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1. Introduction

Computer Vision systems are experiencing a large increase in both range of applications and
market sales (BCC Research, 2010). From industry to entertainment, Computer Vision systems
are becoming more and more relevant. The research community is making a big effort to
develop systems able to handle complex scenes focusing on the accuracy and the robustness
of the results. New algorithms provide more advanced and comprehensive analysis of the
images, expanding the set of tools to implement applications (Szeliski, 2010).

Although new algorithms allow to solve new problems and to approach complex situations
with a high degree of accuracy, not all the algorithms are adequate to be deployed in industrial
systems. Parameters like power consumption, integration with other system modules, cost
and performance limit the range of suitable platforms. In most cases, the algorithms must be
adapted to achieve a trade-off solution and to take advantage of the target platform.

Conventional PC-based systems are constantly improving performance but their use is still
limited to areas where portability, power consumption and integration are not critical. In case
of highly complex algorithms, with an irregular execution flow, complex data representation
and elaborated patterns to access to data, a significant gain is not achieved when moving to
an ad hoc hardware design. In this case, a high-end CPU and a GPU with general-purpose
capabilities (GPGPU) is a flexible and very powerful combination that will outperform other
options (Castano-Díez et al., 2008).

However, when a conventional system does not meet the requirements of the application, a
more aggressive planning is needed. For instance, migrating the application to a dedicated
device such as a DSP, an FPGA or a custom chip (Shirvaikar & Bushnaq, 2009). At this
point, the designers have to consider alternatives as to reduce operating range, accuracy
and robustness of the results, or to remove expensive operations in order to simplify the
hardware that will be implemented (Kolsch & Butner, 2009). PC-based systems enable
a great flexibility at cost of performance so pure software-based algorithms hardly match
pure hardware implementations. This is a serious limitation because it can compromise the
efficiency of the application. This is the reason why the industry is making great efforts to
develop novel architectures that enable greater flexibility to adapt the algorithms without
compromising the quality of the results.
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2 Machine Vision

Computer Vision applications are often divided into three stages: low, medium and high
level processing. Low level operations are quite simple and repetitive but applied over a
large set of data with a very reduced data dependent program flow, so massive parallelism is
essential for performance. In the medium level stage, temporal and task parallelism is key as
the data set is smaller and the program flow is quite data-dependent. High level operations are
performed over complex data representations but reduced data sets and with high precision
as requirement. An efficient Computer Vision system must deal with all these stages. The
selection of the computation model will determine the performance of the device in each one
of the stages. So, which is the optimal paradigm for such applications? Increase the number
of concurrent instructions? Increase the number of data elements processed simultaneously?
A combination of both?

Taking into account the application requirements, a suitable platform to build the system
must be selected. Besides general parameters (performance, cost and integration), there is
a set of factors that restricts the computing paradigms and the devices that can be selected.
For instance, a critical parameter is the way in which the data are transferred to the device
because I/O operations are one of the bottlenecks in high-performance systems. Data type
and representation will affect the computational units. The program flow will constrain the
inner connections between these units and the storage elements.

This chapter addresses an analysis of different computing paradigms and platforms oriented
to image processing. Previously, a representative set of Computer Vision algorithms covering
the three levels of processing is reviewed. This study will lead us to observe the algorithms
in terms of a set of common characteristics: operations, data type, program flow, etc.
This is critical to design new hardware architectures in order to maximize performance.
The analysis from the hardware point of view will highlight the best features of the
most used computing paradigms in order to establish a relationship between the type of
operation, data, programming model and hardware architecture. An efficient architecture for
Computer Vision must combine all the selected features. The analysis of the characteristics
of the different algorithms will lead us naturally to an optimized general-purpose hardware
architecture for Computer Vision.

2. The problem of computer vision

Traditionally, Computer Vision (CV) applications include building blocks from three
computation levels: low-, mid- and high-level vision computing. The type of operations,
the data representation and the flow execution of programs depend deeply on the considered
level of this hierarchy. Nevertheless, current CV-algorithms are composed of many different
processing steps regarding the type of data and the way these are computed which makes
difficult to classify them only in one subgroup. Following, a rather rough classification of
widely used CV-algorithms is made, keeping in mind the data domain and the complexity of
the involved operations.

2.1 Low-level vision

After image acquisition, some preprocessing steps are often required. These are intended to
provide reliable input data for subsequent computing stages. Some typical operations are
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Towards the Optimal Hardware Architecture for Computer Vision 3

noise reduction, color balancing, geometrical transformation, etc. Most of these operations
are based on point or near-neighborhood operations. Point operations are performed at
pixel-level in such a way that the output only depends on the value of any individual pixels
from one or several input images. With this type of operation it is possible to modify the pixel
intensity to enhance parts of the image, by increasing contrast or brightness. Equally, simple
pixel-to-pixel arithmetic and Boolean operations also enable the construction of operators as
alpha blending, for image combination or color space conversion. Neighborhood operations
take also into account the value of adjacent pixels. This operation type is the basis of
filtering, binary morphology or geometric transformation. They are characterized by simple
operations, typically combining weighted sums, Boolean and thresholding processing steps.

After preprocessing stages, useful information has to be extracted from the resulting images.
Common operations are edge detection, feature extraction or image segmentation. Edges
are usually defined as step discontinuities in the image signal so finding local maxima in
the derivative of the image or zero-crossings in the second derivative are suitable to detect
boundaries. Both tasks are usually performed by the convolution of the input image with
spatial filtering masks that approximate a first or second derivative operator.

Feature points are widely used for subsequent computing steps in multiple CV-applications.
Basically, a feature represents a point in the image which differs from its neighborhood. One
of the benefits of local features is the robustness against occlusion and the ability to manage
geometric deformations between images when dealing with viewpoint changes. In addition,
they improve accuracy when, in the same scene, objects are at different planes, (i.e. at different
scales). One of the most popular techniques is that proposed by Harris (Harris & Stephens,
1988) to detect corners. It is widely used due to its strong invariance to rotation, image noise
and no large illumination changes. It uses the local auto-correlation function, which describes
the gradient distribution in a local neighborhood of each image point to detect the location of
the corners. Using the locally averaged moment matrix from the image gradients, corners will
be located at the maximum values. Another frequently used technique is the Scale-Invariant
Feature Transform (SIFT) (Lowe, 2004). SIFT localizes extrema both in space and scale. Using
the Difference of Gaussians as scale-space function, the images are filtered with Gaussian kernels
of different sizes (scales). This is performed for different image sizes (octaves). The response
of each filter is subtracted from the immediately following in the same octave. The interest
points are scale-space extrema so local maxima and minima are extracted by comparing the
neighborhood points in the same, the previous and the posterior scales. To improve accuracy,
a sub-pixel approximation step is done, interpolating the location of the feature inside the
scale-space structure. The number of octaves and scales can be tuned to meet the system
requirements. SIFT provides invariance against scale, orientation and affine distortion, as well
as partial occlusion and illumination changes. Other algorithms were proposed to improve
accuracy or performance like, the Speeded Up Robust Features (SURF) (Bay et al., 2006) or the
Gradient Location and Orientation Histogram (GLOH) (Mikolajczyk & Schmid, 2005). This kind
of detectors are quite complex and their performance can be low even using custom hardware.
For this reason, less reliable algorithms are still in use, as Harris Corner Detector, FAST
(Trajkovi & Hedley, 1998) or the Smallest Univalue Segment Assimilating Nucleus (SUSAN)
(Smith & Brady, 1997) corner detectors, because of their efficiency under controlled situations
and their low hardware requirements.
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4 Machine Vision

Segmentation refers to the process of separating the data into several sets according to certain
characteristics. There are several techniques to carry out this task, either based on boundaries
or regions (Pal & Pal, 1993) (Haralick & Shapiro, 1985). Nevertheless, most of them rely on
near-neighborhood operations. Particular attention deserves the clustering methods like the
popular k-means which partitions the data set into several clusters according to a proximity
criterion defined by a distance function. These methods are not restricted to image data.
N-dimensional sets of abstract data can also be partitioned. Furthermore, information about
the scene or domain can be introduced (number and characteristics of the target clusters).
Therefore, they might be classified either as a low or mid-level vision stage.

2.2 Mid-level vision

Mid-level CV stages usually operate on images from previous processing steps, often binary
images, and produce a lower amount of data but with a higher concentration of information.
Some common operations are object classification and scene reconstruction.

One of the goals of Computer Vision is to recognize objects in a scene. Based on object location,
pose or 2D/3D spatial relations between the objects, the algorithms have to be able to analyze
the scene and its content. This involves issues such as dealing with object models, classifiers
and the ability to integrate new information in the models. In the literature, a large amount
of techniques can be found, usually classified as global methods, more intended for object
detection and local feature-based methods for object recognition. In all of them good image
registration is essential for both accuracy and performance (Zitova & Flusser, 2003). As for
the global methods, common techniques are based on template-based matching, which employs
a convolution mask or template to measure the similarity between an object patch and the
template. In this sense, normalized cross-correlation (NCC), sum of squared differences (SSD) or
sum of absolute differences (SAD) are widely used. As for local methods, local feature descriptors
play an important role. Roughly speaking, a descriptor is an abstract characterization of a
feature point based on its environment. One of the most popular techniques is the proposed
in second part of the SIFT algorithm based on stacked orientation histograms which associate
a high dimension vector to each keypoint. In order to reduce the amount of false positives
and negatives during the matching stage the search area is limited by using strategies like
the nearest neighbor search (NNS) which attempts to find the nearest points of a given one in a
vector space. An indexing structure allows to search for features near a given feature rapidly.
This is the case of the K-dimensional trees , which organize points in a k-dimensional space in
such a way that each node has at most two child nodes.

Scene reconstruction consists of the generation of scene models starting from their parts.
There are different techniques to reconstruct one or several objects in a scene. To build a
3D model, coordinates of scene points have to be calculated from the objects. If the location
of the camera is known, 3D coordinates of a scene point can be determined from its projection
on image planes of different viewpoints. The whole process starts with feature extraction
and matching. Using geometric consistency tests it is possible to eliminate wrong matches.
There are different solutions to estimate the fundamental matrix, as the RANdom SAmple

Consensus (RANSAC). Once the matches between images are consistent, camera pose and
scene geometry is reconstructed using Structure from Motion methods and refined with Bundle

adjustment techniques (Triggs et al., 2000).
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Towards the Optimal Hardware Architecture for Computer Vision 5

2.3 High-level vision

The high-level stage often starts from an abstract representation of the information. This stage
is highly application dependent but due to the variety of operations, data structures, memory
access patterns and program flow characteristics are often only compatible with a general
purpose processor. High-level processing is characterized by the use of a small set of data to
represent knowledge about the application domain. More complex data structures are needed
to store and process this information efficiently, making the operations and the memory access
patterns more elaborated. This, together with the inherent complexity of decision making,
makes the program flow very variable.

Robust pattern recognition, object identification, complex decision making or system
adaptation are some of the benefits of integrating Artificial Intelligence methods with
Computer Vision. Otherwise, the system would be limited to a predetermined set of actions.
Machine learning makes computers capable of improving automatically with experience. This
way it is possible to generalize the behavior from unstructured information with techniques
such as neural networks, decision trees, genetic algorithms, regression models or support
vector machines. Machine learning has emerged as a key component of intelligent computer
vision systems, contributing to a better understanding of complex images (Viola & Jones, 2001)
(Oliver et al., 2000).

Data mining is the process of analyzing data using a set of statistical techniques in order
to summarize into segments of useful information. This makes possible analyze data from
different dimensions or angles, categorizing and summarizing the identified relationships,
making evident hidden relationships or patterns between events. On the contrary of Machine
learning, data mining focuses on discovering hidden patterns instead of generalizing known
patterns using the new data.

It is very difficult to establish a classification of tasks and operations for high-level processing.
Some of the performed tasks fall within the scope of the measurement of application specific
parameters such as size and pose of objects, fault detection and monitoring specific events
such as traffic situations, for example. The algorithms and technologies are very diverse and
most of them lie in statistical analysis and artificial intelligence domains.

As it was previously mentioned some tasks that initially fit into the low or medium level
stages due to its context actually are more like high-level operations by the type of operations
performed. This is related with the commonly used bottom-up image analysis, which starts
from raw data to extend the knowledge of the scene. However, new approaches include
feedback to perform top-down analysis. This way, low- and mid-level stages can be controlled
with general knowledge of the image, improving the results.

3. Computing platforms

Given the wide range of algorithms and applications of Computer Vision, it is clear that it
does not exist a unique computing paradigm or an optimal hardware platform. The type of
operations, the complexity of data structures and especially the data access patterns greatly
determine parameters such as the range of application, performance, power consumption
or cost. This section presents some of the most prominent platforms in image processing,
focusing on their strengths and weaknesses.
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6 Machine Vision

3.1 Computing paradigms

The Flynn’s taxonomy (Flynn, 1972) classifies the computer architectures in four big groups
according to the number of concurrent instructions and data sets processed. Image processing
tasks perform more or less efficiently depending on the selected paradigm. In order to develop
a Computer Vision application it is crucial to exploit the spatial (data) or temporal (task)
parallelism to meet trade-offs among performance, power consumption or cost.

SISD

Single Instruction Single Data (SISD) refers to the conventional computing model. A single
processing unit executes a sequence of instructions on a unique data stream. Most modern
computers are placed under this category and, although only one processor and one memory
element are present, those which are able to pipeline their data-path are generally classified
under the SISD category as they are still serial computers.

This paradigm performs better when spatial and temporal parallelism are hard to exploit.
As seen previously, high-level image processing fit the SISD paradigm because most tasks
are sequential, with a complex program flow and strong dependences between data. As
processing is done sequentially, most optimizations aims to enhance the access between the
memory and the arithmetic unit. Memory and processor speed are the main constraints.
Furthermore, some kind of parallelism can be exploited when pipelining the data-path.
Data allocation, pre-fetching and reducing stalls in the pipeline are some of the possible
optimizations.

SIMD

SIMD (Single Instruction Multiple Data) computers have an unique control unit and multiple
processing units. This control unit sends the same instruction to all processing units,
which operate over different data streams. This paradigm focuses on exploiting the spatial
parallelism. It is also possible to pipeline the data-path or to employ several memories to store
the data in order to increase the bandwidth. SIMD computers are commonly specific-purpose,
intended to speed-up certain critical tasks.

One of the drawbacks of SIMD machines is data transference. A network is required to
both supply data to each processing unit and share data among them. Its size grows with
the number of connected nodes so SIMD architectures have a practical limitation. Another
restriction is data alignment when gathering and scattering data into SIMD units. This results
in a reduction of flexibility in practical implementations. It is needed to determine the correct
memory addresses and reordering data adequately, affecting performance. In addition, as
this paradigm exploits spatial parallelism, program flow is heavily limited because all units
execute the same instruction. Additional operations are needed to enable at least simple flow
control tasks.

Low-level image processing benefits greatly of SIMD units. As it was described previously,
most operations are quite simple but repetitive over the whole set of data. In addition,
certain tasks of mid and high-level processing can also take advantage of SIMD units when
using in conjunction with others paradigms. The simplicity of the arithmetic units and the
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Towards the Optimal Hardware Architecture for Computer Vision 7

memory access patterns make feasible to design efficient units, which is crucial to increase the
parallelism. Memory bandwidth and data distribution among the processors is also key for
performance.

Two types of SIMD accelerators can be distinguished based on the number of processing
units: fine-grain and coarse-grain processors, where the major difference is the number of
processing units. While the first includes a large amount of very simple processors with a
rigid network, the second features major flexibility although with a much lower parallelism.
When using in low-level image processing, fine-grain processor arrays match with massively
parallel operations such as filters or morphological operations. Using a processor-per-pixel
scheme and local communications, neighborhood operations are completed in just a few
instructions. On the contrary, when the parallelism level is lower a configuration as vector

processor is usually preferable. By reducing communications and increasing core complexity,
they are much more flexible and efficient not only for low-level operations but also for other
processing stages.

MIMD

Multiple Instruction Multiple Data (MIMD) refers to architectures where several data streams
are processed using multiple instruction streams. MIMD architectures have several processing
units executing different instructions to exploit task parallelism. Processors perform
independently and asynchronously. MIMD systems are classified depending on the memory
architecture.

In Shared Memory Systems, all processors have access to an unique memory. Connection
hierarchy and latencies are the same for all processors. This scheme eases data transference
among processors although simultaneous access must be taken into account to avoid data
hazards. Scalability is also reduced because it is hard to increase the memory bandwidth at
the same rate as the number of processors.

If each processor has its own and private memory it is possible to upscale more easily as
memory and processors are packet as a unit. This scheme is known as Distributed Memory

System. In addition, local memory access is usually faster. The major disadvantage is the
access to data which are located outside the private memory because dedicated buses and a
message passing system to communicate with the processors are needed. This can result in high
access times and an increase of hardware requirements.

In a Distributed Shared Memory System, the processors have access to a common shared memory
but without a shared channel. Each processor is provided with local memory which is
interconnected with other processors through a high-speed channel. All processors can access
to different banks a global address space. Access to memory is done under the schemes as
Non-Uniform Memory Access (NUMA), which takes less time to access the local memory than
to access the remote memory of other processor. This way scalability is not compromised.

Very long Instruction Word (VLIW) and superscalar architectures are also classified within
MIMD paradigm because they exploit instruction-level parallelism, executing multiple
instructions in parallel. Pipelining also executes multiple instructions but splitting them in
independent steps to keep all the units of the processor working at a time.
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8 Machine Vision

Mid-level image processing and some operations of the other processing levels of Computer
Vision can exploit MIMD processors. Operations are relatively simple, with data-dependent
program flow. Temporal and task parallelism are easier to exploit than spatial parallelism
although a reduced degree is usually present in this type of algorithms. Each MIMD
processing element can include SIMD units. This way it is possible to process complex
tasks more efficiently, from kernel operations as when pre-processing images concurrently
in multi-view vision systems to high level tasks as multiple object recognition and tracking.
In general, any set of tasks with weak dependences between them to reduce internal
communications can take advantage of this paradigm.

MISD

There is one more paradigm, Multiple Instruction Simple Data (MISD), which achieves higher
parallelism than SISD executing different instructions over the same data set employing
several computing units.

Systolic arrays are regular n-dimensional arrays of simple cores with nearest-neighbors
interconnections. Each core operates on the input data and shares the result to its neighbor,
flowing the data synchronously usually with different flow in different directions. They are
employed for tasks such as image filtering or matrix multiplication. Pipelined architectures
belong to this type, as they are considered an one-dimensional systolic array, but they are
commonly considered an improved version of the other aforementioned paradigms.

This paradigm is rarely used for Computer Vision as the other paradigms match better and
offer higher performance and flexibility when dealing with real Computer Vision problems.

Remarks

Low-level Computer Vision entails the largest processing times in most applications. Data sets
are usually very large and the kind of operations simple and repetitive. However, operations
are inherently massively parallel and the data access patterns are regular. It is feasible to
exploit these features to design very optimized SIMD custom hardware accelerators or to
migrate the algorithms to existing hardware.

It is harder to extract parallelism in the mid-level stage because operations involve more
complex data-flow. In addition, the data set is smaller so the benefits of including dedicated
units to speed-up the computation are lower than expected. Despite this, hybrid processors
(SIMD-MIMD) able to exploit both spatial and temporal parallelism can overcome this
limitation.

Finally, the amount of data involved in the high-level stage is usually small so it is rarely
necessary to sacrifice precision in order to get better performance. Moreover, unlike in
previous stages, the disparity in the type of data makes the use of floating-point often a
requirement. Another characteristic of this stage is the program flow, far more complex,
which may even consume more computation time than the arithmetic operations. The kind of
computation performed at this stage is so varied that the best option is often a general purpose
SISD processor.
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Towards the Optimal Hardware Architecture for Computer Vision 9

3.2 Current devices

There are different possibilities to implement the aforementioned computation paradigms.
There is not an unique and direct correspondence between a paradigm and its hardware
implementation. On the one hand, it can be designed a dedicated hardware which follows
the original conception. On the other hand, the paradigm can be emulated both in hardware
or software.

Microprocessors

Microprocessors, SISD machines, are the most straightforward devices to develop a Computer
Vision application. Their main advantage is their versatility, the ability to perform very
different tasks for a low cost. They can perform any type of data processing, although its
efficiency, measured in parameters such as cost, power or integration capabilities, is not
always optimal because of their general-purpose condition. The large variety of available
technologies, libraries, support and programs cut down the cold start, enabling to get the
system ready for development in a short time. Developers can focus on the problem itself
instead of technical issues (Bradski & Kaehler, 2008).

Basically, they are composed by a main memory and a processing unit which includes
the arithmetic and the control modules. From this basic structure more optimized
microprocessors can be designed. From caches to cut down the memory access times, tightly
coupled high-speed memory controllers or specialized units for critical tasks, the variability of
architectures is as large as the amount of fields in the market (Singhal, 2008). However, despite
the evolution of the industry pure SISD microprocessors do not offer adequate performance
for a large set of tasks. That is why a wide range of accelerator modules have been included,
as specific-purpose arithmetic units and sets of instructions or co-processors. The inclusion of
SIMD units is decisive for tasks such as video encoding and decoding, but any data-intensive
algorithm can take advantage of them (Franchetti et al., 2005).

As it will be discussed later, the advances in the semiconductor industry allows to increase
the integration density so it is possible to include more processing power on the same Silicon
area. This has led to abandon the race for speed (to increase the working frequency) to more
efficient systems where energy consumption is vital and parallelism is the way to overcome
the limitations of Moore’s Law (Naffziger, 2009). Most of modern processors are multi-core
and the number of cores is expected to grow in the near future. Programming languages
and techniques as well as image processing algorithms have to be adapted to this new reality
(Chapman, 2007).

Microprocessors are employed in a wide range of applications, from developing and testing
algorithms such as autonomous driving (Urmson et al., 2008) to final platforms as medical
image reconstruction (Chu & Chen, 2009). Even its use in restrictive stand-alone devices is also
viable such as autonomous flight (Meier et al., 2011). Microprocessors stand out in high-level
tasks, as the latest stages of image retrieval (Deselaers et al., 2008) and scene understanding
(Li et al., 2009), where handling image databases, storing and communicating data are fairly
complex to implement them in specific purpose devices. Video surveillance tasks can take
advantage of these features for image processing (Ahmed & Terada, 2010) and event control
in complex distributed systems (Chen et al., 2008).
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10 Machine Vision

Mobile processors have become a benchmark in innovation and development after the
explosion of the mobile market. As discussed below, they integrate several general purpose
cores, graphics processing units and other co-processors on a single chip keeping power
consumption very low. The applications they can address are increasingly complex (Taylor
et al., 2009) (Wither et al., 2011) (Ren et al., 2010).

Graphics Processing Units

A Graphics Processing Unit (GPU) is a specialized co-processor for graphic processing to reduce
the workload of the main microprocessor in PCs. They implement highly optimized graphic
operations or primitives. Current GPUs provide a high processing power and exploit the
massively spatial parallelism of these operations. Because of their specialization, they can
perform operations faster than a modern microprocessor even at lower clock rates. GPUs
have hundreds of independent processing units working on floating point data. Memory
access is critical to avoid processing downtimes, both in bandwidth and speed.

Their high processing power makes GPUs an attractive device for non related graphic tasks.
General Purpose GPU (GPGPU) is a technique to perform general computation not related
to graphics on these devices (Owens et al., 2007) (Che et al., 2008). This makes possible to
use its specialized and limited pipeline to perform complex operations over complex data
types. In addition, it eases memory management and data access. Flow control, as looping or
branching, is restricted as in other SIMD processors. Modern GPUs architectures as (Seiler
et al., 2008) or (Lindholm et al., 2008) have added support for these operations although
slightly penalizing throughput. Word size is also a limitation in GPGPU techniques. It
was reduced to increase the integration density as graphic operations do not usually require
high precision. However, since this was a serious limitation for scientific applications, large
word-sizes support was added later (Thall, 2006).

GPUs are effective when using stream processing, a paradigm related to SIMD (Rixner et al.,
1998). A set of operations (kernel) is applied to each element of a set of data (stream). The
flexibility is reduced to increase the parallelism and to lower the communication requirements
when involving hundreds of processing elements. Otherwise, providing data to hundreds of
processors would be a bottleneck. Processors are usually pipelined in a way that results pass
from one arithmetic unit to the next one. This way, the locality and concurrency are better
exploited, reducing communication requirements because most of the data are stored on-chip.

The use of GPUs to speed-up the computing has greatly increased, specially after the
optimization of libraries and functions that mask low-level technical difficulties. Most image
processing kernels and algorithms were adapted to work in GPGPUs, obtaining significant
improvements. Basic image processing (Podlozhnyuk, 2007), FFT transforms (Govindaraju &
Manocha, 2007), feature extraction (Heymann et al., 2007) or stereo-vision (Lui & Jarvis, 2010),
all of them computationally expensive, benefit greatly of the massively parallelism of GPU.
They can be used also to emulate other computing paradigms frequently used in low level
vision (Dolan & DeSouza, 2009). However, some authors argue that the gap between GPUs
and CPUs is not as large as it seems if key optimizations are carried out (Lee et al., 2010).
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Digital Signal Processors

A Digital Signal Processor (DSP) is a microprocessor-based system with a set of instructions
and hardware optimized for intensive data applications. They are specially useful for
real-time processing of analog signals but they offer a high throughput in any data intensive
application. DSP market is well established and offers a large range of devices, optimized
for each particular task (Schneiderman, 2010). Apart from attached processors, to assist a
general purpose host microprocessor, DSPs are often used in embedded systems including all
necessary elements and software.

They are able to exploit parallelism both in instruction execution and data processing. In a von
Neumann architecture, instruction and data share the same memory space. However, DSP
applications usually require several memory accesses to read and write data per instruction.
To exploit concurrency, many DSPs are based on a Harvard architecture, with separate
memories for data and instructions. Many modern devices are based on Very Long Instruction

Word (VLIW) architectures so they are able to execute several instructions simultaneously (Lin
et al., 2008). Compilers are fundamental to find the parallelism in the instructions and a large
improvement can be obtained after an efficient placement of data and programs in memory.
Superscalar processors and pipelined data-paths also improve the overall performance
although this is done by hardware. To operate, they include specialized hardware for intense
calculation such as multiply-accumulate operation, which is able to produce a result in one clock
cycle. Although many DSPs have floating-point arithmetic units, fixed-point units fit better
in battery-power devices. Formerly, floating-point units were slower and more expensive but
this gap is getting smaller and smaller. They also include zero-overhead looping, rounding
and saturated arithmetic or dedicated units for address management (Talavera et al., 2008;
Texas Instruments, 2002; Wang et al., 2010).

DSPs are usually designed for intensive data processing so performance can be penalized in
mixed tasks. However, current all-in-one devices are able to handle complete applications
efficiently. In addition, DSPs are not only available as independent devices but also as part of
integrated circuits such as FPGAs or SoCs.

DSPs have a large tradition on image processing tasks. As optimized versions of conventional
processors, they were used to accelerate the most expensive operations. These operations were
related mainly with low-level image processing (Baumgartner et al., 2009), where parallelism
and data access enable a large performance increase. Stereo vision (Lin & Chiu, 2008),
Fourier transform (Sun & Yu, 2009) or video matching and tracking (Shah et al., 2008) are
some samples. However, higher level algorithms also suit for DSPs, specially in industrial
tasks (Suzuki et al., 2007) (Neri et al., 2005). Nowadays, DSPs are able to handle large
sets of operations efficiently both for co-processing (Rinnerthaler et al., 2007) or standalone
(Bramberger & Rinner, 2004).

Field Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) is a device with user-programmable hardware logic.
It is made of a large set of logic cells connected together through a network. Both elements
are programmable in such a way that the logic cells emulate combinational functions and the
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12 Machine Vision

network permits to join them to build more complex functions. In addition, the program can
be rewritten as many times as needed.

The main advantage of FPGAs is their high density of interconnections between cells, which
provides a very high flexibility. This network has a complex hierarchy with optimizations for
specific functions. It provides specialized lines to propagate clock or reset signals across all the
FPGA or to build buses with high fan-out within acceptable time delays. With these very basic
elements it is possible to build highly complex modules as arithmetic units, controllers or even
embedded microprocessors. In addition to simple elements such as 1-bit flip-flops, FPGAs have
a large set of embedded modules. Large memory elements, DSP arithmetic units, networking
and memory controllers or even embedded microprocessors are available on modern FPGAs
(Leong, 2008).

These devices are an excellent mechanism to build proof-of-concept prototypes. On the one
hand due to their flexibility any computing paradigm can be implemented restricted mainly
for the number of available cells. On the other hand, thanks to the re-programmability it
is possible to debug and test on real hardware. Even more, nowadays some final products
are implemented exclusively on FPGAs instead of migrating the design to custom integrated
circuits. The achieved performance can be tens of times higher with lower power consumption
than standard PC-based approaches (Fasang, 2009). FPGAs are widely employed as
co-processors in personal computers such as GPUs or as accelerators in specific purpose
devices as high-capacity network systems (Djordjevic et al., 2009) or high-performance
computing (Craven & Athanas, 2007). Nowadays, it is possible to embed full systems on a
single FPGA.

One of the major disadvantages of FPGAs is the set-up time, still higher than in pure-software
approaches. Traditional FPGA programming is done with HDL languages, forcing to design
at a very low level. High-level languages, such as C extensions, are more friendly for software
engineers, although the control over the design is much lower (Coussy et al., 2010). The
FPGA-based designs can be exported and distributed as IP Cores because theses languages are
platform-independent unless very specific features of a given FPGA are employed. This way,
non-recurring engineering costs (NRE) are cut-down. Therefore FPGAs are in an intermediate
stage between software and hardware. Algorithms are programmed by software and
compiled to a hardware architecture, so an careful hardware/software codesign is fundamental
(Moreno et al., 2010). They are able to exploit both spatial and temporal parallelism very
efficiently. Since logic cells are independent many arithmetic units can process concurrently,
with custom routing between them. In addition, the memory subsystem can be tuned to
exploit the on-chip memory banks, reducing the access to the external memories.

Regarding Computer Vision, FPGAs are widely used both in industry and research. They
offer a high degree of flexibility and performance to handle many different applications.
Most compute-intensive algorithms were migrated to FPGAs: stereo vision (Jin et al.,
2010), geometric algebra (Franchini et al., 2009), optical flow (Martineau et al., 2007), object
recognition (Meng et al., 2011) or video surveillance (Nair et al., 2005) (Salem et al., 2009) to
name some examples. Low and mid-level image processing stages, based on SIMD/MIMD
paradigms can be efficiently implemented. However, high-level processing, although it could
be possible to implement on an FPGA, fits better on conventional processors. Nevertheless,
FPGAs can use external processors connected through high-speed off-chip communications
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or include general-purpose processors. There are available soft-core (emulated) (Lysecky &
Vahid, 2005) and hard-core (Veale et al., 2006) embedded processors. While the first offer a
large degree of configuration, adapting all parameters of the design to the particular needs of
the applications, the last feature better performance. This way FPGAs are able to implement
all the stages of a complete application (Shi, 2010).

Application-specific integrated circuits

An Application-Specific Integrated Circuit (ASIC) is a device designed for a particular task
instead of for general purpose functionality. In this case, designers have to work at the very
bottom level of design so this process is long and error-prone. As there are elements present in
almost all ICs, a set of libraries is usually provided making easier system-design. This way it is
possible to work at different levels of abstraction. Full Custom designs require a greater effort
because it is necessary to design both functionality and physical layout. However, it allows
better optimizations and performance. Standard Cells allow to focus on the logic operation
instead on the physical design, splitting the process into two parts. Physical design is usually
done by the manufacturer, who provides from simple logic gates to more complex units such
as Flip-Flops or adders. Apart from simple units, third party manufacturers provide more
complex modules for specific functions, known as IP Cores. This way, they can be used as
subcomponents in a large design. There is a large variety of cores to tackle all needs, as
it happens with the FPGAs, and there is available from IO controllers (RAM, PCI-Express,
ethernet) to arithmetic cores (signal processing, video and audio decoding) or even complete
microprocessors.

The IC-level design allows to build embedded systems, System-on-Chip, efficiently. It is
possible to include all the elements of the system on a single chip, even if there are digital,
analog and mixed-signal modules. Nowadays, custom ASICs are the unique alternative for
complex SoCs although FPGAs size grows with each generation and are becoming a viable
alternative. IC design leads to high costs, both in design and manufacturing when production
volume is low. However, some applications still need ICs because the alternatives do not
match with performance, power consumption or size (Kuon & Rose, 2007).

It is true that some of the devices previously mentioned are in some way ASICs. However,
the design of a custom architecture for a concrete algorithm provides the best possible results.
Many custom chips were designed and built instead of mapping them in a programmable
device, for specific algorithms (Kim et al., 2008), domain applications (Stein et al., 2005) or
complete general purpose SoCs (Khailany et al., 2008a).

Because of this flexibility a large set of exotic devices can be found in the market or in the
specialized literature. While some aims to address very specific tasks or novel computing
paradigms, others are taking their first steps on the market after that technology has allowed
its viability. Pixel-parallel Processor Arrays are the natural platform for low-level vision. They
are massively parallel SIMD processors laid down on a 2D grid with a processor-per-pixel
correspondence and local connections among neighbors. Each processor, very simple, can
also include an image sensor to eliminate the IO bottleneck. Some representative examples are
(Foldesy et al., 2008; Garrido et al., 2008; Lopich & Dudek, 2008). There are also approaches
closer to the biological vision, as (Koyanagi et al., 2001) or (Constandinou et al., 2004).
More information is available in (Zarándy, 2011). Massively Parallel Processor Arrays (MPPAs)
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provide hundreds to thousands of processors. They are encapsulated and independent and
have their own program and memories. They work in MIMD mode but also include internal
improvements as pipelines, superscalar capabilities or SIMD units. Some examples are (Bell
et al., 2008; Butts et al., 2007; Duller et al., 2003).

3.3 Discussion

As described previously in this section, there is a wide range of hardware devices suitable
for Computer Vision. Depending on the application requirements, a compromise between
performance, cost, power consumption and development time is needed. Commercial
applications are heavily constrained by the time-to-market so suboptimal solutions are
preferable if the development cycle is shorter. This way, software-based solutions are usually
better from the commercial point of view.

As discussed before, the large amount of highly optimized libraries make PCs (conventional
microprocessors) the first choice both as development and production platform. Multi-core
and SIMD programming are key for performance, although this can significantly increase the
development time. One of the benefits of choosing a PC as platform is that a GPU is included
"at no cost". This is, most application requires some kind of graphical display so including
a GP-capable GPU provides a much greater benefit with a very low cost/performance ratio,
even using a low-cost card. The combined use of CPU-GPU has proved to be very effective,
although very restricted in terms of form factor and specially in power consumption. Only if
these parameters are very constrained DSP-based solutions are preferable. This is the case of
mobile applications, although low-power microprocessors are taking advantage in this field.
As these are extensively used, development kits, compilers and libraries are very optimized,
helping to cut down time-to-market and related costs.

However, if the aforementioned devices do not provide acceptable results, it will be required
to go into the hardware. As application developers, we need to search for exotic devices
such as MPPAs or dedicated image processors. In contrast to the previous devices, these
are not normally industry standards therefore a greater effort during development is needed.
However, we are still under the software coverage. On the contrary, if the requirements are
very strict or if the production volume is very high, a custom chip is the unique alternative
to reach the desired performance or to lower the cost per unit. FPGAs are an excellent
platform for testing before manufacturing the final design in a custom chip. As they are
reconfigurable, different architectures can be evaluated before sending to fabric. On the
other hand, some authors claim than software development is the bottleneck in the current
ASIC development. The software stage can not start until a device where to do tests has been
built. Although emulators (both functional an cycle-accurate) are used, their performance is
very low, resulting in very large test cycles and poor feedback for those programmers at the
hardware control layer. This is why FPGAs are widely used as proof-of-concept devices, as
they enable software development cycles many months before a test chip was built.

Tab. 1 shows performance comparison of a computationally intensive algorithm as SURF
(Bay et al., 2006) for different platforms. PCs offer uneven performance if heavily use
multithreading programming (Zhang, 2010) or a straightforward implementation (Bouris
et al., 2010). GPUs feature very large performance at the expense of high power consumption.
However, FPGA-based implementation delivers the best performance in terms of speed and
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power consumption. Tab. 2 shows a comparison between a low-power CPU and GPU,
compared to an standard laptop CPU. Authors conclude that optimization is critical and a
carefully analysis of low-level operations must be performed but the achieved performance is
quite close to standard conventional processors. Complex algorithms which include a higher
abstraction level as Viola-Jones detector (Viola & Jones, 2001) are also candidate for mobile
platforms. In (Aby et al., 2011), a Beagleboard xM board with a Texas Instruments DM3730
SoC (ARM Cortex-A8 and TMS320C64X DSP) achieves around 0.5x speed-up compared with
a conventional Intel 2.2 GHz processor, both using openCV (Bradski & Kaehler, 2008) library.
In (Arth & Bischof, 2008), a DSP-based embedded system for object recognition achieves
up to 4fps, including SIFT-based feature detection and description and object recognition.
Although with lower performance than other approaches, the major advantage is that the
whole application fits in a single device reducing also power consumption.

Some operations, as the Fourier transform, are computationally very expensive and yet
required in many applications, including low-power, low-cost or high performance devices.
Optimized libraries for both CPU (Takahashi, 2007) and GPU (Ogata et al., 2008) aim to exploit
SIMD units and multitasking, achieving high performance with regard to straightforward
implementations. In particular, Fourier transform operation is very suitable for FPGAs an
ASICs if performance and power consumption is critical. In (He & Guo, 2008), a FFT core
design for FPGAs is proposed, consuming less than 1W in the worst case and lowering
manufacturing cost more than x15 compared with a DSP implementation. In (Guan et al.,
2009), a more aggressive approach is done, developing an application-specific instruction set

processor (ASIP). With very little hardware overhead and a consumption of few tenths of a
watt, outperforms standard software and DSP implementations more than x800 and x5 times
respectively. However, these designs have larger development cycles, as (Pauwels et al., 2011)
depicts. In this work, some low-level operations (phase-based optical flow, stereo and local
image features) are compared both on FPGA and GPU. Tab. 3 summarizes some of the results
of this work. As authors conclude, high-performance or low-cost implementations should
be done on CPUs with GPU co-processing. GPUs overcome FPGAs in terms of absolute
performance due to their memory throughput. However, if a standalone platform is needed,
an FPGA board should meet the requirements or establish the basis for testing and validating
an ASIC design.

Finally, general-purpose custom designs converge form factor, power consumption and
performance. For instance, SCAMP processor (Dudek & Hicks, 2005) exploits the massively
spatial parallelism of low-level operations, integrating processing units and sensors in a
processor-per-pixel fashion. As it is an analog design, the integration density and the
performance is very high, keeping power consumption under 240 mW. Current digital
solutions also offer similar performance and many advantages as faster development and
array scalability. ASPA processor (Lopich & Dudek, 2007) includes novel techniques to
increase performance, specially on global operations, without sacrificing the other trade-offs.
Hardware-oriented algorithms are also key to take advantage of custom hardware. Tab. 4
shows a comparative between different specific-purpose processors executing an active
contour algorithm for retinal-vessel tree extraction. The algorithm is designed for focal-plane
processing arrays. The cycles-per-pixel parameter illustrates how specific platforms are able
to lower hardware requirements and even to increase performance. As well as other custom
designs depicted in this chapter, they are not suitable to handle a whole Computer Vision
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application as they are intended to reduce the workload of the main processor in the more
computational expensive tasks. Approaches as (Khailany et al., 2008b) or (Fijany & Hosseini,
2011) can completely embed highly complex applications without compromise its efficiency.

Device Performance Power (W)

Bouris et al. (2010) Intel Core 2 Duo 2.4 GHz < 7 fps N/S
Zhang (2010) Intel Core 2 Duo P8600 2.4 GHz 33 fps 25
Terriberry et al. (2008) nVidia GeForce 880 GTX 56 fps 200
Bouris et al. (2010) Xilinx Virtex 5XC5VFX130T 70 fps < 20

Table 1. Summary of different SURF (Bay et al., 2006) implementations on different platforms
for images of 640 × 640 px.

Device Un-optimized Optimized

Intel Core 2 Duo Merom 2.4GHz 9.03 fps 16.37 fps
Intel Atom 1.6GHz 2.59 fps 5.48 fps
GMA X3100 GPU 500MHz 1.04 fps 5.75 fps

Table 2. Performance of SIFT (Lowe, 2004) implementations in low-power devices for images
of 640 × 640 px. See (Murphy et al., 2009) for details.

Device Power (W) Cost ($) Time-to-Market (months)

nVidia GeForce GTX 280 236 N.S. 2 (1 persons)
nVidia GeForce GTX 580 244 499 2 (1 persons)
Xilinx Virtex4 xc4vfx100 7.2 2084 15 (2 persons)
Xilinx Virtex5 xc5vlx330t 5.5 12651 12 (2 persons)

Table 3. Main GPU and FPGA costs for optical flow, stereo and local image features
implementation. See (Pauwels et al., 2011) for complete details and performance results.

Device Cores (used/aval.) Performance (s) Cycles-per-pixel

Intel Core i7 940 2.93GHz 4/4 (8 threads) 13.7 357993
SCAMP-3 Visual Processor 16384/16384 0.230 8950
Xilinx Spartan-3 sc3s4000-5 90/90 1.349 14070
Xilinx Virtex-6 xc6vlx240t-1 192/192 0.080 3425

Ambric Am2045 MPPA 125/360 0.0087 742

Table 4. On-chip retinal vessel-tree extraction (hardware-oriented algorithm) on different
platforms. See (Nieto et al., 2011) for complete performance analysis. Note: the algorithm was
slightly adapted for SCAMP-3 and substantially lightened for Ambric Am2045. The FPGA
implementation was carried out faithfully the original algorithm. Virtex-6 results are an estimation.

Looking ahead

The progress of new technologies, marked by Moore’s Law allows increasingly integration
density. More hardware resources, with higher clock frequencies, are available for the
designer. However, although the ultimate goal is to increase the performance, other
parameters come into play. Nowadays, one of the critical trade-offs is power consumption,
directly related with energy efficiency and power dissipation, some of the most decisive
limitation design constraints (Kim et al., 2003).
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Power consumption is driven by two sources, dynamic and static. Static consumption is a result
of the leakage current and it refers when all inputs are held so the circuit is not changing state.
On the contrary, the dynamic term refers to the circuit switching at a given frequency. This
power is dominated in today CMOS circuits, being directly proportional to frequency. This
is one of the capital reasons why the semiconductor industry moves from a race for frequency

to a race for parallelism. In recent years, the industry is making a big effort to increase the
parallelism of most devices to keep the performance increase rate. Apart from more arithmetic
units, leading architectures integrate more systems previously contained on separated circuits,
as microcontrollers or GPUs. To achieve these results, it is still necessary to scale down the
transistors. In this sense, the advent of emerging technologies like CMOS-3D (Philip Garrou,
2008) will permit to integrate heterogeneous functions on the same monolithic solution more
easily. A vision-oriented ASIC could integrate the image acquisition stage to an eventual
processor. At the same time, more conventional solutions as PCs or FPGAs would yield large
parallelization using this and other advances such as the Tri-Gate technology (Intel, 2011).
However, this involves problems as the increment of leakage currents, thereby increasing
static power consumption, not negligible at all nowadays (Koch, 2005) (Kim et al., 2003). In
addition, new manufacturing methods are more expensive because the yield is lower and
more time is needed to discount the investments. Or equivalently, it is necessary to sell more
devices to continue growing at the rate set by Moore’s Law.

Conventional microprocessors are in the leading edge of evolution. There is a large market
which justifies large investments in R&D to meet the growing needs of consumers, especially
by large increase in media consumption. This way, it is now possible to find low-cost multicore
microprocessors. It is expected that the current evolution towards a greater number of cores
will be maintained but increasingly including more elements previously located on external
chips, reducing the bottleneck when communicating with off-chip elements (Singhal, 2008).
New parallel computing techniques need to be developed to take advantage of the available
multithreading capabilities.

PCs also benefit of GPU capabilities. GPU performance grows at a higher rate than
microprocessors. As they are very specialized devices, although featuring general purpose
computing, the technical improvements in the semiconductor industry are clearly more
beneficial. As discussed previously, there are available hardware resources to increase
the parallelism and enhance the datapath pipeline. Leading GPUs have more than 1000
processing units and high speed and bandwidth memories. It is also possible to combine
multi-core GPUs to work together, achieving a very large throughput. Still, their major
disadvantage is being the power consumption. New architectures are taking advantage of
the fixed-function hardware to improve area usage and power efficiency. GPU design will
focus entirely on improving GPGPU computing (Brookwood, 2010a).

DSPs are also moving to multicore architectures. As specialized microprocessors, they
can take advantage of all the improvements in the consumer market, both in hardware
and software improvements such as compilers or other optimization techniques. Although
competitors are strong, DSP will continue to be used because they lead to compact circuit
boards, lower power consumption and cost, if the appropiate device is selected based
on the application requirements. In addition, the benefits of the extensive experience in
DSP development, with shorter time-to-market thanks to the very optimized compilers and

263Towards the Optimal Hardware Architecture for Computer Vision

www.intechopen.com



18 Machine Vision

libraries. This is specially relevant in embedded applications, to take advantage of the
multi-core capabilities of modern DSPs. This way it is possible to integrate several DSP cores,
each one optimized for a specific task, on a single chip (Friedmann, 2010). Low-power devices
which still keeping reasonable performance are fundamental in handled and portable devices,
where traditional microprocessors are not suitable.

Microprocessors and GPUs tend to converge on a single chip. Apart from the obvious
benefits of integration, reducing cost, size, power consumption, the performance will increase
because the reduction of off-chip communications. In addition, architectures as AMD Fusion
integrate in the same units 3D acceleration, parallel processing and other functions of
GPUs (Brookwood, 2010b). On the other hand, mobile microprocessors are becoming more
important. These microprocessors embed very low-power GPUs and auxiliary DSP units for
co-processing in the same chip (NVIDIA, 2011).

Programmable systems, not only FPGAs, are able to get the same performance as recent
past ASICs, keeping time-to-market and non-recurring engineering costs lower compared to
custom ICs. As discussed previously, FPGAs are between software and hardware solutions.
Modern FPGAs experienced a large increase in hardware resources, both in dedicated units
and logic cells. High-level programming languages are another major reason why FPGAs
are becoming increasingly competitive, specially when dealing with complex FPGAs and to
maintain and keep the designs portable (Singh, 2011). Nowadays these devices can address
complete SoCs, integrating memory and IO controller natively. Manufacturer roadmaps show
their inclusion in a very near future and it is expected a big leap in performance and flexibility
(DeHaven, 2010).

4. Summary and conclusions

The large variety of Computer Vision applications makes difficult to classify them into tight
categories. As a result, it is extremely difficult to design a unique hardware architecture
which handle efficiently all processing stages of any Computer Vision algorithm. In the
literature there are available several studies where different platforms are tested under the
same conditions (Asano et al. (2009); Baumgartner et al. (2009); Kisacanin (2005); Wnuk
(2008)). They show that to tune-up is key for performance and that new parallel computing
techniques are a requirement to exploit parallel devices. However, the increase of the market
makes investment in new platforms that implement different algorithms a necessity.

The most accessible platform is a Personal Computer equipped with a GP-capable GPU.
As test or final platform, it cuts down developing time and costs. GPUs give enough
performance for most intensive tasks, while using the CPU multimedia extensions it is
possible to meet the requirements in the other stages. In addition, they include all necessary
elements for user IO, communication, storage and information display. The availability of
models is large enough to select the adequate platform according to the application trade-offs.
When CPU performance is not adequate, DSPs are a serious alternative. In addition, it
becomes almost mandatory when dealing with embedded devices without compromising
performance, where power consumption and form factor are very restrictive. They are
widely used for prototyping custom ICs but FPGA-based applications have their own niche.
Integration and high flexibility besides a large number of available IP Cores allow to drop NRE
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costs. Although all devices described in this chapter are ASICs, they were not conceived for
an unique application. To lower costs, the manufacturer expands their range of application
although it is possible to find families specialized in specific tasks. But there are available
devices very specific for critical tasks, where the requirements are very tight and any other
device complies with them. Flexibility is complete and there is not restriction to employ
cutting-edge technologies which are not available in commercial devices until a near future.

Almost all Computer Vision applications need to face all processing stages in a lesser or a
greater degree. Generally, this leads to implement efficient mechanisms to tackle massively
spatial parallelism, mixed spatial and temporal parallelism and sequential processing. Each
stage matches with a level of processing so all mechanisms have to be implemented in most
applications. Low-level stages benefit of massively parallelism with simple data distribution
systems as operations. When the data abstraction level grows, during mid-level tasks, more
information about the problem is required by the algorithms increasing their complexity. This
leads to complex architectures, where information distribution and sharing makes difficult to
exploit spatial parallelism, although it is usually present. Task-parallel architectures are able
to exploit better their possibilities. Low and mid-level processing stages can be implemented
in pure hardware solutions because they often implement kernel operations. However,
high-level is closer to software and designers can take advantage of this to build complex
systems easier by using general purpose processors. In addition, the device which performs
the image processing related tasks needs to communicate or to control other devices. This
is not strictly related with the Computer Vision domain but it is clearly a requirement in the
final solution. In this case, the use of a general purpose processor is beneficial because it allows
easier control and it increases the flexibility of the whole system.

Although it is almost impossible to develop a system able to run all operations in an optimal
way due to the rich nature of the Computer Vision applications, it is desirable to provide the
capability to perform any operation. The design must be scalable to adapt it to the specific
needs of each application. This way, a product ranging from low to high-end devices can be
easily built. The internal architecture should be also modular, so that from a basic outline more
features could be added without dramatic changes. In general, a high-end microprocessor is a
requirement to manage complex operations and communications between the system and the
external components of the complete system. An on-chip SIMD-MIMD hybrid co-processor
would tackle the most expensive computation, reconfiguring its internal interconnections
according to the current task. Embedded high-speed memory controllers are also key to
reduce the data-access bottleneck. All these elements, together, are able to face efficiently
most of the situations described throughout this chapter.
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