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Swarm-Based Metaheuristic Algorithms and
No-Free-Lunch Theorems

Xin-She Yang
National Physical Laboratory
United Kingdom

1. Introduction

Metaheuristic algorithms, especially those based on swarm intelligence (SI), form an
important part of contemporary global optimization algorithms (Kennedy and Ebarhart, 1995;
Yang, 2008; Auger and Teytaud, 2010; Auger and Doerr, 2010; Blum and Roli, 2003; Neumann
and Witt 2010; Parpinelli and Lopes, 2011). Good examples are particle swarm optimization
(PSO) (Kennedy and Eberhart, 1995) and firefly algorithm (FA) (Yang, 2009). They work
remarkably efficiently and have many advantages over traditional, deterministic methods
and algorithms, and thus they have been applied in almost all area of science, engineering
and industry (Floudas and Pardolos, 2009; Yang 2010a, Yang, 2010b; Yu et al., 2005).

The main characteristics of swarm intelligence is that multiple self-interested agents somehow
work together without any central control. These agents as a population can exchange
information, by chemical messenger (pheromone by ants), by dance (waggle dance by
bees), or by broadcasting ability (such as the global best in PSO and FA). Therefore,
all swarm-based algorithms are population-based. However, not all population-based
algorithms are swarm-based. For example, genetic algorithms (Holland, 1975; Goldberg, 2002)
are population-based, but they are not inspired by swarm intelligence (Bonabeau et al., 1999).

The mobile agents interact locally and under the right conditions they somehow form
emergent, self-organized behaviour, leading to global convergence. The agents typically
explore the search space locally, aided by randomization which increases the diversity of the
solutions on a global scale, and thus there is a fine balance between local intensive exploitation
and global exploration (Blue and Roli, 2003). Any swarm-based algorithms have to balance
these two components; otherwise, efficiency may be limited. In addition, these swarming
agents can work in parallel, and thus such algorithms are particularly suitable for parallel
implementation, which leads to even better reduction in computing time.

Despite such a huge success in applications, mathematical analysis of algorithms remains
limited and many open problems are still un-resolved. There are three challenging areas for
algorithm analysis: complexity, convergence and no-free-lunch theory. Complexity analysis
of traditional algorithms such as quick sort and matrix inverse are well-established, as these
algorithms are deterministic. In contrast, complexity analysis of metaheuristics remains a
challenging task, partly due to the stochastic nature of these algorithms. However, good
results do exist, concerning randomization search techniques (Auger and Teytaud, 2010).

Convergence analysis is another challenging area. One of the main difficulties concerning the
convergence analysis of metaheuristic algorithms is that no generic framework exists, though
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2 Theory and New Applications of Swarm Intelligence

substantial studies have been carried out using dynamic systems and Markov processes.
However, convergence analysis still remains one of the active research areas with many
encouraging results (Clerc and Kennedy, 2002; Trelea, 2003; Olafsson, 2006; Gutjahr, 2002).

In optimization, there is a so-called ‘no-free-lunch (NFL) theorem” proposed by Wolpert and
Mcready (1997), which states that any algorithm will on average perform equally well as a
random search algorithm over all possible functions. In other words, two algorithms A and
B will on average have equal performance;’ that is, if algorithm A performs better than B for
some problems, then algorithm B will outperform A for other problems. This means that there
is no universally superior algorithm for all types of problems. However, this does not mean
that some algorithms are not better than other algorithms for some specific types of problems.
In fact, we do not need to measure performance on average for all functions. More often,
we need to measure how an algorithm performs for a given class of problems. Furthermore,
the assumptions of the NLF theorem are not valid for all cases. In fact, there are quite a
few no-free-lunch (NFL) theorems (Wolpert and Mcready, 1997; Igel and Toussaint, 2003).
While in well-posed cases of optimization where its functional space forms finite domains,
NFL theorems do hold; however, free lunches are possible in continuous domains(Auger and
Teytaud, 2010; Wolpert and Mcready 2005; Villalobos-Arias et al., 2005).

In this chapter, we intend to provide a state-of-the-art review of the recent studies of
no-free-lunch theory and also free lunch scenarios. This enables us to view the NLF and free
lunch in a unified framework, or at least, in a convenient way. We will also briefly highlights
some of the convergence studies. Based on these studies, we will summarize and propose a
series of recommendations for further research.

2. Swarm-based algorithms

There are more than a dozen of swarm-based algorithms using the so-called swarm
intelligence. For a detailed introduction, please refer to Yang (2010b), and for a recent
comprehensive review, please refer to Parpinelli and Lopes (2011). In this section, we will
focus on the main chararcteristics and the ways that each algorithm generate new solutions,
and we will not discuss each algorithm in details. Interested readers can follow the references
listed at the end of this chapter and also refer to other chapters of this book.

2.1 Ant algorithms

Ant algorithms, especially the ant colony optimization (Dorigo and Stiitle, 2004), mimic the
foraging behaviour of social ants. Primarily, it uses pheromone as a chemical messenger and
the pheromone concentration as the indicator of quality solutions to a problem of interest. As
the solution is often linked with the pheromone concentration, the search algorithms often
produce routes and paths marked by the higher pheromone concentrations, and therefore,
ants-based algorithms are particular suitable for discrete optimization problems.

The movement of an ant is controlled by pheromone which will evaporate over time. Without
such time-dependent evaporation, the algorithms will lead to premature convergence to the
(often wrong) solutions. With proper pheromone evaporation, they usually behave very well.

There are two important issues here: the probability of choosing a route, and the evaporation
rate of pheromone. There are a few ways of solving these problems, although: it is still an area
of active research. Here we introduce the current best method.
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Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems 3

For a network routing problem, the probability of ants at a particular node i to choose the
route from node i to node j is given by

i

n 4 ﬁ,
i,j=1 95

pij = (1)

where @ > 0 and B > 0 are the influence parameters, and their typical values are « ~ B ~ 2.
¢ij is the pheromone concentration on the route between i and j, and d;; the desirability of the
same route. Some a priori knowledge about the route such as the distance s;; is often used so
that d;; o< 1/s;;, which implies that shorter routes will be selected due to their shorter traveling
time, and thus the pheromone concentrations on these routes are higher. This is because the
traveling time is shorter, and thus the less amount of the pheromone has been evaporated
during this period.

This probability formula reflects the fact that ants would normally follow the paths with
higher pheromone concentrations. In the simpler case when & = B = 1, the probability of
choosing a path by ants is proportional to the pheromone concentration on the path. The
denominator normalizes the probability so that it is in the range between 0 and 1.

The pheromone concentration can change with time due to the evaporation of pheromone.
Furthermore, the advantage of pheromone evaporation is that the system could avoid being
trapped in local optima. If there is no evaporation, then the path randomly chosen by the first
ants will become the preferred path as the attraction of other ants by their pheromone. For
a constant rate y of pheromone decay or evaporation, the pheromone concentration usually
varies with time exponentially

¢(t) = poe™ ", )
where ¢g is the initial concentration of pheromone and t is time. If 4t < 1, then we
have ¢(t) ~ (1 — t)¢o. For the unitary time increment At = 1, the evaporation can be
approximated by ¢'*! « (1 — )¢!. Therefore, we have the simplified pheromone update
formula:

it = (1= 1)¢}; + 69, (3)
where v € [0,1] is the rate of pheromone evaporation. The increment 54)1?]. is the amount of

pheromone deposited at time t along route i to j when an ant travels a distance L. Usually
54)5 o« 1/L. If there are no ants on a route, then the pheromone deposit is zero.

There are other variations to this basic procedure. A possible acceleration scheme is to use
some bounds of the pheromone concentration and only the ants with the current global best
solution(s) are allowed to deposit pheromone. In addition, certain ranking of solution fitness
can also be used.

2.2 Bee algorithms

Bees-inspired algorithms are more diverse, and some use pheromone and most do not. Almost
all bee algorithms are inspired by the foraging behaviour of honey bees in nature. Interesting
characteristics such as waggle dance, polarization and nectar maximization are often used
to simulate the allocation of the foraging bee along flower patches and thus different search
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4 Theory and New Applications of Swarm Intelligence

regions in the search space. For a more comprehensive review, please refer to Parpinelli and
Lopes (2011).

Honeybees live in a colony and they forage and store honey in their constructed colony.
Honeybees can communicate by pheromone and ‘waggle dance’. For example, an alarming
bee may release a chemical message (pheromone) to stimulate attack response in other bees.
Furthermore, when bees find a good food source and bring some nectar back to the hive, they
will communicate the location of the food source by performing the so-called waggle dances
as a signal system. Such signaling dances vary from species to species, however, they will try
to recruit more bees by using directional dancing with varying strength so as to communicate
the direction and distance of the found food resource. For multiple food sources such as
flower patches, studies show that a bee colony seems to be able to allocate forager bees among
different flower patches so as to maximize their total nectar intake.

In the honeybee-based algorithm, forager bees are allocated to different food sources (or
flower patches) so as to maximize the total nectar intake. The colony has to ‘optimize” the
overall efficiency of nectar collection, the allocation of the bees is thus depending on many
factors such as the nectar richness and the proximity to the hive (Nakrani and Trovey, 2004;
Yang, 2005; Karaboga, 2005; Pham et al., 2006)

Let w;(j) be the strength of the waggle dance of bee i at time step t = j, the probability of an
observer bee following the dancing bee to forage can be determined in many ways depending
on the actual variant of algorithms. A simple way is given by

i @
Pi= 7/
Lhw

where 7n¢ is the number of bees in foraging process. t is the pseudo time or foraging
expedition. The number of observer bees is N — ny when N is the total number of bees.
Alternatively, we can define an exploration probability of a Gaussian type p, = 1 —p; =
exp[—w?/20?], where 0 is the volatility of the bee colony, and it controls the exploration and
diversity of the foraging sites. If there is no dancing (no food found), then w; — 0, and p, = 1.
So all the bee explore randomly.

The virtual bee algorithm (VBA), developed by Xin-She Yang in 2005, is an optimization
algorithm specially formulated for solving both discrete and continuous problems (Yang,
2005). On the other hand, the artificial bee colony (ABC) optimization algorithm was first
developed by D. Karaboga in 2005. In the ABC algorithm, the bees in a colony are divided
into three groups: employed bees (forager bees), onlooker bees (observer bees) and scouts.
For each food source, there is only one employed bee. That is to say, the number of employed
bees is equal to the number of food sources. The employed bee of an discarded food site is
forced to become a scout for searching new food sources randomly. Employed bees share
information with the onlooker bees in a hive so that onlooker bees can choose a food source
to forage. Unlike the honey bee algorithm which has two groups of the bees (forager bees and
observer bees), bees in ABC are more specialized (Karaboga, 2005; Afshar et al., 2007).

Similar to the ants-based algorithms, bee algorithms are also very flexible in dealing with
discrete optimization problems. Combinatorial optimizations such as routing and optimal
paths have been successfully solved by ant and bee algorithms. Though bee algorithms can
be applied to continuous problems as well as discrete problems, however, they should not be
the first choice for continuous problems.
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Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems 5

2.3 Particle swarm optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in 1995, based on
the swarm behaviour such as fish and bird schooling in nature. Since then, PSO has generated
much wider interests, and forms an exciting, ever-expanding research subject, called swarm
intelligence. PSO has been applied to almost every area in optimization, computational
intelligence, and design/scheduling applications.

The movement of a swarming particle consists of two major components: a social component
and a cognitive component. Each particle is attracted toward the position of the current global
best g* and its own best location x} in history, while at the same time it has a tendency to move
randomly.

Let x; and v; be the position vector and velocity for particle i, respectively. The new velocity
and location updating formulas are determined by

= v} +aei (gt — x] + Ber[x] —xf). ®)

v;

TS N S S|
' =x ol (6)

where €1 and €; are two random vectors, and each entry taking the values between 0 and
1. The parameters a and p are the learning parameters or acceleration constants, which can
typically be taken as, say, &« ~ B ~ 2.

There are at least two dozen PSO variants which extend the standard PSO algorithm, and the
most noticeable improvement is probably to use inertia function 6(t) so that v! is replaced by
0(t)v! where 6 € [0,1]. This is equivalent to introducing a virtual mass to stabilize the motion
of the particles, and thus the algorithm is expected to converge more quickly.

2.4 Firefly algorithm

Firefly Algorithm (FA) was developed by Xin-She Yang at Cambridge University (Yang,2008;
Yang 2009), which was based on the flashing patterns and behaviour of fireflies. In essence,
each firefly will be attracted to brighter ones, while at the same time, it explores and searches
for prey randomly. In addition, the brightness of a firefly is determined by the landscape of
the objective function.

The movement of a firefly i attracted to another more attractive (brighter) firefly j is
determined by

— 72
it = b 4 Boe ™" (x]t —x) +ar €l (7)

where the second term is due to the attraction. The third term is randomization with a; being
the randomization parameter, and € is a vector of random numbers drawn from a Gaussian
distribution or uniform distribution. Here By € [0,1] is the attractiveness at r = 0, and r;; =

||xf — x; || is the Cartesian distance. For other problems such as scheduling, any measure that

can effectively characterize the quantities of interest in the optimization problem can be used
as the ‘distance’ r. For most implementations, we can take fp = 1, « = O(1) and ¢y = O(1).

Ideally, the randomization parameter a; should be monotonically reduced gradually during
iterations. A simple scheme is to use

wp = agd', 6€(0,1), (8)
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6 Theory and New Applications of Swarm Intelligence

where a( is the initial randomness, while § is a randomness reduction factor similar to
that used in a cooling schedule in simulated annealing. It is worth pointing out that (7)
is essentially a random walk biased towards the brighter fireflies. If By = 0, it becomes a
simple random walk. Furthermore, the randomization term can easily be extended to other
distributions such as Lévy flights.

2.5 Bat algorithm

Bat algorithm is a relatively new metaheuristic, developed by Xin-She Yang in 2010 (Yang,
2010c). It was inspired by the echolocation behaviour of microbats. Microbats use a type of
sonar, called, echolocation, to detect prey, avoid obstacles, and locate their roosting crevices
in the dark. These bats emit a very loud sound pulse and listen for the echo that bounces
back from the surrounding objects. Their pulses vary in properties and can be correlated with
their hunting strategies, depending on the species. Most bats use short, frequency-modulated
signals to sweep through about an octave, while others more often use constant-frequency
signals for echolocation. Their signal bandwidth varies depends on the species, and often
increased by using more harmonics.

Inside the bat algorithm, it uses three idealized rules:

1. All bats use echolocation to sense distance, and they also ‘know’ the difference between
food /prey and background barriers in some magical way;

2. Bats fly randomly with velocity v; at position x; with a fixed frequency fnin, varying
wavelength A and loudness Ay to search for prey. They can automatically adjust the
wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission
r € [0,1], depending on the proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies from a
large (positive) Ag to a minimum constant value Apjp.

BA has been extended to multiobjective bat algorithm (MOBA) by Yang (2011), and
preliminary results suggested that it is very efficient.

2.6 Cuckoo search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms, developed in
2009 by Xin-She Yang and Suash Deb (Yang and Deb, 2009; Yang and Deb, 2010). CS is based
on the brood parasitism of some cuckoo species. In addition, this algorithm is enhanced by
the so-called Lévy flights, rather than by simple isotropic random walks. This algorithm was
inspired by the aggressive reproduction strategy of some cuckoo species such as the ani and
Guira cuckoos. These cuckoos lay their eggs in communal nests, though they may remove
others’ eggs to increase the hatching probability of their own eggs. Quite a number of species
engage the obligate brood parasitism by laying their eggs in the nests of other host birds (often
other species).

In the standard cuckoo search, the following three idealized rules are used:

¢ Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
¢ The best nests with high-quality eggs will be carried over to the next generations;

¢ The number of available host nests is fixed, and the egg laid by a cuckoo is discovered by
the host bird with a probability p, € [0,1]. In this case, the host bird can either get rid of
the egg, or simply abandon the nest and build a completely new nest.
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Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems 7

As a further approximation, this last assumption can be approximated by a fraction p, of the
n host nests are replaced by new nests (with new random solutions). Recent studies suggest
that cuckoo search can outperform particle swarm optimization and other algorithms (Yang
and Deb, 2010). These are still topics of active research.

There are other metaheuristic algorithms which have not been introduced here, and interested
readers can refer to more advanced literature (Yang, 2010b; Parpinelli and Lopes, 2011).

3. Intensification and diversification

Metaheuristics can be considered as an efficient way to produce acceptable solutions by trial
and error to a complex problem in a reasonably practical time. The complexity of the problem
of interest makes it impossible to search every possible solution or combination, the aim is
to find good feasible solution in an acceptable timescale. There is no guarantee that the best
solutions can be found, and we even do not know whether an algorithm will work and why
if it does work. The idea is to have an efficient but practical algorithm that will work most
the time and is able to produce good quality solutions. Among the found quality solutions,
it is expected some of them are nearly optimal, though there is often no guarantee for such
optimality.

The main components of any metaheuristic algorithms are: intensification and diversification,
or exploitation and exploration (Blum and Roli, 2003; Yang, 2008; Yang, 2010b). Diversification
means to generate diverse solutions so as to explore the search space on the global scale, while
intensification means to focus on the search in a local region by exploiting the information that
a current good solution is found in this region. This is in combination with the selection of
the best solutions. Randomization techniques can be a very simple method using uniform
distributions and/or Gaussian distributions, or more complex methods as those used in
Monte Carlo simulations. They can also be more elaborate, from Brownian random walks
to Lévy flights.

In general, intensification speeds up the convergence of an algorithm, however, it may lead to
alocal optimum, not necessarily the global optimality. On the other hand, diversification often
slows down the convergence but increases the probability of finding the global optimum.
Therefore, there is a fine balance beteween these seemingly competing components for any
algorithm.

In ant and bee algorithms, intensification is usually achieved by pheromone and exchange
of information so that all agents swarm together or follow similar routes. Diversification
is achieved by randomization and probabilistic choices of routes. In PSO, intensification
is controlled mainly by the use of the global best and individual best solutions, while
diversification is plainly done using two random numbers or learning parameters.

For the standard FA, the global best is not used, though its use may increase the convergence
rates for some problems such as unimodal problems or problems with some dominant
modes. Intensification is subtly done by the attraction among fireflies and thus brightness
is the information exchanged among adjacent fireflies. Diversification is carried out by the
randomization term, either by random walks or by Lévy flights, in combination with a
randomness-reduction technique similar to a cooling schedule in simulated annealing.

Intensification and diversification in the bat algorithm is controlled by a switch parameter.
Intensification as well as diversification is also enhanced by the variations of loudness and
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8 Theory and New Applications of Swarm Intelligence

pulse rates. In this sense, the mechanism is relatively simple, but very efficient in balancing
the two key components.

In the cuckoo search, things become more subtle. Diversification is carried out in two
ways: randomization via Lévy flights and feeding new solutions into randomly chosen
nests. Intensification is achieved by a combination of elitism and the generation of
solutions according to similarity (thus the usage of local information). In addition, a switch
parameter (a fraction of abandoned nests) is used to control the balance of diversification and
intensification.

As seen earlier, an important component in swarm intelligence and modern metaheuristics
is randomization, which enables an algorithm to have the ability to jump out of any local
optimum so as to search globally. Randomization can also be used for local search around
the current best if steps are limited to a local region. When the steps are large, randomization
can explore the search space on a global scale. Fine-tuning the randomness and balance of
local search and global search is crucially important in controlling the performance of any
metaheuristic algorithm.

4. No-free-lunch theorems

The seminal paper by Wolpert and Mcready in 1997 essentially proposed a framework
for performance comparison of optimization algorithms, using a combination of Bayesian
statistics and Markov random field theories. Let us sketch Wolpert and Macready’s original
idea. Assuming that the search space is finite (though quite large), thus the space of possible
objective values is also finite. This means that objective function is simply a mapping
f: X — Y, with F = Y% as the space of all possible problems under permutation.

As an algorithm tends to produce a series of points or solutions in the search space, it is further
assumed that these points are distinct. That is, for k iterations, k distinct visited points forms

a time-ordered set
O = {(qu),nga)),m, (Q;g(k),ng(k)) } 9)

There are many ways to define a performance measure, though a good measure still remains
debatable (Shilane et al., 2008). Such a measure can depend on the number of iteration k, the
algorithm a and the actual cost function f, which can be denoted by P (QZ |f, k,a). Here we
follow the notation style in seminal paper by Wolpert and Mcready (1997). For any pair of
algorithms a and b, the NFL theorem states

Y P(Q]|f,ka) =Y P(OY|f, kD). (10)
f f

In other words, any algorithm is as good (bad) as a random search, when the performance is
averaged over all possible functions.

Along many relevant assumptions in proving the NFL theorems, two fundamental
assumptions are: finite states of the search space (and thus the objective values), and the
non-revisiting time-ordered sets.

The first assumption is a good approximation to many problems, especially in finite-digit
approximations. However, there is mathematical difference in countable finite, and countable
infinite. Therefore, the results for finite states/domains may not directly applicable to
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infinite domains. Furthermore, as continuous problem are uncountable, NFL results for finite
domains will usually not hold for continuous domains (Auger and Teytaud, 2010).

The second assumption on non-revisiting iterative sequence is an over-simplification, as
almost all metaheuristic algorithms are revisiting in practice, some points visited before will
possibly be re-visited again in the future. The only possible exception is the Tabu algorithm
with a very long Tabu list (Glover and Laguna, 1997). Therefore, results for non-revisiting
time-ordered iterations may not be true for the cases of revisiting cases, because the revisiting
iterations break an important assumption of ‘closed under permutation” (c.u.p) required for
proving the NFL theorems (Marshall and Hinton, 2010).

Furthermore, optimization problems do not necessarily concern the whole set of all possible
functions/problems, and it is often sufficient to consider a subset of problems. It is worth
pointing out active studies have carried out in constructing algorithms that can work best
on specific subsets of optimization problems, in fact, NFL theorems do not hold in this case
(Christensen and Oppacher, 2001).

These theorems are vigorous and thus have important theoretical values. However, their
practical implications are a different issue. In fact, it may not be so important in practice
anyway, we will discuss this in a later section.

5. Free lunch or no free lunch

The validity of NFL theorems largely depends on the validity of their fundamental
assumptions. However, whether these assumptions are valid in practice is another question.
Often, these assumptions are too stringent, and thus free lunches are possible.

5.1 Continuous free lunches

One of the assumptions is the non-revisiting nature of the k distinct points which form a
time-ordered set. For revisiting points as they do occur in practice in real-world optimization
algorithms, the ‘closed under permutation” does not hold, which renders NFL theorems
invalid (Schumacher et al., 2001; Marshall and Hinton, 2010). This means free lunches do
exist in practical applications.

Another basic assumption is the finiteness of the domains. For continuous domains, Auger
and Teytaud in 2010 have proven that the NFL theorem does not hold, and therefore they
concluded that ‘continuous free lunches exist’. Indeed, some algorithms are better than others.
For example, for a 2D sphere function, they demonstrated that an efficient algorithm only
needs 4 iterations/steps to reach the global minimum.

5.2 Coevolutionary and multiobjective free lunches

The basic NFL theorems concern a single agent, marching iteratively in the search space in
distinct steps. However, Wolpert and Mcready proved in 2005 that NFL theorems do not hold
under coevolution. For example, a set of players (or agents) in self-play problems can work
together so as to produce a champion. This can be visualized as an evolutionary process of
training a chess champion. In this case, free lunch does exist (Wolpert and Mcready, 2005). It
is worth pointing out that for a single player, it tries to pursue the best next move, while for
two players, the fitness function depend on the moves of both players. Therefore, the basic
assumptions for NFL theorems are no longer valid.
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10 Theory and New Applications of Swarm Intelligence

For multiobjective optimization problems, things have become even more complicated. An
important step in theoretical analysis is that some multiobjective optimizers are better than
others as pointed out by Corne and Knowles (2003). One of the major reasons is that
the archiver and generator in the multiobjective algorithms can lead to multiobjective free
lunches.

Whether NFL holds or not, it has nothing to say about the complexity of the problems. In fact,
no free lunch theorem has not been proved to be true for problems with NP-hard complexity
(Whitley and Watson, 2005).

6. NFL theorems and meaning for algorithm developers

No-free-lunch theorems may be of theoretical importance, and they can also have important
implications for algorithm development in practice, though not everyone agrees the real
importance of these implications. In general, there are three kinds of opinions concerning
the implications. The first group may simply ignore these theorems, as they argue that
the assumptions are too stringent, and the performance measures based on average overall
functions are irrelevant in practice (Whitley and Watson, 2005). Therefore, no practical
importance can be inferred, and research just carries on.

The second kind is that NFL theorems can be true, and they can accept that the fact there is no
universally efficient algorithm. But in practice some algorithms do performance better than
others for a specific problem or a subset of problems. Research effort should focus on finding
the right algorithms for the right type of problem. Problem-specific knowledge is always
helpful to find the right algorithm(s).

The third kind of opinion is that NFL theorems are not true for other types of problems
such as continuous problems and NP-hard problems. Theoretical work concerns more
elaborate studies on extending NFL theorems to other cases or on finding free lunches
(Auger and Teytaud, 2010). On the other hand, algorithm development continues to design
better algorithms which can work for a wider range of problems, not necessarily all types
of problems. As we have seen from the above analysis, free lunches do exist, and better
algorithms can be designed for a specific subset of problems (Yang,2009; Yang and Deb, 2010).

Thus, free lunch or no free lunch is not just a simple question, it has important and yet
practical importance. There is certain truth in all the above arguments, and their impacts
on optimization community are somehow mixed. Obviously, in reality, the algorithms with
problem-specific knowledge typically work better than random search, and we also realized
that there is no universally generic tool that works best for all the problems. Therefore, we
have to seek balance between speciality and generality, between algorithm simplicity and
problem complexity, and between problem-specific knowledge and capability of handling
black-box optimization problems.

7. Convergence analysis of metaheuristics

For convergence analysis, there is no mathematical framework in general to provide
insights into the working mechanism, the complexity, stability and convergence of any
given algorithm (He and Yu, 2001; Thikomirov, 2007). Despite the increasing popularity
of metaheuristics, mathematical analysis remains fragmental, and many open problems
concerning convergence analysis need urgent attention. In addition, many algorithms, though

www.intechopen.com



Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems 11

efficient, have not been proved their convergence, for example, harmony search usually
converges well (Geem, 2009), but its convergence still needs mathematical analysis.

7.1 PSO

The first convergence analysis of PSO was carried out by Clerc and Kennedy in 2002 using the
theory of dynamical systems. Mathematically, if we ignore the random factors, we can view
the system formed by (5) and (6) as a dynamical system. If we focus on a single particle i and
imagine that there is only one particle in this system, then the global best g* is the same as its
current best x7. In this case, we have

ot = ol +y(g"—xl), y=a+p, (11)

and

it = xf 4ol (12)

Considering the 1D dynamical system for particle swarm optimization, we can replace g* by a
parameter constant p so that we can see if or not the particle of interest will converge towards
p. By setting u; = p — x(t + 1) and using the notations for dynamical systems, we have a
simple dynamical system

Upp1 =0 +yuy,  Uppp = =0+ (1 —7)uy, (13)

1 v
Yip =AY, A= (_1 117), Y, = (DD (14)

The general solution of this dynamical system can be written as Y; = Yj exp[At]. The system
behaviour can be characterized by the eigenvalues A of A

or

24
Mp=1-T g ¥V 22

2 2 (15

It can be seen clearly that oy = 4 leads to a bifurcation. Following a straightforward analysis
of this dynamical system, we can have three cases. For 0 < v < 4, cyclic and/or quasi-cyclic
trajectories exist. In this case, when randomness is gradually reduced, some convergence can
be observed. For o > 4, non-cyclic behaviour can be expected and the distance from Y; to the
center (0,0) is monotonically increasing with t. In a special case ¢ = 4, some convergence
behaviour can be observed. For detailed analysis, please refer to Clerc and Kennedy (2003).
Since p is linked with the global best, as the iterations continue, it can be expected that all
particles will aggregate towards the the global best.

7.2 Firefly algorithm

We now can carry out the convergence analysis for the firefly algorithm in a framework similar
to Clerc and Kennedy’s dynamical analysis. For simplicity, we start from the equation for
tirefly motion without the randomness term

— 2
xf“ = xb + Boe i (x]t —ab). (16)
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If we focus on a single agent, we can replace x]t. by the global best ¢ found so far, and we have

—yr?
X7 = x4 foe (g — ¥), (17)
where the distance 7; can be given by the f,-norm ? = ||g — x!||3. In an even simpler 1-D

1
case, we can set iy = ¢ — x, and we have

Yirl = Vi — ﬁofwgyt- (18)

We can see that < is a scaling parameter which only affects the scales/size of the firefly
movement. In fact, we can let u; = ,/7y; and we have

Up1 = ug[l — ,BOe’”%]. (19)

These equations can be analyzed easily using the same methodology for studying the
well-known logistic map
ur = /\ut(l — Mt). (20)

Mathematical analysis and numerical simulations of (19) can reveal its regions of chaos.
Briefly, the convergence can be achieved for By < 2. There is a transition from periodic to
chaos at By ~ 4. This may be surprising, as the aim of designing a metaheuristic algorithm
is to try to find the optimal solution efficiently and accurately. However, chaotic behaviour
is not necessarily a nuisance, in fact, we can use it to the advantage of the firefly algorithm.
Simple chaotic characteristics from (20) can often be used as an efficient mixing technique for
generating diverse solutions. Statistically, the logistic mapping (20) for A = 4 for the initial
states in (0,1) corresponds a beta distribution

B(, p,q) = %Wu e, @1)

when p = q = 1/2. Here I'(z) is the Gamma function
T(z) = / letar, (22)
0

In the case when z = n is an integer, we have I'(n) = (n — 1)!. In addition, ['(1/2) = /7.
From the algorithm implementation point of view, we can use higher attractiveness By during
the early stage of iterations so that the fireflies can explore, even chaotically, the search
space more effectively. As the search continues and convergence approaches, we can reduce
the attractiveness By gradually, which may increase the overall efficiency of the algorithm.
Obviously, more studies are highly needed to confirm this.

7.3 Markov chains

Most theoretical studies use Markov chains/process as a framework for convergence analysis.
A Markov chain is said be to regular if some positive power k of the transition matrix P
has only positive elements. A chain is ergodic or irreducible if it is aperiodic and positive
recurrent, which means that it is possible to reach every state from any state.
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For a time-homogeneous chain as k — oo, we have the stationary probability distribution 7,
satisfying
m=nP, (23)
thus the first eigenvalue is always 1. This will lead to the asymptotic convergence to the global
optimality 0,:
lim 0, — 0, (24)
k—o0

with probability one (Gamerman, 1997; Gutjahr, 2002).

Now if look at the PSO and FA closely using the framework of Markov chain Monte Carlo,
each particle in PSO or each firefly in FA essentially forms a Markov chain, though this Markov
chain is biased towards to the current best, as the transition probability often leads to the
acceptance of the move towards the current global best. Other population-based algorithms
can also be viewed in this framework. In essence, all metaheuristic algorithms with piecewise,
interacting paths can be analyzed in the general framework of Markov chain Monte Carlo.
The main challenge is to realize this and to use the appropriate Markov chain theory to study
metaheuristic algorithms. More fruitful studies will surely emerge in the future.

7.4 Other results

Limited results on convergence analysis exist, concerning finite domains, ant colony
optimization (Gutjahr,2010; Sebastiani and Torrisi,2005), cross-entropy optimization,
best-so-far convergence (Margolin, 2005), nested partition method, Tabu search, and largely
combinatorial optimization. However, more challenging tasks for infinite states/domains and
continuous problems. Many open problems need satisfactory answers.

On the other hand, it is worth pointing out that an algorithm can converge, but it may not be
efficient, as its convergence rate could be typically low. One of the main tasks in research is to
find efficient algorithms for a given type of problem.

8. Open problems

Active research on NFL theorems and algorithm convergence analysis has led to many
important results. Despite this, many crucial problems remain unanswered. These open
questions span a diverse range of areas. Here we highlight a few but relevant open problems.

Framework: Convergence analysis has been fruitful, however, it is still highly needed to
develop a unified framework for algorithmic analysis and convergence.

Exploration and exploitation: Two important components of metaheuristics are exploration and
exploitation or diversification and intensification. What is the optimal balance between these
two components?

Performance measure: To compare two algorithms, we have to define a measure for gauging
their performance (Spall et al., 2006). At present, there is no agreed performance measure, but
what are the best performance measures ? Statistically?

Free lunches: No-free-lunch theorems have not been proved for continuous domains for
multiobjective optimization. For single-objective optimization, free lunches are possible; is
this true for multiobjective optimization? In addition, no free lunch theorem has not been
proved to be true for problems with NP-hard complexity (Whitley and Watson, 2005). If free
lunches exist, what are their implications in practice and how to find the best algorithm(s)?
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Automatic parameter tuning: For almost all algorithms, algorithm-dependent parameters
require fine-tuning so that the algorithm of interest can achieve maximum performance. At
the moment, parameter-tuning is mainly done by inefficient, expensive parametric studies. In
fact, automatic self-tuning of parameters is another optimization problem, and optimal tuning
of these parameters is another important open problem.

Knowledge: Problem-specific knowledge always helps to find an appropriate solution? How
to quantify such knowledge?

Intelligent algorithms: A major aim for algorithm development is to design better, intelligent
algorithms for solving tough NP-hard optimization problems. What do mean by ‘intelligent’?
What are the practical ways to design truly intelligent, self-evolving algorithms?

9. Concluding remarks

Sl-based algorithms are expanding and becoming increasingly popular in many disciplines
and applications. One of the reasons is that these algorithms are flexible and efficient in
solving a wide range of highly nonlinear, complex problems, yet their implementation is
relatively straightforward without much problem-specific knowledge. In addition, swarming
agents typically work in parallel, and thus parallel implementation is a natural advantage.

At present, swarm intelligence and relevant algorithms are inspired by some specific
features of the successful biological systems such as social insects and birds. Though they
are highly successful, however, these algorithms still have room for improvement. In
addition to the above open problems, a truly ‘intelligent” algorithm is yet to be developed.
By learning more and more from nature and by carrying out ever-increasingly detailed,
systematical studies, some truly ‘smart” self-evolving algorithms will be developed in the
future so that such smart algorithms can automatically fine-tune their behaviour to find
the most efficient way of solving complex problems. As an even bolder prediction, maybe,
some hyper-level algorithm-constructing metaheuristics can be developed to automatically
construct algorithms in an intelligent manner in the not-too-far future.
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