We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

2

Analysis of the Performance of the Fish
School Search Algorithm Running in
Graphic Processing Units

Anthony J. C. C. Lins, Carmelo J. A. Bastos-Filho, Débora N. O. Nascimento,
Marcos A. C. Oliveira Junior and Fernando B. de Lima-Neto

Polytechnic School of Pernambuco, University of Pernambuco

Brazil

1. Introduction

Fish School Search (FSS) is a computational intelligence technique invented by Bastos-Filho
and Lima-Neto in 2007 and first presented in Bastos-Filho et al. (2008). FSS was conceived
to solve search problems and it is based on the social behavior of schools of fish. In the
FSS algorithm, the search space is bounded and each possible position in the search space
represents a possible solution for the problem. During the algorithm execution, each fish
has its positions and weights adjusted according to four FSS operators, namely, feeding,
individual movement, collective-instinctive movement and collective-volitive movement. FSS
is inherently parallel since the fitness can be evaluated for each fish individually. Hence, it is
quite suitable for parallel implementations.

In the recent years, the use of Graphic Processing Units (GPUs) have been proposed for
various general purpose computing applications. Thus, GPU-based platforms afford great
advantages on applications requiring intensive parallel computing. The GPU parallel floating
point processing capacity allows one to obtain high speedups. These advantages together
with FSS architecture suggest that GPU based FSS may produce marked reduction in
execution time, which is very likely because the fitness evaluation and the update processes
of the fish can be parallelized in different threads. Nevertheless, there are some aspects
that should be considered to adapt an application to be executed in these platforms, such
as memory allocation and communication between blocks.

Some computational intelligence algorithms already have been adapted to be executed in
GPU-based platforms. Some variations of the Particle Swarm Optimization (PSO) algorithm
suitable for GPU were proposed by Zhou & Tan (2009). In that article the authors compared
the performance of such implementations to a PSO running in a CPU. Some tests regarding the
scalability of the algorithms as a function of the number of dimensions were also presented.
Bastos-Filho et al. (2010) presented an analysis of the performance of PSO algorithms when
the random number are generated in the GPU and in the CPU. They showed that the XORshift
Random Number Generator for GPUs, described by Marsaglia (2003), presents enough quality
to be used in the PSO algorithm. They also compared different GPU-based versions of the PSO
(synchronous and asynchronous) to the CPU-based algorithm.

www.intechopen.com

18 Theory and New Applications of Swarm Intelligence

Zhu & Curry (2009) adapted an Ant Colony Optimization algorithm to optimize benchmark
functions in GPUs. A variation for local search, called SIMT-ACO-PS (Single Instruction
Multiple Threads - ACO - Pattern Search), was also parallelized. They presented some
interesting analysis on the parallelization process regarding the generation of ants in order
to minimize the communication overhead between CPU-GPU. The proposals achieved
remarkable speedups.

To the best of our knowledge, there is no FSS implementations for GPUs. So, in this paper we
present the first parallel approach for the FSS algorithm suitable for GPUs. We discuss some
important issues regarding the implementation in order to improve the time performance.
We also consider some other relevant aspects, such as when and where it is necessary to set
synchronization barriers. The analysis of these aspects is crucial to provide high performance
FSS approaches for GPUs. In order to demonstrate this, we carried out simulations using a
parallel processing platform developed by NVIDIA, called CUDA.

This paper is organized as follows: in the next Section we present an overview of the FSS
algorithm. In Section 3, we introduce some basic aspects of the NVIDIA CUDA Architecture
and GPU Computing. Our contribution and the results are presented in Sections 4 and 5,
respectively. In the last Section, we present our conclusions, where we also suggest future
works.

2. Fish School Search

Fish School Search (FSS) is a stochastic, bio-inspired, population-based global optimization
technique. As mentioned by Bastos-Filho et al. (2008), FSS was inspired in the gregarious
behavior presented by some fish species, specifically to generate mutual protection and
synergy to perform collective tasks, both to improve the survivability of the entire group.

The search process in FSS is carried out by a population of limited-memory individuals - the
fish. Each fish in the school represents a point in the fitness function domain, like the particles
in the Particle Swarm Optimization (PSO) Kennedy & Eberhart (1995) or the individuals in the
Genetic Algorithms (GA) Holland (1992). The search guidance in FSS is driven by the success
of the members of the population.

The main feature of the FSS is that all fish contain an innate memory of their success - their
weights. The original version of the FSS algorithm has four operators, which can be grouped
in two classes: feeding and swimming. The Feeding operator is related to the quality of a
solution and the three swimming operators drive the fish movements.

2.1 Individual movement operator

The individual movement operator is applied to each fish in the school in the beginning
of each iteration. Each fish chooses a new position in its neighbourhood and then, this
new position is evaluated using the fitness function. The candidate position 7; of fish i is
determined by the Equation (1) proposed by Bastos-Filho et al. (2009).

#i(t) = X;(t) + rand[—1,1].step;na, (1)

where ¥; is the current position of the fish in dimension 7, rand[-1,1] is a random number
generated by an uniform distribution in the interval [-1,1]. The step;,; is a percentage of
the search space amplitude and is bounded by two parameters (step;,g i and steping max)-

www.intechopen.com

Analysis of the Performance of the Fish School
Search Algorithm Running in Graphic Processing Units 19

The step;,,; decreases linearly during the iterations in order to increase the exploitation ability
along the iterations. After the calculation of the candidate position, the movement only occurs
if the new position presents a better fitness than the previous one.

2.2 Feeding operator

Each fish can grow or diminish in weight, depending on its success or failure in the search for
food. Fish weight is updated once in every FSS cycle by the feeding operator, according to
equation (2).

Wit +1) = W) + —2fi @

¢ i max(Af)’

where W;(t) is the weight of the fish i, f[¥;(¢)] is the value for the fitness function (i.e. the
amount of food) in ¥;(t), Af; is the difference between the fitness value of the new position
f[%;(t+1)] and the fitness value of the current position for each fish f[X;(t)], and the max(Af)
is the maximum value of these differences in the iteration. A weight scale (W) is defined
in order to limit the weight of fish and it will be assigned the value for half the total number

of iterations in the simulations. The initial weight for each fish is equal to SC”"’

2.3 Collective-instinctive movement operator

After all fish have moved individually, their positions are updated according to the influence
of the fish that had successful individual movements. This movement is based on the fitness
evaluation of the fish that achieved better results, as shown in equation (3).

N
Y A% {f[%i(t+ 1] = fIXi(1)]}

%i(t+1) = xi(t) + = : ®)

Y {fIE(E+1)] = fIE(D]}

i=1

where A¥;,,;, is the displacement of the fish i due to the individual movement in the FSS cycle.
One must observe that AX;,,;, = 0 for fish that did not execute the individual movement.

2.4 Collective-volitive movement operator

The collective-volitive movement occurs after the other two movements. If the fish school
search has been successful, the radius of the school should contract; if not, it should
dilate. Thus, this operator increases the capacity to auto-regulate the exploration-exploitation
granularity. The fish school dilation or contraction is applied to every fish position with
regards to the fish school barycenter, which can be evaluated by using the equation (4):

We use equation (5) to perform the fish school expansion (in this case we use sign +) or
contraction (in this case we use sign —).

(4)

S . X:(t) —
Xi(t+1) = %i(t) £ stepyor—

!
15 (0, B(D)’ ©

~

www.intechopen.com

20 Theory and New Applications of Swarm Intelligence

where r; is a number randomly generated in the interval [0,1] by an uniform probability
density function. d(;(t), B(t)) evaluates the euclidean distance between the particle i and the
barycenter. step,,; is called volitive step and controls the step size of the fish. step,,; is defined
as a percentage of the search space range and is bounded by two parameters (stepy,; i, and
stePyol max)- Stepyor decreases linearly from step,o yax tO stepyer min along the iterations of
the algorithm. It helps the algorithm to initialize with an exploration behavior and change
dynamically to an exploitation behavior.

3. GPU computing and CUDA architecture

In recent years, Graphic Processing Units (GPU) have appeared as a possibility to
drastically speed up general-purpose computing applications. Because of its parallel
computing mechanism and fast float-point operation, GPUs were applied successfully in
many applications. Some examples of GPU applications are physics simulations, financial
engineering, and video and audio processing. Despite all successful applications, some
algorithms can not be effectively implemented for GPU platforms. In general, numerical
problems that present parallel behavior can obtain profits from this technology as can be seen
in NVIDIA (2010a).

Even after some efforts to develop Applications Programming Interface (API) in order to
facilitate the developer activities, GPU programming is still a hard task. To overcome
this, NVIDIA introduced a general purpose parallel computing platform, named Computer
Unified Device Architecture (CUDA). CUDA presents a new parallel programming model to
automatically distribute and manage the threads in the GPUs.

CUDA allows a direct communication of programs, written in C programming language,
with the GPU instructions by using minimal extensions. It has three main abstractions: a
hierarchy of groups of threads, shared memories and barriers for synchronization NVIDIA
(2010b). These abstractions allow one to divide the problem into coarse sub-problems, which
can be solved independently in parallel. Each sub-problem can be further divided in minimal
procedures that can be solved cooperatively in parallel by all threads within a block. Thus,
each block of threads can be scheduled on any of the available processing cores, regardless of
the execution order.

Some issues must be considered when modeling the Fish School Search algorithm for the
CUDA platform. In general, the algorithm correctness must be guaranteed, once race
conditions on a parallel implementation may imply in outdated results. Furthermore, since
we want to execute the algorithm as fast as possible, it is worth to discuss where it is necessary
to set synchronization barriers and in which memory we shall store the algorithm information.

The main bottleneck in the CUDA architecture lies in the data transferring between the
host (CPU) and the device (GPU). Any transfer of this type may reduce the time execution
performance. Thus, this operation should be avoided whenever possible. One alternative is
to move some operations from the host to the device. Even when it seems to be unnecessary
(not so parallel), the generation of data in the GPU is faster than the time needed to transfer
huge volumes of data.

CUDA platforms present a well defined memory hierarchy, which includes distinct types of
memory in the GPU platform. Furthermore, the time to access these distinct types of memory
vary. Each thread has a private local memory and each block of threads has a shared memory

www.intechopen.com

Analysis of the Performance of the Fish School
Search Algorithm Running in Graphic Processing Units 21

accessible by all threads inside the block. Moreover, all threads can access the same global
memory. All these memory spaces follow a memory hierarchy: the fastest one is the local
memory and the slowest is the global memory; accordingly the smallest one is the local
memory and the largest is the global memory. Then, if there is data that must be accessed
by all threads, the shared memory might be the best choice. However, the shared memory
can only be accessed by the threads inside its block and its size is not very large. On the FSS
versions, most of the variables are global when used on kernel functions. Shared memory
was also used to perform the barycenter calculations. Local memory were used to assign
the thread, block and grid dimension indexes on the device and also to compute the specific
benchmark function.

Another important aspect is the necessity to set synchronization barriers. A barrier forces
a thread to wait until all other threads of the same block reach the barrier. It helps to
guarantee the correctness of the algorithm running on the GPU, but it can reduce the
time performance. Furthermore, threads within a block can cooperate among themselves
by sharing data through some shared memory and must synchronize their execution to
coordinate the memory accesses (see Fig. 1). Although the GPUs are famous because of their

Block (0,0) Block (1,0) Block (2,0)
Block (0,1] Block (1,1) Block (2,1)
> 7 \ ~
Block
(1.1) Thread Thread Thread . Thread
Thread Thread Thread . Thread
(0,1) (1,1) (2,1) ; (15,1)
Thread Thread Thread . Thread
(0,15) (1,15) (2,15) - (15,15)

Fig. 1. llustration of a Grid of Thread Blocks

parallel high precision operations, there are GPUs with only single precision capacity. Since
many computational problems need double precision computation, this limitation may lead
to bad results. Therefore, it turns out that these GPUs are inappropriate to solve some types
of problems.

The CUDA capacity to execute a high number of threads in parallel is due to the hierarchical
organization of these threads as a grid of blocks. A thread block is set of processes which

www.intechopen.com

22 Theory and New Applications of Swarm Intelligence

cooperate in order to share data efficiently using a fast shared memory. Besides, a thread
block must synchronize themselves to coordinate the accesses to the memory.

The maximum number of threads running in parallel in a block is defined by its number
of processing units and its architecture. Therefore, each GPU has its own limitation. As
a consequence, an application that needs to overpass this limitation have to be executed
sequentially with more blocks, otherwise it might obtain wrong or, at least, outdated results.

The NVIDIA CUDA platform classify the NVIDIA GPUs using what they call Compute
Capability as depicted in NVIDIA (2010b). The cards with double-precision floating-point
numbers have Compute Capability 1.3 or 2.x. The cards with 2.x Capability can run up to
1,024 threads in a block and has 48 KB of shared memory space. The other ones only can
execute 512 threads and have 16 KB of shared memory space.

C program execution
e ——
Parallel kernel Block (0,0) ~ Block (1,0)
Kernel 0
Block (0,1) Block (1,1)
POEIRG St Block (0,0) = Block (1,0) = Block (2,0)
Kernel 1
Block (0,1) = Block (1,1) = Block (2,1)

Fig. 2. CUDA C program structure

3.1 Data structures, kernel functions and GPU-operations

In order to process the algorithm in parallel, one must inform the CUDA platform the number
of parallel copies of the Kernel functions to be performed. These copies are also known as
parallel blocks and are divided into a number of execution threads.

The structures defined by grids can be split into blocks in two dimensions. The blocks are
divided in threads that can be structured from 1 to 3 dimensions. As a consequence, the
kernel functions can be easily instantiated (see Fig. 2). In case of a kernel function be invoked

www.intechopen.com

Analysis of the Performance of the Fish School
Search Algorithm Running in Graphic Processing Units 23

by the CPU, it will run in separated threads within the corresponding block. For each thread
that executes a kernel function there is a thread identifier that allows one to access the threads
within the kernel through two built-in variables threadldx and blockldx. The size of data to be
processed or the number processors available in the system are used to define the number of
thread blocks in a grid. The GPU architecture and its number of processors will define the
maximum number of threads in a block. On the current GPUs, a thread block may contain
up to 1024 threads. For this chapter, the simulations were made with GPUs that supports up
to 512 threads. Table 1 presents the used configuration for grids, blocks and thread for each
kernel function. Another important concept in CUDA architecture is related to Warp, which
refers to 32 threads grouped to get executed in lockstep, i.e. each thread in a warp executes
the same instruction on different data Sanders & Kandrot (2010). In this chapter, as already
mentioned, the data processing is performed directly in the memories.

Confi ti
Type of Kernel Functions oniguranons
Blocks| Threads| Grids
Setting positions, movement operators 2 512 |(512,2)
Fitness and weights evaluations, feeding operator| 1 36 (36,1)

Table 1. Grids, Blocks and Threads per blocks structures and dimension sizes

CUDA defines different types of functions. A Host function can only be called and executed
by the CPU. kernel functions are called only by the CPU and executed by the device (GPU).
For these functions, the qualifier __global__ must be used to allow one to access the functions
outside the device. The qualifier __device__ declares which kernel function can be executed in
the device and which ones can only be invoked from the device NVIDIA (2010b).

The FSS pseudocode shown in algorithm 1 depicts which functions can be parallelized in
GPUs.

4. Synchronous and asynchronous GPU-based Fish School Search
4.1 The synchronous FSS

The synchronous FSS must be implemented carefully with barriers to prevent any race
condition that could generate wrong results. These barriers, indicated by __syncthreads()
function in CUDA, guarantee the correctness but it comes with a caveat. Since the fish need
to wait for all others, all these barriers harm the performance.

In the Synchronous version the synchronization barriers were inserted after the following
functions (see algorithm 1): fitness evaluations, update new position, calculate fish weights,
calculate barycenter and update steps values.

4.2 The asynchronous FSS

In general, an iteration of the asynchronous approach is faster than the synchronous one due
to the absence of some synchronization barriers. However, the results will be probably worse,
since the information acquired is not necessarily the current best.

Here, we propose two different approaches for Asynchronous FSS. The first one, called
Asynchronous - Version A, presents some points in the code with synchronization barriers. In

www.intechopen.com

24

Theory and New Applications of Swarm Intelligence

Algorithm 0.1: Pseudocode of the Synchronous FSS

begin

Declaration and allocation of memory variables for the Kernel operations;

w <— number_of_simulations;

for i <— 1to Numberofiterations do
Start timer event;
/+ calling Kernel functions
Initialization_Positions;
Initialization_Fish_Weights;
Fitness_evaluation;
Synchronization_Barrier;

*/

while number_of_iterations_not_achieved do

/* Individual operator

*/

Calculate_New_Individual_Movement;
Calculate_Fitness_for_New_Position;

Update_New_Position;
Synchronization_Barrier;
Calculate_Fitness_Diference;
/* Feeding operator
Calculate_Fish_Weights;
Synchronization_Barrier;
Calculate_Weights_Difference;

/+ Collective Instinctive operator

Calculate_Instinctive_Movement;
Update_New_Position;
Synchronization_Barrier;

/+ Collective Volitive operator

Calculate_Barycentre;
Synchronization_Barrier;
Calculate_Volitive_Movement;
Fitness_Evaluation;
Synchronization_Barrier;
/* Updating steps
Update_Individual_Step;
Update_Volitive_Step;
Synchronization_Barrier;
end
/* Copy Kernel values to Host
Copy_Kernel_Fitness_Value_To_Host;
Stop timer event;
Compute_Running_Time;
end
Free_memory_variables;
end

*/

*/

*/

www.intechopen.com

Analysis of the Performance of the Fish School
Search Algorithm Running in Graphic Processing Units 25

this case, were have maintained the synchronization barriers only in the functions used to
update the positions and evaluate the barycenter. The pseudocode of the Asynchronous FSS -
Version A is shown in algorithm 2. In the second approach, called Asynchronous - Version B, all
the synchronization barriers were removed from the code in order to have a full asynchronous
version. The pseudocode of the Asynchronous FSS - Version B is shown in algorithm 3.

Algorithm 0.2: Pseudocode of the Asynchronous FSS - Version A

begin
gDeclaration and allocation of memory variables for the Kernel operations;
w <— number_of_simulations;
for i <— 1 to Numberofiterations do
Start timer event;
/* calling Kernel functions */
Initialization_Positions;
Initialization_Fish_Weights;
Fitness_evaluation;
while number_of_iterations_not_achieved do
/* Individual operator */
Calculate_New_Individual_Movement;
Calculate_Fitness_for_New_Position;
Update_New_Position;
Synchronization_Barrier;
Calculate_Fitness_Diference;
/* Feeding operator */
Calculate_Fish_Weights;
Calculate_Weights_Difference;
/+ Collective Instinctive operator %/
Calculate_Instinctive_Movement;
Update_New_Position;
Synchronization_Barrier;
/+ Collective Volitive operator %/
Calculate_Barycentre;
Synchronization_Barrier;
Calculate_Volitive_ Movement;
Fitness_Evaluation;
/* Updating steps */
Update_Individual_Step;
Update_Volitive_Step;
end
/* Copy Kernel values to Host */
Copy_Kernel_Fitness_Value_To_Host;
Stop timer event;
Compute_Running_Time;
end
Free_memory_variables;
end

www.intechopen.com

26

Theory and New Applications of Swarm Intelligence

Algorithm 0.3: Pseudocode of the Asynchronous FSS - Version B

begin

Declaration and allocation of memory variables for the Kernel operations;

w <— number_of_simulations;
for i <— 1to Numberofiterations do

Start timer event;

/* calling Kernel functions

Initialization_Positions;

Initialization_Fish_Weights;

Fitness_evaluation;

while number_of_iterations_not_achieved do
/+ Individual operator
Calculate_New_Individual_Movement;
Calculate_Fitness_for_New_Position;
Update_New_Position;
Calculate_Fitness_Diference;
/+ Feeding operator
Calculate_Fish_Weights;
Calculate_Weights_Difference;
/* Collective Instinctive operator
Calculate_Instinctive_Movement;
Update_New_Position;
/* Collective Volitive operator
Calculate_Barycentre;
Calculate_Volitive_Movement;
Fitness_Evaluation;
/* Updating steps
Update_Individual_Step;
Update_Volitive_Step;

end

/+ Copy Kernel values to Host

Copy_Kernel_Fitness_Value_To_Host;

Stop timer event;

Compute_Running_Time;

end
Free_memory_variables;

end

*/

5. Simulation setup and results

The FSS versions detailed in the previous section were implemented on the CUDA Platform.
In this section we present the simulations executed in order to evaluate the fitness
performance of these different approaches. We also focused on the analysis of the execution

time.

www.intechopen.com

Analysis of the Performance of the Fish School
Search Algorithm Running in Graphic Processing Units 27

In order to calculate the execution time for each simulation we have used the CUDA event
API, which handles the time of creation and destruction events and also records the time of
the events with the timestamp format NVIDIA (2010b).

We used a 1296 MHz GeForce GTX 280 with 240 Processing Cores to run the GPU-based FSS
algorithms. All simulations were performed using 30 fish and we run 50 trial to evaluate the
average fitness. All schools were randomly initialized in an area far from the optimal solution
in every dimension. This allows a fair convergence analysis between the algorithms. All the
random numbers needed by the FSS algorithm running on GPU were generated by a normal
distribution using the proposal depicted in Bastos-Filho et al. (2010).

In all these experiments we have used a combination of individual and volitive steps at
both initial and final limits with a percentage of the function search space Bastos-Filho et al.
(2009). Table 2 presents the used parameters for the steps (individual and volitive). Three

St 1
Operator °p vae

Initial Final

Individual |10%(2 * max (searchspace))|1%(2 * max(searchspace))
Volitive 10%(Stepindinitial) 10%(Stepind,final)

Table 2. Initial and Final values for Individual and Volitive steps.

benchmark functions were used to employ the simulations and are described in equations (6)
to (8). All the functions are used for minimization problems. The Rosenbrock function is a
simple uni-modal problems. The Rastrigin and the Griewank functions are highly complex
multimodal functions that contains many local optima.

The first one is Rosenbrock function. It has a global minimum located in a banana-shaped
valley. The region where the minimum point is located is very easy to reach, but the
convergence to the global minimum is hard to achieve. The function is defined as follows:

FRrosenbrock (X) = Z X [100(3(1_,_1 — X) +(1- X,’)2] . (6)
i=1

The second function is the generalized Rastrigin, a multi-modal function that induces the
search to a deep local minima arranged as sinusoidal bumps:

n

Frastri gzn = Z
=1

— 10cos(27x;)] (7)

Equation (8) shows the Griewank function, which is a multimodal function:

n
FGrlewank 000 < > (8)

All simulations were carried out in 30 dimensions. Table 3 presents the search space
boundaries, the initialization range in the search space and the optima values. Figures 3, 4
and 5 present the fitness convergence along 10,000 iterations for the Rosenbrock, Rastrigin and

www.intechopen.com

28 Theory and New Applications of Swarm Intelligence

. Parameters
Function

Search Space Initialization |Optima
Rosenbrock| —30 < x; <30 | 15<x <30 | 107
Rastrigin |—5.12 < &; < 5.12|2.56 < ¥; < 5.12| 0.0
Griewank | —600 < % < 600 | 300 < &; < 600 | 0.0

Table 3. Function used: search space, initialization range and optima.

Griewank, respectively. Tables 4, 5 and 6 present the average value of the fitness and standard
deviation at the 10,000 iteration for the Rosenbrock, Rastrigin and Griewank, respectively.

Analyzing the convergence of the fitness values, the results for the parallel FSS versions on
the GPU demonstrate that there are no reduction on the quality performance over the original
version running on the CPU. Furthermore, there is a slight improvement in the quality of
the values found for the Rastrigin function (see Fig. 4), specially for the asynchronous FSS
version B. It might occurs because the outdated data generated by the race condition can
avoid premature convergence to local minima in multimodal problems.

Rosenbrock

1.0x10"*
1.0x10"
1.0x10"°

CPU

GPLU - Synchronous
GPU - Asynchronous A
GPLU - Asynchronous B

e & b X

Fitness value
=]
2

CEEREREEEG

Number of Iterations

10000+
11000-

Fig. 3. Rosenbrock’s fitness convergence as a function of the number of iterations.

Fit
Algorithm Version i
Average |Std Dev
CPU 28.91 0.02
GPU Synchronous 28.91 0.01

GPU Asynchronous A| 28.91 0.01
GPU Asynchronous B| 28.90 0.02

Table 4. The Average Value and Standard Deviation of the Fitness value at the 10,000
iteration for Rosenbrock function.

Tables 7, 8 and 9 present the average value and the standard deviation of the execution
time and the speedup for the Rosenbrock, Rastrigin and Griewank functions, respectively.

www.intechopen.com

Analysis of the Performance of the Fish School

Search Algorithm Running in Graphic Processing Units 29
Rastrigin
1000
100} x CPU
& GPU - Synchronous
< GPU - Asynchronous A
o GPU - Asynchronous B

Fitness value

CERE EEERE:

Number of Iterations

11000-

Fig. 4. Rastrigin’s fitness convergence as a function of the number of iterations.

Fit
Algorithm Version 1ress
Average |Std Dev
CPU 2.88e-07 |5.30e-08

GPU Synchronous 1.81e-07 |4.66e-08
GPU Asynchronous A|2.00e-07 |2.16e-08
GPU Asynchronous B |1.57e-07 |1.63e-08

Table 5. The Average Value and Standard Deviation of the Fitness value at the 10,000
iteration for Rastrigin function.

Griewank
10000
x CPU
1000 & GPU - Synchronous
3 1004 bt o GPU - Asynchronous A
g 10~ o GPU - Asynchronous B
2 a5
0n 1
= L+]
iE: 0.1 &
0.01+ a
T T T T T I LI L XL 2
=)
S§8888E88¢8¢

Number of Iterations

Fig. 5. Griewank’s fitness convergence as a function of the number of iterations.

According to these results, all FSS implementations based on the GPU achieved a time
performance around 6 times better than the CPU version.

www.intechopen.com

30 Theory and New Applications of Swarm Intelligence

Fit
Algorithm Version 1ress
Average |Std Dev
CPU 1.67 0.74

GPU Synchronous 3.27e-0513.05e-05
GPU Asynchronous A|2.91e-05|1.87e-05
GPU Asynchronous B |3.08e-05 |1.54e-05

Table 6. The Average Value and Standard Deviation of the Fitness value at the 10,000
iteration for Griewank function.

Time (ms)

Algorithm Version
Average |Std Dev|Speedup

CPU 6691.08 | 1020.97 -

GPU Synchronous 2046.14 | 61.53 3.27
GPU Asynchronous A| 1569.36 | 9.29 4.26
GPU Asynchronous B | 1566.81 | 7.13 4.27

Table 7. The Average Value and Standard Deviation of the Execution Time and Speedup
Analysis for Rosenbrock function.

Ti
Algorithm Version ime (ms)

Average |Std Dev |Speedup
CPU 9603.55 | 656.48 -
GPU Synchronous 2003.58 | 2.75 4.79
GPU Asynchronous A| 1567.08 | 2.11 6.13
GPU Asynchronous B | 1568.53 | 4.40 6.13

Table 8. The Average Value and Standard Deviation of the Execution Time and Speedup
Analysis for Rastrigin function.

Time (ms)

Algorithm Version
Average |Std Dev |Speedup

CPU 10528.43| 301.97 -

GPU Synchronous 1796.07 | 2.77 5.86
GPU Asynchronous A| 1792.43 | 2.88 5.87
GPU Asynchronous B | 1569.36 | 9.30 6.71

Table 9. The Average Value and Standard Deviation of the Execution Time and Speedup
Analysis for Griewank function.

www.intechopen.com

Analysis of the Performance of the Fish School
Search Algorithm Running in Graphic Processing Units 31

6. Conclusion

In this chapter, we presented a parallelized version of the Fish School Search (FSS) algorithm
for graphics hardware acceleration platforms. We observed a significant reduction of the
computing execution time when compared to the original FSS version running on CPU. This
swarm intelligence technique proved to be very well adapted to solving some optimization
problems in a parallel manner. The computation time was significantly reduced and better
optimization results were obtained more quickly with GPU parallel computing. Since FSS can
be easily parallelized, we demonstrated that by implementing FSS in GPU one can benefit
from the distributed float point processing capacity. We obtained a speedup around 6 for a
cheap GPU-card. We expect to have a higher performance in more sophisticated GPU-based
architectures. Since the Asynchronous version achieved the same fitness performance with
a lower processing time, we recommend this option. As future work, one can investigate
the performance in more complex problems and assess the scalability in more advanced
platforms.

7. Acknowledgments

The authors would like to thank FACEPE, CNPq, UPE and POLI (Escola Politécnica de
Pernambuco).

8. References

Bastos-Filho, C. J. A., Lima Neto, F. B., Lins, A. J. C. C., Nascimento, A. I. S. & Lima, M. P.
(2008). A novel search algorithm based on fish school behavior, Systems, Man and
Cybernetics, 2008. SMC 2008. IEEE International Conference on, pp. 2646 —2651.

Bastos-Filho, C.]J. A., Lima-Neto, E. B., Sousa, M. E. C., Pontes, M. R. & Madeiro, S. S. (2009). On
the influence of the swimming operators in the fish school search algorithm, Systems,
Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on, pp. 5012 -5017.

Bastos-Filho, C. J. A., Oliveira Junior, M. A. C., Nascimento, D. N. O. & Ramos, A. D. (2010).
Impact of the random number generator quality on particle swarm optimization
algorithm running on graphic processor units, Hybrid Intelligent Systems, 2010. HIS
"10. Tenth International Conference on pp. 85-90.

Holland, J. H. (1992). Adaptation in natural and artificial systems, MIT Press, Cambridge, MA,
USA.

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization, Vol. 4, pp. 1942-1948 vol 4.
URL: http://dx.doi.org/10.1109/ICNN.1995.488968

Marsaglia, G. (2003). Xorshift rngs, Journal of Statistical Software 8(14): 1-6.

URL: http://www.jstatsoft.org/v08/i14

NVIDIA (2010a). CUDA C Best Practices Guide 3.2.

NVIDIA (2010b). NVIDIA CUDA Programming Guide 3.1.

Sanders, J. & Kandrot, E. (2010). CUDA By Example: an introduction to general-purpose GPU
programming.

Zhou, Y. & Tan, Y. (2009). Gpu-based parallel particle swarm optimization, Evolutionary
Computation, 2009. CEC '09. IEEE Congress on, pp. 1493 —1500.

www.intechopen.com

32 Theory and New Applications of Swarm Intelligence

Zhu, W. & Curry, J. (2009). Parallel ant colony for nonlinear function optimization with
graphics hardware acceleration, Systems, Man and Cybernetics, 2009. SMC 2009. IEEE
International Conference on, pp. 1803 —1808.

www.intechopen.com

Theory and New Applications of Swarm Intelligence
Edited by Dr. Rafael Parpinelli

ISBN 978-953-51-0364-6

Hard cover, 194 pages

Publisher InTech

Published online 16, March, 2012
Published in print edition March, 2012

The field of research that studies the emergent collective intelligence of self-organized and decentralized
simple agents is referred to as Swarm Intelligence. It is based on social behavior that can be observed in
nature, such as flocks of birds, fish schools and bee hives, where a number of individuals with limited
capabilities are able to come to intelligent solutions for complex problems. The computer science community
have already learned about the importance of emergent behaviors for complex problem solving. Hence, this
book presents some recent advances on Swarm Intelligence, specially on new swarm-based optimization
methods and hybrid algorithms for several applications. The content of this book allows the reader to know
more both theoretical and technical aspects and applications of Swarm Intelligence.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Anthony J. C. C. Lins, Carmelo J. A. Bastos-Filho, Débora N. O. Nascimento, Marcos A. C. Oliveira Junior and
Fernando B. de Lima-Neto (2012). Analysis of the Performance of the Fish School Search Algorithm Running
in Graphic Processing Units, Theory and New Applications of Swarm Intelligence, Dr. Rafael Parpinelli (Ed.),
ISBN: 978-953-51-0364-6, InTech, Available from: http://www.intechopen.com/books/theory-and-new-
applications-of-swarm-intelligence/analysis-of-the-performance-of-the-fish-school-search-algorithm-running-in-
graphic-processing-units

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE EEmERFERESS _ EBEFF R AIRE M AKI0582TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Atiribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

