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1. Introduction 

The friction between rotor and stator of a rotating machine is the common fault, as well as a 
huge problem to be studied and solved. Acoustic emission (AE) technology provides a new 
solution to friction detection. However, due to that AE signals cause waveform distortion 
during transmission in complex structure of a rotating machine, and they are interfered by 
strong noises of operating environment, AE technology is technically challenged in respect 
of friction detection. It will be an interesting job to discuss new denoise technologies and 
research steady identifiction models.  

With respect to the problem that friction AE signals generated by rotating machines are 
easily interfered by strong noises, this Chapter presents a generalized morphological filter 
(GMF) based on the fundamental morphological transformation and the combination of 
those transformation of mathematical morphology. GMF adopts gradient method for 
iterative computation of weight coefficients of generalized morphological open-closing 
(GMOC) filter and generalized morphological close-opening (GMCO) filter, so as to find out 
the weight coefficient value to give the best denoise effect. Then the best weight coefficient 
value will be used for linear combination of generalized morphological filters to achieve the 
optimal denoise effect. 

With respect to identification study, this Chapter presents an AE identification method that 
combines cepstral coefficient and fractal dimension together as a Gaussian mixture model 
(GMM) of characteristic parameters. Such identification model will model the probability 
density functions contained in eigenvectors of different modal waves in friction AE signals, 
and cluster these eigenvectors. Each clustering will be considered as a multi-dimensional 
Gaussian distribution function. Take the mean, covariance matrix and probability of each 
clustering as the training format of every modal wave, and then put the eigenvectors of 
friction AE signals to be detected into each format during identification. Weigh the 
likelihood probability of Gaussian model with maximum ratio combination method to 
obtain a total likelihood probability. Once the value of total likelihood probability is larger 
than the given threshold, we can be sure that there is friction AE. 

The object to be studied in this Chapter is a rotor test bed equipped with friction device, 
which can simulate different degrees of friction faults. Use broad band AE sensor and high-
speed data acquisition card to acquire complete waveforms of friction AE signals, and then 
superpose noises on friction AE signals acquired for further study. 
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2. Adaptive generalized morphological filter based on the gradient method 
(AGMF-G) 

Mathematical morphology [1][2][3] applies set theory to image analysis, which processes an 

image as a whole package of operands without considering the details, or defining each and 

every image point of such operands. Set theory can provide a relative mathematical system 

describing image space combination. Therefore, mathematical morphology can be used to 

analyze geometric characteristics and structure forms of image objects, making it an 

extremely important tool for image analysis and processing. Currently mathematical 

morphology has been extensively applied to fields including image processing, pattern 

identification, computer vision, and among others. 

2.1 Fundamental operations of mathematical morphology 

Binary image refers to that the grey scale of an image only consists of 0 and 1. Traditional 

image processing takes 1 as the grey scale of image object, and 0 as the grey scale of 

background, and notes X as the set composed of those points in image which grey scale is 1. 

Mathematical morphology image processing mainly analyzes set X. Morphology uses a 

method of subjective “probe” interacting with objects to analyze X. “Probe” is a set either 

which is called “structuring element” by morphology and determined by analyst based on 

analytical purpose. Mathematical morphology has defined two basic transformation types 

referring to “dilation” and “erosion” respectively. 

1. Set A and B as subsets of N-dimensional Euclidean space, and note A B  as A is dilated 

by B, therefore 

 { , , }NA B x E x a b a A b B                              (1) 

2. Note A B  as A is eroded by B, therefore 

 { , , }NA B x E x b A a A b B                               (2) 

Based on dilation and erosion these two fundamental operations, we can structure a 

morphological operation cluster, namely all operations composed of multiple operations 

and set operations (union set, intersection set, supplementary set, etc.) of these two 

fundamental operations. Two most important multiple operations are morphological 

opening operation and morphological closing operation. Generally speaking, dilation and 

erosion are unrecoverable operations that either erosion first or dilation first is unable to 

recover the objects, but generate a new morphological transformation. 

3. Note A B  as opening operation between A and B, therefore 

 ( )A B A B B                                        (3) 

4. Note A B  as closing operation between A and B, therefore 

 ( )A B A B B                                         (4) 
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A B  consists of union sets of subsets in A that are congruent to structural element B, or we 
can say that for each x  in A B , there is a translational yB  of structural element in A 
making yx B , namely A has a geometric structure no less than B in close proximity to x . 

2.2 Grey scale morphology 

Grey scale images are the most circumstances in practice. Contrary to binary images, a grey 
scale image is the one which contains more than two grey scale values of pixels. Normally a 
real-valued function in consecutive or digital space is used to describe the grey scale images. 
Serra [3] adopts the concept of function umbra to apply binary morphology to grey scale 
images, so that a set representation of grey scale images is established. 

One-dimensional signals can be represented with a set. One d -dimensional function ( )f x  
can be represented with a 1d  -dimensional set to define its function umbra: 

 ( ) {( , ) : ( )}U f x a a f x                               (5) 

That is to say, in a d -dimensional space, umbra is the set less than all the points expressed 
in function ( )f x . With the concept of function umbra, we may apply binary morphology to 
grey scale morphology for signal processing. Normally, when a   , function ( )f x  is able 
to be restructured by its umbra set, namely: 

 ( ) max{ : ( , ) ( )},f x a x a U f x                     (6) 

Let ( )f x  as one-dimensional input signal of definition domain fD E , and ( )g x  as 
structural element of definition domain gD E . Dilate or erode the umbra of function ( )f x  
with the umbra of function ( )g x  to generate the umbra of a new function, which can be 
directly represented with ( ) ( ) ( )U f g U f U g    and ( ) ( ) ( )U f g U f U g   . The formulas 
for functional operations of dilation and erosion are: 

 ( )( ) max{ ( ) ( )}
y

f g x f x y g y                            (7) 

 ( )( ) min{ ( ) ( )}
y

f g x f x y g y                            (8) 

In the formulas above there are fx D  and gy D . There is a more specific definition of 

Equations (7) and (8) that set ( )f x  as a one-dimensional original signal which definition 

domain is {0,1, , 1}N  , set ( )g x  as a structure element which definition domain 
is {0,1, , 1}M  , and set the origin at 0, so that dilation and erosion can be defined as follows: 

 
0,1,..., 1
0,1,..., 2

( )( ) max { ( ) ( )}
m M
n N M

f g n f n m g m
 
  

                        (9) 

 
0,1,..., 1
0,1,...,

( )( ) max { ( ) ( )}
m M
n N M

f g n f n m g m
 
 

                        (10) 

Similar to binary morphological transformation, two important morphological operators of 
grey scale can be obtained through the combination of dilation and erosion of grey scale: 
opening operation and closing operation, which are defined as follows: 
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 ( )( ) (( ) )( )f g x f g g x                                 (11) 

 ( )( ) (( ) )( )f g x f g g x                                  (12) 

2.3 Morphological filtering 

The fundamental concept of morphological filtering is based on the characteristics of 
geometric structures of signals that it matches or partially amends signals with predefined 
structural elements to extract signals and suppress noises. Morphological filter is made of 
fundamental morphological transformation combination. 

Opening operation is able to remove isolated structures like tittles, burrs and small bridges, as 
well as suppress peak noises (positive impulse) in signals; while closing operation is able to 
level up small grooves, holes and small cracks, as well as suppress valley noises (negative 
impulse) in signals. In order to simultaneously suppress positive and negative impulse noises 
in signals, we may construct morphological open-closing (OC) filter and morphological close-
opening (CO) filter by using structural elements with the same size and through open-closing 
operation with different order cascades [4][5]. The definitions are as follows: 

Set ( )f x  as input discrete signal and g  as structural element, therefore, morphological 

open-closing filter and morphological close-opening filter shall be defined as follows: 

 ( ) ( )( )Oc f f g g x                              (13) 

 ( ) ( )( )Co f f g g x                               (14) 

Due to anti-expandability of morphological opening and expandability of morphological 
closing, for a morphological open-closing filter, the opening operation conducted first not 
only removes positive impulse noises, but also enhances negative impulse noises. If we 
conduct closing operation with the same structural element, we may not actually remove all 
negative impulse noises; similarly, a morphological close-opening filter using the same 
structural element may not actually remove all positive impulse noises. Considering the 
selection of width of structural element is the major factor to affect denoise, in order to filter 
impulse interference from data, the width of structural element shall be larger than the 
width of maximum impulse of data. Therefore, we have to improve these two types of filters 
that we select structural elements with different sizes based on the definitions of 
morphological opening operation and morphological closing operation, so that the next 
structural function will be wider than the previous one. Thus, we may structure generalized 
morphological open-closing (GMOC) filters and generalized morphological close-opening 
(GMCO) filters [6] which are defined as follows: 

Set ( )f x  as input discrete signal, 1g  and 2g  as structural elements, and 1 2g g , then 

generalized morphological open-closing filters and generalized morphological close-

opening filters shall be defined respectively as follows: 

 1 2( ) ( )( )GMOC f f g g x                            (15) 

 1 2( ) ( )( )GMCO f f g g x                             (16) 
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However, due to that generalized morphological filtering method is still composed of 

opening operation and closing operation, the two types of generalized morphological filters 

aforesaid still have statistics offset problems causing output amplitude of open-closing filter 

relatively low, while output amplitude of close-opening filter relatively high. In most 

circumstances, it’s impossible to gain the best filtering effect by using it alone [7]. 

Considering the amplitude of friction AE signals of rotor varies a lot, and there are multiple 

noise components in data, we may use a weighted array of these two generalized 

morphological filters to effectively erase noises. When weight coefficient is 0.5, the weighted 

array of two filters is: 

 ( ) 0.5 ( ) 0.5 ( )GMF f GMOC f GMCO f                       (17) 

The filter defined by Equation (17) is called generalized morphological filter (GMF). 

2.4 Adaptive generalized morphological filter 

In a generalized morphological filter, the weight coefficient of both generalized open-closing 

filter and generalized close-opening filter is 0.5, and such weight coefficient stays the same 

during filtering process. The fixed weight coefficient makes filtering results hard to 

adaptively achieve the best. In order to optimize filtering results, we may use gradient 

method to conduct iterative computation of weight coefficient, so as to obtain the optimal 

weight coefficient value. 

Set input data as ( ) ( ) ( )x n s n u n   and …1,2, ,n N . ( )s n  represents an ideal signal without 

any noise, while ( )u n  represents all types of noise interference. The output of generalized 

open-closing filters and generalized close-opening filters are: 

 1 1 2( ) ( ( )) ( )( )y n Goc x n x g g n                            (18) 

 2 1 2( ) ( ( )) ( )( )y n Gco x n x g g n                             (19) 

1g  and 2g  represent structural elements, therefore, filter output is: 

 
2

1 1 2 2
1

( ) ( ) ( ) ( ) ( ) ( ) ( )i i
i

y n a n y n a n y n a n y n


                       (20) 

Where, ( 1,2)ia i   represents weight coefficient. 

Mean square deviation of output signal is: 

 
22[ ( )] [ ( ) ( ) ]E e n E s n y n 

22

1

[ ( ) ( ) ( ) ]i i
i

E s n a n y n


                  (21) 

With gradient method and by gradually amending weight coefficient ( 1,2)ia i  , filter 

output ( )y n  can be closest to the ideal signal ( )s n  with respect to mean square deviation. To 

simplify the computation, we may replace 2[ ( )]E e n  with the square of a single error 

sample 2( )e n . Then the gradient of 2( )e n  to weight coefficient ( 1,2)ia i   shall be: 
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2 2

2

1 2

[ ( )] [ ( )]
( )

( ) ( )

T
e n e n

e n
a n a n

  
   

   
  1 2

T
grad grad                (22) 

Iterative computation of adaptive generalized morphological filtering based on gradient 

method is as follows: 

Step 1. Conduct generalized open-closing operation and generalized close-opening 

operation for input signal ( )x n  to obtain 1( )y n  and 2( )y n . Therefore, filter output 

at the k th iteration is 

 1 1 2 2( ) ( ) ( ) ( ) ( )k k ky n a n y n a n y n   
2

1

( ) ( )k
i i

i

a n y n


                   (23)  

Where ( 1,2)k
ia i   represents weight coefficient at the k th iteration. 

Step 2. Single error sample is: 

 1[ ( )] ( ) ( )k k ke n y n y n                                 (24) 

Replace ( )s n  with 1( )ky n , then the gradient shall be: 

 2
1 2[ ( )]

Tk k ke n grad grad                                  (25) 

Step 3. Determine coefficient k
i . There are multiple methods to calculate k

i , including the 

famous HS method presented by Hestenes and Steifel [8]: 

 
1

1

( )

( )

k T k
k i i
i k T k

i i

grad grad

grad p










                            (26)  

FR method presented by Fletcher and Reeves [9]: 

 
1 1

( )

( )

k T k
k i i
i k T k

i i

grad grad

grad grad
                                   (27) 

And PRP method presented by Polak, Ribiere and Polyak individually [10][11]: 

 
1

1 1

( )

( )

k T k
k i i
i k T k

i i

grad grad

grad grad




 


                                  (28) 

Where 1 1k k k
i i igrad grad grad    . In Equation (26), k

ip  represents the i th component of 

direction vector at the k th iteration, 1,2i  . 

Here we use FR method to calculate coefficient k
i . 

Step 4. Calculate each component of direction vector 1 2[ ]k k k Tp p p : 

 1k k k k
i i i ip grad p                                  (29) 
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Then weight coefficient shall be: 

 1k k k
i i ia a p                                     (30) 

Where   represents step parameter. The selection of   will significantly affect filtering 

results that a relatively big   will cause convergent oscillation to unstabilize the system, 

while a relatively small   will compromise convergent speed of system for weight 

coefficient can not be effectively adjusted. There is an optimal  . Fig. 1 shows the schematic 

diagram of such algorithm. 

 

Fig. 1. Schematic Block Diagram of Adaptive Generalized Morphological Filtering 
Algorithm Based on Gradient Method 

In Equations (23) to (30), the superscript k  represents the times of iteration. …0,1,2k   and 

initial weight coefficient is 0 0.5ia  . Let coefficient 0
i  = 0, then 0 0

i ip grad   ( 1,2)i  . Let 
0 0[ ( )] ( ) ( )e n x n y n   for the first iteration. Adaptive amendment of weight coefficient can be 

achieved through Equations (23) to (30). 

2.5 Applications of AGMF-G to denoise of friction AE signals 

2.5.1 Experimental conditions 

On the rotor friction test bed, the screw on friction support is adjusted to contact the rotor, 
so as to generate a friction source. We use UT-1000 sensor for the experiment which 
frequency response ranges from 60kHz to 1000kHz, preamplifier gain is 40dB, and 
resolution is 18-bit A/D. Rotating speed of rotor on test bed is set at 1500r/min, and 
sampling frequency is 1MHz. Fig. 2 shows a rotor friction test bed and Fig. 3 shows a 
friction AE waveform sampled on the rotor test bed. 

2.5.2 Selection of structural elements 

The results of morphological filtering are greatly related to the structural elements applied. 

The selection of such structural elements depends on the forms of signals to be processed, 

which structures shall be as similar to the form characteristics of signals to be analyzed as 

possible [12]. The selection of structural elements mainly refers to the form, width and height 

of a structural element. Common structural elements are linear, triangular, circular and 

polygonal. According to the waveform characteristics of friction AE signals, here we select 

triangular structural elements to discuss. The width of structural elements 1g  and 2g  in 

generalized open-closing filter and generalized close-opening filter respectively are 3 and 6.  
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Fig. 2. Rotor Friction Test Bed 

 
 

Fig. 3. Friction AE Oscillogram 

Experimental simulation indicates that the height As  of structural element and step 
parameter   significantly affect filtering results. The analysis on how height As  of 
structural element and step parameter   affect denoise results is as follows. 

2.5.3 Experimental analysis 

The denoise effect of adaptive generalized morphological filter based on gradient method 
depends on the values of both height As  of structural element and step parameter   of a 
structural element.. Set maxA  as the amplitude of AE signals. Figs. 4, 5 and 6 show the 
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relation between ratio / maxAs A  and signal-to-noise ratio (SNR) of denoise results when 
superpose random white noises which SNRs are 0dB, 5dB and 10dB respectively, as well as 
different step parameters  . 

 

(a) Step Parameter Lower than 0.7 

 

(b) Step Parameter Higher than 0.7 

Fig. 4. How Ratio of Step Parameter to As/Amax Affects Denoise SNR when SNR is 0dB 
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(a) Step Parameter Lower than 0.9 

 

(b) Step Parameter Higher than 0.9 

Fig. 5. How Ratio of Step Parameter to As/Amax Affects Denoise SNR when SNR is 5dB 
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(a) Step Parameter Lower than 0.9 

 

 

(b) Step Parameter Higher than 0.9 

Fig. 6. How Ratio of Step Parameter to As/Amax Affects Denoise SNR when SNR is 10dB 
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Figs. 4-6 indicate that step parameter   and ratio / maxAs A  jointly affect denoise results. 

There is an optimal step parameter   that either   is higher or lower than such optimal 

vale, denoise results are worse than those when   is at its optimal value. The above figure 

shows that when SNRs are 0dB, 5dB and 10dB respectively, the optimal values of step 

parameter   are 0.7, 0.9 and 0.9 respectively. 

The value of ratio / maxAs A  also significantly affects denoise results. When step 

parameter   is lower than the optimal one, denoise results get better as ratio / maxAs A  

increases, see Figs. 4(a), 5(a) and 6(a). However, no matter which value of ratio / maxAs A  

is, denoise results are the best when   is at its optimal value. When step parameter   is 

higher than the optimal one, denoise SNR drops first and then increases as ratio / maxAs A  

increases, meaning that denoise results vary, see Figs. 4(b), 5(b) and 6(b). However, no 

matter which value of ratio / maxAs A  is, denoise results are inevitably worse than those 

when   is at its optimal value. 

Therefore, denoise results are ultimately determined by whether step parameter   is at its 

optimal value. When step parameter   is at its optimal value, denoise results get better as 

ratio / maxAs A  increases, see the curves when step parameters   are 0.7, 0.9 and 0.9 

respectivley in Figs. 4, 5 and 6. As ratio / maxAs A  keeps increasing, the amplitude of 

denoise SNR tends to 0, which makes few denoise differences. If step parameter   is at its 

optimal value, the minimum ratio / maxAs A  that makes the amplitude of denoise SNR 

tends to 0 is the optimal / maxAs A . Figs. 4-6 show that when noise SNRs are 0dB, 5dB and 

10dB, optimal ratios / maxAs A are 1, 3 and 4 respectively. 

Table 1 indicates the comparison of performances among four denoise algorithms including 
GMOC, GMCO, GMF and AGMF-G, from which we find that denoise results obtained with 
AGMF-G is better than those with other three denoise algorithms. 

 

Input 
Noise/dB

SNR/dB 

GMOC GMCO GMF AGMF-G 

0 0.5002 0.2943 1.2596 1.9201 

5 3.3396 2.7512 5.2581 6.5238 

10 7.3927 5.9341 9.4739 12.4047 

Table 1. Performance Comparison of Friction AE Signal Denoise Algorithms of 
Morphological Filtering at Different SNRs 

3. Identification of friction AE based on GMM 

3.1 Modal Acoustic Emission (MAE) and Extraction of Characteristic Parameters  

MAE is a type of AE signal processing technology based on guided wave theory [13][14]. 
MAE thinks that the elastic waves generated by AE sources in materials being detected 
under loading effect are guided wave signals with diversified frequencies and modes, 
waves with different modes have different transmission speed and frequencies in 
transmission media, and some modal waves have frequency dispersion effect [15]. By 
acquiring AE signals with high-resolution broad band sensor, we may find out the 
composition mode in AE wave, so that we can connect these modal waves with AE source 

www.intechopen.com



 
Denoise and Recognition of Friction AE Signal 

 

329 

mechanism to provide prior knowledge for AE signals judging fault-source mechanism 
(namely fault type identification). Because different modal waves have different 
transmission speeds, positioning accuracy will be significantly improved if we use the same 
modal wave as basis during positioning process. Besides, a large number of non-AE sources 
or noises do not contain the characteristics of modal waves in AE signals, therefore, it’ll be 
easy to distinguish AE signals from noises. 

In this section, we analyze modal characteristics of AE waves during collision and friction 
excitation, as well as transmission characteristics of AE waves in two different routes of 
rotor bed. We propose use a mixed parameter composed of logarithmic cepstral parameter 
and fractal dimension as characteristic parameters of AE signal identification, so as to 
establish an AE signal identification system of GMM. 

According to MAE theory, AE signal ( )t  received by the sensor can be 

 
1

0

( ) ( )
N

i i i
i

t t   



                              (31) 

In the above equation, AE signal ( )t  is superposed by N modal waves 

0 0 1 1 1 1( ), ( ),...., ( )N Nt t t         , and   represents the time delay from modal wave i  

to sensor. Set ia  as 0 or 1. If it is 0, then it means that the sensor doesn’t receive such modal 

wave. ( )i t  represents a narrow band random process, namely 

 ( ) ( )cos ( )sini ci i si it t t t t                         (32) 

( )ci t  and ( )si t  represent in-phase component of quadrature component of narrow band 

random process ( )i t , and i  represents its central angle frequency. Equations (31) and (32) 

show that in a frequency domain, an AE source signal can be considered as the sum of 

multiple separable narrow band random processes. All modal waves have different speeds 

during transmission process. Due to frequency dispersion and attenuation, as well as these 

modal waves start to separate as transmission distance increases, some modal waves will 

disappear. Thus, we may construct a group of filters with central frequency of modal wave 

as the center, and band width no more than that of a narrow band random process. For 

modal waves vary slowly in a frequency domain, energy output of filters also vary slowly. 

While noises and interference vary randomly, we may distinguish AE signals from noises 

with the energy output by signals coming through this group of filters. 

When a friction fault occurs in rotor system, AE waveforms only show burst characteristics for 
simple-point friction, while common AE waveforms generated by partial friction show 
continuous characteristics. Due to waveform distortion and attenuation during transmission, 
it’s impossible for time domain parameter to effectively describe signals, so that intrinsic 
characteristics of signals can only be identified through time-frequency conversion. 

3.1.1 Extraction of cepstral coefficient 

AE source signals reach the sensor through transmission in material media, signals received by 
the sensor are not only affected by media channels, but also present multi-path effects. 
Therefore, AE signals received by the sensor are affected by multiplicative interference of the 
channel that characteristics of AE signals and multiplicative interference must be separated 

www.intechopen.com



 
Acoustic Emission 

 

330 

with signal processing. Traditional denoise methods can only process additive interference, 
while homomorphic filtering especially cepstral technology can obtain excellent results. 

Cepstrum is able to interpret relevant characteristics and compensate the distortion of 
convolutional channels, and it’s also able to separate and extract original signals as well as 
transmit system characteristics, which shows an outstanding robustness in a noise 
environment. Besides, based on first-order statistical quantity, cepstrum is able to suppress 
noises [16]. Here we use cepstral coefficient as characteristic quantity of identification model. 

The process of extracting cepstral coefficient is shown in Fig. 7. 

 

Fig. 7. Extraction of Cepstral Coefficient 

Step 1. Conduct short-time Fourier transform (STFT) to AE source signal ( )t  to obtain its 

frequency spectrum. 

  j( , ) [ ] [ ]expk k
m

X k m w k m m  




                          (33) 

Step 2. Conduct bandpass filtering to energy spectrum in frequency domain with a group 

of triangular filters. This can be considered as weighing amplitude spectrum with 

frequency responses of a group of filters. Weighted energy spectrum mel( )E k  refers 

to Equation (34). Central frequencies of this group of bandpass filters are in a 

logarithmic scale order, and two bottom point frequencies of filter triangles are 

equal to the central frequencies of two adjacent filters. Generally, set the number of 

filters N as 24. 

2
mel

1
( ) | ( ) ( , )|

l

l
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l k k
l k L

E k V X k
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 


   

 1,2,....,k N                                   (34) 

 2| ( )|
l

l

U

l l k
k L

A V 


                                  (35) 

In Equation (35), ( )lV   represents the frequency response of the lth logarithmic scale filter, 

and lL  and lU  represent the minimum frequency and the maximum frequency of each filter 

in a non-zero value-taking interval. lA  is introduced mainly for normalized processing of 

filters based on band width. 

The test shows that the main frequency of rotor friction AE signals ranges from 5kHz to 
500kHz. Frequency points contribute differently to AE judgment. HF signals have bigger 
attenuation during transmission, so the proportion of HF components shall be reduced. 
Introduce a logarithmic function so that the central frequency of a filter can be: 

www.intechopen.com



 
Denoise and Recognition of Friction AE Signal 

 

331 

 

 min max minln[1 ( ) /( )]

ln(1 ) 24
ia f f f f i

a

  



, 1,2,....,i N                 (36)  

In Equation (36), a  represents coefficient ( 0a  ), if  ( 1,2,...,i N ) represents central 

frequencies of N filters, and minf  represents lower frequency limit. Due to that low 

frequency range (below 100kHz) is interfered by other industrial noises, therefore, here we 

take 100kHz. maxf  represents upper frequency limit which is 300kHz here. 

With Equation (36), we can obtain 

 kHz

exp ln(1 ) 1 200
24

100i

i
a

f
a

             
 
  

                       (37) 

Set N=24 in practical. The bigger a  is, the lower LF filter band width is, and the higher HF 

filter band width is. Set a =10 for identification system analysis later on. 

Step 3. Set a logarithm for the output of filter group, and then conduct discrete cosine 

transform (DCT) of 2N points to obtain an modificatory cepstral parameter. 

 mel
1

log ( )cos[ ( 0.5) / ]
N

n
k

C E k k n N


  , 1,2,....,n L              (38) 

In Equation (38), L represents the number of cepstral coefficients, which normally is set to be 

12-16, and here we take L=12. For 0-order cepstral coefficient represents frequency spectrum 

energy, we don’t use 0-order cepstral coefficient for measurement and definition of spectral 

distortion. 

3.1.2 Fractal dimension extraction of AE waveforms 

Friction AE signals of rotor system possess fractal characteristics. Fractal dimension not only 

can be considered as a characteristic parameter of friction AE signal identification, but also 

can be considered as an index to determine the intensity of friction. DENG Aidong [17] 

presented a fractal dimension algorithm based on wave length. He used a box which 

dimension was   to cover the whole AE wave curve. Set ( )N F  as the smallest number of 

curves covered by the box which side length is  , and set ( )il   as the curve length in the 

i th box, so that AE wave length can be 

 
( )

1

( ) ( )
N F

i
i

L l


 


                               (39) 

The curve length ( )il   inside each box is equivalent to: 1( )il k   where 1k  represents 

coefficient that can be set between 1 and 1.5 in practical. Set 0  as k  times of the minimum 

sampling interval (namely the box which dimension is  ): 0 k   where k is an integer. 

The algorithm is as follows 
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 0

0

ln ( )

ln ( )ln ( )

BL
D A

L L


  

                         (40) 

In Equation (40), D is called the wave length fractal dimension (WLFD), where 

1 01 ln /lnA k   , 0( / 1)B r    , and parameters , ,A B k  are determined with fractal 

Brownian curve. 

In practical, we may conduct framing processing to noise-bearing friction AE signals that 

have been sampled and quantified. Because the number of sample points in each frame is 

relatively low, it causes fractal dimension of frame varying greatly and high variance. In 

order to improve the accuracy of fractal dimension, we may conduct medium filtering to 

fractal dimension of frame first to filter HF components, so that the variance of fractal 

dimension can be reduced. For noise-bearing data in each frame, we may equally divide 

them into m (m is an odd number) data segments which will be in 

1 1,..., , , ,...,i v i i i i vD D D D D     order. Set the data which serial number is in the middle as 

output of medium filtering 

 1 1{ ,..., , , ,..., }i i v i i i i vY Med D D D D D    , 
1

2

m
v


                   (41) 

3.2 GMM-based identification system 

GMM approaches any distribution through linear combination of several Gaussian 
probability density functions that it can well describe the spatial distribution and its 
characteristics of training data in parameter space. In a friction AE identification system, 
GMM models probability density functions contained in eigenvector of different modal 
waves, and clusters through these eigenvector. Each clustering can be considered as a multi-
dimensional Gaussian distribution function. Calculate the mean, covariance matrix and 
probability of each clustering and set as the training format of each modal wave, and then 
put the characteristic sequences of AE signals to be detected into the format of each modal 
wave to obtain the maximum posterior probability, namely the modal wave identified by 
correspondence。Here we only have to know if AE signals exist rather than understand the 

details of modal waves at receiving end. Therefore, combine the output likelihood ratios of 
all modal wave models to obtain a total likelihood ration, and then judge based on such total 
likelihood ratio. See Fig. 8 for identification system model. 

A model is composed of training stage and identification stage. Although AE signals are 
non-stationary, they can be considered stationary in a short time window that can be 
analyzed with stationary process. Therefore, we may divide AE signals into several frames 
with short time intervals, and then we use overlapping segmentation method to achieve 
smooth transition between frames. Here we divide the whole AE signal sequence to be 
trained or identified into several short time intervals that each with 512 points and 50% 
overlapping. 

Based short time intervals, we extract a 12-dimensional logarithmic cepstral parameter 
(remove No. 0-dimensional cepstral parameter) and fractal dimension of wave length 
according to Equations (38) and (41) to form a 13-dimensional AE signal characteristic 
parameter. 
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Fig. 8. GMM-based AE Identification Model 

In a rotor system, AE waves may show up in multiple patterns during transmission 
including flexural waves, spreading waves and torsional waves, so that each type of wave in 
the model can be trained and identified with a corresponding Gaussian model. 

GMM is the weighted sum of M modal densities. The likelihood ratio corresponding to 
vector x


 extracted from AE signals can be expressed as M Gaussian components 

 
1

( | ) ( )
M

i i
i

p a b


x x
 

                              (42) 

Here x


 represents a D-dimensional random vector; ( )  ( 1, , )ib x i M   represents density 
function of each modal; and  ( 1, , )ia i M   represents the weight of i th Gaussian 
component. Each modal density represents a Gaussian function of D-dimensional variable 
with respect to mean vector iμ


 and covariance matrix iΣ  

 
/2 1/2

1 1
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
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                          (43) 

Where mixture weight meets the following condition 

1

1
M

i
i

a


  

Complete parameters of AE identification model of Gaussian mixture density are obtained 
through mean vectors, covariance matrixes and parameterized mixture weights of all modal 
densities. Together, these parameters can be expressed as 

 { , , }i ia  i iμ Σ , 1, ,i M                          (44) 

Each modal wave can be expressed as one GMM and its model parameter i . For the 
sequence of T test vectors ( , , , ) 1 2 TX x x x

   , its GMM probability is 

 
1

( | ) ( | )
T

i

P p 


 tX x
                              (45)  
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AE signals may go through modal transform and multi-modal coexistence during a certain 
period of time. The optimization can not be achieved with Equation (45). Therefore, the 
following shall be conducted 

 
1

( , ) ( | )
M

i i
i

p a p 


t tx x
 

                                  (46) 

Equation (46) adopts the combination of maximum ratios. ia  represents the weight of 

branch channel, related to the probability ( | )ip tx


 of branch channel. Branch channel with 

bigger probability has larger weight coefficient, vice versa. To simplify the analysis, we may 

set ( | )i ia p  tx


, thus Equation (46) may be 

 2

1

( , ) ( | )
M

i
i

p p 


t tx x
 

                                 (47) 

Put likelihood probability ( | )p tx


 of each frame obtained with Equation (46) into Equation 

(45), we may get a total likelihood probability ( | )P X . It can be considered that AE signals 

exist if ( | )P X  is larger than the threshold. 

3.3 Test analysis 

3.3.1 Test analysis on GMM input 

See Fig. 2 for test device. Set sampling set as 2MHz, and set the number of sampling data 

points of single trigger as 32768. 

When friction occurs in the rotor, such friction actually contains tangential friction and 

normal collision force. AE signals we observe are waveforms stimulated by the combination 

of collision and friction between rotor and stator. Experimental research shows that AE 

modal waves stimulated by collision and friction respectively are different that collision 

mainly stimulates flexural waves while friction mainly stimulates spreading waves[18]. And 

it’s hard to distinguish these two types of waves in friction AE signals acquired in practice. 

For the sake of simplification, we may generally classify friction AE signals based on their 

waveforms during transmission and their fractal dimension curves in certain structures and 

distances, so as to determine GMM model input type. 

Fig. 9 and Fig. 10 indicate friction AE waveforms and fractal dimension curves of 

waveforms at distance end and near end respectively, from which we find that fractal 

dimension can effectively distinguish AE signals and noises. When AE signals are 

transmitted far enough, some frequency components are separated, which means that 

although there are waveform peaks, waveforms stretch a lot and are relatively flat. With 

fractal curves, we may divide them into two modal types as source input of identification 

model, see Fig. 9. 

If friction AE source is at the near end of sensor, the in respect of waveforms, we find that 

almost all modal components gather together, and the sharp composite wave formed 

contains plenty of frequency components, see Fig. 10. Therefore, the whole wave packet 

shall be input as a model source of GMM. 
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(a) AE Signal Waveform at Distance End and Division of Two Modals 

 

(b) Logarithmic Wave Length Dimension Curve of AE Signal Waveform 
at Distance End and Division of Two Modals 

Fig. 9. Modal Characteristics of AE Waveforms at Distance End 

Based on the analysis above, friction AE waveforms can be classified into three models. Take 

the situation of no AE into consideration, we may set the number of models as M = 4. 

3.3.2 Performance analysis on AE identification model under noise environment 

Acquire near end AE data 3cm away from friction source and distance end AE data 40cm 

away from friction source for 10 seconds on rotor friction test bed for training (rotating 

speed = 1450r/min). Then acquire AE test data for 10 seconds when rotating speeds are 

500r/min and 1800r/min respectively. Superpose Gaussian white noises and workshop 

noises with different SNRs on all test data, and then identify them with the above 

mentioned model. For results, see Fig. 11. It shows that identification rate at near end is 

higher than that at distance end, identification performance under Gaussian white noise 

environment is better than that under workshop noise environment, and identification rates 

at different rotating speeds are almost the same. 
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(a) AE Signal Waveform at Near End 

 

(b) Wave Length Fractal Dimension Curve of AE Signal at Near End 

Fig. 10. Modal Characteristics of AE Waveforms at Near End 

Compare the identification system of mixed characteristic parameters combining 12-order and 

fractal dimension to the identification system of mixed characteristic parameters only using 12-

order cepstral coefficients. Table 2 shows that the identification performance of former one is 

improved at different SNRs, especially at a low SNR it’s improved significantly. This means 

that mixed characteristic parameters not only effectively improves identification performance, 

but also are able to suppress Gaussian white noises to a certain degree. 

 

Characteristic Parameters 
Identification Rate r/(%) 

5dB 10dB 20dB 30dB  

Ceptral Coefficient 36.7 62.9 81.1 86.2 96.8 

Cepstral Coefficient + Fractal Dimension 46.2 74.3 86.9 95.4 98.1 

Table 2. Comparison of Identification Rates under Gaussian White Noise Environment 
Based on Different Characteristic Parameters and at Different SNRs 
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(a) Friction Identification Rate at Different SNRs and  
Under Gaussian White Noise Environment (500r/min) 

 

 

(b) Friction Identification Rate at Different SNRs and  
Under Gaussian White Noise Environment (1800r/min) 
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(c) Friction Identification Rate at Different SNRs and  
Under Workshop Noise Environment (500r/min) 

 

(d) Friction Identification Rate at Different SNRs and  
Under Workshop Noise Environment (1800r/min) 

Fig. 11. AE Identification Rates under Different Noise Environments 
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4. Conclusion 

This Chapter presents an adaptive generalized morphological filtering denoise algorithm 

based on gradient method, and has applied it to denoise of friction AE signals. Through 

experimental analysis, we may select appropriate step parameter   and ratio / maxAs A . 

Denoise effects generated by adaptive generalized morphological filtering algorithm based 

on gradient method are better than those generated by other traditional morphological 

filtering algorithms, which is a new solution to denoise of AE signals. In addition, the 

selection of optimal step parameter   still has normal statistics characteristics that it needs 

to be determined through multiple computations and experiments. Therefore, this filtering 

algorithm still can be improved. 

We have classified the modals of AE waveforms based on how friction AE signals transmit 
in a rotor system structure. Then we combine cepstral coefficient and fractal dimension of 
each modal wave as mixed characteristic parameters to represent friction AE signals, and 
then construct a friction AE identification system of GMM. Test results show that this model 
is able to obtain a relatively high identification rate under noise environment, and is able to 
suppress Gaussian white noises to a certain degree, which can be used as an approach to 
identify friction. 
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