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1. Introduction  

The capacitated plant location problem (CPL) consists of locating a set of potential plants 
with capacities, and assigning a set of customers to these plants. The objective is to minimize 
the total fixed and shipping costs while at the same time demand of all the customers can be 
satisfied without violating the capacity restrictions of the plants. The CPL is a well-known 
combinatorial optimization problem and a number of decision problems can be obtained as 
special cases of CPL. There are substantial numbers of heuristic solution algorithms 
proposed in the literature (See Rolland et al., 1996; Holmberg & Ling, 1997; Delmaire et al., 
1999; Kratica et al., 2001; He et al., 2003; Uno et al., 2005). As well, exact solution methods 
have been studied by many authors. These include branch-and-bound procedures, typically 
with linear programming relaxation (Van Roy & Erlenkotter, 1982; Geoffrion & Graves, 
1974) or  Lagrangiran relaxation (Cortinhal & Captivo, 2003). Van Roy (1986) used the Cross 
decomposition which is a hybrid of primal and dual decomposition algorithm, and 
Geoffrion & Graves (1974) considered Benders’ decomposition to solve CPL problem. 
Unlike many other mixed-integer linear programming applications, however, Benders 
decomposition algorithm was not successful in this problem domain because of the 
difficulty of solving the master system. In mixed-integer linear programming problems, 
where Benders’ algorithm is most often applied, the master problem selects values for the 
integer variables (the more difficult decisions) and the subproblem is a linear programming 
problem which selects values for the continuous variables (the easier decisions). If the 
constraints are explicit only in the subproblem, then the master problem is free of explicit 
constraints, making it more amenable to solution by genetic algorithm (GA). The fitness 
function of the GA is, in this case, evaluated quickly and simply by evaluating a set of linear 
functions. In this chapter, therefore, we discuss about a hybrid algorithm (Lai et al., 2010) 
and its implementation to overcome the difficulty of Benders’ decomposition. The hybrid 
algorithm is based on the solution framework of Benders’ decomposition algorithm, 
together with the use of GA to effectively reduce the computational difficulty. The rest of 
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this chapter is organized as follows. In section 2 the classical capacitated plant location 
problem is presented. The applications of Benders’ decomposition and genetic algorithm are 
described in sections 3 and 4, respectively. In Section 5 the hybrid Benders/genetic 
algorithm to solve the addressed problem is illustrated. A numerical example is described in 
Section 6. Finally, some concluding remarks are presented in Section 7 followed by an 
acknowledgment and a list of references in Sections 8 and 9, respectively. 

2. Problem formulation 

The classical capacitated plant location problem with n potential plants and m customers can 
be formulated as a mixed integer program: 

 CPL: Min
1 1 1

m m n

i i ij ij
i i j

FY C X
= = =

+   (1) 

 Subject to 
1

,    1,
m

ij j
i

X D j n
=

≥ =   (2) 

 
1

,    1,...
n

ij i i
j

X S Y i m
=

≤ =  (3) 

 0 , 1, ;  1,ijX i m j n≥ = … = …  (4) 

 { }0,1 ,   1,iY i m∈ =   (5) 

Here, Y is a vector of binary variables which selects the plants to be opened, while X is an 

array of continuous variables which indicate the shipments from the plants to the 

customers. Fi is the fixed cost of operating plant i and Si its capacity if it is opened. Cij is the 

shipping cost of all of customer j’s demand Dj from plant i. The first constraint ensures that 

all the demand of each customer must be satisfied. The second constraint ensures that the 

total demand supplied from each plant does not exceed its capacity. As well, it ensures that 

no customer can be supplied from a closed plant. 

3. Benders’ decomposition algorithm 

Benders’ decomposition algorithm was initially developed to solve mixed-integer linear 
programming problems (Benders, 1962), i.e., linear optimization problems which involve a 
mixture of either different types of variables or different types of functions. A successful 
implementation of the method to design a large-scale multi-commodity distribution system 
has been described in the paper of Geoffrion & Graves (1974). Since then, Benders’ 
decomposition algorithm has been successfully applied in many other areas, for example, in 
vehicle assignment (Cordeau et al., 2000, 2001), cellular manufacturing system (Heragu, 
1998), local access network design (Randazzo et al., 2001), spare capacity allocation 
(Kennington, 1999), multi-commodity multi-mode distribution planning,  (Cakir, 2009), and 
generation expansion planning (Kim et al., 2011). Benders’ algorithm projects the problem 
onto the Y-space by defining the function 
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and restating the problem (CPL) as 

 
{ }

( )
Y 0,1

Min  
m

v Y
∈

 (10) 

We will refer to the evaluation of v(Y) as the (primal) subproblem, a transportation LP 

whose dual LP problem is 

 
1 1 1

( ) Max
m m n

i i i i i j j
i i j

v Y FY S YU D V
= = =

= + +    (11) 

 Subject to     for 1, ; 1,i j ijU V C i m j n− + ≤ = =   (12) 

 0,    1, ;   0,    1,i jU i m V j n≥ = ≥ =   (13) 

If ψ ={( ˆ ˆ,k kU V ), k=1,…,K}  is the set of basic feasible solutions to the dual subproblem, then 

in principle v(Y) could be evaluated by a complete enumeration of the K basic feasible 

solutions. (The motivation for using the dual problem is, of course, that ψ  is independent of 

Y.)  That is, 

 ( ) { }
k=1,2,...K k=1,2,...K

1 1 1

ˆ ˆMax  Max  
m m n

k k k k
i i i i i j j

i i j
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1

ˆ ˆ,
n

k k k k
i i i i j j

j

F S U D V
=

α ≡ + β ≡ . 

The function v(Y) may be approximated by the underestimate  

 ( ) { } T
k=1,2,...T
Max  k kv Y Y≡ α + β  (15) 

where T≤K.  Benders’ decomposition alternates between a master problem 

 
{ }

( )
0,1

Min   T

Y
v Y

∈
 (16) 
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which selects a trial Yk, and the subproblem, which evaluates v(Yk) and computes a new 

linear support ┙kY+┚k using the dual solution of the transportation subproblem. The major 

effort required by Benders’ algorithm is the repeated solution of the master problem, or its 

mixed-integer LP equivalent, 

 Min  Z (17) 

 Subject to ,    1,k kZ Y k T≥ α + β =   (18) 

 { }0,1iY ∈  (19) 

One approach to avoiding some of this effort is by suboptimizing the master problem, i.e., 

finding a feasible solution of the linear system 

 ˆ ,    1,k kZ Y k T> α + β =   (18) 

 { }0,1 ,    1,iY i m∈ =   (19) 

i.e., Y such that ( ) ˆTv Y Z< , where Ẑ  is the value of the incumbent at the current iteration, 

i.e., the least upper bound provided by the subproblems. (By using implicit enumeration to 

suboptimize the master problem, and restarting the enumeration when solving the 

following master problem, this modification of Benders’ algorithm allows a single search of 

the enumeration tree, interrupted repeatedly to solve subproblems.) For more information 

on the problem and the application of Benders’ algorithm for its solution, refer to Salkin et 

al. (1989). 

4. Genetic algorithm 

Genetic algorithm (GA) has been effective and has been employed for solving a variety of 

difficult optimization problems.  Much of the basic ground work in implementing and 

adapting GAs has been developed by Holland (1992). Since then, a large number of papers 

have appeared in the literature, proposing variations to the basic algorithm or describing 

different applications. In many cases, the GA can produce excellent solutions in a reasonable 

amount of time. For certain cases, however, the GA can fail to perform for a variety of 

reasons. Liepins & Hilliard (1989) have pointed out three of these reasons: (1) choice of a 

representation that is not consistent with the crossover operator; (2) failure to represent 

problem-specific information such as constraints; and (3) convergence to local optima 

(premature convergence). The first reason for failure, a representation inconsistent with the 

crossover operator, is most easily illustrated by an example of the traveling salesman 

problem, in which the crossover operator simply fails to preserve the feasible permutation 

in most cases. The second reason for failure is the inability to represent problem specific 

information such as constraints in an optimization problem. In general, for constrained 

problems, there is no guarantee that feasibility will be preserved by crossover or mutation, 

or even that a randomly-generated initial population is feasible. A broad range of 

approaches have been used in the literature to remedy this situation. However, there is no 

single mechanism that has performed consistently well in handling constrained problems 
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with genetic algorithms (Reeves, 1997). The most direct solution is simply to ignore this 

problem. If an infeasible solution is encountered, it may be assigned a very low fitness value 

to increase the chance that it will “die off” soon. But sometimes, infeasible solutions are 

close to the optimum by any reasonable distance measure. Another direct solution is to 

modify the objective function by incorporating a penalty function which reduces the fitness 

by an amount which varies as the degree of infeasibility. Unfortunately, not all penalty 

functions work equally well, and care must be exercised in their choice (Liepins & Hillard, 

1989). If the penalty is too small, many infeasible solutions are allowed to enter the 

population pool; if it is too large, the search is confined to a very small portion of the search 

space. Another increasingly popular technique for coping with infeasibility is the use of 

repair algorithms. These heuristic algorithms accept infeasible solutions but repair them in 

order to make them feasible before inserting them into the population. We can find various 

repair algorithms in the context of the traveling salesman problem in the literature 

(Goldberg & Lingle, 1985; Oliver et al., 1987; Chatterjee et al., 1996). Several practical 

questions arise, such as whether it should be the original offspring or the repaired version 

that should be used in the next generaion, and whether the entire randomness should be 

sacrificed because of the adoption of the repair methods. The third reason for failure is 

convergence to local optima (premature convergence). This condition occurs when most 

strings in the population have similar allele values. In this case, applying crossover to 

similar strings results in another similar string, and no new areas of the search space are 

explored (Levine, 1997). Many improvements to the genetic algorithms help to avoid 

premature convergence, such as thorough randomization of initial populations, multiple 

restart of problems, and appropriate parameter settings, i.e., carefully adjustment of the 

mutation rate and a suitable population size. 

Most researchers agree that, to guarantee success of an application of genetic algorithms, the 

representation system is of crucial importance. The difference between a successful 

application and an unsuccessful one often lies in the encoding. Kershenbaum (1997) pointed 

out that an ideal encoding would have the following properties: (a) It should be able to 

represent all feasible solutions; (b) It should be able to represent only feasible solutions. (An 

encoding that represents fewer infeasible solutions is generally better than one that 

represents a large number of infeasible solutions. The larger the number of representable 

infeasible solutions, the more likely it is that crossover and mutation will produce infeasible 

offspring, and the less effective the GA will become.); (c) All (feasible) solutions should have 

an equal probability of being represented; (d) It should represent useful schemata using a 

small number of genes that are close to one other in the chromosome. (It is generally very 

difficult to create an encoding with this property a priori, since we do not know in advance 

what the useful schemata are. It is, however, possible to recognize the presence of short, 

compact schemata in solutions with high fitness and thus to validate the encoding after the 

fact. This is important for recognizing successful GA applications.); and (e) The encoding 

itself should possess locality, in the sense that small changes to the chromosome make small 

changes in the solution. Kershenbaum also pointed out taht although some of these 

properties conflict (often making tradeoffs), to the extent taht those properties can be 

achieved, the genetic algorithms are likely to work well. In this section, we focus on the 

design of the GA approach for the master problem of CPL problem. More discussion of 

some of these as well as definitions and some of the basic GA terminology that is used in 
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this section can be found in Goldberg (1989) and Davis (1991). The implementation of GA is 

a step-by-step procedure: 

4.1 Initialization 

Initialization is to generate an initial population. The population size and length of 

"chromosome" depends on the users' choice and other requirements of the specific problem. 

To start, we usually have a totally random population. Each random string (or 

"chromosome") of the population, representing a possible solution for the problem, is then 

evaluated using an objective function. The selection of this objective function is important 

because it practically encompasses all the knowledge of the problem to be solved. The user 

is supposed to choose the proper combination of desirable attributes that could be best fit to 

his purposes. In CPL problem, the variable Y is a vector of binary integers. It is easily to be 

coded as a string of binary bit with the position #i corresponding to the plant #i. For 

example, Y = (0 1 1 0 1 0 0) means that plants #1, 4, 6 and 7 are not open and plants 2, 3 and 

5 are open. In our GA, a population size of 50 was used and the fitness function is evaluated 

quickly and simply by evaluating a set of linear functions, i.e., ( ) { } T
k=1,2,...T
Max  k kv Y Y≡ α + β .   

4.2 Selection 

Selection (called “reproduction” by Goldberg) starts with the current population.  Selection 

is applied to create an intermediate population or mating pool. All the chromosomes in the 

mating pool are waiting for other operations such as crossover and/or mutation to create 

the next population. In the canonical genetic algorithm, selection is made according to the 

fitness. The fitness could be determined by many ways. For example, the fitness could be 

assigned according to probability of a string in the current population (Goldberg, 1989), a 

string's rank in the population (Baker, 1985; Whitley, 1989), or simply by its performance of 

scores. In our GA, the latter case is used, i.e., a string with an average score is given one 

mating; a string scoring one standard deviation above the average is given two matings; and 

a string scoring one standard deviation below the average is given no mating (Michalewicz, 

1998).   

4.3 Crossover and mutation 

We use a standard single-point crossover method. The duplicated strings in the mating pool 

are randomly paired off to produce two offspring per mating. The crossover location of the 

strings is generally chosen at random but not necessary always the case. For example, the 

distribution for selection the crossover point of the GenJam system, an interactive genetic 

algorithm jazz improviser, which was developed by Dannenberg for the Carnegie Mellon 

MIDI Toolkit, is biased toward the center of the chromosome to promote diversity in the 

population. If a crossover point is too near one end of the chromosome or the other, the 

resulting children are more likely to resemble their parents. This will lead the GenJam 

system to repeat itself when two nearly identical phrases happen to be played close to one 

another in the same solo and it does not seem desirable for GenJam to perform in that way. 

The role of mutation is to guarantee the diversity of the population. In most case, mutation 

alters one or more genes (positions in a chromosome) with a probability equal to the 
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mutation rate. Typically, but not always, mutation will flip a single bit. In fact, GenJam's 

mutation operators, on the other hand, are more complex than flipping a bit. They adopt 

several standard melodic development techniques, such as transposition, retrograde, 

rotation, inversion, sorting, and retrograde-inversion. Because these operators are all 

musically meaningful, they operate at the event level rather than on individual bits (Biles, 

2001).   

4.4 Replacement 

After the process of selection, crossover, and mutation, the current population is replaced by 

the new population. Those successful individuals of the each generation are more likely to 

survive in the next generation and those unsuccessful individuals are less likely to survive. 

In our GA, we use the incremental replacement method (See Beasley et al., 1993), i.e., only 

the new individuals whose fitness values are better than those of the current will be 

replaced. Thus, the individuals with the best fitness are always in the population.       

4.5 Termination 

In general, a genetic algorithm is terminated after a specified number of generations or 

when fitness values have converged. Our GA terminates when there has been no 

improvement in the best solution found for 100 iterations. 

5. Hybrid Benders/Genetic algorithm 

The basic idea of Benders’ partitioning algorithm for mixed-integer linear problems is to 

decompose the original problem into a pure integer master problem and one or more 

subproblems in the continuous variables, and then to iterate between these two problems. If 

the objective function value of the optimal solution to the master problem is equal to that of 

the subproblem, then the algorithm terminates with the optimal solution of the original 

mixed-integer problem. Otherwise, we add constraints, termed Benders’ cuts, one at a time 

to the master problem, and solve it repeatedly until the termination criteria are met. A major 

difficulty with this decomposition lies in the solution of the master problem, which is a 

“hard” problem, costly to compute.  

For the addressed CPL problem, however, the constraints are explicit only in the 

subproblem and the master problem is free of explicit constraints. Thus, the master problem 

is more amenable to solution by GA. 

Lai et al. (2010) introduced a hybrid Benders/Genetic algorithm which is a variation of 

Benders’ algorithm that uses a genetic algorithm to obtain “good” subproblem solutions to 

the master problem. Lai and Sohn (2011) conducted a study applying the hybrid 

Benders/Genetic algorithm to the vehicle routing problem. Below is a detailed description 

of the hybrid algorithm and it is illlustrated in Fig. 1 as well. 

Step 1. Initialization. We initialize the iteration counter k to zero, select initial trial values 
for the vector of binary variables Y which selects the plants to be opened.  

Step 2. Primal Subsystem. We evaluate the value of v(Y) by solving a tranportation linear 
programming problem whose fesible region is independent of Y.  
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Step 3. Generation of Benders‘ Cut. We compute a new linear support using the dual 
solution of the transportation subproblem and increment k by 1. 

Step 4. Primal Master system by GA. A trial location paln Y is to be computed by 
implementing a GA whose solution delivers both a feasible investment plan and a 
lower bound to the minimal cost for the equivalent program.  

 4a. Initialization. We initialize the variable Y as a string of binary bit with the position 
#i corresponding to the plant #i. We generate initial population and their fitness 
function are evluated as well. 

 4b. Genetic Operations. We perform a standard single-point crossover approach. The 
mutation operation to guarantee the diversity of the population is performed as 
well. The current population is replaced by the new population through the 
incremental replacement method. 

 4c.  Termination. We terminate the GA if no improvement within 100 iterations.    

 

Fig. 1. Flowchart of the Hybrid Benders/Genetic Algorithm 

This hybrid algorithm would avoid other traditional search methods, i.e., branch-and-

bound, which were used in the master problem. It will search the solution space in parallel 

fashion and take advantage of the “easy” evaluation of the fitness function. 

6. Example 

To illustrate the hybrid algorithm discussed in the earlier section, we use a randomly-
generated problem with 20 plant sites and 50 customers. Fifty points in a square area were 
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randomly generated, and the first 20 of these points were designated as both demand points 
and potential plant sites (see Fig. 2).  

 

Fig. 2. Fifty Randomly Generated Points 

The transportation cost between two points is proportional to the Euclidean distance 

between them. Three variations of Benders’ algorithm were applied to this plant location 

problem: (1) Optimization of master problem using implicit enumeration (BD-Opt); (2) 

Suboptimization of master problem using implicit enumeration (BD-Subopt); and (3) 

Suboptimization of master problem using a genetic algorithm (Hybrid BD/GA). In each 

case, the problem was not solved to completion, but was terminated after solving 50 

subproblems. 

First, an implicit enumeration algorithm was used to optimize Benders’ master problem. 

Fig. 3 shows the values of the upper and lower bounds, i.e., the solutions of the subproblems 

and master problems, respectively. The incumbent solution, which was found at iteration 

#10, is shown in Fig. 4 and requires opening 11 plants with a total cost of 5398, of which 

2619, or 48.5%, are fixed costs of the plants and the remaining costs are transportation costs. 

The greatest lower bound at this stage is 4325, so that the gap is approximately 19.9% when 

the algorithm was terminated. 

Secondly, the algorithm was restarted and again 50 iterations were performed, but 

suboptimizing the master problem using implicit enumeration. Fig. 5 shows the progress of 

this case. Because the master problem was suboptimized, no lower bound is available. After 

50 iterations, the incumbent solution shown in Fig 6, which requires opening seven plants, 

has a total cost of 5983, of which 1710, or approximately 28.6%, are fixed costs of the plants. 

It is important to note, of course, that although the quality of the incumbent solution is 

somewhat inferior to that found by optimizing the master problem, the computational effort 

is miniscule compared to that required when the master problem is optimized. 
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Fig. 3. Upper and lower bounds provided by Benders’ algorithm (BD-Opt). 

 

Fig. 4. Incumbent Solution Found by Benders’ algorithm (BD-Opt). 

Finally, the algorithm was again restarted, and 50 trial solutions were evaluated by the 

subproblems, this time using a genetic algorithm, so that the master problem is again 

suboptimized to generate the trial solutions. Each master problem was terminated after 40 

trial solutions better than the incumbent have been found (or after a maximum of 100 
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generations) at which time all those solutions better than the incumbent were evaluated. 

(After each subproblem, the trial solutions are re-evaluated, using the updated master 

problem cost function, ( )Tv Y , and only those with cost less than the incumbent are 

evaluated by the subproblem.) 

 

Fig. 5. Subproblem solutions of variation 2 of Benders’ algorithm (BD-Subopt). 

 

Fig. 6. Incumbent Solution Found by variation 2 of Benders’ algorithm (BD-Subopt). 
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Fig. 7. Incumbent Solution by variation 3 of Benders’ algorithm (Hybrid BD/GA) trial 1. 

 

Fig. 8. Incumbent Solution by variation 3 of Benders’ algorithm (Hybrid BD/GA) trial 2. 

In this case, it happens that only 7 master problems were required to generate the 50 trial 

solutions. (A population size of 50 was used, with 75% probability of crossover and 1% 

probability of mutation.) 
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Fig. 9. Upper bounds provided by Benders’ subproblems in variation 3 (Hybrid BD/GA). 

The best of the 50 trial solutions was found at iteration 49, with a total cost of 5303, of which 

988 (or approximately 18.6%) were fixed costs. Five plants were opened in this solution (see 

Fig. 7). Again, because the master problem is being suboptimized, no lower bound is 

available from the algorithm. Due to the random nature of the genetic algorithm, a second 

run of this variation was performed  and found another incumbent solution (see Fig. 8). Fig. 

9 shows the progress of two trials of the hybrid algorithm, i.e., the upper bounds provided 

by the subproblems.  

 

Variation of 

Benders’ algorithm 

Incumbent 

total cost 

Fixed 

costs 

% fixed 

costs 

# plants 

open 

BD-Opt 

BD-Subopt 

Hybrid BD/GA, trial 1 

Hybrid BD/GA, trial 2 

5398 

5983 

5303 

5491 

2619 

1710 

988 

1856 

48.5% 

28.6% 

18.6% 

33.8% 

11 

7 

5 

8 

Table 1. Summary of results of variations of Benders’ algorithm 

As well, Table 1 summarizes the results obtained by these three variations of Benders’ 

algorithm (terminated after 50 subproblems have been solved). Remarkably, in these results 

we observe no significant degradation of the quality of the solution when the master 

problem is suboptimized using a genetic algorithm, compared to optimizing the master 

problem and suboptimizing it by implicit enumeration. 
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7. Conclusion 

In this chapter, we have demonstrated that Benders’ decomposition algorithm for solving 

the capacitated plant location problem can be accelerated substantially when the master 

problem is solved heuristically. The hybrid Benders/GA algorithm is a variation of Benders’ 

algorithm in which, instead of using a costly branch-and-bound method, a genetic algorithm 

is used to obtain “good” subproblem solutions to the master problem. The numerical 

example shows that the hybrid algorithm is effective to solve the capacitated plant location 

problem. The results imply that the hybrid algorithm is much more practical when only 

near-optimal solutions are required. Future work could extend the proposed algorithm to 

other location problems. 
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