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Application of the Nikiforov-Uvarov
Method in Quantum Mechanics

Cüneyt Berkdemir*

The Pennsylvania State University
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1. Introduction

This book chapter is addressed to readers who want to learn how to solve the
time-independent Schrödinger equation (Schrödinger, 1926) in an alternative method that was
introduced by A. F. Nikiforov and V. B. Uvarov (Nikiforov & Uvarov, 1988). The requirement
for understanding the chapter is a knowledge of quantum mechanics in an introductory level
and partial differential equations. The primary of the chapter is intended for undergraduate
students in physics and chemistry however, it may be used as a reference guide for graduate
students and researchers as well.
The solution of the Schrödinger equation for a physical system in quantum mechanics is of
great importance, because the knowledge of wavefunction Ψ(r, t) and energy E contains all
possible information about the physical properties of a system. This knowledge is ranging
from the energy, momentum and coordinate of the particle to the wave characteristics of the
particle, frequency and wavelength if we describe the quantum mechanical system by the
probability amplitude |Ψ(r, t)|2 and its phase (Tang, 2005). Ψ(r, t) is supposed to describe the
"state" of a particle subject to the potential energy function V(r), where r represents the spatial
position of the particle. For a one-particle, one-dimensional system in cartesian coordinates,
we have Ψ(r, t) = Ψ(x, t) and V(r) = V(x) or for a one-particle, three-dimensional system in
spherical coordinates, we have Ψ(r, t) = Ψ(r, θ, φ, t) and V(r) = V(r, θ, φ). If we want to know
how the state of the particle changes with time, we need to specify the future state, Ψ(r, t), of
a quantum mechanical system from the knowledge of its initial state, Ψ(r, t = 0). To do that
an equation postulated by the Austrian physicist Erwin Schrödinger (1887-1961) can help us

− h̄

i

∂Ψ(r, t)

∂t
= − h̄2

2μ
∇2Ψ(r, t) + V(r)Ψ(r, t), (1)

where the constant h̄ is defined as h̄ ≡ h/2π, μ is the mass of particle and ∇2 is an operator
that can be described in any coordinate system. Eq.(1) is known as the time-dependent
Schrödinger equation and it can be reduced to the time-independent one using an appropriate
wavefunction Ψ(r, t) = e−iEt/h̄Ψ(r) that corresponds to states of constant E. For the states of
the form Ψ(r, t) = e−iEt/h̄Ψ(r), the probability density |Ψ(r, t)|2 is given by |Ψ(r)|2 and it does
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2 Will-be-set-by-IN-TECH

not change with time. So, we can now call the states by the "stationary state" that would be
concerned mostly with states of constant energy (Levine, 2008). If we insert this wavefunction
into Eq.(1), we have an equation called the time-independent Schrödinger equation

− h̄2

2μ
∇2Ψ(r) + V(r)Ψ(r) = EΨ(r). (2)

For simplicity, we will refer to Eq.(2) as the Schrödinger equation (SE). The solution of
the SE not only depends on the potential energy function V(r) but also depends on the
coordinate system. Although many quantum mechanical system can be solved by writing
the one-particle, one-dimensional SE in cartesian coordinates, we will pay our attention to the
one-particle, three-dimensional SE in spherical coordinates. Therefore, in this book chapter,
we will deal with any one-particle problem with a spherically symmetric potential energy
function V(r), where we suppose that V(r) just depends on the radial variable, r, of spherical
coordinates, i.e., V(r) = V(r, θ, φ) ≡ V(r). Moreover, the stationary-state wavefunction
Ψ(r) would be of the form Ψ(r, θ, φ) = R(r)Y(θ, φ), in which R(r) is the unknown radial
wavefunction and Y(θ, φ) are referred to as the spherical harmonics.
The solution of the SE is an interesting issue in many fields of physics and chemistry. To
obtain an accurate solution of the SE is only possible for a few potentials such as harmonic
oscillator potential, Coulomb potential, Kratzer potential, etc. For these potentials, one can
try to solve the SE for the unknown radial wavefunction R(r) and hence implicitly provide
all relevant information about the behavior of a particle. The standard analytical method for
solving such an equation with a variable coefficient is to expand the solution in a power series
of the independent variable r and then find the recursion relationships for all the expansion
coefficients (Flügge, 1971). However, the power series method has more details to reach
the solution. The algebraic methods based on Lie algebra (Adams, 1994; Iachello & Levine,
1995; Iachello & Oss, 1996; Iachello & Ibrahim, 1998) are another tool to solve the SE in the
framework of quantum mechanics. To constitute a suitable Lie algebra, the quantum system
we are trying to find an exact solution has to be displayed a dynamical symmetry. If it is
so, the ladder operators of the quantum system for some potentials are constructed by the
factorization method or the supersymmetric quantum mechanics approach. The advantage
of the factorization method is that the energy spectrum and the wavefunction of a quantum
system are obtained algebraically if the SE is factorizable (Frank & Isacker, 1994; Infeld & Hull,
1951).
The solution of the SE is fundamental to understand the energy spectrum of a particle since
the early days of quantum mechanics (Flügge, 1971). It often happens in some quantum
mechanical problems that the solution of the SE with the potential V(r) is not known
accurately (for example, when considering the motion of a particle subject to the Morse
potential together with the centrifugal term ℓ(ℓ + 1)/r coming from the radial part of the
SE in spherical coordinate). Therefore, in such cases, there is no need for an exact solution
of the SE, and we must look for efficient approximate methods for its solution. From this
point of view, if the SE is exactly solvable for a given potential, the wavefunction will be
able to describe such a system completely, otherwise an approximated solution will be nearly
describe the system. Numerical and analytical methods are complementary to find an exact
or approximate solution of the SE with/without the centrifugal term ℓ(ℓ+ 1)/r for a particle
in the potential V(r), and each would be much poorer without the other. However, simple
"hand-power methods" namely analytical methods are often more revealing because we will
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Application of the Nikiforov-Uvarov Method in Quantum Mechanics 3

see the solution stages of the problem and so it would be more meaningful than the numerical
solution.
An alternative method to solve the SE by the "hand-power" is to use the Nikiforov-Uvarov
(NU) method which can be described in terms of the hypergeometric-type second-order
differential equations. The method based on the solutions of the general second order
linear differential equation with special orthogonal functions (Szego, 1934) provides an exact
solution of the SE for certain kind of potentials. The NU method is able to apply the solution
of the SE in a more direct, easy and elegant way as well as the methods given in the standard
textbooks.
By using the main equation given by Eq.(2), the SE can be solved by separating it in spherical
coordinates for a single particle of mass μ. After separating the SE, the eigenvalue equations
are solved by using the NU method and the energy levels of the discrete spectrum are obtained
for a single particle. In spherical coordinates, the SE is written as follows:

{
− h̄2

2μ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂φ2

]}
Ψ(r, θ, φ)

+V(r)Ψ(r, θ, φ) = EΨ(r, θ, φ). (3)

The energy E in Eq.(3) is real and it is either discrete for bound states (E < 0) or continuous
for scattering states (E > 0). Consequently, this equation is separable for several potential
such as Harmonic oscillator, Coulomb potential, Kratzer potential, Morse potential, Hulthen
potential and so on. It is expected that an interesting extension of this book chapter would be
to study the solution of the SE for a given potential.
This book chapter is organized as follows: in Section 2, we reviewed the NU method in detail
and at the end of this section we introduced a "guide" like a "cooking list" that will show
us a faster way, how to apply the NU to the solution of the SE. Section 3 is devoted to the
separable variables of the SE in spherical coordinates. Application of the NU method in
quantum mechanics is presented in Section 4 and so the solution of the SE for the selected
potentials, i.e., Harmonic oscillator potential, Coulomb potential, Kratzer potential, Morse
potential and Hulthen potential, is obtained in the same section. Finally, a few concluding
remarks are given in Section 5.

2. The Nikiforov-Uvarov method

The Nikiforov-Uvarov (NU) method is based on solving the hypergeometric-type
second-order differential equations by means of the special orthogonal functions (Szego,
1934). For a given potential, the Schrödinger or the Schrödinger-like equations in spherical
coordinates are reduced to a generalized equation of hypergeometric-type with an appropriate
coordinate transformation r → s and then they can be solved systematically to find the exact
or particular solutions. The main equation which is closely associated with the method is
given in the following form (Nikiforov & Uvarov, 1988)

ψ′′(s) +
τ̃(s)

σ(s)
ψ′(s) +

σ̃(s)

σ2(s)
ψ(s) = 0, (4)

where σ(s) and σ̃(s) are polynomials at most second-degree, τ̃(s) is a first-degree polynomial
and ψ(s) is a function of the hypergeometric-type.
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By taking ψ(s) = φ(s)y(s) and choosing an appropriate function φ(s), Eq.(4) is reduced to a
comprehensible form;

y′′(s) +
(

2
φ′(s)
φ(s)

+
τ̃(s)

σ(s)

)
y′(s) +

(
φ′′(s)
φ(s)

+
φ′(s)
φ(s)

τ̃(s)

σ(s)
+

σ̃(s)

σ2(s)

)
y(s) = 0. (5)

The coefficient of y′(s) is taken in the form τ(s)/σ(s), where τ(s) is a polynomial of degree at
most one, i.e.,

2
φ′(s)
φ(s)

+
τ̃(s)

σ(s)
=

τ(s)

σ(s)
, (6)

and hence the most regular form is obtained as follows,

φ′(s)
φ(s)

=
π(s)

σ(s)
, (7)

where

π(s) =
1

2
[τ(s)− τ̃(s)]. (8)

The most useful demonstration of Eq.(8) is

τ(s) = τ̃(s) + 2π(s). (9)

The new parameter π(s) is a polynomial of degree at most one. In addition, the term
φ′′(s)/φ(s) which appears in the coefficient of y(s) in Eq.(5) is arranged as follows

φ′′(s)
φ(s)

=

(
φ′(s)
φ(s)

)′
+

(
φ′(s)
φ(s)

)2

=

(
π(s)

σ(s)

)′
+

(
π(s)

σ(s)

)2

. (10)

In this case, the coefficient of y(s) is transformed into a more suitable form by taking the
equality given in Eq.(7);

φ′′(s)
φ(s)

+
φ′(s)
φ(s)

τ̃(s)

σ(s)
+

σ̃(s)

σ2(s)
=

σ̄(s)

σ2(s)
(11)

where
σ̄(s) = σ̃(s) + π2(s) + π(s)[τ̃(s)− σ′(s)] + π′(s)σ(s). (12)

Substituting the right-hand sides of Eq.(6) and Eq.(11) into Eq.(5), an equation of
hypergeometric-type is obtained as follows

y′′(s) +
τ(s)

σ(s)
y′(s) +

σ̄(s)

σ2(s)
y(s) = 0. (13)

As a consequence of the algebraic transformations mentioned above, the functional form of
Eq.(4) is protected in a systematic way. If the polynomial σ̄(s) in Eq.(13) is divisible by σ(s),
i.e.,

σ̄(s) = λσ(s), (14)

where λ is a constant, Eq.(13) is reduced to an equation of hypergeometric-type

σ(s)y′′(s) + τ(s)y′(s) + λy(s) = 0, (15)
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and so its solution is given as a function of hypergeometric-type. To determine the polynomial
π(s), Eq.(12) is compared with Eq.(14) and then a quadratic equation for π(s) is obtained as
follows,

π2(s) + π(s)[τ̃(s)− σ′(s)] + σ̃(s)− kσ(s) = 0, (16)

where
k = λ − π′(s). (17)

The solution of this quadratic equation for π(s) yields the following equality

π(s) =
σ′(s)− τ̃(s)

2
±

√(
σ′(s)− τ̃(s)

2

)2

− σ̃(s) + kσ(s). (18)

In order to obtain the possible solutions according to the plus and minus signs of Eq.(18),
the parameter k within the square root sign must be known explicitly. To provide this
requirement, the expression under the square root sign has to be the square of a polynomial,
since π(s) is a polynomial of degree at most one. In this case, an equation of the quadratic
form is available for the constant k. Setting the discriminant of this quadratic equal to zero, the
constant k is determined clearly. After determining k, the polynomial π(s) is obtained from
Eq.(18), and then τ(s) and λ are also obtained by using Eq.(8) and Eq.(17), respectively.
A common trend that has been followed to generalize the solutions of Eq.(15) is to show that
all the derivatives of hypergeometric-type functions are also of the hypergeometric-type. For
this purpose, Eq.(15) is differentiated by using the representation v1(s) = y′(s)

σ(s)v′′1 (s) + τ1(s)v
′
1(s) + μ1v1(s) = 0, (19)

where τ1(s) = τ(s)+ σ′(s) and μ1 = λ+ τ′(s). τ1(s) is a polynomial of degree at most one and
μ1 is a parameter that is independent of the variable s. It is clear that Eq.(19) is an equation of
hypergeometric-type. By taking v2(s) = y′′(s) as a new representation, the second derivative
of Eq.(15) becomes

σ(s)v′′2 (s) + τ2(s)v
′
2(s) + μ2v2(s) = 0, (20)

where
τ2(s) = τ1(s) + σ′(s) = τ(s) + 2σ′(s), (21)

μ2 = μ1 + τ′
1(s) = λ + 2τ′(s) + σ′′(s). (22)

In a similar way, an equation of hypergeometric-type can be constructed as a family of

particular solutions of Eq.(15) by taking vn(s) = y(n)(s);

σ(s)v′′n(s) + τn(s)v
′
n(s) + μnvn(s) = 0, (23)

and here the general recurrence relations for τn(s) and μn are found as follows, respectively,

τn(s) = τ(s) + nσ′(s), (24)

μn = λ + nτ′(s) +
n(n − 1)

2
σ′′(s). (25)

When μn = 0, Eq.(25) becomes as follows

λn = −nτ′(s)− n(n − 1)

2
σ′′(s), (n = 0, 1, 2, . . .) (26)
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and then Eq.(23) has a particular solution of the form y(s) = yn(s) which is a polynomial of
degree n. To obtain an eigenvalue solution through the NU method, the relationship between
λ and λn must be set up by means of Eq.(17) and Eq.(26). yn(s) is the hypergeometric-type
function whose polynomial solutions are given by the Rodrigues relation

yn(s) =
Bn

ρ(s)

dn

dsn [σn(s)ρ(s)] , (27)

where Bn is a normalization constant and the weight function ρ(s) must satisfy the condition
below

(σ(s)ρ(s))′ = τ(s)ρ(s). (28)

It could be facilitative to introduce a "guide" to figure out the solution of SE in a faster way.
To obtain the unknown radial wavefunction R(r) and the energy eigenvalue E of the SE by
means of the NU method, let us look at the following guide in the ten-steps;
1) reduce the differential equation that satisfies the SE into the differential equation given in
Eq.(4),
2) compare each equations and determine the values of polynomials τ̃(s), σ(s) and σ̃(s). In
this stage, don’t forget to make some abbreviations in the original differential equation,
3) arrange the polynomial π(s) given in Eq.(18) by inserting the polynomials τ̃(s), σ(s) and
σ̃(s) we have found in the second stage and compose an equation of quadratic form under the
square root sign of the π(s),
4) set up the discriminant of this quadratic equal to zero, using the expression △= b2 − 4ac = 0
and find two roots regarding with the k, i.e., k±,
5) substitute these values of k into the π(s) and obtain the four possible forms of π(s). Now
we have two forms of the π(s) for k+ and two forms for k−. At this stage one can ask a
question which of the four forms is physically valid.
6) try to find a negative derivative of the τ(s) given in Eq.(9) using the four forms of the π(s)
and keep this form to use it in the further stages because that would be physically valid.
7) recall Eq.(17) for λ and Eq.(26) for λn, and compare them with each other, i.e., λ = λn, and
so it would be energy spectrum.
8) insert the values of σ(s) and π(s) into Eq.(7), so the result would be the functional form of
φ(s),
9) satisfy Eq.(28) with the weight function ρ(s) and obtain the hypergeometric-type function
yn(s) which can be given by the Rodrigues relation in Eq.(27),
10) combine the φ(s) and the yn(s) to form the ψ(s), and so it would be the radial wavefunction
R(r).

3. The Schrödinger equation in spherical coordinates

Many of the potentials that are used together with the SE are the central potentials and
they are just the function of a distance between a particle and some point of origin. In
spherical coordinates, a point in space is defined in terms of its distance r from the origin
of the coordinate system and in terms of two angles, zenith angle θ and azimuthal angle
φ. Therefore, we can specify a single point of three-dimensional space using these triplets
(r, θ, φ). In order to define a unique set of spherical coordinates for each point, we have to
restrict their ranges. A common choice is r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. At this section,
one could ask a question about why we need to take into account the spherical coordinate
to solve the SE for a particle subject to a potential function. For the realistic potentials in
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physics, as an answer, the SE in spherical coordinates can be solved by using the separation
of the wavefunction in terms of independent wavefunctions, i.e., Ψ(r, θ, φ) = R(r)Y(θ, φ).
The motion of a rotating molecule or of an electron moving around an atomic nucleus could
be better described in spherical coordinates by using only a single coordinate. For example,
the Coulomb potential that represents the electromagnetic interaction between an electron

and a proton can be written V(x, y, z) = −e‘2/
√

x2 + y2 + z2 in cartesian coordinate, where
e‘ = e/

√
4πε0, e is the elementary electric charge and ε0 is the electric permittivity of free

space. It might not straightforward to solve the SE with the potential V(x, y, z) because
the potential has there variables which are not separable in cartesian coordinate even if the
wavefunction became separable. Transformation to spherical coordinates from cartesian one
would be easier to solve the SE because in this case the potential V(x, y, z) would be turned
to V(r) = −e‘2/r which depends only on r. For this transformation, we used the conversion

r =
√

x2 + y2 + z2. Further, the variables (x, y, z) in cartesian coordinate could be related to
the variables (r, θ, φ) in spherical coordinates as follows;

x = rsinθcosφ, y = rsinθsinφ, z = rcosθ, θ = cos−1
( z

r

)
. φ = tan−1

( y

x

)
. (29)

Now let us look at the separable variables in spherical coordinates. Keeping in mind the SE
given in Eq.(2), we will use the relation of ∇2 in spherical coordinates as we develop the SE in
the same coordinate. So, the SE may be written as

[
− h̄2

2μ

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂φ2

)
+ V(r)

]
Ψ(r, θ, φ) = EΨ(r, θ, φ),

(30)
where the ∇2 is given in spherical coordinates

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂φ2
. (31)

The potential we are interesting is central because it only depends on the distance r from the
origin and we look for separable solution of the SE;

Ψ(r, θ, φ) = R(r)Y(θ, φ). (32)

Using the assumed form of Ψ(r, θ, φ), we may write the SE as

1

R(r)

d

dr

(
r2 dR(r)

dr

)
+

2μ

h̄2
r2(E−V(r)) =− 1

Y(θ, φ)

[
1

sinθ

∂

∂θ

(
sinθ

∂Y(θ, φ)

∂θ

)
+

1

sin2θ

∂2Y(θ, φ)

∂φ2

]
.

(33)
The two sides of this equation depend on different variables and so they can equal each other
only if they are equal to a constant L. Therefore, the following two equations have to be true
simultaneously

1

r2

d

dr

(
r2 dR(r)

dr

)
+

[
2μ

h̄2
(E − V(r))− L

r2

]
R(r) = 0, (34)

1

sinθ

∂

∂θ

(
sinθ

∂Y(θ, φ)

∂θ

)
+

1

sin2θ

∂2Y(θ, φ)

∂φ2
+ LY(θ, φ) = 0. (35)

Now, we have two different equations and we can deal with each separately because only
radial variables come into Eq.(34) and only angular variables come into Eq.(35). The solution
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of the angular part given in Eq.(35) is straightforward because this part hasn‘t a potential or an
energy term and so we can again attempt the method of separation of variables by assuming
that the angular function Y(θ, φ) = Θ(θ)Φ(φ). It should be noted that Eq.(35) is separable by
inserting Y(θ, φ) = Θ(θ)Φ(φ). Θ(θ) and Φ(φ) satisfy the differential equations as follows

1

sinθ

d

dθ

(
sinθ

dΘ(θ)

dθ

)
+

(
L − m2

sin2θ

)
Θ(θ) = 0, (36)

1

Φ(φ)

d2Φ(φ)

dφ2
= −m2. (37)

We definitely know that someone can solve these equations easily. There is no need for us
to "reinvent the wheel" here. Therefore we will not give general solutions of these equations
but we will just mention about their results that are related with the L and m, and discuss
their physical significance. Based on the physically acceptable solution of the equation that
depends on the variable φ, we can say that the separable constant m must be a positive or
negative integer, i.e., m = 0,±1,±2, .... The constant m is also known the magnetic quantum
number. If we return to the more difficult equation that depends on the variable θ, we can
rewrite Eq.(36) by a change of variables ω = cosθ. The equation with the function Θ(θ)
becomes

d

dω

[
(1 − ω2)

dP(ω)

dω

]
+

(
L − m2

1 − ω2

)
P(ω) = 0, (38)

where P(ω) is the Legendre polynomial. Generally Eq.(38) has two independent solutions that
became infinite for ω = ±1. However, the wavefunctions that satisfy the boundary conditions
in Eq.(38) are finite and single-valued everywhere spatially because we are studying the
bound-state solutions of the SE. Nevertheless, if the constant L is of the form

L = ℓ(ℓ+ 1), (39)

where the ℓ is introduced as the orbital quantum number and the values of ℓ are equal to;

ℓ = 0, 1, 2, 3, .... (40)

For these values of ℓ, one of the solutions can be finite for all values of ω. In the definition of
the associate Legendre function, the magnitude of the magnetic quantum number m must be
limited to values less than or equal to ℓ because the Legendre polynomials are polynomials of
order ℓ;

| m |= 0, 1, 2, 3, ... ≤ ℓ. (41)

On the other hand, there are (2ℓ + 1) allowed values for m, i.e., −ℓ � m � ℓ. Substituting
L = ℓ(ℓ+ 1) into Eq.(34) shows that the radial wavefunction R(r) and the eigenvalue E of the
SE depend on the quantum number ℓ and satisfy the equation;

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2μ

h̄2

[
E − V(r)− h̄2

ℓ(ℓ+ 1)

2μr2

]
R(r) = 0, (42)

This equation can be figured an ordinary differential equation with variable coefficient and
can be solved by the standard methods which have been already given in quantum mechanics
text books (Flügge, 1971). However, the analytical solution of Eq.(42) would be definitely
depended on the potential function V(r).
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4. Application of the Nikiforov-Uvarov method

4.1 Harmonic oscillator potential

The harmonic motion of a physical system means that it oscillates around a mean value
at one or more characteristic frequencies. Such a system describes the motion of a bound
particle in a potential well that increases quadratically with the distance from the minimum
of the potential well. For example, pulling a particle subject to the end of a spring from its
equilibrium position results in a contrary force pushing back toward the equilibrium position.
Letting the particle go back from a position of tension results in a harmonic motion of the
particle, so the particle is now a harmonic oscillator. As such, the harmonic oscillator is
a model for many physical systems whose natural motions are described by the harmonic
oscillator equation, such as the vibrational motion of molecules, acoustic vibration of solid,
electromagnetic waves, etc.
The conventional way to deal with the harmonic oscillator problem is to obtain the energy
eigenvalues and eigenfunctions of the Hamiltonian by solving the SE given in the form of
Eq.(42). Now we will consider the solution of the SE for the three dimensional harmonic
oscillator in spherical coordinates. Thus, in three dimensions and spherical coordinates, the
SE is written as follows,

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2μ

h̄2

[
E − 1

2
μω2r2 − h̄2

ℓ(ℓ+ 1)

2μr2

]
R(r) = 0. (43)

where V(r) = 1
2 μω2r2 is the harmonic oscillator potential and ω is the angular frequency

of the oscillator. The method used for solving such a differential equation with a variable
coefficient is to expend the solution in a power series of the independent variable r and then
find the recursion relationship for all the expansion coefficient. However, this method has
been already applied to the solution of Eq.(43) in the past and the solution are well known
after so many solution step. "Please don‘t panic"; because we don‘t need to barge into the
power series solution of this equation. We will follow a pretty well organized method that is
termed the NU method.
Let us apply the NU method to solve Eq.(43). To begin the solution we have to get an
equivalent equation with the equation given in Eq.(4) that is a key introduction to the NU
method (see (Büyükkilic et al., 1997), for a more detailed solution and explanations). It could
be written an unknown radial function R(r) = U(r)/r to reduce Eq.(43) into Eq.(4). The radial
equation becomes

d2U(r)

dr2
+

2μ

h̄2

[
E − 1

2
μω2r2 − h̄2

ℓ(ℓ+ 1)

2μr2

]
U(r) = 0, (44)

where we used the derivatives

dR(r)

dr
=

1

r

dU(r)

dr
− U(r)

r2
, r2 dR(r)

dr
= r

dU(r)

dr
− U(r),

d

dr

(
r2 dR(r)

dr

)
= r

d2U(r)

dr2
. (45)

To make this more manageable mathematically, it would be convenient to introduce
dimensionless variables

r = αζ, α =

√
hbar

μω
, ǫ =

E

h̄ω
, (46)
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and to use the following derivatives

d

dr
=

dζ

dr

d

dζ
,

d2

dr2
=

1

α2

d2

dζ2
. (47)

Putting these into Eq.(44), we have

d2U(ζ)

dζ2
+

(
2ǫ − ℓ(ℓ+ 1)

ζ2
− ζ2

)
U(ζ) = 0. (48)

By performing transformations ζ2 = s and U(ζ) → ψ(s) in Eq.(48), we can rewrite it in terms
of s and so we can get an equation that would be comparable with Eq.(4);

d2ψ(s)

ds2
+

1

2s

dψ(s)

ds
+

(−s2 + β2s − ℓ(ℓ+ 1))

4s2
ψ(s) = 0, (49)

where the variable s is in the range of 0 ≤ s ≤ ∞. Furthermore we used the derivative and
definition, respectively;

d2U(ζ)

dζ2
= 4s

d2ψ(s)

ds2
+ 2

dψ(s)

ds
, (50)

β2 = 2ǫ. (51)

A comparison of Eq.(49) with Eq.(4) identifies the relevant polynomials as follows

τ̃ = 1, σ(s) = 2s, σ̃ = −s2 + β2s − ℓ(ℓ+ 1)). (52)

Inserting the polynomials given by Eq.(52) into Eq.(18) gives the polynomial π(s):

π(s) =
1

2
±

√
s2 + (2k − β2)s + ℓ(ℓ+ 1) + 1/4. (53)

The equation of quadratic form under the square root sign of Eq.(53) must be solved by setting
the discriminant of this quadratic equal to zero, i.e., △ = b2 − 4ac = 0. This discriminant gives
a new quadratic equation which can be solved for the constant k to obtain the two roots;

△ = (2k − β2)2 − 4

(
ℓ(ℓ+ 1) +

1

4

)
= 0, (54)

k2 − kβ2 +
β4

4
−

(
ℓ(ℓ+ 1) +

1

4

)
= 0, (55)

k± =
β2 ±

√
1 + 4ℓ(ℓ+ 1)

2
. (56)

When the two values of k given in Eq.(56) are substituted into Eq.(53), the four possible forms
of π(s) are obtained as

π(s) =
1

2
±

⎧
⎪⎪⎨
⎪⎪⎩

s +

√
1+4ℓ(ℓ+1)

2 , for k+ =
β2+

√
1+4ℓ(ℓ+1)

2

s −
√

1+4ℓ(ℓ+1)
2 , for k− =

β2−
√

1+4ℓ(ℓ+1)
2 .

(57)
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One of the four values of the polynomial π(s) is just proper to obtain the bound-state solution
because τ(s) given by Eq.(9) has a zero and a negative derivative for this value of π(s) in
the interval (0, ∞) (Büyükkilic et al., 1997). Therefore, the most suitable expression of π(s) is
chosen as

π(s) =
1

2
− s +

√
1 + 4ℓ(ℓ+ 1)

2
, (58)

for k− =
(

β2 −
√

1 + 4ℓ(ℓ+ 1)
)

/2. By using π(s) given in Eq.(53) and remembering τ̃ = 1,

we can obtain the expression τ(s) = τ̃ + 2π(s) that is introduced in Eq.(9),

τ(s) = 2 +
√

1 + 4ℓ(ℓ+ 1)− 2s, (59)

and the derivative of this expression would be negative, i.e., τ‘(s) = −2 < 0, where
τ‘(s) represents the derivative of τ(s). The expressions λ = k− + π‘(s) in Eq.(17) and
λn = −nτ‘(s)− n(n − 1)σ“(s)/2 in Eq.(26) are obtained as follows

λ =
β2 −

√
1 + 4ℓ(ℓ+ 1)

2
− 1, (60)

λn = 2n. (61)

When we compare these expressions, λ = λn, we can obtain the energy of the harmonic
oscillator,

β2 −
√

1 + 4ℓ(ℓ+ 1)

2
− 1 = 2n, (62)

E

h̄ω
= 2n + ℓ+

3

2
, (63)

E =

(
2n + ℓ+

3

2

)
h̄ω, (64)

recalling β2 = 2ǫ = 2E/h̄ω. Here n is the number of nodes of the radial wave functions and
if we define np = 2n + ℓ as the principal quantum number, Eq.(25) is written as

Enp =

(
np +

3

2

)
h̄ω, (65)

where np = 0, 1, 2, 3, .... We inserted the quantum number np into Eq.(26) because the
harmonic oscillator‘s energy is usually described by the single quantum number, i.e., np ≡
2n + ℓ. n is a non-negative integer, for every even n we have ℓ = 0, 2, ..., n − 2, n and for every
odd n we have ℓ = 1, 3, ..., n − 2, n. So for every n and ℓ there are 2ℓ+ 1 different quantum
states, labeled by m that is an integer satisfying −ℓ ≤ m ≤ ℓ. Thus, the degeneracy at level n

is ∑ℓ=...,n−2,n(2ℓ+ 1) = (n+1)(n+2)
2 , where the sum starts from 0 or 1, according to whether n

is even or odd.
Let us turn to the calculation of the wavefunction ψ(s). If we remember the definition of the
ψ(s) that is given in Section 2, i.e., ψ(s) = φ(s)yn(s), we can see that we have to calculate
the polynomials φ(s) and yn(s). By inserting the values of σ(s) and π(s) given in Eq.(52) and
Eq.(53) into Eq.(7), one can find the first part of the ψ(s) as

φ‘(s)

φ(s)
=

dφ(s)

d(s)

1

φ(s)
=

(
1 +

√
1 + 4ℓ(ℓ+ 1)

)
/2 − s

2s
, (66)
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dφ(s)

d(s)

1

φ(s)
=

δ1

s
− 1

2
, (67)

∫
dφ(s)

φ(s)
=

∫ (
δ1

s
− 1

2

)
ds, (68)

logφ(s) = δ1logs − s/2, (69)

φ(s) = sδ1 e−s/2, (70)

where δ1 =
(

1 +
√

1 + 4ℓ(ℓ+ 1)
)

/4 = (ℓ+ 1)/2. On the other hand, to find a solution for

yn(s) we should first obtain the weight function ρ(s) which is already inserted into Eq.(28).
The weight function ρ(s) given in Eq.(28) can be written in a simple form and obtained as

dρ(s)

d(s)

1

ρ(s)
=

τ(s)− σ‘(s)

σ(s)
=

2 +
√

1 + 4ℓ(ℓ+ 1)− 2s − 2

2s
, (71)

dρ(s)

d(s)

1

ρ(s)
=

√
1 + 4ℓ(ℓ+ 1)/2

s
− 1, (72)

∫
dρ(s)

ρ(s)
=

∫ (
δ2

s
− 1

)
ds, (73)

logρ(s) = δ2logs − s, (74)

ρ(s) = sδ2 e−s, (75)

where δ2 =
√

1 + 4ℓ(ℓ+ 1)/2 = ℓ + 1/2. Substituting ρ(s) into Eq.(27) allows us to obtain
the polynomial yn(s) as follows

yn(s) = Bn2nessδ2
dn

dsn

(
e−ssn+δ2

)
. (76)

If we recall the Rodrigues‘ formula of the associated Laguerre polynomials

Lδ2
n (s) =

1

n!
essδ2

dn

dsn

(
e−ssn+δ2

)
, (77)

Eq.(76) and Eq.(77) will yield yn(s) ≡ Lδ2
n (s), where 1/n! = Bn2n. By using ψ(s) = φ(s)yn(s),

we have
ψ(s) = Nnℓsδ1 e−s/2Lδ2

n (s). (78)

where Nnℓ is a normalization constant. It would be useful to keep in mind that the relationship
between the ψ(s) and the R(r) is ψ(s) ≡ rR(r) with the transformations r = αζ and ζ2 = s.

4.2 Coulomb potential

As another illustration of the application of the NU method, we will take up the Coulomb
potential which concerns an electron of charge −e moving in the Coulomb electrostatic field
of the nucleus. If nucleus is proton of positive charge e, the problem studied is that of the
hydrogen atom that is a real physical system in three dimensions. So, the hydrogen atom
consists of an electron moving in a spherical potential well due to the Coulomb attraction of
the proton. This two-particle system (electron and proton) can be converted into a one-particle
system by considering the motion of the electron relative to that of the proton in the center-
of-mass frame of the two particles according to the principles of classical mechanics. In this

236 Theoretical Concepts of Quantum Mechanics

www.intechopen.com



Application of the Nikiforov-Uvarov Method in Quantum Mechanics 13

frame, we can replace the electron of mass by a particle of reduced mass μ moving relatively
to a proton. If we have a system which consist of one electron and a nucleus of charge Ze,
Z being the atomic number, we can consider a slightly more general problem, known as a
hydrogen-like atom. For Z = 1, we have hydrogen atom; for Z = 2, the He+ ion; for Z = 3,
the Li+ ion and so on. This means that the hydrogen-like atom would be an ionized atom.
The potential energy V(r) of the electron due to the Coulomb attraction of the nucleus is

V(r) = −Ze‘2

r
(79)

where e‘ = e/
√

4πε0. The corresponding SE for the Coulomb potential given in Eq.(79) satisfy

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2μ

h̄2

[
E +

Ze‘2

r
− h̄2

ℓ(ℓ+ 1)

2μr2

]
R(r) = 0. (80)

To save time in writing, we define the constants as follows

a = h̄2/μe‘2 = 4πε0h̄2/μe2 (81)

and so Eq.(80) becomes

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2μ

h̄2

[
2E

ae‘2
+

2Z

ar
− ℓ(ℓ+ 1)

r2

]
R(r) = 0. (82)

Now let us explicitly solve for the problem of the hydrogen-like atom using the NU method.
To make our mathematics comparable with Eq.(4), we choice a function in the form of R(r) ≡
ψ(s), where the transformation r → s is valid. With this choice we obtain the convenient
simplification of the radial equation given in Eq.(82);

d2ψ(s)

ds2
+

2

s

dψ(s)

ds
+

1

s2

[
−αs2 + βs − γ

]
ψ(s) = 0. (83)

where the reduced quantities are given as

α = −2E/ae‘2, β = 2Z/a, γ = ℓ(ℓ+ 1). (84)

We restrict ourselves to bound states of negative energy E. This means that the parameter
α is positive. Eq.(83) is now comparable with Eq.(4) and then the following expressions are
obtained;

τ̃ = 2, σ(s) = s, σ̃ = −αs2 + βs − γ. (85)

We are able to find four possible solutions of the polynomial π(s) as follows. To do that we
insert the polynomials given by Eq.(85) into Eq.(18) and hence the polynomial π(s) is obtained
in terms of k;

π(s) = −1

2
± 1

2

√
4αs2 + (k − β)s + 1 + 4γ. (86)

The equation of quadratic form under the square root sign of Eq.(86) must be solved by setting
the discriminant of this quadratic equal to zero, i.e., △ = b2 − 4ac = 0. This discriminant gives
a new quadratic equation which can be solved for the constant k to obtain the two roots;

△ = 16(k − β)2 − 16α (1 + 4γ) = 0, (87)
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k2 − 2kβ + β2 − α (1 + 4γ) = 0, (88)

k± = β ±
√

α(1 + 4γ). (89)

When the two values of k given in Eq.(89) are substituted into Eq.(86), the four possible forms
of π(s) are obtained as

π(s) = −1

2
± 1

2

⎧
⎨
⎩

(
2
√

αs +
√

1 + 4γ
)

, for k+ = β +
√

α(1 + 4γ)

(
2
√

αs −√
1 + 4γ

)
, for k− = β −

√
α(1 + 4γ).

(90)

In order to make the derivative of the polynomial τ(s) to be negative, we must select the most
suitable form of the polynomial π(s). Therefore, the most suitable expression of π(s) is chosen
as

π(s) = −1

2
− 1

2

(
2
√

αs −
√

1 + 4γ
)

(91)

for k− = β −
√

α(1 + 4γ). By using π(s) given in Eq.(91) and remembering τ̃ = 2, we can
obtain the expression τ(s),

τ(s) = 1 +
√

1 + 4γ − 2
√

αs, (92)

and the derivative of this expression would be negative, i.e., τ‘(s) = −2
√

α < 0. The
expressions λ = k− + π‘(s) in Eq.(17) and λn = −nτ‘(s) − n(n − 1)σ“(s)/2 in Eq.(26) are
obtained as follows

λ = β −
√

α(1 + 4γ)−
√

α, (93)

λn = 2n
√

α, (94)

When we compare these expressions, λ = λn, we can obtain the energy of the hydrogen-like
atom,

β −
√

α(1 + 4γ)−
√

α = 2n
√

α, (95)

√
α
(

1 + 2n +
√

1 + 4γ
)
= β, (96)

α =
β2

(
1 + 2n +

√
1 + 4γ

)2
, (97)

− 2E

ae‘2
=

(2Z/a)2

(
1 + 2n +

√
1 + 4ℓ(ℓ+ 1)

)2
, (98)

E = − Z2μe‘4

2h̄2(1 + n + ℓ)2
, (99)

recalling the quantities given in Eq.(84). Here n (n = 0, 1, 2, 3, ...) and ℓ are integers and we
now define a new integer np, called the principle quantum number, by

np ≡ n + ℓ+ 1, np = 1, 2, 3, .... (100)

The quantum number ℓ must satisfy ℓ ≤ np − 1 and hence it ranges from 0 to np − 1. So
Eq.(99) becomes

Enp = −Z2μe‘4

2n2
p h̄2

, (101)
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This expression represents the bound-state energy levels of the hydrogen-like atom, and the
levels are discrete.
Let us now find the corresponding eigenfunctions for the radial equation. The polynomial
solution of the hypergeometric-type function yn(s) depends on the determination of the
weight function ρ(s). Thus, using equation Eq.(7), we obtain

φ‘(s)

φ(s)
=

dφ(s)

d(s)

1

φ(s)
=

− 1
2 − 1

2 (2
√

αs −√
1 + 4γ)

s
, (102)

dφ(s)

d(s)

1

φ(s)
=

−1 +
√

1 + 4γ

2s
−
√

α, (103)

∫
dφ(s)

φ(s)
=

∫ (−1 +
√

1 + 4γ

2s
−
√

α

)
ds, (104)

logφ(s) =
−1 +

√
1 + 4γ

2
logs −

√
αs, (105)

φ(s) = s
−1+

√
1+4γ

2 e−
√

αs, (106)

φ(s) = sℓe−
√

αs. (107)

where
√

1 + 4γ =
√

1 + 4ℓ(ℓ+ 1) = 2(ℓ+ 1/2) and
√

α = Zμe‘2/h̄2np. On the other hand,
to find a solution for yn(s) we should first obtain the weight function ρ(s) which is already
inserted into Eq.(28). The weight function ρ(s) given in Eq.(28) can be written in a simple form
and obtained as

dρ(s)

d(s)

1

ρ(s)
=

τ(s)− σ‘(s)

σ(s)
=

1 +
√

1 + 4γ − 2
√

αs − 1

s
, (108)

dρ(s)

d(s)

1

ρ(s)
=

√
1 + 4γ

s
− 2

√
α, (109)

∫
dρ(s)

ρ(s)
=

∫ (√
1 + 4γ

s
− 2

√
α

)
ds, (110)

logρ(s) =
√

1 + 4γlogs − 2
√

αs, (111)

ρ(s) = s
√

1+4γe−2
√

αs. (112)

Substituting ρ(s) into Eq.(27) allows us to obtain the polynomial yn(s) as follows

yn(s) = Bne2
√

αss−
√

1+4γ dn

dsn

(
e−2

√
αssn+

√
1+4γ

)
. (113)

It is shown from the Rodrigues‘ formula of the associated Laguerre polynomials

L2ℓ+1
n (2

√
αs) =

1

n!
e2
√

αss−(2ℓ+1) dn

dsn

(
e−2

√
αssn+2ℓ+1

)
(114)

where 1/n! = Bn. Eq.(76) and Eq.(77) yield yn(s) ≡ L2ℓ+1
n (2

√
αs). By using ψ(s) = φ(s)yn(s),

we have
ψ(s) = Nnℓsℓe−

√
αsL2ℓ+1

n (2
√

αs). (115)

where Nnℓ is a normalization constant and the ψ(s) represents the radial wavefunction R(r)
through the transformation s → r.
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4.3 Kratzer potential

The Kratzer potential (Kratzer, 1920), which was named in B. Adolf Kratzer’s honor, is
one of the widely used potential models in molecular physics and chemistry. The model
potential means that we can describe molecular structures and interactions by using analytical
and computational methods. These methods which are used in the fields of computational
and materials science have been developing for studying molecular systems ranging from
small molecules (or a set of interacting molecules like clusters) to large material assemblies.
However, the advancing of studies not only depends on the super-computers in modern-day
science but also needs computational methods such as ab initio and semi-empirical methods
which present complementary advantages (Herzberg, 1950).
The simplest calculations can be performed by hand, but inevitably computers are required
to perform molecular modelling of any reasonably sized system. The common feature of
molecular modeling techniques is the atomistic level description of the molecular systems; the
lowest level of information is individual atoms (or a small group of atoms). This is in contrast
to quantum chemistry (also known as electronic structure calculations) where electrons are
considered explicitly. The benefit of molecular modeling is that it reduces the complexity of
the system, allowing many more particles (atoms) to be considered during simulations.
Supposed that we have a model potential that is known in the form of the Kratzer potential
as follows

V(r) = A − B

r
+

C

r2
, (116)

where the parameters A, B and C are constants which are related with the Kratzer potential.
If we set up the constants A and C to zero, i.e., A = 0 and C = 0, Eq.(116) can be presented
in the form of Coulomb potential V(r) = −Ze′2/r2, where B = Ze′2 and e′ = e/

√
4πε0. The

solution of the Coulomb potential in the framework of the SE is already given in the previous
subsection. So it could be said that the Coulomb potential is a special form of the so-called
Kratzer potential. If we re-arrange the potential’s parameters A = De, B = 2Dere and C =

Der2
e , Eq.(116) turns to the modified Kratzer potential, i.e., V(r) = De ((r − re)/r)2 Berkdemir

et al (2006). The dissociation energy, De, is the vertical distance between the dissociation limit
and the minimum point of the potential curve, which is found at the equilibrium inter-atomic
separation r = re. If the potential curve flattens out at the large inter-atomic distance, i.e,
r → ∞, it is named the dissociation limit. At this limit the potential curve converges to zero,
i.e., V(∞) = 0. So the dissociation energy is defined V(re) − V(∞) = −De. It would be
meaningful to explain the word "modified". It is not "amazing" to include the "modified"
into the Kratzer potential because the modified Kratzer potential represents the Kratzer-Fues

potential setting up A = 0, i.e., V(r) = De

[
((r − re)/r)2 − 1

]
, which is shifted in amount of

De (Fues, 1926; Pliva, 1999).
Let us try to solve the SE with the potential given by Eq.(116). Substitution of the potential
V(r) = A − B/r + C/r2 into Eq.(42) allows us to write down the SE;

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2μ

h̄2

(
E −

[
A − B

r
+

C

r2

]
− h̄2

ℓ(ℓ+ 1)

2μr2

)
R(r) = 0. (117)

In order to make further arrangements, we can rewrite the above equation as follows;

d2R(r)

dr2
+

2

r

dR(r)

dr
+

1

r2

[
2μ(E − A)

h̄2
r2 +

2μB

h̄2
r −

(
2μC

h̄2
+ ℓ(ℓ+ 1)

)]
R(r) = 0. (118)
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For the sake of simplicity, it is convenient to introduce arbitrary parameters;

α = −2μ(E − A)

h̄2
,

β =
2μB

h̄2
,

γ =
2μC

h̄2
+ ℓ(ℓ+ 1),

(119)

with α > 0 means that we are dealing with the bound state energy solutions, assuming |E| <
A, β > 0 and γ > 0. In particular, from Eqs. (118) and (119) it follows:

d2ψ(s)

ds2
+

2

s

dψ(s)

ds
+

1

s2

(
−αs2 + βs − γ

)
ψ(s) = 0, (120)

which is expressed in terms of the functional R(r) ≡ ψ(s) and the variable r → s. In order to
apply the NU method, it is necessary to compare Eq.(120) with the differential equation given
in Eq.(4). A simple comparison reveals that the relevant polynomials τ̃(s), σ(s) and σ̃(s) are
the same with Eq.(85), i.e.;

τ̃ = 2,

σ(s) = s,

σ̃ = −αs2 + βs − γ.

(121)

This means that we don’t need further calculations up to Eq.(97). Let us recall Eq.(97) for the
bound state energy solution,

α =
β2

(
1 + 2n +

√
1 + 4γ

)2
, (122)

and keeping the values of arbitrary parameters α, β and γ given by Eq.(119) in our mind,

− 2μ(E − A)

h̄2
=

(
2μB

h̄2

)2

(
1 + 2n +

√
1 + 4

(
2μC

h̄2 + ℓ(ℓ+ 1)
))2

, (123)

E = A − h̄2

2μ

⎡
⎣
(

2μB

h̄2

)2
(

1 + 2n +

√
1 + 4

(
2μC

h̄2
+ ℓ(ℓ+ 1)

) )−2
⎤
⎦ , (124)

E = A −
μB2

2h̄2

(
n + 1

2 +

√
2μC

h̄2 +
(
ℓ+ 1

2

)2
)2

. (125)

This expression indicates that we have a solution of the bound state energy spectrum for a
family of the Kratzer potential. Of course, it is clear that by imposing appropriate values of
the parameters A, B and C, the bound state energy spectrum for a particle in the modified
Kratzer potential can be calculated immediately.
As an analogy, if we set up the parameters A = 0, B = Ze′2 and C = 0, it is easy to
demonstrate that Eq.(125) reduces to the bound state energy spectrum of a particle in the
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Coulomb potential, i.e., Enp = −Z2μe′4/2n2
p h̄2, where np ≡ n + ℓ+ 1. The principal quantum

number np ranges from 1 to infinite. Thus the particle that is in the Coulomb potential will
have the quantize energy levels due to the np. If we assume that the particle is an electron
that is bound to the nucleus in a hydrogen-like atom, the electron energy would be negative
relative to that of a free electron. Moreover, the electron would be confined within the
Coulomb potential well owing to the presence of the positively charged nucleus. Numerically,
the ground-state (np = 1) energy E1 of the hydrogen atom (Z = 1) is -13.6 eV below the
ionization limit E∞ = 0 for the state np = ∞. In other words, the minimum amount of energy
required to release the electron from a hydrogen atom is -13.6 eV that is the ground state
energy of electron in the Coulomb potential. The electron can remain in this stationary ground
state forever because it is stable and the electron never collapses into the nucleus. If we apply
our knowledge of classical mechanics, we can see that this information is not correct. But
quantum mechanically it is. Why these results are not compatible with each other? Readers
are strongly encouraged to discuss the reason.
Another analogy is to be on the Kratzer potential. When we take A = 0, B = 2Dere and
C = Der2

e , Eq.(125) turns to the bound state energy spectrum of a vibrating-rotating diatomic
molecule subject to the Kratzer potential as follows

E = −
2μD2

e r2
e

h̄2

(
n + 1

2 +

√
2μDer2

e

h̄2 +
(
ℓ+ 1

2

)2
)2

. (126)

Although this result came from an exact solution of the SE for the energy levels, it has not been
properly used by spectroscopists because the Kratzer potential supports an infinite number of
vibrational and rotational levels which is not related with the actual diatomic molecules. To
see this number we can get the derivative of Eq.(126) according to n that gives the maximum
vibrational quantum number nmax in the case of Kratzer potential (Berkdemir et al, 2006;
Berkdemir & Sever, 2009);

dE

dn
=

4μD2
e r2

e

h̄2

(
n + 1

2 +

√
2μDer2

e

h̄2 +
(
ℓ+ 1

2

)2
)3

= 0, (127)

n → nmax = ∞. (128)

If we take the derivative of Eq.(126) with respect to ℓ, we can reach the maximum rotational
quantum number, i.e., ℓmax = ∞. As a main conclusion of these results, the Kratzer potential
(or the modified Kratzer potential with A = De) does not describe the spectrum of a
vibrating-rotating diatomic molecule correctly. To make sure about this knowledge the readers
should be applied the selection rules to diatomic molecules by means of Eq.(126) (Fues, 1926).
They will probably recognize that the spectrum that is obtained from Eq.(126) would be far
away the spectroscopic results (Fernandez, 2011).
Let us now find the corresponding eigenfunctions for the Kratzer potential. According to the
NU method, the wavefunction ψ(s) is defined in terms of the separable functions φ(s) and
yn(s). For the φ(s), we have

φ(s) = s
−1+

√
1+4γ

2 e−
√

αs, (129)
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where γ =
2μC

h̄2 + ℓ(ℓ + 1) and α = − 2μ(E−A)

h̄2 . The polynomial solution of the

hypergeometric-type function yn(s) depends on the determination of the weight function
ρ(s) which must satisfy the condition (σ(s)ρ(s))′ = τ(s)ρ(s). Thus, ρ(s) can be calculated
by falling back on Eq.(121) and Eq.(92);

ρ(s) = s
√

1+4γe−2
√

αs. (130)

Substituting Eq.(130) into the Rodrigues’ formula given by Eq.(27), the hypergeometric-type
function yn(s) is obtained in the following form

yn(s) = Bne2
√

αss−
√

1+4γ dn

dsn

(
e−2

√
αssn+

√
1+4γ

)
. (131)

It is shown from the Rodrigues‘ formula of the associated Laguerre polynomials

L
√

1+4γ
n (2

√
αs) =

1

n!
e2
√

αss−
√

1+4γ dn

dsn

(
e−2

√
αssn+

√
1+4γ

)
(132)

where 1/n! = Bn. Eq.(131) and Eq.(132) yield yn(s) ≡ L
√

1+4γ
n (2

√
αs). By using ψ(s) =

φ(s)yn(s), we have

ψ(s) = Nnℓs
−1+

√
1+4γ

2 e−
√

αsL
√

1+4γ
n (2

√
αs). (133)

where Nnℓ is the normalization constant.

4.4 Morse potential

The Morse potential (Morse, 1920), named after physicist Philip M. Morse, is one of the
convenient models for the potential energy of a diatomic molecule. It is a better approximation
for the vibrational structure of a molecule than the harmonic oscillator model because it
explicitly includes the effects of bond breaking, such as the existence of unbound states. For
a diatomic molecular system with reduced mass μ, the Morse potential (Morse, 1920) can be
written as

V(r) = De[e
−2a(r−re) − 2e−a(r−re)] (De > 0, a > 0, re > 0), (134)

where De is the dissociation energy, re is the equilibrium internuclear distance and a is a
parameter controlling the width of the potential well. If anyone wants to modify this potential,
shifting through the positive axis, it would be quite enough to insert an additional De into the
potential. So the potential would be called the "modified" Morse potential. In an obvious
manner, the word "modified" is not an "amazing" greatly. The vibrations and rotations of a
two-atomic molecule can be exactly described by this potential in the case of ℓ = 0 (Flügge,
1971). If we want to obtain the solution for ℓ 
= 0, the centrifugal term has to be approximated
to the Morse potential. In order to calculate the bound state energy spectrum and the
corresponding radial wavefunction, the potential function given by Eq.(134) is inserted into
the radial SE

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2μ

h̄2

[
E − De[e

−2a(r−re) − 2e−a(r−re)]− h̄2
ℓ(ℓ+ 1)

2μr2

]
R(r) = 0, (135)

where n and ℓ can be defined the vibrational and rotational quantum numbers, respectively,
and E is the appropriate energy (Berkdemir & Han, 2005; Zuniga et al., 2008). With a
transformation from R(r) to U(r)/r, Eq.(135) turns into the following one;

d2U(r)

dr2
+

2μ

h̄2

[
E − De[e

−2a(r−re) − 2e−a(r−re)]− h̄2
ℓ(ℓ+ 1)

2μr2

]
U(r) = 0. (136)
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An analytical solution of this differential equation can not be obtained without an
approximation because Eq.(136) includes both exponential and radial terms. For this
reason, we outline a procedure given by Pekeris (Flügge, 1971; Pekeris, 1934) to suggest an
approximation to the solution of SE given in Eq.(136).
The approximation is based on the expansion of the centrifugal term in a series of exponential
depending on the internuclear distance, keeping terms up to second order. In this way,
the centrifugal term can be rearranged by keeping the parameters in the Morse potential.
However, by construction, this approximation is valid only for the low vibrational energy
states. Therefore, we can take into account the rotational term in the following way, using
the Pekeris approximation. We first simplify the centrifugal part of Eq.(136) by changing the
coordinates x = (r − re)/re around x = 0. Hence, it may be expanded into a series of powers
as

Vrot(x) =
η

(1 + x)2
= η(1 − 2x + 3x2 − 4x3 + ...), (137)

with

η =
h̄2

2μ

ℓ(ℓ+ 1)

r2
e

, (138)

the first few terms should be quite sufficient. Instead, we now replace the rotational term by
the potential

Ṽrot(x) = η
(

D0 + D1e−δx + D2e−2δx
)

, (139)

where δ = are and Di is the coefficients (i = 0, 1, 2). In this point, the expression of Eq.(139)
can be expanded up to the terms x3

Ṽrot(x)=η

(
D0+D1(1−δx+

δ2x2

2!
− δ3x3

3!
+ ...)+D2(1−2δx +

4δ2x2

2!
− 8δ3x3

3!
+...)

)
, (140)

Ṽrot(x)=η

(
D0+D1 + D2−x(D1δ+2D2δ)+x2(D1

δ2

2
+2D2δ2)−x3(D1

δ3

6
+D2

4δ3

3
)+...

)
.

(141)
Combining equal powers of Eqs.(137) and (141) we obtain the relations between the
coefficients and the parameter δ as follows

D0 = 1 − 3

δ
+

3

δ2

D1 =
4

δ
− 6

δ2

D2 = −1

δ
+

3

δ2
. (142)

We now can take the potential Ṽrot instead of the true rotational potential Vrot and solve the
SE for ℓ 
= 0 in Eq.(136).
In order to apply the NU method, we rewrite Eq.(136) by using a new variable of the form
s = e−δx and U(r) → ψ(s),

d2ψ(s)

ds2
+

1

s

dψ(s)

ds
+

2μr2
e

h̄2δ2s2

[
(E − ηD0) + (2De − ηD1)s − (De + ηD2)s

2
]

ψ(s) = 0. (143)
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By introducing the following dimensionless parameters

α = −2μr2
e (Enl − ηD0)

h̄2δ2
,

β =
2μr2

e (2De − ηD1)

h̄2δ2
,

γ =
2μr2

e (De + ηD2)

h̄2δ2
,

(144)

which leads to the main equation defined in Eq.(4), we can rearrange the SE:

d2ψ

ds2
+

1

s

dψ

ds
+

1

s2

[
−γs2 + βs − α

]
ψ(s) = 0. (145)

After the comparison of Eq.(4) with Eq.(145), we obtain the corresponding polynomials as

∼
τ (s) = 1,

σ(s) = s,

∼
σ (s) = −γs2 + βs − α.

(146)

Substituting these polynomials into Eq.(18), we obtain the polynomial π(s);

π(s) = ±
√

γs2 + (k − β)s + α (147)

taking σ′(s) = 1. The discriminant of the upper expression under the square root has to be
zero. Hence, the expression becomes the square of a polynomial of first degree;

(k − β)2 − 4αβ = 0. (148)

When the required arrangements are prepared with respect to the constant k, its double roots
are derived as k± = β ± 2

√
αγ. Substituting k± into Eq.(147), the following four possible

forms of the π(s) are obtained

π(s) = ±

⎧
⎨
⎩

(√
γs +

√
α
)

, for k+ = β + 2
√

αγ

(√
γs −√

α
)

, for k− = β − 2
√

αγ.
(149)

We just select one of four possible forms of the π(s), i.e, π(s) = −
(√

γs −√
α
)

for k− =
β − 2

√
αγ, because it would be provided a negative derivative of τ(s) given in Eq.(9). Hence,

the τ(s) satisfies the requirement below

τ(s) = 1 + 2
√

α − 2
√

γ s,

τ′(s) = −2
√

γ < 0. (150)

From Eq.(17) we obtain
λ = β − 2

√
αγ −√

γ. (151)
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and from Eq.(26) we also get
λn = 2n

√
γ. (152)

It is seen that the parameter α has the following form

α =

[
β

2
√

γ
−

(
n +

1

2

)]2

, (153)

remembering the expression λ = λn. Substituting the values of α, β and γ into Eq.(153), we
can determine the energy spectrum E as

E =
h̄2
ℓ(ℓ+ 1)

2μr2
e

(
1 − 3

are
+

3

a2r2
e

)
− h̄2a2

2μ

[
β

2
√

γ
−

(
n +

1

2

)]2

, (154)

where
β

2
√

γ
=

1

a2√γ

[
2μDe

h̄2
− ℓ(ℓ+ 1)

r2
e

(
2

are
− 3

a2r2
e

)]
. (155)

The last equation indicates the energy spectrum of the Morse potential. The derivative of
this energy expression according to n gives an idea about the maximum vibrational quantum
number so that the result is nmax = β/2

√
γ − 1/2 (Berkdemir & Sever, 2009; Zhang et al.,

2011).
Let us now find the corresponding wavefunction of the Morse potential. A simple calculation
reveals that φ(s) can be calculated by recalling Eq.(7) and submitting the σ(s) = s and the
π(s) = −

(√
γs −√

α
)
;

φ(s) = s
√

αe−
√

γ s, (156)

which is one of the separable parts of the wavefunction ψ(s) = φ(s)yn(s). The polynomial
solution of the hypergeometric-type function yn(s) depends on the determination of the
weight function ρ(s) ([σ(s)ρ(s)]′ = τ(s)ρ(s)). Thus, ρ(s) is calculated as

ρ(s) = s2
√

αe−2
√

γ s. (157)

Substituting Eq.(157) into the Rodrigues’ formula given in Eq.(27), the other separable part of
the wavefunction ψ(s) is given in the following form

yn(s) = Bns−2
√

αe2
√

γ s dn

dsn

[
s(n+2

√
α)e−2

√
γ s

]
. (158)

The polynomial solution of yn(s) in Eq.(158) is expressed in terms of the associated Laguerre
Polynomials, which is one of the orthogonal polynomials, that is

yn(s) ≡ L
2
√

α
n (2

√
γ s). (159)

Combining the Laguerre polynomials and φ(s) in Eq.(155), the radial wavefunction are
constructed as

ψ(s) = Nnℓs
√

αe−
√

αsL
2
√

α
n (2

√
γ s), (160)

where Nnℓ is the normalization constant.
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4.5 Hulthen potential

One of the objects of this book chapter is to investigate the solution of the SE with the Hulthen
potential (Hulthen, 1942; Rosenfeld, 1948) that is given in the form;

V(r) = −K

κ

1

e
r
κ − 1

, (161)

where K and κ are the strength and the range parameter of the potential (on the other
word, 1/κ is known the screening parameter regarding with the potential), respectively.
The Hulthen potential has an attractive Coulombic behavior for small values of r with
respect to κ, i.e., r << κ. To see this behavior let us focus the exponential term of the
Hulthen potential. If the values of the radial variable r are smaller than those of the κ, the
exponential term could be expanded into the Taylor series (Abramowitz & Stegun, 1970),

i.e., e
r
κ = 1 + r/κ + 1

2! (r/κ)2 + 1
3! (r/κ)3 + ... and the higher order terms in the series could

be neglected according to the first two terms. So the exponential term is now expressed as

e
r
κ ≈ 1+ r/κ. Inserting this term into Eq.(161), one can reach the attractive Coulomb potential,

i.e., V(r) = −K/r. Thus, the K can be identified with the atomic number (see Section 4.2 for
a comparison). On the other hand, for the large values of r, i.e., r >> κ, the exponential term
would be larger according to the number 1 which is seen in the denominator of the Hulthen
potential and hence the number 1 would be neglected. Therefore, the Hulthen potential would

be reduced to V(r) = − K
κ e−

r
κ .

The Hulthen potential has been used in several branches of physics such as nuclear and
particle, atomic, molecular and chemical physics (Durand & Durand, 1981; Xu et al., 2006;
Bitensky et al., 1997; Jia et al., 2000; Olson & Micha, 1978). Moreover, its discrete and
continuum states have been studied by a variety of techniques such as the supersymmetry
and shape invariance property (Varshni, 1990; Filho & Ricotta, 1995; Qian et al., 2002). The
solution of the SE for a particle in the Hulthen potential can not be obtained exactly for the
case of ℓ 
= 0 whereas we have an exact solution for the case of ℓ = 0, namely s-wave solution
(Flügge, 1971). To find an approximate solution of the SE with the Hulthen potential, we have
to rely on an approximation for the centrifugal term. How can we do that? Let us look at
below.
The Hulthen potential given in Eq.(161) can be written in the following form if we recompile
it,

V(r) = −K

κ

e−r/κ

1 − e−r/κ
. (162)

Inserting Eq.(162) into Eq.(42), we have

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2μ

h̄2

[
E +

K

κ

e−r/κ

1 − e−r/κ
− h̄2

ℓ(ℓ+ 1)

2μr2

]
R(r) = 0. (163)

We now want to obtain the solution of Eq.(163) using the NU method. If we define

R(r) =
U(r)

r
, (164)

Eq.(163) becomes

d2U(r)

dr
+

[
2μ

h̄2

(
E +

K

κ

e−r/κ

1 − e−r/κ

)
− ℓ(ℓ+ 1)

r2

]
U(r) = 0. (165)
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This equation is similar to the s-wave SE for the Hulthen potential, except for the additional

term
ℓ(ℓ+1)

r2 , which is commonly mentioned as a centrifugal term. To solve Eq.(165), we
can think about an approximation regarding with the centrifugal term as follows (Greene &
Aldrich, 1976; Qiang & Dong, 2007)

ℓ(ℓ+ 1)

r2
≈ ℓ(ℓ+ 1)e−r/κ

κ2(1 − e−r/κ)2
. (166)

The present approximation is just valid for the short-range potentials (i.e., large κ and small ℓ)
but not for the long-range potentials (i.e., small κ and large ℓ). Nevertheless it provides good
results, which are in agreement with the previously reported numerical integration method
(Lucha & Schöberl, 1999). Moreover, in order to improve the accuracy of this approximation, a
different approximation scheme has been recently proposed for the centrifugal term (Ikhdair,
2009; 2011). Readers are strongly encouraged to review these studies.

After replacing the term ℓ(ℓ+ 1)/r2 by its approximation
ℓ(ℓ+1)e−r/κ

κ2(1−e−r/κ)2 and the transformation

s = e−r/κ (and also U(r) → ψ(s)), Eq.(165) becomes

d2ψ(s)

ds2
+

(1 − s)

s(1 − s)

dψ(s)

ds
+

1

s2(1 − s)2
[−(α + β)s2 + (2α + β − γ)s − α]ψ(s) = 0 (167)

where

α = −2μEκ

h̄2
,

β =
2μKκ

h̄2
,

γ = ℓ(ℓ+ 1).

(168)

By comparing Eq.(167) with the main equation that comes from the NU method, Eq.(4), we
can define the following polynomials

τ̃(s) = 1 − s,

σ(s) = s(1 − s),

σ̃(s) = −(α + β)s2 + (2α + β − γ)s − α.

(169)

Inserting these polynomials into Eq.(18), we have

π(s) = − s

2
± 1

2

√
[1 + 4(α + β − k)]s2 − 4(2α + β − γ − k)s + 4α (170)

The discriminant of the expression under the square root in the above equation has to be set
equal to zero. Therefore, it becomes

∆ = 16(2α + β − γ − k)2 − 16[1 + 4(α + β − k)]α = 0, (171)

and the two roots of k are obtained

k± = β − γ ±
√

α(1 + 4γ). (172)
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Substituting the double roots of k± into Eq.(170), the four possible forms of the π(s) for either
k+ or k− are derived as follows

π(s) = − s

2
± 1

2

⎧
⎨
⎩

[(
2
√

α −√
1 + 4γ

)
s − 2

√
α
]

for k+ = β − γ +
√

α(1 + 4γ)

[(
2
√

α +
√

1 + 4γ
)

s − 2
√

α
]

for k− = β − γ −
√

α(1 + 4γ).

(173)

In order to obtain a physical solution we have to ensure that the polynomial τ(s) = τ̃(s) +
2π(s) must satisfy a negative derivative. For this reason, we select the π(s);

π(s) = − s

2
− 1

2

[(
2
√

α +
√

1 + 4γ
)

s − 2
√

α
]

, (174)

for k− = β − γ −
√

α(1 + 4γ). The following track in this selection is to achieve the condition
τ′(s) < 0. Therefore τ(s) is written

τ(s) = 1 − 2s −
[(

2
√

α +
√

1 + 4γ
)

s − 2
√

α
]

, (175)

and then its negative derivative becomes

τ′(s) = −(2 + 2
√

α +
√

1 + 4γ) < 0. (176)

We can also write down the λ = k− + π′(s) and λn = −nτ′(s)− n(n − 1)σ′′(s)/2, keeping in
our mind that λ = λn;

λ = β − γ − 1

2
(1 + 2

√
α)

(
1 +

√
1 + 4γ

)
= n

[
1 + 2

√
α + n +

√
1 + 4γ

]
, n = 0, 1, 2, ....

(177)

After bring back α, β and γ which are defined in Eq.(168) and simple manipulations, we have
the energy spectrum of the Hulthen potential (Agboola, 2011)

E = − h̄2

2μ

[
(Kμ/h̄2)

n + ℓ+ 1
− n + ℓ+ 1

2κ

]2

. (178)

If we take into account the limitation of κ → ∞, we have En = − μ

2h̄2 [K/(n + ℓ+ 1)]2. This is

the energy spectrum of the Coulomb potential we have investigated in Section 4.2.
We can now apply the relationships given by Eq.(7) and Eq.(27) through Eq.(28) to obtain the
wavefunction ψ(s). Therefore, the relevant polynomials are given

φ(s) = s
√

α(1 − s)ℓ+1, (179)

ρ(s) = s2
√

α(1 − s)2ℓ+1, (180)

yn(s) = Bns−2
√

α(1 − s)−(2ℓ+1) dn

dsn

[
sn+2

√
α(1 − s)n+2ℓ+1

]
≡ P

(2
√

α, 2ℓ+1)
n (1 − 2s). (181)
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So the wavefunction ψ(s) is written as

ψ(s) = Nnℓs
√

α(1 − s)ℓ+1P
(2
√

α, 2ℓ+1)
n (1 − 2s), (182)

where Nnℓ is the normalization constant and P
(2
√

α, 2ℓ+1)
n (1 − 2s) is the Jacobi polynomials

(Szego, 1934). As a reminder notice, the relationship between the ψ(s) and the R(r) is ψ(s) ≡
rR(r) with the transformation of s = e−r/κ .

5. Conclusion

An exact solution of the SE is not a practical manner, except for the simplest of potential
energy functions. In most cases of practical interest, we can just settle for an approximate
solution. To overcome various types of problems in quantum mechanics, we have to apply
several methods or approximations to solve the SE appropriately. One of this method is
introduced by A. F. Nikiforov and V. B. Uvarov. The solution range of this method is
limited by the hypergeometric-type second-order differential equations. We know that the
time-independent SE has the second-order differential equation in the Schrödinger picture as
well. Therefore, in this book chapter we confined our attention to this equation and its exact
or approximate solutions for the selected potentials such as Harmonic oscillator, Coulomb,
Kratzer, Morse and Hulthen potentials. The solution meant that we have obtained the energy
spectrum and the corresponding wavefunction of a particle subject to one of these potentials.
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