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1. Introduction 

Embedded systems are electronic computer systems designed for dedicated operating 
functions, often while respecting several constraints like real-time computing, power 
consumption, size and cost, etc. Embedded systems control many devices in common use 
today such as smartphones, GPS, codec GSM, decoders, MP3, MPEG62, MPEG4, PDAs, RFIDs, 
smart cards and networked sensors etc. Generally, they are controlled by one or more main 
processing cores that are typically either Microcontrollers, Digital Signal Processors (DSPs) or 
Field Programmable Gate Arrays (FPGAs). These systems are embedded as part of a complete 
electronic system, often including software, hardware, and communication and sensor parts. 
By contrast, a general-purpose computer - such as a Personal Computer (PC) - is designed to be 
flexible and to meet a wide range of end-user needs. The key characteristic of an embedded 
system is that it is dedicated to the handling of a particular task. They may require very 
powerful processors and extensive communications. Ideally, these embedded systems are 
completely self-contained and will typically run off a battery source for many years before the 
batteries need to be changed or charged. Since such systems are embedded and dedicated to 
specific tasks, design engineers search to optimise them by reducing their size (miniaturisation 
made possible by advanced IC design in order to couple full communication subsystems to 
sophisticated sensors) and cost in terms of energy consumption, memory and logic resources, 
while increasing their reliability and performance. Consequently, embedded systems are 
especially suited for use in transportation, medical applications, safety and security. Indeed, in 
dealing with security, embedded systems can be self-sufficient and should be able to deal with 
communication systems. Considering these specific conditions, in the fields of information and 
communication technology, embedded systems designers are faced with many challenges in 
terms of both the trade-off between cost/performance/power and architecture design. This is 
especially true for embedded systems designs, which often operate in non-secure 
environments, while at the same time being constrained by such factors as computational 
capacity, memory size and - in particular - power consumption. One challenge is in the design 
of hardware architecture able to meet the appropriate level of security and – consequently – 
the best trade-off between hardware resources and the best throughput rates for real-time 
embedded applications. 

A digital implementation of chaotic generators presents certain advantages and provides 
accuracy and a significant hope for integration in embedded applications, especially for data 
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encryption and secure communications between embedded systems. Unlike analogue 
implementations, which exhibit various practical difficulties in ensuring information 
recovery and dealing with the problem of chaotic synchronisation (since the component 
values vary with age and temperature, etc.), a digital implementation avoids the parameter 
mismatch between transmitter and receiver. Indeed, a programmable hardware fabric like a 
FPGA (Field Programmable Logic Array) is taking an increasingly important place in the 
design of embedded digital systems. This is due to the excellent trade-off between 
computational power and the flexibility of processing which it provides. 

This chapter is organised as follows: In Section 2, the related embedded design approaches 
suitable for embedded secure application (encryption) are briefly described. Section 3 
explores the architecture of a hardware implementation for helping system designers who 
are faced with many challenges with regards to the trade-off between 
cost/performance/power/security and architecture design. Section 4 gives an overview, namely 
a characterisation of three dimensional (3-D) continuous chaotic systems used for embedded 
encryption applications. In this section, the background of the digital design based on a 
numerical resolution method of the 3D chaotic systems is given. Section 5 presents and 
discusses in detail the various steps involved in the design of a chaotic system as well as the 
design of its programmable hardware technology, and it illustrates this with the Genesio's 
chaotic system designed in a FPGA. Finally, Section 6 summarises and concludes the 
chapter. 

2. Overview of the hardware design of embedded systems 

The electronic computing architecture of embedded systems is often composed of 
embedded blocks as parts of a complete device, often including hardware, an interface and 
mechanical parts. Usually, these systems are designed digitally in order to be flexible and to 
meet a wide range of application constraints. Therefore, embedded systems contain 
processing cores (CPUs) associated with several peripherals (integrated peripherals like 
Analogue-to-Digital Converters (ADCs), Digital-to-Analogue Converters (DACs), analogue signal 
conditioning blocks allowing them to operate as a System-on-Chip) that typically consist of 
Microcontrollers, Digital Signal Processors (DSPs) or else hardware specific cores tailored for 
dedicated tasks. These embedded architectures allow a good trade-off between 
performance, cost and application constraints (real-time processing, power consumption, 
etc.). Usually, these embedded systems are defined as Systems on Chip (SoC) and presented 
in a hand-format. Figure 1 provides an overview of one embedded System on Chip (a 
Bluetooth System on Chip). 

However, the significant requirements and different constraints for an embedded 
application and the characteristics of the embedded system dedicated to handling a 
particular task must be taken into account. Their requirements often lead to the design of a 
specific embedded system for application in just one field. In this context, a methodological 
approach based on embedded design flow and available technologies must be considered 
by taking into account the advantages and main drawbacks for meeting the application 
constraints of the embedded application under consideration. Since embedded systems are 
dedicated to certain specific tasks, design engineers can optimise them in order to reduce 
their size and their cost, as well as increasing their reliability and performance by 
considering the following hardware design approach. 
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Fig. 1. Bluetooth embedded System on Chip. 

The embedded system design specification stage includes successive analysis steps which 
will impact on the performance of the system - depending on the choice of technology used - 
which must comply with the application constraints. Thus, we adopt a definition of a 
system’s specifications (the required functions, environment, input/output system, etc.) 
which focuses on the selection of the available technology. In this context - and depending, 
for example, of the system timing requirements or other timing constraints, limitations of 
size or the logic area and memory requirements - the development of new embedded 
systems products is not trivial for electronics designers. Therefore, depending on the choice 
of the technology used, the application requirements may not be respected. 

Among the technology available for the design of embedded systems, we find: 

 The processor or microcontroller (corresponding to one core processor associated with a 
peripheral), often defined as a software solution. 

 The specific integrated circuit and the programmable circuit, such as a CPLD (Complex 
Programmable Logic Device) or now a FPGA, often defined as a hardware solution.  

All of these present specific advantages and drawbacks. Thus, an Application-Specific 
Integrated Circuit (ASIC) - which is an integrated circuit customised for particular tasks - is 
not intended for general-purpose use. Similarly, an Application-Specific Standard Product 
(ASSP) - which is a custom product for a specific application designed for use by more than 
one customer - is not adapted. Indeed, the flexibility of the embedded system is required, 
where changes continue even after the embedded system was designed. Moreover, although 
the ASIC presents the best performance with low power consumption, the main drawbacks 
of an Integrated Circuit (IC) are its very high cost (which is always increasing) and 
lengthened development time, which is unsuitable for the design of an embedded system 
where evolution occurs quickly. 

Software solutions based on a micro-programmed system, such as a CPU, a Microcontroller 
or a DSP, present the very best flexibility since they are only based on the change of 
instructions in the memory. However, their main drawback is that their computation is 
weakly intensive, especially for some embedded applications where the process requires a 
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long computation time. Therefore, for most applications the computation time will be 
prohibitive if a software solution is adopted. This effect is directly related to the nature of 
Von Neumann's architecture of a CPU which cannot operate in a parallel fashion. 

FPGAs have been taking an increasingly significant place in the design of embedded digital 
systems thanks to their excellent trade-off between computing power and the flexibility of 
processing that they provides [Tanougast et al., 2003]. This is particularly true for embedded 
system design, which can be used for quality evaluation or protocol communication in a 
network of data diffusion [Compton & Hauck, 2002]. Thus, FPGAs are increasingly used in 
conventional high performance computing applications where computations are performed 
on the FPGA instead of on a microprocessor. Indeed, the logic implementation based on 
FPGAs offers performance improvements an order of magnitude over microprocessors. For 
example, take the implementation of the Advanced Encryption Standard (AES) encryption on a 
Xilinx Virtex5 FPGA [Xilinx, 2008], which runs at 100MHz – this is 10 times faster than a 
highly optimised AES encryption running on the latest CPU [Burr, 2003; Liu, 2005]. Other 
benefits are in terms of the power used, where a FPGA implementation of applications is 
expected to consume less power than a microprocessor. Low-power usage is due to a lower 
clock rate and the absence of wasted cycles for the fetch/decode instruction in FPGAs. In 
this context, the use of FPGA technology makes it possible to optimise the hardware 
resources required while allowing for real-time computing. Moreover, an alternate approach 
based on a FPGA is to use soft processor cores that are implemented within the FPGA logic. 
MicroBlaze and Nios II are the most popular softcore examples provided by the main FPGA 
companies (Altera and Xilinx) [Xilinx1, 2008; Altera, 2011]. Figure 2 presents comparisons in 
terms of flexibility versus performance between the available technologies dedicated for 
embedded system design. 

Usually, designs implemented on FPGAs require on average 18 times as much logic area, 7 
times as much dynamic power and are 3 times slower than the corresponding ASIC 
implementations. Although FPGAs have been slower, less energy efficient and have 
generally achieved less functionality than their ASIC counterparts, their main advantages lie 
in their ability to reprogram in order to fix bugs, their shorter design time and the lower 
non-recurring engineering costs suitable for a faster embedded system design. Therefore, 
one solution for embedded designers is in reconfigurable systems based on FPGAs that can 
be reprogrammed to accommodate changing standards and protocols in the design process. 
Moreover, FPGA technology allows the designer to control all the phases of the design from 
the prototype. 

 

Fig. 2. Flexibility versus performance of the main technologies suitable for an embedded 
digital system. 

www.intechopen.com



 
Hardware Design of Embedded Systems for Security Applications 

 

237 

A recent trend has been to take a coarse-grained architectural approach by combining the 
logic blocks and interconnections of traditional FPGAs with embedded microprocessors and 
related peripherals. The goal is to form a complete "System on a Programmable Chip" 
suitable for a large performing embedded system. In this context, advances in Very-large-
Scale Integration (VLSI) technology have been employed to the manufacturing of 
reconfigurable logic for FPGA chips; and helped with their rapid growth in logic capacity, 
performance and popularity. In summary, a FPGA-based architecture is suitable for efficient 
computing of embedded applications with high data rate to compute. It is an excellent 
alternative to performing fast processing in order to reduce the total processing time, while 
maintaining a good level of flexibility in allowing any modifications in the run time required 
for current embedded systems. 

3. Architecture exploration 

The objective of an architecture exploration is to find an efficient matching between an 
algorithm and the architecture. The aim is to realise an optimal implementation that satisfies 
the various constraints (real-time, logic area, etc.). Therefore, digital hardware techniques 
can be used to implement efficiency in embedded applications like chaotic generators for 
embedded encryption by using digital devices such as microcontrollers, DSPs, ASICs, 
processors and FPGA technologies. The choice of implementation in a digital system is driven 
by many criteria and is heavily dependent on the application area. Table 1 gives the main 
contrasting features of current digital technologies for the design of embedded systems. 

 

 
Features 

 

Processors / DSP / Microcontroller 
(Software) 

FPGA (Hardware 
programmable) 

ASICs 
(Hardware) 

Silicon area Fixed Variable Fixed and low 

Speed Moderate Fast Very fast 

Consumption Moderate High Weak 

Cost Low Moderate High 

Prototyping Yes Yes No 

Table 1. Features of the main technologies available for the design of embedded systems. 

As mentioned previously, the designer can realise any embedded system (based on either 
the logic design and/or software design thanks to the embedded softcore processor) by 
utilising programmable logic devices in the form of FPGAs and CPLDs [Brown & Rose, 
1996]. In the design context, the objective of Algorithm/Architecture Adequation (architecture 
exploration based on A3 methodology [Sorel, 1994]) is to realise an optimal 
implementation which satisfies the constraints (real-time, logic area, etc.). In this Section, 
we illustrate an analysis of the costs and benefits of the use of reconfigurable technology 
such as FPGAs. 

In practice, the actual embedded system is composed inside the chip of a high coupled 

processor with a Programmable Array (FPGA, CPLD, etc). Indeed, such a hardware structure 

allows the combination of the advantages of these two technologies inside the same circuit. 

Consequently, coupling can reduce the main drawbacks of these technologies when they are 

used individually. Figure 3 illustrated one such embedded programmable hardware core 

which is usually associated with peripheral modules. 
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Fig. 3. High coupled processor - FPGA - on a chip core of a current embedded programmable 
hardware system. 

With regard to the task of implementing an algorithm on a similar embedded 
programmable hardware system, we can distinguish two approaches [Tanougast et al., 
2003]. The most common is what we call the application development approach and the other is 
what we call the system design approach. In the first case, we have to fit an algorithm with an 
optional time constraint in an existing system made from a host CPU connected to a 
reconfigurable logic array. In this case, the goal of an optimal implementation is to minimise 
one or more of the following criteria: processing time, memory bandwidth and power 
consumption. In the second case, we have to implement an algorithm with a required time 
constraint on a system which is still in the design exploration phase. The design parameter 
is the size of the logic array, which is used to implement the data path part of the algorithm. 
Here, an optimal implementation is that which leads to the minimal logic area of the 
reconfigurable array, memory resources and input/output port number. Figure 4 depicts an 
overview of the hardware design approaches of embedded systems. 

 

Fig. 4. The two approaches used to implement an algorithm on reconfigurable hardware. 

Embedded systems exhibit several advantages through the use of FPGAs. The most obvious 
is the possibility for frequently updating the digital hardware functions. However, we can 
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also use the dynamic resources allocation feature in order to instantiate each operator for the 
strict required time. This permits the enhancement of silicon efficiency by reducing the 
reconfigurable array’s area. Consequently, the goal of the embedded system designers in 
architectural design flow is to minimise the FPGA resources needed for the implementation 
of a time constrained algorithm. So, the challenge is twofold. Firstly, to find a trade-off 
between flexibility and algorithm implementation efficiency through the programmable 
logic-array coupled with a CPU host (processor, DSP, etc.). Secondly, to obtain an optimal 
architecture synthesis allowing the best hardware implementation trade-off required for 
embedded applications. 

In the rest of this chapter, we describe the main steps in the hardware design of embedded 
systems for security applications. We will consider an encryption process based on key 
chaotic generators and a mechanism for mixing the key with plaintext (encryption/decryption 
process). 

4. Embedded digital chaotic cryptosystem 

Chaos-based encryption suggests a new and efficient way of dealing with the problem of 
fast and highly secure data encryption. To implement the chaotic behaviour generators and 
the chaotic attractors associated with certain practical applications, many methods based on 
analogue circuits are used, such as switched capacitors or analogue Complementary Metal 
Oxide Semiconductor (CMOS) technology [Matsumoto, 1987; Giannakopoulos et al., 2007; 
Ozoguz et al., 2005; Cha & Lee, 2005]. However, these methods exhibit some practical 
difficulties since the component values vary with age and temperature, etc. [Aseeri et al., 
2002; Sobhy et al., 1999]. To overcome this problem, a digital implementation of chaotic 
generators can be used, since the problem of parameter mismatch does not exist and it 
provides accuracy and a significant possibility of integration in the embedded system, 
allowing many possibilities for embedded applications. The originality of this cipher scheme 
is that it allows for low cost data encryption for embedded systems while still providing a 
good trade-off between performance and hardware resources. The experimental results 
have demonstrated the feasibility and efficiency of this secure solution for FPGA technology. 
In the rest of this chapter, thorough experimental tests are presented with detailed analysis, 
demonstrating the high security and fast encryption speed suitable for embedded 
cryptosystems where resource optimisation is required in the field of embedded 
applications. 

4.1 Chaotic generators-based encryption 

In recent years, a variety of encryption schemes have been proposed for real-time secure 
data transmission over the Internet and through wireless networks by embedded systems. 
Among them, chaos-based algorithms have shown some attractive properties in terms of 
security, complexity, speed, computing power and computational overheads, etc. More 
precisely, although chaotic systems are characterised by specific attractors, their generated 
chaotic signals are non-periodic, uncorrelated and appear random in the time domain. These 
properties increase the complexity of a cryptanalysis attack in terms of the visualisation and 
identification of the signals used for key generation through a key space analysis. Hence, 
embedded cryptosystems for secure communications based on chaos theory have been 
proposed and developed while showing that these embedded systems can be controlled 
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[Lorenz, 1963; Yang, 2004]. Indeed, the synchronisation between two identical chaotic 
embedded systems corresponding to the data encryption transmission module and the 
decryption reception module has been reported [Carroll & Pecora, 1990]. Consequently, it 
was concluded that a key generator based on chaos theory could be useful with regard to 
secure communication systems because chaos is extremely sensitive to initial conditions and 
parameters [Azzaz et al., 2011]. 

Usually, the embedded cryptosystems are based on the design of a real-time secure 
symmetric encryption scheme. According to the basic principles of cryptology, a 
cryptosystem should be sensitive to the key - i.e., the cipher-text should have a close 
correlation with the key. To accomplish this requirement, we can use an efficient (ideally, 
genuinely random) key generation mechanism and then mix the key thoroughly into the 
plain-text through the encryption process. One data encryption scheme is based on 
embedded chaotic key generators. Therefore, the complete encryption/decryption scheme 
consists of two operational steps, as shown for example by the Figure 5 for real time image 
encryption scheme. 

Step 1. Chaotic key generation and selection. A key is generated from the previous key and 
one sequence of word-length bits as the key is selected in a chaotic manner. 

Step 2. Cipher operations are performed. For example, the basic cipher that is performed is the 
XOR or NXOR operation.  

According to the key binary sequence generated, each section of data is then operated on 
with the selected key. For instance, in an image encryption stream (see figure 5), each data 
image pixel is then XORed with the selected key. The decipher procedure is similar to that of 
the encipher process illustrated above, but with a reverse operation sequence to that 
described in Steps 1 and 2 above. Since both the decipher and encipher procedures have 
similar structures, they have essentially the same algorithmic complexity and duration of 
operation. 

 

 

Fig. 5. Example of an embedded encryption scheme: real time image encryption based a 
chaotic key generator. 
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4.2 Tri-dimensional chaotic systems: chaos behavioural modelling and software 
simulation 

Among chaotic systems, we find the continuous chaotic systems characterised by a system 
of differential equation systems. Most of the continuous chaotic systems can be expressed by 
an equivalent form of a three-dimensional system. Among them, we cite the tri-dimensional 
(3D) chaotic system, exemplified by such as Lorenz’s, Chen’s, Lü’s, Colpitts, Chua’s, Rössler’s, 
Linz and/or Sprott’s systems, etc. [Kvarda, 2002; Chen et al., 2007; Lü & Chen, 2002; 
Kennedy, 1994; Indrusiak, 2005; Genesio, 1993; Genesio & Tesi, 1992; Park, 2007]. These 3D 
systems provide chaotic behaviours which depend on the initial conditions and parameter 
values characterising them. In particular, the Lorenz system is a famous example of a chaotic 
system [Lorenz, 1963]. It is represented by the following simplified nonlinear equation 
system [Cuomo, 1993] which can be understood in terms of chaotic behaviour, depending of 
the parameter values: 

 

( - )

- -

-

dx
y x

dt
dy

xz rx y
dt
dz

xy bz
dt

 

  

 

 (1b) 

The solution of this nonlinear equation system depends mainly on the initial conditions 
specified by the initial values of x= x0, y = y0 and z = z0. For instance, a numerical solution to 

this system with Lorenz’s parameters’ values ( = 10, r = 28 and b = 8/3) and initial 
conditions (x0 = 0, y0 = 5, z0 = 25) gives the corresponding chaotic signals x, y and z, and the 
two different attractors of the chaotic system are shown in Figure 6 (obtained under the 
MatLab simulation environment tool [Mathworks, 2006]). 

 

Fig. 6. MatLab simulation results of Lorenz’s chaotic signals and attractors in a phase plane: 
(x-y) and (y-z). 

(1a) 

(1c) 
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4.3 Digital implementation based on the numerical resolution of 3D chaotic systems 

One efficient and optimised solution for implementing a 3D chaotic embedded system is to 

design a specific logic hardware architecture tailored for a digital numerical resolution 

method. Among these, we can cite both Euler's and Runge-Kutta's numerical resolution 

methods [Yang et al., 2005; Cartwright & Piro, 1992]. Unlike the Euler method - a numerical 

procedure for solving the simplest approximation by the first-order differential equations 

with initial conditions - the Runge-Kutta method allows for the most accurate solutions. 

Indeed, in numerical analysis, the Runge–Kutta method characterises an important family of 

implicit and explicit iterative methods for the approximation of solutions for Ordinary 

Differential Equations (ODEs) [Cartwright & Piro, 1992]. These numerical methods are based 

on the principle of iteration, which is to say that the first estimate of the solution is used to 

calculate a second estimate, more precisely, and so on. One member of the family of Runge–

Kutta methods used is the fourth-order Runge-Kutta equation method, often referred to as 

the "classical Runge-Kutta method" or simply "RK-4". Hereafter, we focus here on the RK-4 

method. 

Let us consider the following first-order nonlinear differential equation system modelling 
the behaviour of a 3D chaotic system: 

 

 

 

 

, ,

, ,

, ,

dx
F x y z

dt
dy

G x y z
dt
dz

Q x y z
dt

 

 

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  (2) 

where x(t0)= x0, y(t0)= y0 et z(t0)= z0 and F, G, Q are nonlinear functions. The RK-4 method 
uses several intermediate points to calculate the next value, starting from the initial value 
and the step length h in t, as specified by the following equations: 

 1 0 1 2 32 2
6
( )n n

h
k k k kx x         (3) 

 1 0 1 2 3( 2 2 )
6

n n

h
y y m m m m          (4) 

 1 0 1 2 3( 2 2
6

)n n

h
n n n nz z           (5) 

where at the initial t0 instant: 

 0 ( , )n nk F t x     (6) 

 0 ( , )n nG t ym         (7) 

 0 ( , )n nQ t zn         (8) 
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at t0 + h/2 instant: 
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and at t0 + h instant: 

 
   hkxhtFk nn ),( 23 

 (15) 

 
    hmyhtGm nn ),( 23 

 (16) 

 
      hnzhtQn nn ),( 23 

 (17) 

5. Digital programmable hardware implementation 

Since the introduction of FPGAs, the process of digital systems design has changed radically 
[Hauck, 1998]. This technology allows the appearance of hardware that is as flexible as the 
programming paradigm in the realisation of real-time applications. In the case of the 
implementation of a digital chaotic system, most approaches based on FPGA are designed  
using a non-optimal description embedded architecture by using automatic code generation 
tools as in [Aseeri et al., 2002; Sobhy et al., 1999]. However, the ‘‘high level’’ aspect of these 
methods keeps the user far away from the realities of the physical implementation (the low 
level corresponding to the Register Transfer Level (RTL)) required for the performance of a 
design analysis allowing the best hardware implementation. Consequently, in terms of 
performance and density of resources used, the result remains out of the designer’s reach, 
which cannot be accepted by embedded electronic designers, where optimisation and 
efficient implementation form a primary purpose. 

In the rest of this section, we present a case study of the specific design implementation of 
one chaotic embedded cryptosystem based on the RTL architecture described as structural 
VHDL (VHSIC - Very High Speed Integrated Circuits - Hardware Description Language) suitable 
for a high data encryption rate. 
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5.1 Case study: Genesio-Tesi’s system 

The Genesio-Tesi system, proposed by Genesio and Tesi [Sadoudi et al., 2010], is one of 
paradigms of chaos since it captures many of the features of chaotic systems. The Genesio-
Tesi chaotic oscillator is one of the most famous and well-studied continuous nonlinear and 
non-autonomous chaotic systems, exhibiting various dynamic behaviours, including chaos 
and bifurcations [Genesio, 1993; Genesio & Tesi, 1992]. The chaotic system includes a simple 
square part and three simple ODEs that depend on three positive parameters [Park, 2007]. 
The nonlinear dynamic equations of the system are as follows: 

 

2

      
dx

y
dt
dy

z
dt
dz

az by x cx
dt

 

 

     

 (18) 

where x, y and z are the state variables, and a, b and c are the positive real constants 
satisfying ab < c. The chaotic regime of the equation (18) is obtained by the following 
bifurcation parameter values a = 1.2, b = 2.92 and c = 6 with the initial conditions x0 = 0.2, y0 
= 0.2 and z0 = 0 [Sadoudi et al., 2010]. The MatLab [Mathworks, 2006] simulation results of 
this chaotic system are given by Figures 7 and 8 where the chaotic signals x, y and z and the 
three-dimensional (3D) chaotic attractors (x-y and x-z chaotic attractors) are presented, 
respectively. These results will be useful as references for the implementation of the 
hardware results detailed in Section 5.8. 

 

Fig. 7. MatLab simulation results of the x, y and z chaotic signals. 

(a)

(b)

(c)
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Fig. 8. MatLab simulation results: (a) the 3D chaotic attractor; (b) the x-y chaotic attractor; (c) 
the x-z chaotic attractor. 

5.2 FPGA technology 

FPGA is an integrated circuit designed to be configured by the customer or the designer. 
Embedded systems design can have several advantages for our approach based on FPGAs 
[Tanougast et al., 2003; Compton & Hauck, 2002; Hauck, 1998]. The most obvious is the 
possibility of frequently updating the digital hardware’s functions. The challenge is then to 
find trade-offs between flexibility and algorithm implementation efficiency through the 
programmable logic-array. They are used in various applications requiring digital electronic 
functions (signal processing, telecommunications, embedded systems, etc.). They are 
generally slower, more expensive by unit and consume more energy than their equivalents 
in ASIC (IC dedicated to an application) technology. However, as mentioned in the previous 
section, the reconfigurable embedded systems based on FPGA are interesting for embedded 
chaotic generators in the way that they ensure better computing performance in comparison 
with a CPU core and in the way that they allow the flexibility necessary for multi-standard 
encryption applications. Indeed, with such embedded systems, it is easy to update a suitable 
cipher encryption at a lower cost as compared with silicon IP (Intellectual Property) 
corresponding to one specific ASIC encryption bloc. More precisely, suppose that we have 
to implement a cryptosystem design requiring P equivalent gates and taking an area Sarea of 
silicon in the case of a full custom ASIC design. We will need about 100 x Sarea if we decide to 
use a FPGA. However, the significant advantage of the FPGA is, of course, its high flexibility 
and the speed of the associated design flow. This is probably the main reason for including a 
FPGA array on an embedded System on Chip. In summary, FPGAs present several 
advantages: 

 The time to market is shorter because they are standard components. 

 They have a shorter development and design period because they reuse basic functions 
and their circuit configuration is made on site. 

 They present a lower cost for small quantities (less than 10,000 units). With 
technological evolution, this quantity tends to increase. Indeed, the cost of a chip is 
proportional to its logic area, which decreases with fine engraving, while the initial 
costs of producing an ASIC (design, testing and etching masks) are rapidly increasing. 

Physically, a FPGA is a programmable logic device which can be programmed once or 
several times, depending on the technology used (SRAM, EPROM, and ANTIFUSE). 
Generally, one FPGA contains an array of Programmable or Configurable Logic Blocks (often 
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called "Logic Blocks" and depending on a vendor denoted by CLB - Configurable Logic Block - 
by the Xilinx company, or by LAB - Logic Array Block - by the Altera company) and a 
hierarchy of reconfigurable interconnects through "Router Matrix Blocks" that allow the Logic 
Blocks to be inter-wired in different configurations (routing channels). Locally around the 
periphery of the device, the input and output cells (I/O pads) allow the logical connection 
interfaces between the design inside the FPGA and off-chip modules external to the device. 
These I/O components can be configured as an input, output or bidirectional interface pin. 
The resulting structure is vendor-dependant (Altera, Actel, Xilinx companies, etc.). 
According to the arrangement of the Logic Blocks and their interconnections on the device, 
FPGAs can be classified according to several categories, such as a symmetrical array, a 
hierarchy-based array and a row-based array, etc. Figure 9 describes an overview of a 
symmetrical array based the FPGA currently used (Xilinx's Virtex FPGA technology) [Xilinx2, 
2007]. 

 

Fig. 9. Overview of the inner architecture of a FPGA. 

Currently, Logic Blocks (CLB or LAB) consist of logical cells (denoted LEs, Slices, etc.) which 
are typically cells based on an n-inputs function generator (usually denoted as Look-Up Tables 
(LUTs)) associated with registers through local select interconnects. An LUT is generally 
made up of 4 to 6 inputs - according to the manufacturer or the FPGA family - and one 
output, which is used to implement logic equations by the combination of input values. One 
LUT acts as a truth table and then specifies its output based on its inputs and the contents of 
the table. The advantage of such a logic structure is in replacing a tree of logic operators 
with an easier consultation operation. Consequently, the speed gain increases and can be 
significant because one read logic value is often faster than one logic operation. Figure 10 
illustrates the principle of a four-input LUT. 

 

Fig. 10. Generic overview of a 4-input Look-Up Table. 
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Thanks to programmable LUTs, Logic blocks can be configured to perform complex 
combinational functions, or merely simple logic gates such as AND and XOR. In most 
FPGAs, the logic blocks also include memory elements, which may be simple flip-flops or 
more complete blocks of memory. Therefore, depending of the FPGA technology and 
family, the logical cells can also include other logic functions. For instance, Figure 11 
describes one Logic Block involving Virtex technology [Xilinx3, 2000] which consists of two 3-
input LUTs, a Full Adder (FA) and a D-type flip-flop. In this example, depending of the mode 
of the cell, there are several possible configurations. In normal mode, the two 3-input LUTs 
are combined into a 4-input LUT through one multiplexer operator [Xilinx3, 2000] (Mux 
operator block in Figure 11) while in the arithmetic mode, their outputs are fed to the FA 
block. The selection of the mode is programmed thanks to one multiplexer (the middle 
Mux). Similarly, the output of the LUT can be either synchronous or asynchronous, 
depending on the programming of one of the multiplexers at the output cell. In practice, 
entire or parts of the FA are placed as functions into the LUTs in order to save on the costs of 
the logic area. 

 

Fig. 11. Structure one Programmable Logic Component based on two 3-input LUTs involving 
Virtex FPGA technology [Xilinx3, 2000]. 

In the current trend, modern FPGAs contain embedded components such as memory blocks, 
multipliers and even processors cores. These FPGA families expand upon the above 
capabilities to include higher level functionality fixed into the silicon. Having these common 
functions embedded into the silicon reduces the area required and gives those functions 
increased speed when compared with building them from primitives. Thus, the Virtex II 
technology includes two IBM 405 PowerPC processor cores in the Xilinx Virtex II Pro device, 
as described by Figure 12, which gives an overview of this FPGA chip [Xilinx2, 2007]. By 
including one or more hardcore processor cores on the FPGA chip, this allows the 
preservation of the configurable logic resources. 

Similarly, some Logic Blocks can include complex arithmetic and logic units, such as 
embedded processors, depending on the type or family of the FPGA technology used 
(commonly referred to as the size granularity of the Logic Cells). Examples of these include 
multipliers, generic DSP (digital signal processing) blocks, high speed I/O logics and embedded 
memories. For example, a number of complex operations are performed using a specific 
arithmetic FPGA block called a DSP-Block. This type of arithmetic structure is frequently 
implemented onto a Virtex FPGA chip in order to implement digital signal processing 
operations. One DSP-block contains a multiplier of 18 × 25 bits and one accumulator to store  
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Fig. 12. Overview of the Xilinx Virtex II FPGA chip [Xilinx2, 2007]. 

the operational results [Xilinx2, 2007; Xilinx3, 2000; Xilinx, 2008]. Figure 13 presents one 
DSP-block. 

 

Fig. 13. Overview of the data-path of one DSP-Bloc using the Xilinx Virtex II and V 
technologies [Xilinx2, 2007; Xilinx3, 2000; Xilinx, 2008]. 

In fact, modern FPGAs are large enough and contain enough memory to be configured with 
either a generic or specific processor in order to execute software code. These configured 
processor units are called softcore processors as opposed to hardcore processors, which are 
buried in the silicon of the FPGA. As an example of such a softcore processor, we can cite the 
MicroBlaze or Nios processors of the Xilinx and Altera companies, respectively [Xilinx1, 2008; 
Altera, 2011]. Of course, this trend does not preclude the use of softcore processors in 
addition to the already embedded hardcore processors. However, it tends increase the 
integration complexity of systems in the FPGA silicon chip. 
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To define the behaviour and configuration of the FPGA, the user provides a Hardware 
Description Language (HDL) or a schematic design. Generally, the designers of digital 
embedded applications use a HDL - such as Verilog or VHDL (VHSIC - Very High Speed 
Integrated Circuits - Hardware Description Language) - to describe the functionality of FPGAs. 
Indeed, in the field of electronic design, HDL acts as specification and modelling languages 
for the description and design of electronic logic circuits. Therefore, designers can describe 
the operations, design and organisation of their digital circuit, and test it to verify their 
operation by means of simulation. In a typical design flow, a FPGA application developer 
will describe and simulate the design at multiple stages throughout the design process. The 
FPGA design flow comprises of several steps, namely design entry, design synthesis, design 
implementation (mapping place and route) and device programming. Figure 14 gives an 
overview of the FPGA design flow carried out by specific automation tools. 

 

Fig. 14. FPGA design flow overview. 

During every step of design flow, and by using an automation tool, a technology-mapped 
netlist is generated. The netlist can be fitted to the FPGA architecture using a process called 
place-and-route. Usually these steps are performed by the FPGA company's proprietary 
place-and-route software, such as the ISE and Quartus tools of the Xilinx and Altera 
companies, respectively [Altera2, 2011; Xilinx4, 2008].  

The embedded digital system’s designers will validate the map, place and route results via 
simulations for verification and timing analysis obtained during the design process. 
Furthermore, design verification - which includes both functional verification and timing 
verification - takes places at different points in the design flow. As mentioned in Figure 14, 
the functional verification of the design is done before synthesis, corresponding to the 
running of a behavioural simulation (RTL simulation), and after synthesis translation, 
corresponding at the running of a functional simulation (gate-level simulation). Thus, the 
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RTL description in VHDL or Verilog is initially simulated by creating test benches to 
simulate the system and observe the results. Next, the synthesis engine maps the design to a 
netlist. This netlist is translated to a gate-level description where simulation is repeated to 
confirm that the synthesis has proceeded without errors. Finally, the design is laid out in the 
FPGA, at which point propagation delays can be added and the simulation then runs again 
with these values back-annotated into the netlist. Once the design and validation process is 
complete, a binary file called bitstream is generated (also using the FPGA company's 
proprietary software) in order to (re)configure the FPGA. Therefore, the programming of the 
device is made from this programming file, containing the bits to program the specific FPGA 
by using a programming cable or by downloading into the device one memory file 
containing the bitstream. More precisely, the bitstream is transferred to the FPGA/CPLD via a 
serial interface (JTAG - Joint Test Action Group - standard support) or to an external memory 
device, such as an EEPROM or a PROM. Generally, after the device’s programming, a circuit 
verification is done in order to verify the real and final functionality of the design. This final 
step allows for the specification of real performance in terms of power consumption, work 
frequency and the required logic, as well as memory hardware resources. Furthermore, in 
order to simplify the design of complex systems in FPGAs, there exist libraries of predefined 
complex functions and circuits that have been tested and optimised so as to speed up the 
design process. These predefined circuits are commonly called IP cores, and are available 
from FPGA vendors and third-party IP suppliers (under proprietary licenses). These 
modules are available for targeting and programming FPGA hardware. Other predefined 
circuits are also available from developer communities, such as the OpenCores site (typically 
released under free and open-source licenses) [Opencores]. 

Thanks to such structures, a FPGA can be used to implement any logical function that an 
ASIC could perform. The ability to update their functionality after shipping (defined as total 
or partial chip reconfiguration of a portion of the design and the low non-recurring 
engineering costs relative to an ASIC design) offers advantages for many embedded 
applications. Thus, the FPGA allows for even higher performance by trading off precision 
and an increased number of parallel arithmetic units. Indeed, the inherent parallelism of the 
logic resources on a FPGA allows for considerable computational throughput, even at low 
MHz clock-rates. The adoption of FPGAs in high performance computing is currently 
limited by the complexity of FPGA design compared with conventional software. Indeed,  
the place and route steps for a complex design may take a long time to succeed. 

In the case of the implementation of an embedded chaotic system, an optimised hardware 
design coded into a VHDL with a structural description logic is required. Indeed, the ‘‘high 
level’’ aspect of one non-optimal VHDL code generation keeps the embedded designer far 
removed from the realities of physical implementation, which does not allow for the 
optimised performance of the design. Consequently, a result in terms of performance and 
the density of resources used remains out of the designer’s reach. Therefore, the designers of 
embedded system based on FPGAs must find applications in any area or with any algorithm 
which can make use of the massive parallelism offered by the architecture. One such area is 
to design one cryptosystem allowing the avoidance of the breaking of the code - in 
particular brute-force attacks - of cryptographic algorithms carried out by the digital circuit. 
In this context, and in considering our embedded ciphering application, hardware 
implementation is designed and coded in VHDL with a structural description logic. This low 
level form of design seeks for resolving the Genesio-Tesi differential equation (18) through the 
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RK-4 numerical resolution method in order to produce a more accurate estimate of the 
solution [Cartwright & Piro, 1992].  

The FPGA implementation presented in the remainder of this section will simulate the 
correct operation with test vectors returned by the software’s implementation. 

5.3 RTL architecture 

As to logic exploration architecture, one proposed RTL architecture of the Genesio-Tesi 
chaotic system is depicted by Figure 15. Note that the architecture depends on the three 
bifurcation parameters a, b and c and is based on the structural feedback of three main 
blocks: F, G and Q. These three functional units realise the nonlinear functions of the 
equations (18.a), (18.b) and (18.c), respectively. These units are composed by an adder, a 
subtractor and multiplier logic arithmetic operators. Consequently, the F and G units 
correspond to logic assignments while the Q unit is simply composed of an adder, a 
subtractor and multiplier logic arithmetic operators in accordance with the set of equations 
(18) and the RK-4 resolution method. The data-path processing architecture of the Q units is 
depicted by Figure 16. 

 

Fig. 15. RTL architecture of the Genesio-Tesi chaotic system. 

 

Fig. 16. RTL architecture of the Q functional units. 
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5.4 Logic hardware modelling and simulation 

To test the effectiveness of this microelectronic solution, the RTL architecture of the Genesio-
Tesi generator has been simulated with the ModelSim simulator tool [Mentor Graphics, 2008]. 
Unlike the use of VHDL automatic code generation [Aseeri et al., 2002; Sobhy et al., 1999], 
the data-path processing architecture has been implemented in the structural description in 
the manner depicted by Figure 15. It should be noted that the continuous chaotic signals are 
real, which is why the embedded proposed architecture treats a finite resolution of numbers 
using a binary representation. Indeed, in embedded electronic design, a fixed-point number 
representation is a real data-type for a number that has a fixed number of digits after the 
radix point. Fixed-point formats are useful for representing fractional values - usually in 
base 2 or base 10 - when the executing processor has no floating point unit (FPU), or else if the 
fixed-point provides improved performance or accuracy for the application. Moreover, most 
low-cost embedded systems do not have an FPU. 

In the case study, the data-path architecture adopted one hardware implementation based 
on a finite solution of numbers with a fixed point representation of the real data in 32 bits 
(16Q16) - i.e., all the data is in a fixed-point format with 16 bits for the integer and fraction 
parts. This fixed-point arithmetic format allows for a very useful and attractive trade off 
between high speed and low area cost because the presentation on 32 bits (16Q16) provides 
greater precision for the representation of the real data while preserving the dynamic of the 
generated chaotic signals. The obtained results are shown by Figure 17, where the chaotic 
signals x, y and z of the Genesio-Tesi generator are presented. Note that all of these results are 
represented with 32 bits using the bifurcation parameter values as defined in Section 5.1. It 
can be seen that the ModelSim simulation results are very similar to those obtained with the 
MatLab simulations shown in Figure 7. 

 

Fig. 17. ModelSim simulation results of the chaotic signals x, y and z. 

5.5 Logic synthesis results 

The FPGA synthesis results (after the place and route steps) in terms of logic resources and 

performance analysis of the implementation of the architecture inside the FPGA are detailed 

in Table 2. The maximum frequency and hardware resources consumption in terms of the 
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slices and multipliers required are specified there. The results demonstrate that the 

proposed Genesio-Tesi chaotic generator can be efficiently implemented through FPGA 

technology by providing real-time chaotic signals. It can be seen that an attractive trade-off 

between high speed and low logic resources has been achieved. Indeed, their 

implementation on a Xilinx Virtex-II device uses only 1359 CLB-Slices (9% of the circuit size), 

22 multipliers (16%) and no block RAMs. This justifies the advantages of the weak 

nonlinearity of the Genesio-Tesi chaotic system. To evaluate the behaviour of the proposed 

hardware implementation, we use certain evaluation metrics. The metrics are the Throughput 

rate and the Time latency. The throughput rate is defined as the number of bits by unit of time. 

In our case, this rate corresponds to 32 bits wordlength during one operating clock 

frequency. From the performance results (see Table 2) we achieved a maximal throughput of 

806.62 Mbps. This throughput rate is computed after the initialisation phase at the output of 

the FPGA circuit. Meanwhile, at the input of the DAC, the rate corresponds to 18 bits 

wordlength during one operating clock frequency, and the maximum throughput achieved 

is 454.64 Mbps. Latency is defined as the time necessary to generate one single wordlength 

signal after the start of the generator. The optimised implementation of the Genesio-Tesi 

chaotic system requires 8 clock cycles to generate one wordlength chaotic signal. In this case, 

we obtain a time latency of 316.73 ns. These results are very attractive for the security of 

communications between embedded systems. 

 

Device utilization summary 
Selected Device : 2vp30ff896-7 

Number of Slices: 1359  out of  13696     9% 

Number of Slice Flip Flops:             865    out of  27392     3%   

Number of 4 input LUTs:                2591  out of  27392     9% 

Number of bonded IOBs:                   98     out of    556    17% 

Number of MULT18X18s:                    22     out of    136    16% 

Number of GCLKs:                          1      out of     16     6% 

Maximum Frequency:  25.258MHz 

Table 2. Synthesis results. 

5.6 Physical hardware implementation 

In this section, we consider the XUP Xilinx Virtex-II Pro Development embedded platform 

for physical hardware implementation [Xilinx4, 2008]. The XUP System consists of a high 

performance Virtex-II Pro FPGA (XCV2PFF896-7) surrounded by peripheral components 

that can be used to create a complex hardware system. Figure 18 displays a photo of the 

XUP Xilinx Virtex-II Pro platform. Note that an audio CODEC (AC97) and stereo power 

amplifier are included on the XUP platform so as to provide complete analogue 

functionality, allowing the external generation of chaotic signals in analogue form for real 

measurements [Analog Device, 2000]. 

An overview of the hardware architecture of the key data chaotic generator - implemented 

on the XUP Virtex-II Pro development system - is depicted by Figure 19. The RTL 

architecture has been implemented on Xilinx Virtex-II Pro XC2VP30 FPGA [Xilinx2, 2007]. 

This hardware description was designed with the ISE 10.1 Xilinx tools [Xilinx4, 2008]. 
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(4pt) 

Fig. 18. XUP Xilinx Virtex-II Pro embedded platform. 

 

Fig. 19. Digital hardware architecture of the Genesio-Tesi chaotic system. 
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The architecture system consists of two main modules: the Control_Unit and the Genesio-Tesi-
Generator module. The Control_Unit module is a Moore-state machine which manages and 
schedules the different operations and functions of the chaotic system. The Genesio-Tesi-
Generator module generates the chaotic signals as described in Section 5.4. Once the chaotic 
signals (x, y and z) with 32 bits wordlength are obtained, they are truncated to 18 bits and 
converted to an analogue format using a Digital-to-Analogue Converter (DAC), and this 
process is then repeated. Next, the real-time chaotic signals obtained at the output of the 
DAC are visualised via a digital oscilloscope [Agilent, 2007]. Note that this proposed 
architecture offers two different means for using the obtained real-time chaotic signals. 
Indeed, it permits the use of them in their analogue form at the output of the DAC or their 
use in their digital form directly at the output of the FPGA circuit. This will permit the easy 
exploitation of the richness of the dynamical behaviour of the embedded Genesio-Tesi chaotic 
generator for such embedded applications as communications security. 

To view the real-time chaotic signals generated by the Genesio system, we implemented the 
proposed digital architecture in the FPGA Chip of the XUP Virtex-II Pro FPGA platform 
development, and prototyping was then performed. The functional Blocks implemented in 
the FPGA chip are shown by Figure 20. This architecture is mainly composed of three 
modules, the clk_generator, the genesio_generator and a digital interface 
(BASIC_AC97_INTERFACE) of the DAC available on the XUP Virtex-II platform. The 
functions of each module are: 

 clk_generator: it generates and distributes the clock and reset signals required for all of 
the modules. Thus, the signal clk_AC97 drives the AC97 codec at 12.5 MHz while the 
signal clk_genesio cadences the Genesio_generator module at 25,254 MHz. These signals 
are generated from the 100 MHz clock embedded on the board system. 

 Genesio_generator: it generates the chaotic signals x, y and z of 32 wordlength bits and 
controls the DAC operations with a specific control signal (cmd). 

 BASIC_AC97_INTERFACE: this block - after analogue conversion - transmits signals to 
a chaotic oscillator for digital real-time display. 

Note that no block of RAM is used in this hardware architecture. 

 

Fig. 20. Functional blocks implemented in the FPGA chip. 
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5.7 Real time measurements 

Figures 21 and 22 show the real time measurements of the chaotic signals x, y and z and the 
strange attractors obtained in the plans (x-y) and (x-z), respectively, which were obtained 
simultaneously with the presented hardware system. These snapshots are provided by a 
digital oscilloscope (Tektronix oscilloscope [Agilent, 2007]) at the output of the DAC. The x, y 
and z real-time chaotic signal measurements of the embedded generator, obtained by the 
direct implementation of the RTL-optimised architecture, are given by Figures 21.a, 21.b and 
21.c, respectively. The measured real-time attractors (x-z) and (x-y) are presented by Figures 
22.a and 22.b, respectively. We can compare these real results with those obtained using the 
MatLab and ModelSim simulation tools presented in Sections 5.1 and 5.4 in order to ascertain 
whether or not these results are similar. These results clearly confirm that the implemented 
chaotic system works well in the chaotic mode. In addition, these measurements show that 
the proposed approach provides an efficient chaotic generator. Consequently, the hardware 
implementation validates this approach for the development of embedded chaotic 
generators based on chaotic nonlinear systems. 

 
(a) 

 
(b) 

 
(c) 

Fig. 21. Real-time measurement results of the chaotic signals x (a), y (b) and z (c). 
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           (a)              (b) 

Fig. 22. Real-time measurement results of (a) the (x-y) chaotic attractor, and (b) the (x-z) 
chaotic attractor. 

Figure 23 provides a view of the experimental hardware implementation and measurements 
of the Genesio x-y chaotic attractor. Real-time measurements and digital acquisition can be 
made. 

 

Fig. 23. Photo of the experimental hardware implementation and measurements of the 
Genesio-Tesi x-y chaotic attractor. 

6. Conclusion 

Following a general overview of the embedded digital system design based on 

programmable technology and its associated tools, this chapter presents a hardware design 

of the embedded system for security applications. One FPGA implementation of an 

embedded chaotic cryptosystem has already been detailed. The implemented embedded 

system is based on a 3D chaotic key generator for a high data stream encryption rate 

suitable for real-time image encryption. The proposed case study provides an efficient 

approach for conceiving an embedded Genesio-Tesi chaotic generator based on the 
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implementation of reconfigurable technology. The hardware implementation of this 

embedded generator gave attractive performances. More precisely, the implementation 

requires only 1359 CLB-slices, 22 multipliers and no blocks of RAM, and achieves a 

throughput rate of 808.26 Mbps at the output of the FPGA circuit and 454.64 Mbps at the 

input of the DAC, with a clock frequency of 25.258 MHz and with a low latency time of 

316.73 ns. Thus, the signal generator performs well for embedded applications, such as 

secure communications based on chaos approach. The random key generator architecture 

that was presented is particularly attractive, since it provides low-cost secure 

communications solutions for embedded systems. This approach at hardware design is 

validated by showing that the real-time Genesio-Tesi chaotic signals obtained with the RTL 

architecture are similar to the software simulations as its counterparts. Moreover, embedded 

cipher systems can have several advantages over the use of FPGAs. Indeed, the 

experimental results using the Xilinx Virtex technology have demonstrated that the design 

approach presented can lead to designs with a small logic area, satisfactory throughput rates 

and low latency for embedded applications. 
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