 3 4 1 2 2

1
( ( ) )dy u z h z T k y

J
                (15) 

 

where 2( 0)k   is a design parameter, then the BSC law as the feedback control law can be 

selected as 

 1 2 2 1 0 3 4( ) ( ) .du J y k y z h z T               (16) 

However, in Eq. (16), the internal state z  of the friction model cannot be measured, and 

friction parameters and the disturbance torque dT  cannot be known exactly. In addition, if 

the friction terms in Eq. (16) cannot be exactly considered in position control servo systems, 

a large steady-state error may occur. 

3.2 Design of adaptive back-stepping controller and dual friction observer 

In order to select a desired control law, a dual-observer (Tan, 1999) to estimate the 

unmeasurable internal state z  in the friction model is applied as follows: 

 0 0 0 0
ˆ ˆ( ) ,z h z         (17) 

 1 0 1 1
ˆ ˆ( ) ,z h z         (18) 

www.intechopen.com



 
Fuzzy Logic – Controls, Concepts, Theories and Applications 

 

208 

where 0ẑ  and 1ẑ  are the estimated values of the internal states in the friction model, and 0  

and 1  are the observer dynamic terms which can be obtained from an adaptive rule. The 

corresponding observation errors are given by 

 0 0 0 0( ) ,z h z        (19) 

 1 0 1 1( ) ,z h z        (20) 

where 0 0
ˆz z z   and 1 1

ˆz z z  . Equations (19) and (20) will be induced from the adaptive 

rule. 

In order to induce the adaptive rule to guarantee stability against unknown parameters and 

the observer dynamic terms, the reconstruction error E  is defined as 

 ˆ
d dE T T   (21) 

 

where ˆ
dT  is the estimated value of dT  and it is assumed that E E , where E  denotes the 

bounded value of E . 

We now select the 3rd LCF as follows: 

 
2

3 2

1 ˆ( )
2

V V E E


    (22) 

 

where ( 0)   is a positive constant and Ê  is the estimated value of the reconstruction error. 

The derivative of 3V  can be represented as 

 
2

3 2 1 1 2 1 0 3 4 1

1 1 1ˆ ˆ ˆ ˆ( ) [ ( ( ) ) ] ( )dV V E E E k y y y u z h z T E E E
J

     
 

                    (23) 

From Eq. (23), the adaptive back-stepping control(ABSC) law can be selected as 

 1 2 2 1 0 0 3 1 4
ˆ ˆˆ ˆˆ ˆ ˆ( ) ( ) du J y k y z h z T E                 (24) 

Substituting Eq. (24) into Eq. (23), then 

2 2 2
3 1 1 2 2 0 0 0 0 3 1 3 1 4

1ˆ ˆ ˆ ˆˆ ˆ[ ( ) ( ) ) ] ( )d d

y
V k y k y z z h z h z T T E E E E

J
       


                       (25) 

where 0 0 0ˆ    , 3 3 3ˆ    , and 4 4 4ˆ     are the unknown parameter estimate 

errors. The 4th LCF 4V  is selected as 
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2 2 2 2 2

4 3 0 0 3 1 0 3 4
0 3 4

1 1 1 1 1
.

2 2 2 2 2
V V z z    

  
           (26) 

The derivative of 4V  can be obtained as 

 

2 2 2 2 2 2
4 1 1 2 2 0 0 0 3 0 1 0 0 0 3 1 3

0 3

2 2 2 2
4 4 0 0 0 0 1 3 3 1

4

( )1 1
ˆ ˆˆ ˆ( ) ( ) ( ) ( )

1 1 ˆˆ( ) ( ) ( ( ) ) ( ).

y y h
V k y k y h z h z z z

J J

y y y y
z z h E E

J J J J


         

 

         
 

         

         

      

   
(27) 

 

From Eq. (27), the update laws can be determined as 

 
0

0 2 0
ˆˆ ,y z

J

    (28) 

 
3

3 2 1
ˆˆ ( ) ,y h z

J

     (29) 

 
4

4 2ˆ ,y
J

     (30) 

and the observer dynamic terms are expressed as 

 
2

0 ,
y

J
    (31) 

 2
1 ( ),

y
h

J
    (32) 

 2ˆ .
y

E
J

 
 (33) 

Then, Eq. (27) can be represented as 

 
2 2 2 2 2 2

4 1 1 2 2 0 0 0 3 0 1 1 1 2 2( ) ( ) 0.V k y k y h z h z k y k y                   (34) 

From Eq. (34), we can define ( )W y  as follows: 

 1 1 2 2 1 2( ) ( , )W y k y k y V y y      (35) 

Since 0V  , V  is a non-increasing function. Thus, it has a limit V  as t  . Integrating 

Eq. (35), then 
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  
0 0

1 2 0 0 0 0lim ( ( )) lim ( , ) lim ( ( ), ) ( ( ), ) ( ( ), )
t t

t tt t t
W y d V y y d V y t t V y t t V y t t V   

  
         (36) 

which means that 
0

( ( ))
t

t
W y d   exists and is finite. Since ( )W y  is also uniformly 

continuous, the following result can be obtained from Barbalat lemma (Krstic, 1995)(Slotine, 

1991) as 

 lim ( ) 0.
t

W y


  (37) 

 

Since 1y  and 2y  are converged to zero as t  ,   and   approach to r  and r , 

respectively, as t  . Therefore, the ABSC system can be asymptotically stable in spite of 

the variation of system parameters and external disturbance. 

3.3 Design of recurrent fuzzy neural networks 

To determine the lumped uncertainty dT , a RFNN observer of a 4-layer structure is 

proposed, which is shown in Fig. 3. Layer 1 is the input layer with the recurrent loop, which 

accepts the two input variables. Layer 2 represents the fuzzy rules for calculating the 

Gaussian membership values. Layer 3 is the rule layer, which represents the preconditions 

and consequence for the links before and after layer 3, respectively. Layer 4 is the output 

layer. The interaction and learning algorithms for the layers are given as follows: 

 

Fig. 3. A general four-layer RFNN 

3.3.1 Description of the RFNN 

Layer 1, Input layer: For each node i, the net input and output are represented, respectively, as 
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 1 1 1 1net ( 1),i i i ix w y N     (38) 

 
1 1 1 1( ) (net ( )) net ( ), 1, 2i i i iy N f N N i    (39) 

where 1
1 1x y , 1

2x y  , 1
iw  is the recurrent weights, and N  denotes the number of 

iterations. 

Layer 2, Membership layer: For each node, the Gaussian membership values are calculated. 

For the j th node, 

 

2 2
2

2

( )
net ( )

( )

i ij
j

ij

x m
N




   (40) 

 2 2 2 2( ) (net ( )) exp(net ( )), 1,... ,j j j jy N f N N j n    (41) 

where ijm  and ij  are the mean and standard deviation of the Gaussian function in the jth  

term of the ith input linguistic variable 2
ix  to the node of layer 2, respectively. n  is the total 

number of the linguistic variables with respect to the input nodes. 

Layer 3, Rule layer: Each node k in this layer is denoted by ∏. In addition, the input signals in 

this layer are multiplied each other and then the result of the product is generated. 

 3 3 3net ( ) ( ),k jk j
j

N w x N  (42) 

 3 3 3 3( ) (net ( )) net ( ), 1, ... ,k k k ky N f N N k l    (43) 

where 3
jx  represents the jth input to the node of layer 3, 3

jkw  is the weights between the 

membership layer and the rule layer. ( / )il n i  is the number of rules with complete rule 

connection, if each input node has the same linguistic variables. 

Layer 4, Output layer: The single node o in this layer is labeled as  , which computes the 

overall output as the summation of all input signals: 

 4 4 4net ( ) ( ),o ko k
k

N w x N  (44) 

 4 4 4 4( ) (net ( )) net ( )o o o oy N f N N   (45) 

where the connecting weight 4
kow  is the output action strength of the oth output associated 

with the kth rule. 4
kx  represents the kth input to the node of layer 4, and 4 ˆ

o dy T . 

3.3.2 On-line learning algorithm 

In the learning algorithm, it is important to select parameters for the membership functions 

and weights to decide network performance. In order to train the RFNN effectively, on-line 
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parameter learning is executed by the gradient decent method. There are four adjustable 

parameters. Our goal is to minimize the error function e  represented as 

 
2 2

1

1 1
( ) ( )

2 2
re y    . (46) 

 

By using the gradient descent method, the weight in each layer is updated as follows: 

Layer 4: The weight is updated by an amount 

 
4

4 4
14 4 4

net

net
o

ko w w w k
ko o ko

e e u
w y x

uw w
  

    
             

 (47) 

 

where 1 4neto

e u
y

u

 
 

 
 and w  is the learning-rate parameter of the connecting weights of 

the RFNN. 

Layer 3: Since the weights in this layer are unified, the approximated error term needs to be 
calculated and propagated to calculate the error term of layer 2 as follows: 

 
34

3 4
13 4 3 3

net

net net net
ko

k ko
k o k k

ye e u
y w

u y


  
    

   
 (48) 

Layer 2: The multiplication operation is executed in this layer by using Eq. (46). To update 

the mean of the Gaussian function, the error term is computed as follows: 

 

234 3
2 3 3

2 4 3 3 2 2

net net

net net net

jko k
j k k

kj o k k j j

yye e u
y

unet y y
 

   
    

     
   (49) 

 

and then the update law of ijm  is  

 

2 2 2
2

2 2 2

net 2( )

net

j j i ij
ij m m m j

ij j j ij ij

y x me e
m

m y m
   



   
     

   
  (50) 

where m  is the learning-rate parameter of the mean of the Gaussian functions. The update 

law of ij  is 

 

2 2 2 2
2

2 2 3

net 2( )

net

j j i ij
ij s s s j

ij j j ij ij

y x me e

y
    

  

   
     

   
 (51) 
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where s  is the learning-rate parameter of the standard deviation of the Gaussian functions.  

The weight, mean, and standard deviation of the hidden layer can be updated by using the 
following equations: 

 
4 4 4( 1)ko ko kow N w w      (52) 

 ( 1) ( )ij ij ijm N m N m     (53) 

 ( 1) ( )ij ij ijN N       (54) 

4. Experiment results 

Figure 4 shows the servo position tracking control system to evaluate the performance of 

control schemes. The angular position was measured with an incremental rotary encoder 

whose counts per encoder was 4 times of 10000 pulses per revolution. A data acquisition 

board with D/A 12-bit resolution was used to supply the driving voltage to the motor. The 

sampling rate of the servo system was selected as 500Hz. The control algorithms were 

programmed with C-language. The parameters of the servo system and friction model for 

experiment are shown in Table 1. The block diagram of the ABSC system with RFNN is 

shown in Fig. 5. 

 

 

Fig. 4. Photograph of the servo position tracking control system 
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Parameter Notation Value 

Moment of inertia J  5 22.3 10 kgm  

Bristles stiffness coefficient 0  0.15 Nm  

Stribeck velocity st  0.013 rad/s  

Coulomb friction cT  31.97 10 Nm  

Static friction sT  32.6 10 Nm  

Table 1. Parameters of the servo and friction model 

 

Fig. 5. Block diagram of the ABSC system with RFNN 

In order to evaluate the performance of the servo system with the proposed control scheme, 
two reference inputs were applied as follows: 

1
0.1sin(0.4 )r t   [rad], 

2
0.1sin(0.125 ) sin(0.75 )r t t    [rad] 

To compare the tracking performances of the BSC system, ABSC system, ABSC system with 

RFNN, the reference input 
1r

  was continuously used for experiment as follows: the BSC 

system was applied during the initial 20 seconds, the ABSC system during the 40 seconds 
after the application of the BSC system, and the ABSC system with RFNN during the 40 

seconds after the application of the ABSC system. The reference input 
2r

  was 

independently experimented for the ABSC system and the ABSC system with RFNN, 
respectively. In addition, the structure of the RFNN is defined to two neurons at inputs of 
which each has the recurrent loop, five neurons at the membership layer, five neurons at the 
rule layer, and one neuron at the output layer. The fuzzy sets at the membership layer, 

which have the mean ( ijm ) and standard deviation ( ij ), were determined according to the 

maximum variation boundaries of 1y  and 2y  of the ABSC system without RFNN. ijm  and 

ij  vectors applied to experiment are selected as follows: 

1 1[ 0.002, 0.001, 0.0, 0.001, 0.002 ]jm     , 
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2 2[ 0.2, 0.1, 0.0, 0.1, 0.2 ]jm     , 

1 3[0.003, 0.003, 0.003, 0.003, 0.003]j   , 

2 4[0.3, 0.3, 0.3, 0.3, 0.3]j    

where 1 jm  and 1 j  indicate the mean and standard deviation vectors of 1y , respectively, 

2 jm  and 2 j  indicate the mean and standard deviation vectors of 2y , respectively, and 

1,( 1,2,3,4)i i   . 

Figure 6 shows the error of the BSC system, ABSC system, and ABSC system with RFNN for 

the reference input 
1r

 . The angular displacement rms(root mean square) error of the BSC 

system is 0.0054. While the ABSC system is operating, its maximum error tends to 

exponentially decrease and then converge to a steady state value due to 0̂ , 3̂ , and 4̂  by 

the update rules which are given by Eqs. (52), (53), and (54). The angular displacement rms 

error of the ABSC system is 0.0027. In the operating range of the ABSC system with RFNN, the 

angular displacement error converges to a steady state value after experiencing a transient 

state for about 1 second because of the switch from the ABSC system to the ABSC system with 

RFNN. The angular displacement rms error is 0.0005. The tracking performance of the ABSC 

system compared with it of the BSC system is improved by 2 times and it of the ABSC system 

with RFNN compared with it of the ABSC system is improved by 5.4 times. The performance 

improvement of the ABSC system with RFNN implies that the control input of the RFNN 

including the reconstruction estimation compensates system uncertainties. 

 

Fig. 6. Error of the BSC system, ABSC system, and ABSC system with RFNN for the 

reference input 
1r

  

Figure 7 shows the estimation and the observation of the BSC system, ABSC system, and 

ABSC system with RFNN for the reference input 
1r

 . The estimations by the update rule are 

shown in Fig. 7(a). The BSC system estimates the friction parameter to be 0, because the BSC 

system does not have the update rule for 0̂ , 3̂ , and 4̂ . When the ABSC system is applied 

to the servo system, the update rules estimates the friction parameters, which converge to 
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some values; this convergence stabilizes the servo position system. When the ABSC system is 
switched to the ABSC system with RFNN, the estimations of the friction parameters do not 
vary because the angular displacement error is largely decreased by the RFNN. Therefore, the 
friction estimation values can maintain steady state in the operating range where the RFNN is 

used. Figure 7(b) shows the observations of the dual observer. The spike phenomenon of 0ẑ  

among both observation values is occurred to a changing point of velocity, because 2y  

corresponds to the velocity error, which directly affects 0ẑ , as described in Eq. (31). However, 

in the case of the ABSC system with RFNN, the spike phenomenon of 0ẑ  is largely removed, 

which means that the RFNN compensates system uncertainties such as nonlinear friction 
including Coulomb friction, static friction, Stribeck velocity, and unmodeled dynamics.  

 
(a) Estimations of the update rule 

 
(b) 0z  and 1z  of the dual observer 

Fig. 7. Estimation and observation of the BSC system, ABSC system, and ABSC system with 
RFNN for the reference input 

1r
  

Figure 8 shows the estimated friction torque of the BSC system, ABSC system, and ABSC 
system with RFNN for the reference input 

1r
 . The estimated friction torques of the BSC 

system, ABSC system, and ABSC system with RFNN reflect the results of Fig. 7. Figure 9 
shows the control input of the BSC system, ABSC system, and ABSC system with RFNN for 

the reference input 
1r

 . When the RFNN including reconstruction error estimation is  
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Fig. 8. Estimated friction torque of the BSC system, ABSC system, and ABSC system with 

RFNN for the reference input 
1r

  

 
(a) Estimated torque of the RFNN including the reconstruction error 

 
(b) Control input torque applied to the servo system 

Fig. 9. Control inputs of the BSC system, ABSC system, and ABSC system with RFNN for 

the reference input 
1r

  

applied to the servo system at 80 seconds as shown in Fig. 9(a), a little more control input 
than before that is required to compensate system uncertainties as shown in Fig. 9(b). In 
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addition, the deflection of the control input removes the deflection of the error for the BSC 
and ABSC systems, which is shown in Fig. 6. 

Figure 10 shows the errors of the ABSC system and ABSC system with RFNN for the 
reference input 

2r
 . The reference input 

2r
  reflects a real situation and includes more 

system uncertainties because of the time varying amplitude sinusoidal input. In addition, 
the experiment conditions of the ABSC system and ABSC system with RFNN are all the 
same. The tracking error rms values of the ABSC system with RFNN and ABSC system are 
0.0007 and 0.003, respectively. Therefore, the tracking rms error of the ABSC system with 
RFNN is four times less than that of the ABSC system, which implies that the RFNN is 
suitable for compensating system uncertainties. 

 

Fig. 10. Errors of the ABSC system, and ABSC system with RFNN for the reference input 
2r

  

Figure 11 shows the friction parameter estimations for the ABSC system and ABSC system 
with RFNN for the reference input 

2r
 . The estimations of the friction parameters converge 

to steady state values in about 20 seconds as shown in Fig. 11(a). The estimation values of 
the friction parameters for the ABSC system with RFNN are much smaller than those for the 
ABSC system, as shown in Fig. 11(b), because the RFNN and the reconstruction error 
estimator rapidly decrease the tracking error by reducing system uncertainties. 

Figure 12 shows the estimated friction torques of the ABSC system and ABSC system with 

RFNN for the reference input 
2r

 . The parameters of the ABSC system with RFNN were 

estimated to be approximately 0, because the RFNN compensated system uncertainties 
including nonlinear friction. Therefore, the effectiveness of the RFNN was clearly 
demonstrated from the above results.  

Figure 13 shows the control input of the ABSC system and ABSC system with RFNN for the 

reference input 
2r

 . The estimated torque of the RFNN including the reconstruction error 

and the control input torque applied to the servo motor are shown in Figs. 13(a) and (b), 
respectively. The ABSC system with RFNN generated a little more control input than the 
ABSC system due to the estimation result of the RFNN including the reconstruction error, as 
shown in Fig. 13(a). This implies that the ABSC system with RFNN compensates system 
uncertainties such as nonlinear friction and unmodeled dynamics, satisfactorily. 
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(a) Estimation of the adaptive rule of the ABSC system 

 
(b) Estimation of the adaptive rule of the ABSC system with RFNN 

Fig. 11. Friction parameter estimations of the ABSC system and ABSC system with RFNN 

for the reference input 
2r

  

 

Fig. 12. Estimated friction torques of the ABSC system and ABSC system with RFNN for the 
reference input 

2r
  
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(a) Estimated torque of the RFNN including the reconstruction error 

 
(b) Control input torque applied to the servo system 

Fig. 13. Control input of the ABSC system and ABSC system with RFNN for the reference 

input 
2r

  

In order to show an influence of the RFNN parameters on control performance, two main 

parameters, which are ijm  and ij  of the Gaussian fuzzy membership function in Layer 2, 

are changed. Initial values of these values are selected by investigating the range and 

magnitude of 1y  and 2y , and then there are on-line updated through Eqs. (53) and (54). On 

the other hand, the change in the weight factors is not considered to experimental condition 

because of using initial random values.  

Figure 14 shows the results of the ABSC system with the variation of ijm  and ij  in RFNN 

for the reference input 
2r

 . The changed conditions of the mean and standard deviation are 

0.5i   and 1.5i  . For 0.5i  , the results of the error, estimation, and estimated friction 

torque of the ABSC system with RFNN are diverged due to the reduction of ijm  and ij  in 

7.5 seconds as shown in Fig. 14 (a), (b), and (c). On the other hand, although the error state 

of the ABSC system with RFNN for 1.5i   is stable as shown in Fig. 14(a), the angular 

displacement rms error of compared system with the ABSC system with RFNN in Fig. 10 is 

minutely increased to 1.25 times. In addition, although the estimations of the adaptive rule 

of the ABSC system with RFNN as shown in Fig. 14(b) compared with their estimation 

values as shown in Fig. 11(b) is increased, their effect for the estimated friction torque is very 
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small as shown in Fig. 14(c) compared with their estimated friction torque of the ABSC 

system as shown in Fig. 12, which reflects the result of Fig. 14(b). At this time, the ratio of 

the maximum friction torque in Fig. 12 to it in Fig. 14(c) is approximately 30 times. Thus, we 

can conclude that ijm  and ij  of the Gaussian membership function in the RFNN depend 

on the error output of the servo system. Finally, ijm  and ij  of the Gaussian membership 

function in the RFNN need to be carefully selected. 

 
(a) Error of the ABSC system with RFNN 

 
(b) Estimation of the adaptive rule of the ABSC system with RFNN 

 
(c) Estimated friction torque of the ABSC system with RFNN 

Fig. 14. Results of the ABSC system with the variation of ijm  and ij  in RFNN for the 

reference input 
2r

  
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5. Conclunsion 

The tracking performance of servo systems is deteriorated by nonlinear friction and system 
uncertainties, especially in the region where the direction of velocity of servo systems is 
changed. In order to reduce the effects of the friction and system uncertainties, a robust 
adaptive precision position control scheme is proposed. Unmeasurable state and parameters 
of the dynamic friction model are observed and estimated by the dual observer and the 
adaptive back-stepping controller, respectively. In order to actively cope with system 
uncertainties, the RFNN scheme is applied to the servo system. Experiments showed that 
the servo system with the dual observer, adaptive back-stepping controller, and RFNN 
including the reconstruction error estimator can achieve desired tracking performance and 
robustness. In addition, the influence of the mean and standard deviation of the RFNN 
parameters on control performance is shown through experiment. 
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