
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

Software Development for Parallel
and Multi-Core Processing

Kenn R. Luecke
The Boeing Company

USA

1. Introduction

The embedded software industry wants microprocessors with increased computing
functionality that maintains or reduces space, weight, and power (SWaP). Single core
processors were the key embedded industry solution between 1980 and 2000 when large
performance increases were being achieved on a yearly basis and were fulfilling the
prophecy of Moore’s Law. Moore’s Law states that “the number of transistors that can be
placed inexpensively on an integrated circuit doubles approximately every two years.”1
With the increased transistors, came microprocessors with greater computing throughput
while space, weight and power were decreasing. However, this ‘free lunch’ did not last
forever.2 The additional power required for greater performance improvements became too
great starting in 2000. Hence, single core microprocessors are no longer an optimal solution.
Although, distributed and parallel programming solutions provide greater throughput,
these solutions unfortunately increase SWaP. The most likely solution is multi-core
processors which have been introduced into the embedded processor markets. Most
microprocessor manufacturers have converted from developing single core processors to
multi-core processors. With this conversion, the prophecy of Moore’s Law is still being
achieved. See Figure 1 and notice how the single core processors are not keeping pace with
the multi-core processors. Multi-core processors increase throughput while maintaining or
reducing SWaP for embedded environments which make them a good hardware solution
for the aerospace industry. Intel, in particular, has estimated that by 2011, 95% of all the
processors it ships will contain a multi-core design. However, the software market shows
less optimism with multi-core processors. For instance, only 40% of software vendors
thought their tools would be ready for multi-core processing by 2011. The reasons for
software engineering’s lack of excitement with multi-core processors include the following
drawbacks:

 Lack and immaturity of multi-core specific development and debug software tools.
 Lack of multi-core processor standards.
 Lack and immaturity of multi-core enabled system software.

1 http://en.wikipedia.org/wiki/Moore's_law
2 Sutter, H., (March, 2005). “The free lunch is over. A fundamental turn toward concurrency in
software,” Dr. Dobb’s Journal, Volume 30, Number 3.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

36

 Lack of parallel programming experience by the software community.
 Lack of parallel programming models to support these multi-core processors.
 An abundance of differentiated multi-core processors from multiple suppliers. Greater

differentiation with inexperience can be problematic for software developers converting
applications for multi-core processors.

Fig. 1. Processor Transistor Counts and Moore’s Law3.

These problems led Chuck Moore, a Senior Fellow at AMD, to state “To make effective use

of Multi-core hardware today, you need a PhD in computer science.”4 Therefore, multi-core

software development has fallen behind multi-core hardware development. This chapter

will provide information on the current best technologies, tools, methodologies,

programming languages, models, and frameworks for software development on multi-core

processors. Where different software development options exist, comparisons and

recommendations will be provided to the reader.

2. Multicore definition

Previous multiprocessing, as opposed to multi-core processing, solutions, such as parallel
and distributed programming, involved two or more processors, which doubled, tripled, or

3 Fittes, Dale, (October 30, 2009) Using Multicore Processors in Embedded Systems – Part 1, EE Times.
4 Moore, Chuck, (May 12, 2008) “Solving the Multi-core Programming Problem”, Dr. Dobbs Journal.

www.intechopen.com

Software Development for Parallel and Multi-Core Processing

37

even quadrupled the board space, weight, and power (SWaP) consumed and heat generated
by the processing system. These solutions could comprise large networks leading to data
latencies between processing components. However, multi-core processors place multiple
processing cores on a single chip to increase processing power without noticeably increasing
the system’s SWaP and heat dissipation. Also, with multiple cores on a single chip the data
latencies of distributed programming are mostly negated. With multi-core processing, the
computer industry continues pushing the performance/power envelope through parallel
processing rather than increasing the processor clock speed. For the most part, serial
computing has been the standard software development model, with multiple cores on a
processor, now parallel computing is emerging as the new standard and very few
programmers are well versed in parallel computing. A multi-core processor, in general,
appears similar to the dual core and quad core processors displayed in Figure 2. In both
cases, each core has an associated L1 cache while the L2 cache is shared between all the
cores. For systems with L1, L2, and L3 cache, normally the L3 cache is shared between all
cores, each core has its own segregated L1 cache, and the L2 cache may be shared between
cores or segregated L2 caches will be devoted to each core.

Fig. 2. Example Dual Core (left) and Quad Core (right) Multi-core Processors.

3. Multiprocessing models and frameworks

Traditionally, there were two multiprocessing models: Asymmetric Multi-Processing (AMP)
and Symmetric Multiprocessing (SMP). For highly integrated processing, AMP designs
incorporate several cores on a chip with each processor using its own L1 cache, and all
processors share a common global memory. The AMP model can incorporate either
heterogeneous cores executing different operating systems (OS) or homogeneous cores
executing the same OS. With heterogeneous cores, the AMP architecture looks like a Digital
Signal Processing (DSP) architecture. In AMP designs, application tasks are sent to the
system’s separate processors. These processors are collocated on the same board, but each is

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

38

a separate computing system with its own OS and memory partition within the common
global memory. See Figure 3.

The advantages of the AMP multiprocessing model include:

 The operating systems, tasks, and peripheral usage can be dedicated to a single core.
Hence, it offers the easiest and quickest path for porting legacy code from single core
designs to multi-core designs. Therefore, it is the easier multiprocessing model for serial
computing software engineers to start with.

Fig. 3. Traditional AMP Model.

 Migrating existing (non-SMP) OSs to the model is relatively simple and usually offers
superior node-to-node communication compared to a distributed architecture.

 AMP also allows software developers to directly control each core and how the cores
work with standard debugging tools and methodologies. AMP supports the sharing of
large global memories asymmetrically between cores.

 AMP provides software developers with greater control over efficiency and
determinism.

 AMP allows engineers to embed loosely coupled applications from multiple processors
to a single processor with multiple cores.

The disadvantages of the AMP multiprocessing model include:

 For tightly coupled applications, AMP approaches work best when the developers need
no more than two cores while developing a solution. As more cores are added, the AMP
multiprocessing model becomes exponentially more difficult especially for tightly
coupled applications executing on all cores.

www.intechopen.com

Software Development for Parallel and Multi-Core Processing

39

 AMP can result in underutilized processor cores. For example, if one core becomes
busy, applications running on that core cannot easily migrate, to an underutilized core.
Although dynamic migration is possible, it involves complex check pointing of the
application’s state which can result in service interruption while the application is
stopped on one core and restarted on a different core. This migration may be impossible
if the cores use different OSs.

 None of the OSs owns the entire application system. The application designer must
manage the complex tasks of handling shared hardware resources. The complexity of
these tasks increases significantly as more cores are added. As a result, AMP is ill-suited
for tightly coupled applications integrating more than two cores.

 Memory latency and bandwidth can be affected by other nodes.

 The AMP multiprocessing model does not permit system tracing tools to gather
operating statistics for the multi-core chip as a whole since the OSs are distributed on
each core. Instead, application developers gather this information separately from each
core and then combine the results for analysis purposes. This is only a concern for
systems where the applications on the individual cores are tightly coupled.

 Cache “thrashing” may occur in some applications.

In SMP architectures, each node may have two or more processors using homogeneous

cores, but not heterogeneous cores, while the multiple processors share the global memory.

In addition, the processors may also have both local and shared cache, and the cache is

coherent between all processors and memory. See Figure 4. SMP executes only one copy of

an OS on all of the chip’s cores or a subset of the chip’s cores. Since the OS has insight into

all system elements, it can transparently and automatically allocate shared resources on all

cores. It can also execute any application on any core. Hence, “SMP was designed so you can

mimic single-processor designs in a distributed computing environment,” said Enea’s

Michael Christofferson5. The OS provides dynamic memory allocation, allowing all cores to

draw on the full pool of available memory, without a performance penalty. The OS may use

simple POSIX primitives for applications running on different cores to communicate with

each other. POSIX primitives offer higher performance and simpler synchronization than

the AMP system networking protocols.

Other SMP multiprocessing model advantages include:

 A large global memory and better performance per watt is due to using fewer memory
controllers. Instead of splitting memory between multiple central processing units
(CPU), SMP’s large global memory is accessible to all processor cores. Data intensive
applications, such as image processing and data acquisition systems, often prefer large
global memories that can be accessed at data rates up to 100s of Megabytes/second
(Mbytes/sec).

 SMP also provides simpler node-to-node communication, and SMP applications can be
programmed to be independent of node count. SMP especially lends itself to newer
multi-core processor designs.

 Systems based on SMP, have the OS perform load-balancing for the tasks between all
cores.

5 Morgan, Lisa L., (December 15, 2006), Making the Move to Multicore, SD Times.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

40

Fig. 4. Traditional SMP Multiprocessing Model Example.

 One copy of an OS can control all tasks performed on all cores, dynamically allocating
tasks or threads to the underutilized core to achieve maximum system utilization.

 The SMP multiprocessing model permits system tracing tools to gather operating
statistics for the multi-core chip as a whole, providing developers insights into
optimizing and debugging applications. The tracing tools can track thread migration
between cores, scheduling events, and other information useful for maximizing core
utilization.

 An SMP approach is best for a larger number of cores and for developers who have
time to adequately develop a long term solution that may eventually add more cores.

 SMP, versus AMP, is usually the preferred choice for applications implementing
dynamic scheduling.

The disadvantages of the SMP multiprocessing model include:

 The memory latency and bandwidth of a given node can be affected by other nodes,
and cache “thrashing” may occur in some applications.

 Legacy applications ported to an SMP environment generally require a redesign of the
software. Legacy applications with poor synchronization among threads may work
incorrectly in the SMP concurrent environment. Therefore, an SMP approach is better
for software developers with parallel computing experience.

 Enea’s Christofferson said that in many designs there are components within an
operating system that may have hidden requirements that may not be running at the
same time as another thread. To avoid the problem, Christofferson recommended that
designers consider all OS and application threads to make sure there are no
concurrency problems.6

6 Morgan, Lisa L., (December 15, 2006), Making the Move to Multicore, SD Times.

www.intechopen.com

Software Development for Parallel and Multi-Core Processing

41

 When moving legacy architectures from single core processing to multi-core processing,
the major issue is concurrency. In a single operating environment, running multiple
threads is a priority, so two threads with different priority levels can execute in parallel
when they are distributed to different cores.

 SMP systems exhibit non-determinism. Hence any computing solutions that require
determinism may need to stay away from an SMP model.

After listing the advantages and disadvantages of both AMP and SMP, a comparison
between both multiprocessing models on several important programming concepts would
be beneficial. See Table 1. With most programming concepts, the support that AMP
provides is diametrically different from the support provided by SMP. However, as a
software architect or developer of a system being ported to a multi-core processor, you want
AMP support for some programming concepts and SMP support for other programming
concepts. It was for this very reason that RTOS suppliers began to provide CPU affinity with
their SMP support. What has become more prevalent in the past several years is developing
hybrid models that combine some AMP support with some SMP support based on the
system needs of the computing solution being developed. Two of the more popular hybrid
models include:

 Combined AMP/SMP Model which executes both processing models on one processor.
For example, for a quad-core processor, two cores will be executing an AMP model
while the remaining two cores will be executing a SMP model. See Figure 5. In this
hybrid model, there is no cross pollination between the models running on any of the
cores. One benefit of this model is that architects can implement tasks that achieve
better performance on AMP such as task parallelism on the AMP cores and tasks that
achieve better performance on SMP such as data parallelism on the SMP cores, resulting
in an overall system performance than an AMP or SMP only system.

 Supervised AMP Model which includes a layer of software executing between the OSs
and the cores. The supervisor’s primarily benefit is additional communication software
that allows for improved system communication between the OSs running on the
different cores. The benefits of this include:
 Improving scalability for additional cores.
 Providing better system debugging between processes on different cores.

 Enabling reboot of individual cores on your system.7

Hence, Supervised AMP model has improved system debugging capabilities over a system
implementing a traditional AMP model. See Figure 6.

Several embedded software frameworks have been developed for multi-core processors, but

more are needed for improved software development and performance. The frameworks

discussed in the rest of this chapter are a sampling of available frameworks. The mention of

each framework is not intended as a recommendation. The Georgia Institute of Technology,

through the Software and Algorithms for Running on Multi-core (SWARM) program,

developed a framework consisting of portable open source parallel library of basic

primitives that exploit multi-core processors. This framework allows developers to

implement efficient parallel algorithms for operations like combinatorial sorting and

7 Wlad, Joe. (2011), Freescale Multi-Core Forum, Freescale Multi-core Forum, St. Louis, September, 2011.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

42

Programming Concept AMP SMP

Seamless resource
sharing

No Yes

Scalable beyond dual
core

No/Complicated for tightly
coupled apps

Yes

Mixed OS environment
(ex: VxWorks & Linux)

Yes No

Dedicated processor by
function (CPU affinity)

Yes Yes/No. CPU affinity is not supported in
traditional SMP models, but most RTOS
suppliers provide CPU affinity for their
SMP models.

Inter-core messaging Slower (application) Fast (OS primitives)
Thread synchronization
between cores

No/Complicated Yes

Dynamic load balancing No Yes
System-wide debug and
optimization

No/Complicated for tightly
coupled apps

Yes

Migrating Legacy
Apps/New App
Development

Best at Migrating Legacy Apps.
Good choice for New App
Development.

Best for New App Development

Data/Task Parallelism Task preferred Data preferred
Engineer experienced in
Serial Computing Only

Better choice than SMP More difficult for a novice parallel
computing developer

Table 1. AMP and SMP Model Comparisons.

Fig. 5. Combined AMP/SMP Model.

www.intechopen.com

Software Development for Parallel and Multi-Core Processing

43

selection algorithms. The University of California-Berkeley (UCB) and University of Illinois
at Urbana-Champaign (U of I) are concentrating on software frameworks for multi-core
processors. Both universities were partially funded by a $10 million grant from Intel and
Microsoft. In particular, UCB is concentrating on developing frameworks and a composing
language to assist programmers in creating and coordinating parallel programming models.
Meanwhile, U of I is exploring new frameworks for extracting parallelism from serial code
and developing software component building blocks required for parallel programming
frameworks. Several software and hardware companies including AMD, IBM, Hewlett-
Packard, Intel, and NVidia are funding Stanford University’s Pervasive Parallelism Lab to
investigate new parallel programming models including improved synchronization
techniques between the cores on a multi-core processor.

Fig. 6. Supervised AMP Model.

Of software suppliers, Microsoft has included multi-core support for its .NET framework.
The .NET framework contains the Task Parallel Library (TPL) with software to support task
parallelism and the Parallel Language Integrated Query (PLINQ) to support data
parallelism. PLINQ provides the ability to parallelize data queries. Meanwhile, TPL
provides parallelized versions of the C# for and foreach loops and partitions work for
parallel processing and spawning, executing, and terminating threads that execute in

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

44

parallel. Intel markets its Threaded Building Blocks (TBB) which are used for parallelizing
serial software. TBB is a C++ template library which treats a program’s operations as tasks.
The tasks are assigned to individual cores by TBB’s run-time executables. The operations or
tasks then execute in a sequence where synchronization bugs between the threads or tasks
have been minimized or removed.

OpenMP provides a framework for parallelizing serial software written in C, C++, or
Fortran using roughly fifty pre-processor declarations. In this model, one core acts as the
master assigning tasks/work to the other cores. Using this framework, the developer writes
a control software for the master core and complementary software for the tasks that the
other cores perform. The MCF library of functions manages concurrent processes and
distributes data among the cores. The biggest problem with MCF is that it only supports
IBM’s Cell processor.

4. Software development and debug tools

Software tools have and continue to be one of the biggest challenges for software developers
working with multi-core processors. In general, the author finds most tools to be narrowly
focused on just a single hardware vendor’s products, a single processor, or a single
programming language. These tools often provide results of limited value, or require greater
manual labor than what is expected. For example, often times the output from one tool
cannot simply be routed as input into another tool. These tasks may require a good deal of
manual reformatting or manipulation prior to inputting the data into the next tool. Some
tool vendors repackaged their multi-processor software tools with a few modifications to
handle inter-core processing as tools for multi-core software development. However, the
good news is a few software development and debug tools have entered the market that are
mature, are focused on products from multiple vendors, and provide a good deal of
automation to free up the developer for more pertinent, non-repetitive tasks. The rest of this
section will discuss a few software development tools for multi-core processing. Most of the
information below comes from the tool vendors themselves, tool investigations that the
author has performed, or demonstrations that the author has witnessed.

Clean C overcomes some single core to multi-core conversion problems. IMEC has
developed the Clean C utility as an Eclipse plug-in which automatically converts C code
from a single core processor to a multi-core processor. However, Clean C has 29
programming rules that must be manually applied to the code base prior to using the utility.
Once the C code base conforms to all 29 programming rules, the Clean C utility can be
executed on the software with few updates for an optimized multi-core application. If the
Clean C utility is applied without implementing the 29 programming rules to the C code
base, the result will likely be non-operational. The Clean C utility can only be applied to C
language software code bases. Clean C does not properly convert C++ based applications.
The author has not tested this product.8

Intel’s Parallel Studio is a C/C++ multi-core tool suite that integrates with Microsoft’s
Visual Studio 2005, 2008, and 2010 Integrated Development Environments (IDE). Parallel
Studio is comprised of:

8 http://www.imec.be/CleanC

www.intechopen.com

Software Development for Parallel and Multi-Core Processing

45

 Intel Parallel Advisor which models an application and analyzes the best locations to
implement parallelism within your application.

 Intel Parallel Composer which contains a C++ compiler, performance libraries, software
thread building blocks, and parallel debugging extensions for improved performance
on multi-core processors.

 Intel Parallel Inspector which automatically identifies memory and threading errors for
the software developer.

 Intel Parallel Amplifier which analyzes processing hot spots, concurrency, and lock and
waits with the goal of improving performance and scalability.9

Cilk++, Cilk, and jCilk, developed by Supertech Research Group who sold their product to
Intel, assists developers with converting from single core to multi-core software systems.
First, it implements its own three command standard for multi-core development. This
standard allows developers to insert these commands in their existing code for spawning
and synchronizing tasks, rather than restructuring their code base. Second, these products
contain a number of debugging and run-time analysis tools to assist developers with
optimizing their applications in a multi-core environment. Cilk++, Cilk, and jCilk apply to
applications written in C++, C, and Java, respectively. Some of the Cilk components have
been embedded in Intel’s Parallel Studio tool. The author has witnessed a demonstration of
Cilk++.10

The objective of Critical Blue’s Prism tool is to provide analysis and an exploration and
verification environment for embedded software development using multi-core
architectures. A software developer could use this tool to assist in converting an application
from a single core microprocessor to a multi-core microprocessor. It implements a Graphical
User Interface (GUI) to assist with a developer’s multi-threaded software development. The
GUI provides multiple views for a look ‘under the covers’. It provides detailed analysis of
your application. The tool works for many processor chips including x86, PowerPC (PPC),
Microprocessor without Interlocked Pipeline Stages (MIPS), and Advanced Reduced
Instruction Set Computer (RISC) Machine (ARM). The author has tested this product and
found it to be one of the better tools for moving an application from a single core to multi-
core processor.11

Poly Core Software provides a multi-core software communications framework. The Poly
Core software tool suite consists of:

 Poly-Mapper which is a Graphics User Interface (GUI) tool that allows developers to
map software communications across multiple cores using XML commands.

 Poly-Generator converts the Poly-Mapper XML commands to C source code files.
 Poly-Messenger contains a software communications library for distributing processing

on multiple cores.
 Poly-Inspector allows developers to inspect and analyze applications for

communication ‘hot spots’. A ‘hot spot’ occurs where a single or more cores have an
increased amount of processing activity and while other processing cores are idle.

9 http://en.wikipedia.org/wiki/Intel_Parallel_Studio
10 http://supertech.csail.mit.edu/cilk
11 http://www.criticalblue.com

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

46

The Poly Core Software suite of tools is used for generating only C code files that can be
ported to multiple OSs. The code files execute on most processor chips such as x86, PPC,
ARM, and MIPS.12

Transparent Inter Process Communication (TIPC) is an Open Source implementation that
allows software designers to create applications that can communicate quickly and reliably
with other applications within the computing core cluster. The TIPC protocol originated
with Ericsson and has been deployed in their products for several years. TIPC is available
for Linux, Solaris, and VxWorks OSs. Most applications using TIPC are written in C/C++
languages and support is available for Perl and Python.13

VLX by Red Bend Software is a real-time hypervisor that assists developers with migrating
embedded systems from single core to multi-core processors. Their tool allows developers
to run applications using a mixture of traditional Real-time Operating Systems (RTOS)
along with Linux and Windows OSs concurrently on a shared hardware platform. Virtual
Logix claims VLX maintains determinism and the same high performance that a RTOS
provides. VLX has been certified to Common Criteria (CC) Evaluation Assurance Level
(EAL) 5. VLX executes on ARM, Texas Instruments (TI), PPC, and x86 microprocessors. The
author has witnessed a demonstration of VLX.14

Simics is primarily a virtualization emulation tool used by software developers to develop,
test, and debug embedded software that will eventually execute on multi-core processors or
in a simulated environment. Simics is produced by Intel’s Wind River subsidiary. Simics can
emulate many multi-core chip manufacturer’s processors. However, Simics specializes in its
support for Freescale Semiconductor processors. Simics claims to provide additional
visibility into your system to improve overall debugging performance. Simics models
hardware systems using software running on ordinary workstation computers for an
improved development and debugging experience for software engineers. Simics allows
developers greater control by varying the number and speed of the cores and injecting
actual faults into the system. The author has witnessed a demonstration of Simics.15

QEMU is an open source virtualization emulation tool used by software developers to
develop, test, and debug embedded software that will eventually execute on multi-core
processors or in a simulated environment. It provides solutions for x86, ARM, MIPS, PPC,
Scalable Processor Architecture (SPARC), and several other microprocessor families. A
developer can simulate multiple communication channels by creating multiple QEMU
instances. The author is currently working on a team using QEMU for its virtualization
efforts.16

TRANGO Virtual Processors, a subsidiary of VMware, uses an Eclipse based IDE to provide
secure virtual processes for software engineers to migrate legacy single core processors to
multi-core platforms. TRANGO virtual processors assist with migration to multi-core by
first instantiating multiple virtual processor units on a single core. Next, the developer
populates each virtual processor unit with its own OS and application(s). Then, the

12 http://www.polycoresoftware.com
13 http://tipc.sourceforge.net
14 http://www.redbend.com
15 http://www.windriver.com/products/simics
16 http://wiki.qeu.org/Main_Page

www.intechopen.com

Software Development for Parallel and Multi-Core Processing

47

developers move the OSs and applications onto a physical multi-core hardware system.
TRANGO recommends mapping one TRANGO hypervisor to each core. TRANGO
hypervisors also support the SMP multiprocessing model and RTOSs. The author has not
tested this product.17

Sysgo markets their PikeOS which is a paravirtualization RTOS based on a separation
microkernel. It uses an Eclipse based IDE. This RTOS has been certified to DO-178B Level B.
Sysgo claims that the PikeOS implements a Multiple Independent Levels of Security (MILS)
architecture and that it is completing formal code verification for a CC EAL 7 certification
during the Summer 2011. In 2009, Sysgo began marketing the PikeOS in North America. The
author has not tested this product.18

Most of the major embedded RTOS suppliers including QNX, Wind River, Lynux Works,
Green Hills, and DDC-I also support software development for multi-core processors.
However, they do not offer identical support. Most of the suppliers also provide their own
hypervisor that works with their own line of products. The author has tested Wind River’s
VxWorks OS with multi-core support and has witnessed demonstrations of QNX and Lynux
Works RTOSs with multi-core support. When analyzing the RTOS’s multi-core support, pay
attention to the product’s performance profiling tools which allow the developer to examine
more closely what is happening ‘under the hood’. Understand which software languages
each RTOS supports and whether real-time support is provided for each language. Wind
River, Green Hills, and Lynux Works also market their own real-time hypervisors.

This section has discussed several tools for developing software aimed at a multi-core
processor. Very few tools are direct competitors with another tool. Currently most tools are
attempting to solve one small piece of the software developer’s task in writing software for a
multi-core environment. When choosing software development tools for multi-core
processors, keep in mind that most tools are still immature, are usually programming
language specific, processor specific, and/or vendor specific. Make sure you have a
thorough understanding of the application you are developing or migrating and the
development needs are for the application. Ask very detailed, pointed questions of the tool
vendors to make sure you understand what their tool can and cannot perform at the time of
purchase or use.

5. Virtualization

Virtualization technology can be used to create several virtual machines to run on a single
virtual machine. Virtualization technology allows multiple OSs to run on a single processor.
Processors with multiple cores could easily simulate one virtual machine on each core of the
physical processor or machine. Virtualization technology was first introduced in the 1960s
with IBM mainframe computers with many benefits. First, virtualization allowed many
users to concurrently use the same mainframe platform where each user had their own
virtual machine and where each virtual machine can execute a different OS resulting in
increased productivity from the expensive IBM mainframes. Second, the technology allowed
legacy applications to run on future mainframe hardware designs. Third, the virtualization

17 http://en.wikipedia.org/wiki/Trango_Virtual_Processors
18

 http://www.sysgo.com/products/pikeos-rtos-technology

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

48

technology all resided in a thin layer of software that executed on top of the hardware or an
underlying OS.

With the introduction of the Personal Computer (PC), interest in virtualization technology
died. However, with PCs and processors becoming more and more powerful in the last ten
years, there is a resurgence in the technology for this computing equipment. The benefits of
virtualization achieved with mainframe computers are the same for single core and multi-
core processors. Virtualization products can be found for both real-time and non-real time
embedded systems.

There are three main types of virtualization as shown in Figure 7. They are:

 Full Virtualization, which is the most flexible approach, can usually support any OS
type. Most processor manufacturers have been adding full virtualization support for
their processors. This approach allows any legacy or new OS designed for the processor
to run virtualized. This approach can be implemented with a host OS executing
between the hypervisor and the hardware, but it is not necessary. This approach can
also be implemented with special virtualization technology built into the processor.
Since this approach does not require any modifications to the OS, it is expected to
eventually be the preferred virtualization type.

 Para Virtualization which can only support OSs that have been modified to run in their
virtual machine. In this approach the OS is modified so that it would use the virtualized
layer of software’s interface to communicate between the guest OSs and the virtualized
layer of software. Para virtualization is usually built into the host OS and then allows
multiple guest OSs to execute in virtual machines. This approach executes faster at run-
time than the full virtualization approach.

 Container Virtualization can only support OSs that have been modified to run in their
virtual machine like a Para Virtualization approach, but here there is no attempt to
virtualize the entire processor. Instead most of the OS components are reused between
the container based OSs. Container virtualization implements a host OS and guest OSs
for sharing the host code with one restriction. The guest OSs must be the same as the
host OS.

Fig. 7. Virtualization Technology Types.

www.intechopen.com

Software Development for Parallel and Multi-Core Processing

49

Virtualization technology led to the development of Multiple Levels of Security (MLS). An
MLS embedded system is a trusted system at a high robustness level that securely handles
processing data at more than one classification level. An MLS system is similar to
virtualization technology whereby a processor is divided into several virtual machines or
partitions. The difference is that in a MLS system the partitions are based on security levels.
For example, one partition may be unclassified, a second partition may be Secret, while a
third partition may be classified Top Secret.

6. Software programming languages

Software language support for multi-core processors generally falls into two categories.
New languages designed with parallelism from the beginning or extensions to current
popular software languages. Most language extensions are focused on single Fortran and
C/C++ standards. Some language extensions include:

 OpenMP Fortran which is an extension to Fortran 95. Basically, it implements OpenMP
compiler directives, library functions, and environment variables for the Fortran
language.19

 Co-array Fortran which is an extension to Fortran 95 and the 2008 Fortran standards.
Co-array Fortran syntax is architecture independent and can be used in shared memory
and distributed memory machines and on clustered machines. Co-array Fortran can be
applied to a greater range of machine architectures than OpenMP Fortran, hence a
Subset Co-Array Fortran has been generated which can be translated into OpenMP as
part of the compilation process.20

 High Performance Fortran (HPF) is an extension to Fortran 90. HPF uses a data parallel
model of computation to spread the work of a single array computation over multiple
processors. Many users and vendors who initially used HPF have migrated to OpenMP
Fortran or Co-array Fortran.21

 OpenMP C/C++ contains compiler directives, library functions, and environment
variables that assist developers with managing parallel programs coded in the C/C++
languages. The directives extend the sequential C/C++ programming languages with
parallel constructs.22

 Parallel Unified C, also known as Unified Parallel C, is an extension of the C
programming language designed for computing on large-scale parallel machines.
Parallel Unified C extends ISO C 99 with the following constructs:
 An explicitly parallel execution model

 A shared address space
 Synchronization primitives and a memory consistency model
 Memory management primitives23

 pC++ is a language extension to C++ that contains parallel constructs for C++
applications on high performance computers. pC++ allows programmers to develop
distributed data structures with parallel execution semantics.24

19 http://en.wikipedia.org/wiki/OpenMP
20 http://www.co-array.org
21 http://hpff.rice.edu
22 http://en.wikipedia.org/wiki/OpenMP
23 http://upc.lbl.gov

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

50

Some new languages designed with parallelism from the start include:

 Erlang is a concurrent/functional programming language with dynamic typing and
strict evaluation. It supports hot swapping so code can be modified without stopping a
system. It is used primarily in the telecom industry.25

 Fortress is an open source language that is being targeted for the multi-core and
supercomputing software communities. The current Fortress prototype runs on top of a
standard Java Virtual Machine (JVM). Fortress supports both task and data parallelism.
The runtime implicitly farms out computations to the available processor cores using a
fine-grained threading model. Basically, the designers implemented parallelism into the
language at every possible location. Sun’s Fortress language was originally funded by
the Defense Advanced Research Projects Agency (DARPA) High Productivity
Computing System (HPCS) program.26

 Z-level Programming Language (ZPL) is a portable, high-performance parallel
programming language for science and engineering computations. It is an array
programming language that uses implicit parallelism and can execute on both
sequential and parallel computers.27

 Chapel is an open source language that is expected to support a multi-threaded parallel
programming model. It is expected to support data parallelism, task parallelism, and
nested parallelism. Chapel is expected to support object-oriented concepts, generic
programming features, and code reuse. This language is being developed by Cray, Inc.
Some Chapel concepts come from HPF and ZPL. Cray’s Chapel language was originally
funded by DARPA’s HPCS program.28

 Haskell is a purely functional programming language that engineers from Galois are
embracing that is richly statically typed. Functional programming languages lack side
effects. These languages handle structures as values. Functional languages reduce code
count. Functional programming languages like Haskell require a paradigm shift from
both object oriented and modular programming languages. Parallel evaluation
strategies and nested data parallelism are built into the language.29

Most of the above languages have been developed within the past six years. Erlang is the
exception to this.

7. Multi-core processing standards

One of the goals of the Multi-Core Association has been developing standards for multi-core

processors. The Multi-core Association is an industry consortium whose members include

embedded software and hardware companies such as Intel, Freescale Semiconductor, Nokia

Siemens Networks, QNX, Texas Instruments, and Wind River Systems. The Multi-core

Association’s goal is to support the multi-core ecosystem which includes vendors of

development tools, debuggers, processors, operating systems, compilers, and simulators

24 http://www.extreme.indiana.edu/sage
25 http://www.erlang.org
26 http://en.wikipedia.org/wiki/Fortress_(programming_language)
27 http://en.wikipedia.org/wiki/ZPL_(programming_language)
28 http://chapel.cray.com
29 http://www.haskell.org/haskellwiki/Haskell

www.intechopen.com

Software Development for Parallel and Multi-Core Processing

51

along with application and system developers. The Multi-core Association has either

completed, started work, or has plans to develop the following standards:

 The Multi-core Communications Application Programmer Interface (MCAPI) is a high-
performance, low latency communications and synchronization Application
Programmer Interface (API) for closely distributed cores and processors in embedded
systems. MCAPI is expected to support streaming communications that are fast and
efficient and are similar to the sockets used for networking applications. The MCAPI is
expected to support "socket like" stream-based API which would benefit multi-core
devices. The MCAPI has the goal to support just the specific needs of embedded
systems such as tighter memory constraints, high system throughput, and tighter task
execution time constraints.

 Multi-core Resource Management API (MRAPI) provides a standardized API for the
management, synchronization, and scheduling of processing resources. The MRAPI
will support features for state management, context management, scheduling, and basic
resource synchronization. The RAPI has the goal to support existing operating systems
and the CAPI, Multicore Task Management API (MTAPI), and Debug API.

 Multi-core Programming Practices (MPP) provides a “best practices” guide for C/C++
developers to write “multi-core ready” software. The goals for this standard is to assist
software developers in developing portable multi-core code which can be targeted at
multiple platforms, reducing bugs due to multi-core related issues, and reduce the
learning curve for multi-core software development.

 Multi-core Virtualization will provide users of embedded virtualization solutions with
improved interoperability of applications and middleware between different
virtualization vendors through the properties in its standard.

 MTAPI will provide a standardized API for dynamic scheduling and managing
software tasks, including task creation and deletion for a large variety of architectures.
The MTAPI goal is to support existing operating systems and the MCAPI, MRAPI, and
Debug API.

 Debug API will enhance multi-core development systems with development tools to
address problems in communication and interpretation of debug tools and on-chip
debug components. This work includes:
 Identifying and mapping multi-core debugging high level requirements to specific

requirements for underlying infrastructures

 Extending and standardizing current debug interfaces for multi-core debugging
needs

 Standardizing debugging and Joint Test Action Group (JTAG) interface
connections.

The purpose of these APIs is to make the source code portable and reusable so that software
multi-core architectures can be processor independent. The expectation is that the standards
should complement one another. See Figure 8.

So far, the MCAPI and MRAPI standard APIs have been released. The MPP standard is
expected to be released in later 2011 or early 2012. The scheduled release dates for the Multi-
core Virtualization, and Debug standards have all passed without the standards being
released. These standards are developed by the Multi-core Association’s member
organizations. Most of these organizations are companies with their own deadlines for

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

52

shipping software and hardware tools and products to market. Hence, their main priorities
are satisfying their customers with their products and services. So the Multi-core
Association’s processing standards development is progressing at a slower rate than
originally anticipated.

OS/RTOS

D
e
b

u
g

M
R

A
P

I

M
T

A
P

I

M
C

A
P

I

OS/RTOS

D
e
b

u
g

M
R

A
P

I

M
T

A
P

I

M
C

A
P

I

Transport

App1 App1

OS/RTOS

D
e
b

u
g

M
R

A
P

I

M
T

A
P

I

M
C

A
P

I

OS/RTOS

D
e
b

u
g

M
R

A
P

I

M
T

A
P

I

M
C

A
P

I

OS/RTOS

D
e
b

u
g

M
R

A
P

I

M
T

A
P

I

M
C

A
P

I

OS/RTOS

D
e
b

u
g

M
R

A
P

I

M
T

A
P

I

M
C

A
P

I

Transport

App1 App1

Fig. 8. MCAPI, MRAPI, MTAPI, and Debug Implementation View for Multi-core Devices.

OpenMP is a specification for a set of compiler directives, Runtime Library Routines, and

environment variables that can be used to specify multithreaded, shared memory

parallelism in Fortran and C/C++ programs. The OpenMP specification is being developed

by the OpenMP Architecture Review Board (ARB). The OpenMP Version 3.0 Specification

has been released to the public and addresses many multi-core processor needs. OpenMP is

a portable, scalable model that provides shared memory parallel programmers a flexible

API for developing parallel applications for multiple platforms. OpenMP contains a set of

compiler directives and library routines for parallel application programmers. Typically

OpenMP is used to parallelize looping constructs among multiple threads. OpenMP has the

following advantages30:

 Provides both coarse-grained and fine-grained parallelism.

 When updating a serial application to run in a multi-core parallel environment, the
original code set will most likely not require to be modified when parallelized with
OpenMP pragma compiler directives.

 When executing a parallelized application in a serial environment, the OpenMP
directives can be treated as comments.

 Data decomposition and layout are handled automatically by pragma directives.

OpenMP has the following disadvantages:

 Cannot be used on Graphics Processing Units (GPU).
 Scalability is limited. Easier to work with on small software applications of less than

1000 lines than large applications with several hundreds of thousands of lines of code.
 Can introduce synchronization bugs and race conditions without providing any

assistance in removing these bugs.

30 http://en.wikipedia.org/wiki/OpenMP

www.intechopen.com

Software Development for Parallel and Multi-Core Processing

53

 Requires a compiler that supports OpenMP.
 Possible to accidently write false sharing code. False sharing occurs when multiple

threads on different cores write to a shared cache line but not at the same location. Since
the memory is changing, each core must update its copy of its cache resulting in much
greater memory transfers than in a serial application with a single thread.

Other standards that are focused on issues pertaining to multi-core processors include:

 Mobile Industry Processor Interface (MIPI) is addressing a range of debug interface
efforts for multi-core devices. However, its specifications are focused on mobile devices
and not multi-core processors in general.31

 Message Passing Interface (MPI) is an API specification that allows multiple computers
to communicate with each other. It is often used for parallel programs running on
computer clusters and supercomputers, where accessing non-local memory can be
expensive.32

 System C is a standard that allows engineers to design a system that spans both
hardware and software. It contains a set of C++ classes and macros. It is often used for
system simulations, modeling, and functional verification involving parallel processes.
Multiple software suppliers support the System C standard.33

8. Software community parallel programming experience

The vast majority of software developers are experienced in serial software development.

Few software engineers are experienced in parallel software development. First, training for

software engineers has traditionally been focused on serial development efforts. Very few

universities and colleges offer undergraduate courses aimed at parallel software

development. The author has sponsored a short parallel and multi-core programming

course at Boeing. One Boeing engineer with a PhD in Computer Science from a major

university remarked that he planned to take the course since they had one course in parallel

software development at his university and that he just did not understand the concepts. If

PhDs from major universities are having problems with parallel software development,

clearly software engineers with Bachelor degrees will also have problems. Second, the

author and several Boeing teammates have investigated universities and colleges

throughout the United States for course offerings in parallel software development.

Unfortunately, we did not find many universities nor colleges offering any courses. Some of

the better educational opportunities that were investigated include the University of Illinois

at Urbana-Champaign, University California-Berkeley, Stanford University, MIT, and

Washington University at St. Louis. Both the University of Illinois at Urbana-Champaign

and University California-Berkeley offer Summer school courses in parallel software

development. The author has found many recommendations for both universities’ courses.

Stanford University is offering training through its Pervasive Parallelism Lab. Also, the MIT

professors at Supertech Research Group who developed the Cilk applications have been

offering classes on parallelism topics that use the Cilk tool. There are some professional

31 http://www.mipi.org
32 http://www.mcs.anl.gov/research/projects/mpi
33 http://www.systemc.org/home

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

54

training organizations such as ProTech which will provide training in parallel and multi-

core software development. In conclusion, the availability for training in parallel software

development has been and continues to be very slim.

One of the major challenges in migrating serial software to a parallel environment is
ensuring that your system’s functionality is still correct after spreading the functionality
across several cores all executing simultaneously. In parallelizing your application there are
several concurrency issues that a software developer needs to watch for:

 Dead lock: Occurs when two or more threads or processes are both waiting for the other
to release a resource.

 Live lock: Similar to dead lock where tasks require a resource held by another thread or
process, but the state of the waiting threads or processes are changing in regards to
other tasks. A live lock example are when the Three Stooges are each trying to get
through a doorway and they get stuck.

 False Sharing: Occurs when two or more cores access different data in a shared cache
line. If one core writes to the cache line, the caching protocol may force the second core
to reload the cache line even though the data has not changed.

A second major challenge for software developers is to analyze their software for data
dependencies based on the execution of threads for the entire system. A data dependency
occurs when two data references read from or write to the same variable, whether it is
stored in memory or in a register. If a data dependency is detected, the software developer
shall either reorder the statements or modify the thread execution on different cores. Look at
the statements below which are executed in order from instruction 1 to instruction 5 and
determine where the dependencies exist:

1. variable1 = 3;
2. variable2 = 5;
3. variable3 = variable2;
4. variable4 = variable1 + variable2;
5. variable1 = -8;

There are data dependencies between instructions 2 and 3 and between instructions 4 and 5.
This means that if you switch instructions 2 and 3 and instructions 4 and 5, respectively, the
application results will be different. If a software developer switches instructions 1 and 2,
the application results will be the same. Hence, a data dependency does not exist between
instructions 1 and 2. There are several data dependency types. First are true dependencies
which exist when an instruction is dependent on the previous instruction, such as:

1. variable1 = 2;
2. variable2 = variable1;

True dependencies occur where a variable is defined in one statement and then used in the
following statement. This is also known as “Write after Read” and these statements are not
safe to be reordered. Second are anti-dependencies which exist when an instruction requires
a value that is later updated, such as:

1. variable1 = variable2;
2. variable2 = 5.0;

www.intechopen.com

Software Development for Parallel and Multi-Core Processing

55

Anti-dependencies occur where a variable is read prior to the variable later being reset to a
different value. This is also known as “Read after Write” and these statements are not safe to
be reordered. Third are input dependencies which exist where a variable is read prior to
being read a second time, such as:

1. variable1 = variable2;
2. variable3 = variable2;

Input dependencies occur where a variable is read twice in a row. This is also known as

“Read after Read” and these statements are safe to be reordered. Fourth are output

dependencies also known as false dependencies. These dependencies exist where a variable

is written to prior to being written to a second time, such as:

1. variable1 = 0.0;
2. variable1 = 3.0;

Output dependencies occur where a variable is written twice in a row. This is also known as

“Write after Write” and these statements are not safe to be reordered. Fifth are control

dependencies which exist when the output of an instruction was referenced in a previous

decision block. An example of this is displayed below where variable2 is set in statement 3,

but was referenced in a decision block in statement 1:

1. if (variable1 == variable2)
2. variable1 = variable1 + variable2;
3. variable2 = variable2 + variable1;

A control dependency does not exist between instructions 1 and 3. However, a control
dependency may exist between instructions 1 and 2 if instruction 1 can be executed prior to
instruction 2 or if the output of instruction 1 determines if instruction 2 will be executed. The
control dependency displayed may exhibit “Write after Read” and instructions 1 and 2 may
not be safe to reorder.34

With the challenges listed above, there are several solutions that software developers can use.

 First, there are software locks that can be placed around code that may lead to
deadlock, live lock, or data dependency conditions. A software developer would place
the lock start prior to a block of problematic code and the lock end after the block of
problematic code. See Figure 9 where the synchronized command is used to place locks
around the moveBox and updateBox functions. In using software locks, software
developers can use them during writes to memory or a register or during reads from
memory or registers that may have been updated. Software locks should not be used
when invoking methods on other objects. The advantage of software locks is that it
increases safety by guaranteeing that only the block of problematic code is functioning
with other threads or processes are halted. The disadvantage of software locks is that all
other threads and processes are halted during this execution, thus slowing the system
execution to a serial environment.

 A second solution is to make your code immutable. A software developer accomplishes
this by replacing public class variables and global variables with private class variables

34 http://en.wikipedia.org/wiki/Data_dependency

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

56

and local variables and passing class variables into functions via the function call. The
advantage of designing immutable software is that it eliminates data dependencies
while increasing their parallel execution of your software. The disadvantage is that it
may require significant modifications to your software.

 A third option is software confinement. Here the software developer confines all
processing to execute on a single thread or single core. When this practice is followed,
your resulting software is more loosely coupled and is a good software architecture
strategy. The advantage of software confinement is that it eliminates data dependencies
while increasing their parallel execution of your software. The disadvantage is that it
may require significant modifications if your software was originally designed without
confinement as a goal. This may also include ordering your system’s code blocks so that
any code with potential data dependency problems execute at different times on
different threads or cores.

Fig. 9. Lock Example.

 A fourth option is decomposing large blocks of code where data dependencies and
dead locks take place into smaller blocks and place the locks around the smaller blocks
of software. The advantage of this approach is that the software will be safer without
spending significant time re-architecting your system. The disadvantage of this
approach still involves halting all other threads and processes while the problematic
code is still functioning.

As we saw in this section there are a number of issues such as dead locks, live locks, and
data dependency situations that may cause applications to ineffectively run when they are
parallelized. The good news is that there are several options for software developers to
implement to correct these problems. While some options can be quickly implemented like
software locks, they degrade overall system performance, while other options like software
confinement and immutable software improve software performance, they can take many
developer hours to correctly implement.

9. Differentiated multi-core processors

On the positive side, the differentiated multi-core processors have provided greater options
for software developers. In the past, a large system would consist of several processors with
different single core processing units. Some of the processors would have GPUs for display
processing while other processors would have CPUs to perform the actual non-display
processing. Now, multi-core processors are coming into vogue with multiple CPU cores and
multiple GPU cores for both non-display and display processing, respectively. Hence, with

www.intechopen.com

Software Development for Parallel and Multi-Core Processing

57

these multiple heterogeneous and homogeneous hardware multi-core processors,
developers have greater and better choices for developing new large scale software systems.

The increase in differentiated multi-core processors has its share of problems on the software
side. As we have seen with several frameworks and tools mentioned earlier, often times there
is only support for certain processors or processor families. Of course, the microprocessor
vendor is attempting to tie the software development to their own multi-core processor which
can cause several problems. First, while most multi-core microprocessor vendors have
developed some software tools, no vendor has developed a complete suite of tools to assist the
software developer with requirements, architecture, code, and test. Second, with the hardware
vendors entering this market, the software tool vendors’ market share is reduced. They may
decide against providing a new tool or supporting a particular multi-core microprocessor’s
chipset if the vendor themselves is already providing the support. Third, with so many
software developers not trained nor experienced with developing parallel software, the
addition of many differentiated multi-core processors increases the learning curve for
developers. The software developer may be working on different multi-core processors at the
same time. Hence, in this case the role of differentiated multi-core processors has probably
slowed, rather than enhanced, their adoption by the computing industry.

10. Conclusion

By reviewing some of the key software development issues for multi-core processors, including:

 Immaturity of software tools
 Lack of standards

 Inexperience of current software developers
 Lack of software models and frameworks
 Lack of System software like libraries
 Differentiated processors with minimal support

Current software development for multi-core processors is at an immature level when
compared to both software development for single core processors and hardware
development for multi-core processors. Therefore, this chapter has provided details to
support Chuck Moore’s statement that “To make effective use of Multi-core hardware
today, you need a PhD in computer science.”35 Even though the statement is a few years old,
it still applies as of the writing of this chapter. There is still much research to be performed
for improved parallel processing models and frameworks. Both Microsoft and Intel have
spent millions in this research along with several small startup companies. The biggest
question continues to be how to identify promising solutions along with attracting the
research dollars to fund the work to develop the solutions. More attention needs to be paid
towards standards development which should naturally improve over time. The biggest
concern is the education and training of software professionals. Currently, some ‘best
practices’ documents are being developed for beginner multi-core software developers. The
biggest challenge is for the universities, colleges, and other training organizations to educate
new and experienced software developers. While analyzing the improvements over the past
several years, many more breakthroughs are still needed before the software industry can
receive the full benefit from upgrading to multi-core processors.

35

 Moore, Chuck, (May 12, 2008) “Solving the Multi-core Programming Problem”, Dr. Dobbs Journal.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

58

11. Acknowledgments

Kenn Luecke would like to thank Andrea Egan, Shawn Rahmani, and Wayne Mitchell for
assisting him with his initial research into software development for multi-core processors
for the Boeing Company. He would also like to thank fellow Boeing engineers David
Cacchia, Tom Dickens, Jon Hotra , David Sharp, Don Turner, Homa Ziai-Cook, and Heidi
Ziegler for their assistance with multi-core related issues.

12. References

[1] http://en.wikipedia.org/wiki/Moore's_law
[2] Sutter, H., (March, 2005). “The free lunch is over. A fundamental turn toward

concurrency in software,” Dr. Dobb’s Journal, Volume 30, Number 3.
[3] Fittes, Dale, (October 30, 2009) Using Multicore Processors in Embedded Systems – Part

1, EE Times.
[4] Moore, Chuck, (May 12, 2008) “Solving the Multi-core Programming Problem”, Dr.

Dobbs Journal.
[5] Morgan, Lisa L., (December 15, 2006), Making the Move to Multicore, SD Times.
[6] Morgan, Lisa L., (December 15, 2006), Making the Move to Multicore, SD Times.
[7] Wlad, Joe. (2011), Freescale Multi-Core Forum, Freescale Multi-core Forum, St. Louis,

September, 2011.
[8] http://www.imec.be/CleanC
[9] http://en.wikipedia.org/wiki/Intel_Parallel_Studio
[10] http://supertech.csail.mit.edu/cilk
[11] http://www.criticalblue.com
[12] http://www.polycoresoftware.com
[13] http://tipc.sourceforge.net
[14] http://www.redbend.com
[15] http://www.windriver.com/products/simics
[16] http://wiki.qeu.org/Main_Page
[17] http://en.wikipedia.org/wiki/Trano_Virtual_Processors
[18] http://www.sysgo.com/products/pikeos-rtos-technology
[19] http://en.wikipedia.org/wiki/OpenMP
[20] http://www.co-array.org
[21] http://hpff.rice.edu
[22] http://en.wikipedia.org/wiki/OpenMP
[23] http://upc.lbl.gov
[24] http://www.extreme.indiana.edu/sage
[25] http://www.erlang.org
[26] http://en.wikipedia.org/wiki/Fortress_(programming_language)
[27] http://en.wikipedia.org/wiki/ZPL_(programming_language)
[28] http://chapel.cray.com
[29] http://www.haskell.org/haskellwiki/Haskell
[30] http://en.wikipedia.org/wiki/OpenMP
[31] http://www.mipi.org
[32] http://www.mcs.anl.gov/research/projects/mpi
[33] http://www.systemc.org/home
[34] http://en.wikipedia.org/wiki/Data_dependency
[35] Moore, Chuck, (May 12, 2008) “Solving the Multi-core Programming Problem”, Dr.

Dobbs Journal.

www.intechopen.com

Embedded Systems - High Performance Systems, Applications and

Projects

Edited by Dr. Kiyofumi Tanaka

ISBN 978-953-51-0350-9

Hard cover, 278 pages

Publisher InTech

Published online 16, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nowadays, embedded systems - computer systems that are embedded in various kinds of devices and play an

important role of specific control functions, have permeated various scenes of industry. Therefore, we can

hardly discuss our life or society from now onwards without referring to embedded systems. For wide-ranging

embedded systems to continue their growth, a number of high-quality fundamental and applied researches are

indispensable. This book contains 13 excellent chapters and addresses a wide spectrum of research topics of

embedded systems, including parallel computing, communication architecture, application-specific systems,

and embedded systems projects. Embedded systems can be made only after fusing miscellaneous

technologies together. Various technologies condensed in this book as well as in the complementary book

"Embedded Systems - Theory and Design Methodology", will be helpful to researchers and engineers around

the world.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kenn R. Luecke (2012). Software Development for Parallel and Multi-Core Processing, Embedded Systems -

High Performance Systems, Applications and Projects, Dr. Kiyofumi Tanaka (Ed.), ISBN: 978-953-51-0350-9,

InTech, Available from: http://www.intechopen.com/books/embedded-systems-high-performance-systems-

applications-and-projects/software-development-for-parallel-and-multi-core-processing

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

