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1. Introduction 

Epithelial ovarian cancer (EOC) is a highly lethal gynaecological cancer for which overall 

prognosis has remained poor over the past few decades. A number of theories have been 

postulated in an effort to explain the aetiology of EOC. Noteworthy, these theories likely are 

not mutually exclusive, as they all converge more or less on the role of inflammation in 

promoting ovarian tumorigenesis and cancer progression. The tumour milieu in which 

ovarian carcinoma develops has been described as one enriched with a broad spectrum of 

pro-inflammatory cytokines and chemokines. In particular, several of these cytokines (such 

as tumour necrosis factor-ǂ (TNF-ǂ), interleukin (IL)-1ǃ, and IL-6) produced by tumour 

itself or/and activated immune cells, besides stimulating cancer cell growth, have been 

shown to influence clinical disease status and prognosis, by reducing responsiveness to 

chemotherapy and inducing symptoms such as anorexia, altered energy metabolism, 

anaemia, weight loss, depression and fatigue. Recent data show that cytokine antagonists 

may have a role to play in the treatment of ovarian cancer. Their action by inhibiting both 

production and activity of inflammatory cytokines seems to obtain the control of 

angiogenetic and apoptotic events, the reversal of chemoresistance, the improvement of 

systemic symptoms and prognosis. In the light of our scientific research and the most recent 

experimental and clinical advances our chapter will review the most relevant and recent 

findings on the role of proinflammatory cytokines in the pathogenesis and prognosis of 

ovarian cancer and the possible therapeutic implications. 

2. Role of inflammation in the etiopathogenesis of ovarian cancer 

A number of studies suggest that factors related to inflammation of the ovarian surface 

epithelium (OSE), such as ovulation, endometriosis and pelvic inflammatory diseases, are 

associated with an increased risk for EOC. In particular, inflammatory mediators and 

several cytokines produced by activated innate immune cells, such as TNF-ǂ, IL-1ǃ and IL-6 

and IL-6, have been shown to promote EOC genesis, growth and progression (Nowak et al., 

2010a, Clendenen et al., 2011).  

The most important hypothesis to arise about EOC carcinogenesis was the ovulation theory, 

which relates ovarian cancer risk to incessant ovulation. To support this hypothesis, there is 

growing interest in the etiologic role of inflammation that accompanies each ovulation 
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(Landen et al., 2008). Ovarian surface epithelium adjacent to the site of ovulation may be 

exposed to inflammatory and oxidative status with consequent risk of malignant 

transformation. Intriguingly, the same ovulatory process together with the repair steps 

immediately after liberation of the ovum, are characterized by the generation of an 

enormous amount of cytokines/chemokines and matrix-remodeling enzymes, including 

prostaglandins, bioactive eicosanoids, plasminogen activators, collagenases, interleukins 

(ILs), TNF-ǂ and various growth factors (Macciò et al., 1994) as well as by the recruitment of 

activated immune cells to the wounded epithelial surface, entailing the global activation of 

the pro-inflammatory network. Recently, it has been hypothesized that high grade serous 

ovarian cancer, endometrioid and clear cell cancers arise from fallopian tube epithelium and 

share a common pathogenic mechanism, i.e. iron-induced oxidative stress derived from 

retrograde menstruation. Fimbriae floating in bloody peritoneal fluid are exposed to the 

action of catalytic iron and to the genotoxic effect of reactive oxygen species, generated from 

haemolysis of erythrocytes by pelvic activated macrophages and by the cytokines secreted 

from themselves. In summary, both incessant ovulation and oxido-reductive fallopian tube 

epithelial damage hypotheses have provided evidence that inflammatory responses induced 

under physiological conditions may foster the development of EOC. 

A growing body of evidence suggests that, although genetic events in the tumour cells 

themselves are definitely crucial, host and stromal factors in the tumour microenvironment 

are equally important. A clinically overt tumour includes not only cancer cells but also 

matrix components, stromal cells and inflammatory cells. In particular, in EOC peritoneal 

and stromal alterations alongside with their lymphomocytes components and associated 

cytokines may be permissive for cancer growth and spread. Likewise, cytokine production 

also by tumour cells themselves can both promote their growth and inhibits apoptosis in an 

autocrine manner. Therefore, inflammation seems to contribute to every step of 

carcinogenesis, including tumour initiation, promotion, and progression. On the other hand, 

tumour cells can produce immunogenic proteins that are recognized as foreign, potentially 

thus inducing an antineoplastic immune response. Actually, the tumour uses these 

immunological interactions  to evade recognition and destruction by immune cells, i.e. Fas 

ligand production to induce lymphocyte apoptosis (Mantovani et al., 1999a) and HLA-G 

secretion to inhibit natural-killer cell activity. Then, although the importance of the host 

antitumor immune response, as demonstrated by the finding that increased T-cell 

infiltration into the tumour is associated with improved survival (Zhang et al., 2003), the 

real role of immune system in containing tumour growth remains to be fully defined 

(Landen, 2008). 

3. Proinflammatory cytokines in the progression of EOC  

Components of the inflammatory pathway, including free radicals, cytokines, NF-κB, signal 

transducer and activator of transcription-3 (STAT-3), inducible nitric oxide synthase (iNOS), 

cyclooxygenase-2 (COX-2), prostaglandins, and vascular endothelial growth factor (VEGF) 

have been shown to contribute to the development of various malignancies, including EOC. 

In particular, COX-2 was found to be highly expressed in non-mucinous ovarian cancers, 

and its expression was correlated with poor prognostic factors, such as stage, residual 

disease status and presence of ascites (Ferrandina et al. 2002a). Consistently with this 
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hypothesis, patients with chronic aspirin, nonsteroidal anti-inflammatory drug, or 

acetaminophen use have a reduced risk of EOC (Altinoz & Korkmaz, 2004). 

3.1 Cytokines as cancer growth factors 

Multiple genetic alterations are implicated in ovarian carcinogenesis, but clinical and genetic 

evidence support two wide categories of EOC carcinogenesis: those of low-grade and high-

grade pathways. Gene and protein analyses of tumours of these two different subtypes also 

suggest different pathogenesis: K-Ras, BRAF, and PTEN mutations are more frequently 

observed in low-grade tumours, whereas P53 mutation is predominantly present in high-

grade tumours, but rarely in other subtypes or low malignant potential (LMP) tumors. 

Moreover, HER2 and AKT are overexpressed in high-grade carcinomas but rarely in low-

grade and LMP tumours. Overexpression of human leukocyte antigen-G (HLA-G), which 

may provide a mechanism of immune escape for the tumour, has been noted in a high 

percentage of high-grade carcinomas but is absent in low-grade or LMP neoplasma (Landen, 

2008). Moreover, the new proposed histological classification of EOC in type I slow 

growing tumours and type II rapidly growing and highly aggressive tumours is 

accompanied by a specific expression of the inflammatory markers: glucose transporter 

protein-1 (Glut-1), inducible nitric oxide synthase (iNOS), COX-1, COX-2) and nuclear 

factor kappa B. In detail, overexpression of COX-1, COX-2, iNOS, and Glut-1 was 

significantly higher in type II tumours and was associated with a poorer median survival 

as compared with those with type I tumours. Therefore, the distinct expression of these 

markers may explain the different biologic behaviour of these 2 tumour types and provide 

targets for therapy (Ali-Fehmi et al., 2011). 
Although EOC can be subdivided by grade, their histological subtypes also differ. Serous, 
endometrioid, and mucinous adenocarcinomas have difference in clinical outcomes even if 
not as dramatic as those between high- and low-grade cancers. However, genomic studies 
have demonstrated that mucinous adenocarcinomas often harbour mutations and have 
peculiar gene expression similar to LMP tumours and to benign cystadenomas. Specifically, 
mutations in K-RAS have been described in borderline, low-grade tumours and mucinous 
adenocarcinomas, but are very rare in high-grade serous carcinomas. Moreover, 
endometrioid adenocarcinomas harbour PTEN mutations (similar to endometrioid tumours 
of the uterine endometrium) more frequently than do serous or mucinous subtype. The 
discovery of these genetic mutations allowed hypothesizing a model of multistep 
carcinogenesis of ovarian cancer (Landen, 2008). To become a clinically evident tumour 
ovarian cancer cells must overcome many protective mechanisms: these include unchecked 
proliferation, evading apoptosis, angiogenesis, stromal invasion, separation and survival 
away from the primary tumour, and implantation and growth within new tissues. Within 
the dual pathway model, it is clear that the tumour cell and its environment must acquire 
the above characteristics. Although the order in which these occur is likely variable, early 
alterations in dominant genes may dictate the specific path that is followed, such as K-RAS 
leading to an LMP tumour and early occurrence of a p53 alteration leading to genetic 
instability and rapid progression to a high-grade phenotype. Many researchers show a role 
for inflammation in tumour initiation, promotion, progression and metastatisation. In 
particular most studies focused their attention to IL-6 signalling which seems to play the 
main role (Lane et al., 2011). IL-6 is one of the major immunoregulatory cytokines present in 
the EOC microenvironment. Both ovarian cancer cells and tumor-associated macrophages 
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produce IL-6, and it is to date known that high serum levels of IL-6 are related with specific 
immune and metabolic alterations which finally lead to cancer cachexia, the main cause of 
death of EOC patients. IL-6 has also been demonstrated to be involved in autocrine growth 
of ovarian cancer cells [19-21] as well as in tumorigenesis and progression of ovarian cancer 
cells particularly by increasing their capacity to secrete matrix metalloproteinase (MMP)-9 
(Rabinovich et al., 2007). Then, IL-6 could stimulate the proliferation of tumour cells either 
directly and/or by promoting angiogenesis. In fact, IL-6 has an important role, precisely 
through tumour angiogenesis, in promoting the development of ascites as well as the spread 
of ovarian cancer thus leading to fast progression and short survival. (Lane, 2011; Lo, 2011). 
The high levels of IL-6 enhance the immune suppressive status of the tumour 
microenvironment by inhibiting IL-2 synthesis, T cell activation and proliferation, and 
promoting lymphocytes apoptosis (Macciò, 1998; Mantovani, 1999a). Furthermore, IL-6 may 
divert the immune response from Th1 towards a suppressive Th2 response although 
controversial data have been reported. Another inflammatory cytokine TNF-ǂ that is 
constitutively expressed in the malignant ovarian surface epithelium generates and sustains 
a network of other mediators that promote tumour growth and peritoneal spread. 
Constitutive production of TNF-a is associated with greater release of IL-6 itself as well as 
other chemokines as: CCL2 and CXCL12, macrophage migration-inhibitory factor (MIF) and 
VEGF. In turn, these factors may act in an autocrine/paracrine manner to promote 
colonization of the peritoneum and neovascularization of developing tumour deposits. 
Moreover, also estrogens by the modulation of proinflammatory cytokines, and in 
particular IL-6, are involved in regulating the growth and progression of EOC. Estrogens 
not only enhance cytokines production but also modulate the expression of their 
receptors. In turn, IL-6 and IL-8 also promote ovarian cancer cells growth through an 
oestrogen receptor pathway. Therefore, these findings provide a novel mechanism that 
oestrogens, IL-6 and IL-8 may form a common amplifying signalling cascade to modulate 
ovarian cancer cells growth and progression (Yang et al., 2009). 
From what has been written it can be deduced that IL-6 is the cytokine mainly involved in 

EOC carcinogenesis and progression. IL-6 is a 26-kDa glycopeptide whose gene is found on 

chromosome 7, produced by antigen presenting cells (APCs) such as dendritic cells, 

macrophages and B cells among other cells of the haematopoietic system. It is also produced 

by a variety of non-haematopoietic cells including keratinocytes, fibroblasts, epithelial cells, 

and neoplastic cells. IL-6 gene transcription is induced in many different normal tissues in 

response to stimuli, such as RNA and DNA virus infection, bacterial endotoxin, 

lipopolysaccharide and other inflammatory cytokines as TNF-, IL-1, and platelet-derived 

growth factor (PDGF) and the interferons (IFNs). It has been previously named hepatocyte-

stimulating factor, cytotoxic T-cell differentiation factor, B-cell differentiation factor, B-cell 

stimulatory factor 2, hybridoma/plasmacytoma growth factor, monocyte granulocyte 

inducer type 2 and thrombopoietin. The many names reflect the pleiotropism of IL-6. IL-6 

affects virtually every organ, most notably the immune system and in particular, it is an 

essential factor for the normal development and function of both T and B lymphocytes and 

has broad actions on cells of the haematopoietic system. Efficient induction of the IL-6 

promoter requires the interaction of several transcription factors, including the CAAT 

enhancer-binding protein (C/EBP) family members and nuclear factor kB (NF-kB). Nuclear 

factor for IL-6 (NF-IL6, C/EBP-b) and NF-kB interact with each other to synergistically up-

regulate the IL-6 promoter, just like NF-IL6 (C/EBP-b) and NF-IL6b (C/EBP-d). The IL-6 
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promoter is inhibited by p53 and the retinoblastoma (Rb) gene product. The overexpression 

of IL-6 in many malignancies may occur as a result of the loss of one of these negative 

regulators of transcription.  

The physiological activity of IL-6 is complex, including both pro-inflammatory and anti-

inflammatory effects in the immune system. In fact, relative to its specific 

immunomodulating capacity, IL-6 is an activator or an inhibitor of T-cell responses, 

depending to the length of time of its activities. This combination of pro-inflammatory and 

anti-inflammatory effects suggests that IL-6 may play a role in regulating the control of 

immune system activation during the different phases of EOC evolution. IL-6 modulates the 

transcription of several liver-specific genes during acute inflammatory states, particularly C-

reactive protein (CRP) and hepcidin. IL-6 can also up-regulates the multidrug resistance 1 

(MDR-1) gene through activation of NF-IL6, which, in turn, transactivates the MDR-1 gene 

through a Y-box motif. IL-6 blood levels are high in numerous infectious, inflammatory, and 

autoimmune diseases and in cancer in association with increased synthesis of other 

cytokines and specific immunological challenge. Human diseases that involve prolonged 

inflammation and in particularly advanced EOC frequently exhibit cachexia with loss of 

muscle mass and IL-6 seems to be the key mediator of these processes as well. It is 

noteworthy that high circulating levels of IL-6 have also been linked to insulin resistance, 

high body mass index and obesity. IL-6 also exerts its effects on the central nervous system, 

where it regulates glial cell activation and modulate mood as well as induce severe 

depressive symptoms. 

IL-6 signals primarily by its binding to a specific receptor (IL-6R) which is a member of the 

Class I cytokine receptor family. Functional Class I receptors contain high-affinity ligand-

binding components and signal-transducing components, and are thus multichain receptor 

complexes that often share the signal-transducing element. Then, IL-6 signals through a 

protein complex including the membrane-bound non-signalling ǂ-receptor subunit (IL-6R a-

chain gp80 or CD126) and two signal-transducing gp130 subunits (IL6-Rǃ-chain gp130 or 

CD130), this second chain of the receptor resulting in the formation of high-avidity IL-6 

binding receptors (Lo, 2011). More precisely: the ligand-binding portion of the IL-6R is an 

80-kDa molecule associates directly with IL-6 that exists both in a membrane-bound and a 

soluble form; the signal transducing component of the IL-6R complex is glycoprotein 130 

(gp130), sometimes called IL-6Rb-chain. The gp130 functions as an affinity converter 

because the resulting affinity of IL-6 for the ternary complex is approximately 10-11 M 

instead of 10- 9 M for IL-6R. While gp130 is expressed ubiquitously, gp80 is physiologically 

mainly expressed on hepatocytes and specialized subsets of leukocytes, including 

neutrophils, monocytes/macrophages, and T and B lymphocytes. However, IL-6 can also 

signal via a soluble receptor (sIL-6R or gp55 chain) that lacks the transmembrane and 

cytoplasmatic components. Soluble IL-6R (sIL-6R) can be generated by two mechanisms: 1) 

Metalloproteinase mediated cleavage (“shedding”) of the membrane bound form of the IL-

6R and 2) expression of an alternatively spliced IL-6R variant that lacks the transmembrane 

domain. Neutrophils and macrophages in addition to some cell lines have been shown to 

produce sIL-6R. Activated sIL-6R binds to membrane-bound gp130 subunits in a process 

known as trans-signalling. Therefore, unlike other soluble cytokine receptors, which are 

generally antagonists, sIL-6R is an agonist molecule, promoting IL-6 activity. This ability 

may explain a possible activation of gp130 despite the lack of gp80, if sIL-6R molecules 
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circulate in great quantity, as demonstrated in certain pathological states. Accordingly, it 

was observed that cells lacking IL-6R expression are responsive to IL-6 stimulation 

especially during inflammatory conditions. As demonstrated in EOC, this alternate pathway 

serves as the major signalling in inducing endothelial hyperpermeability and increasing 

transendothelial migration of cancer cells, thus contributing to cancer progression. Moreover, 

elevated levels of sIL-6R in malignant ascites from ovarian cancer patients are associated with 

poor prognosis (Lo, Cancer Res 2011; 7: 424-34). The increase of IL6R expression as well as of 

the soluble spliced variant of IL6R in malignant ovarian tumours are regulated by cancer-

associated inflammation (Rath et al., 2010). Therefore, in advanced EOC IL6R is overexpressed 

mainly because of increases in a sIL6R variant, which can influence its evolution and 

prognosis. In addition to sIL-6R, soluble gp130 (sgp130) also exists in human serum and acts as 

an antagonist of the IL-6/sIL-6R complex.  

Once IL-6 binds its receptor and gp130 homodimerization occurs, a signalling cascade is 

triggered. X-Ray crystallography has shown that two heterotrimers of IL-6, IL-6R and gp130 

associate to form a hexameric complex. Through formation of this complex, members of the 

cytoplasmic Janus kinase (Jak) family of tyrosine kinases bind to gp130 inducing 

phosphorylation of downstream targets. The Janus kinases activation is followed by the 

recruitment of signal transducers and activators of transcriptions (STATs). One 

phosphorylated, STATs translocate to the nucleus where they promote gene transcription. 

IL-6R stimulation also recruits other signal transduction molecules, including SH2 domain-

containing tyrosine phosphatase (SHP2) and suppressor of cytokine signalling (SOCS). Both 

SHP2 and SOCS may subsequently down-regulate IL-6 signalling. Jak1 is thought to be the 

most relevant for IL-6 signalling although Jak2 and Tyk2 also transduce some of the IL-6 

signals. In some instances, IL-6 acts with other factors, such as heparin-binding epithelial 

growth factor and hepatocyte growth factor in controlling proliferation and function of 

various cell types. Blocking IL-6 by specific anti-receptor drugs may thus be of benefit in 

many pathological situations.  

The best-described substrate for Jaks in IL-6 signaling is the STAT 3, a transcription factor 

that in its inactive form remains in the cytoplasm but after phosphorylation forms 

homodimers that are actively being transported to the nucleus to induce gene transcription. 

Increasing evidence indicates that tumour cells express constitutively activated Stat 

proteins, particularly STAT3, independent of dysregulation of upstream molecules, disabled 

inhibitory mechanisms or identifiable ligand stimulation. Stat3 overexpression also may 

promote cell proliferation and transformation into a tumour phenotype. Overexpression and 

overactivation of Stat3 is found in EOC tissue and the constitutive activation of Stat3 

signalling pathway may play an important role in the invasion and prognosis. The 

expressions of Stat3 and phosphorylated (p)-Stat3 in EOC are significantly higher than in 

normal ovarian epithelial tissues or benign ovarian tumour and the expression of Stat3 

protein is highly correlated with the expression of p-Stat3 protein. The nuclear localization 

of p-Stat3 predicts a poor prognosis: in fact, pSTAT3 expression is significantly correlated 

with disease stage, degree of differentiation and lymph node metastasis (Min & Wei-hong, 

2009). Recent studies suggest that STAT3 is a key factor for EOC chemoresistance, showing 

that STAT3 decoy oligodeoxynucleotides (ODN), its specific antagonist, inhibited cancer cell 

invasive power and enhanced sensitivity to paclitaxel. The mechanism involves the 

inhibition of EMMPRIN, P-gp, and pAkt by STAT3 decoy ODN. These three proteins are 
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probably the target proteins of STAT3 (Zhang, 2010). Increased levels of pSTAT3 are 

correlated with increased expression of HER-2/neu, EGFR and proliferation but not 

apoptosis markers. Unlike other molecules involved in oncogenesis, no genetic mutations or 

amplifications have been identified for STAT3, suggesting that persistent STAT3 activity is 

caused mostly by the dysregulation of upstream molecules, such as receptors with intrinsic 

tyrosine kinase activity (e.g., EGFR or HER-2/neu) and, in particular, endogenous or 

exogenous IL-6. Moreover, the regulation and functions of Stat proteins are highly 

dependent on the cell type, the activating stimulus and the cellular context, especially the 

activity of other signalling pathways and transcription factors that interact with the Stat 

proteins. Consequently, depending on the cellular context, STAT3 may mediate conflicting 

responses in terms of cell proliferation, differentiation or apoptosis. For example, the 

concurrent coexpression of dominant-negative STAT3 and the oncoprotein Ras does not 

arrest Ras-induced transformation, suggesting that STAT3 signalling is only one of several 

pathways required for cell transformation induced by this oncogenic tyrosine kinase. In 

addition, STAT3 demonstrates a histotype-specific pattern of expression. High levels of 

expression were observed more commonly in those histotypes with aggressive biologic 

behaviour (undifferentiated, clear cell, and serous carcinomas) than in those histotypes with 

less aggressive behaviour (mucinous and endometrioid carcinomas).  

Results from a recent study (Saydmohammed et al., 2010) confirm that IL-6 secretion 

increases during malignant progression of ovarian epithelial cells and found that IL-6 

expression levels are not always correlated with the expression or subcellular location of 

pSTAT3 in ovarian carcinoma, supporting the finding that IL-6 is involved in other 

signalling pathways, independent of STAT3. Moreover, given the observations that cancer 

cells can constitutively express STAT3 in the absence of stimulation by any known ligand 

and that expression of STAT3 is higher in ovarian carcinoma than in normal ovarian tissue, 

it is possible to speculate that the constitutive activation of STAT3 in ovarian cancer cells 

could be because of aberrant EGFR signalling. In agreement with this possibility, it has been 

observed a significant correlation between high levels of pSTAT3 expression and the 

overexpression of EGFR and HER-2/neu in EOC (Bast et al., 1993). Alternatively, the 

constitutive activation of STAT3 in EOC may be caused by the elevation of Src and focal 

adhesion kinase levels (Rosen et al., 2006) More recently, a significant activation of both 

STAT-3 and its upstream activator JAK-2, has been demonstrate in high-grade ovarian 

carcinomas compared with normal ovaries and benign tumours. The association between 

STAT3 activation and migratory phenotype of ovarian cancer cells was investigated by EGF-

induced epithelial-mesenchymal transition (EMT) in ovarian cancer cell lines. Ligand 

activation of EGFR induced a fibroblast-like morphology and migratory phenotype, consistent 

with the upregulation of mesenchyme-associated N-cadherin, vimentin and nuclear 

translocation of beta-catenin. This occurred concomitantly with activation of the downstream 

JAK2/STAT3 pathway. The cell lines expressed the IL-6R and treatment with EGF resulted in 

enhanced IL-6 expression and release in the serum-free medium. Exogenous addition of IL-6 

stimulated STAT3 activation and enhanced migration. Blocking antibodies against IL-6R 

inhibited both IL-6 production and EGF- and IL-6-induced migration. Specific inhibition of 

STAT3 activation by a JAK2-specific inhibitor blocked STAT3 phosphorylation, cell motility, 

induction of N-cadherin and vimentin expression and IL6 production. These data suggest that 

the activated status of STAT3 in high-grade EOC may occur directly through activation of 
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EGFR or IL-6R or indirectly through induction of IL-6R signalling. Such activation of STAT3 

suggests a rationale for a combination of anti-STAT3 and EGFR/IL-6R therapy to suppress the 

peritoneal spread of ovarian cancer (Colomiere et al., 2009). 

In addition to STAT3 also the Ras protein can be activated in response to IL-6. After Ras 
activation, hyperphosphorylation of mitogen-activated protein kinase (MAPK) occurs as well 
as an increase in its serine/threonine kinase activity. MAPK then phosphorylates the NF-IL6 
transcription factor on serine 231 and threonine 235, a process that is essential for DNA 
binding. NF-IL6 has a basic leucine zipper motif and is a member of the C/EBP family of 
transcription factors. NF-IL6 activates the promoter regions of various acute-phase protein 
genes in the liver. Thus, when IL-6 binds to a cell through IL-6Ra/gp130 complexes, a series of 
events takes place that leads to the activation of STATs and NF-IL6, switching on target genes. 
OSE cells immortalized with mutant H-Ras or K-Ras lead to cells that grow slowly but 
progressively with serous papillary histology in the peritoneal cavity. Gene expression profile 
analysis of these transformed cells showed an increased expression of several cytokines, 
mainly IL-6, which are up regulated by the NF-kB pathway. Each of these cytokines might 
provide targets for therapeutic intervention in EOC with RAS mutation.  

3.2 Cytokines and modulation of immune system 

The host immune response comprises a multitude of highly developed interconnected 

biological processes involving both cellular and humoral responses that cooperate to 

eliminate foreign bodies and repair the site of injury. The innate arm of the immune activity 

provides rapid reactions prior to the development of highly specific adaptive responses. In 

the context of a malignant tumour, many of the suppressive and stimulatory properties of 

innate immunity may influence tumour progression in both positive and negative ways. The 

activation of the cell-mediated immunity by macrophages, T lymphocytes, and natural killer 

cells has been suggested as a specific mechanism performed by the body to counteract 

oncogenesis and tumour growth. During their activation processes these cells release several 

soluble factors (cytokines) that send stimulatory or inhibitory signals to the different 

immune cell types. Interleukin-1, IL-2 and TNF-ǂ are the main mediators of cell-mediated 

immune response. Interleukin-1 and TNF-ǂ are potent inductors of IL-6 that, in turn, 

regulates their production, acts as a second signal for the production of IL-2 and induces on 

cytotoxic T lymphocytes the expression of IL-2 receptor (RIL-2). IL-2 is the key cytokine in 

the regulation of the antineoplastic immunity. The activity of IL-2 is strictly dependent on its 

binding to specific membrane receptor (IL-2R). Lymphocyte activation is followed by an 

increased expression of IL-2R and release of its ǂ subunit from the membrane receptor in a 

soluble form (sIL-2R). Hence, sIL-2R serum levels provide direct evidence of immune 

system activation. Then, the synergistic effect of IL-2 and other cytokines deriving from the 

activated immune system may play an active role in the cytotoxic attack against tumour by 

counteracting neoplastic cells growth. However, some cytokines, such as IL-1, IL-6 and 

TNF-ǂ may favour tumour progression. Indeed, several studies of our research group have 

shown in vitro that the immune system of EOC patients is inefficient to various mitogen 

stimuli in terms of lymphocyte proliferative response and that the severity of the immune 

deficit is proportionate to the stage of disease and to the performance status (PS) of patients 

(Mantovani et al., 2000, 2003). The reduced lymphocytes proliferative response to mitogens, 

such as phytohaemagglutinin (PHA) and anti-CD3 monoclonal antibody (mAb), must be 

considered as an index of more complex functional alterations. In fact, these mitogens 
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induce in vitro a number of phenomena similar to those that follow antigenic activity in 

vivo. The secretion of macrophagic cytokines, the production of IL-2 by CD4+ lymphocytes 

and the RIL-2 expression on lymphocyte membrane are the defining moments of these 

events. For these reasons, the entity of the lymphocyte blastic response depends on the 

quantity of cytokines produced, the number of RIL-2 expressed and the physiologic 

interaction of IL-2 with its receptor. Lymphocytes inability both to produce adequate 

quantities of IL-2 and to express physiological amount of RIL-2 seems to be the crucial 

feature of this specific lymphocyte functional deficit in EOC patients. In our studies, patients 

peripheral blood mononuclear cells (PBMC) proliferative response to PHA, anti-CD3 mAb 

and human recombinant IL-2 (HurIL-2) alone was significantly lower in comparison to 

controls and it was not modified by the addition of human recombinant IL-2 (HurIL-2) to 

the culture media. Furthermore, also the expression of CD25 and CD122 subunits of 

membrane-bound IL-2R on patients’ PBMC after stimulation with PHA or CD3mAb was 

lower than that seen in controls (Macciò et al., 1998). A very important finding of our 

researches highlights that this impairment of T cells response was associated with increased 

circulating levels of proinflammatory cytokines (IL-1ǂ, IL-1ǃ, IL-6, TNF-ǂ) and other 

mediators of inflammation such as fibrinogen, CRP and sIL-2R (Figure 1).  

 

 

Fig. 1. Aspecific activation of immune system during the evolution of the ovarian cancer 

leads to immunodepression associated to high serum levels of inflammatory cytokines and 

acute phase proteins. Abbreviations: ROS, Reactive Oxygen Species, RIL-2, IL-2 receptor, 

CRP, C-reactive protein. 

In particular, it is extremely interesting that IL-6 and CRP have been shown to be able to 
suppress T cell responses and several studies suggested that they might interfere with the 
immunological mechanisms underlying the antitumor activity of IL-2. Moreover, it is 
known that CRP, typically induced by IL-6, is involved in the binding of complement to 
cytotoxic CD3+ cells and plays a key role in the inhibition of cytotoxic activity of NK cells. 
Then, IL-6 can be an activator or an inhibitor of T-cell responses, depending its effects by the 
time and duration of its activity. This interaction of pro-inflammatory and anti-
inflammatory activities suggests that IL-6 may play a role in regulating the control of 
immune system activation during the different phases of in EOC progression. A widely 
accepted model of tumour and immune cell interaction, termed immunoediting, describes 
an initial restriction of tumour cell growth, but maintains that the immune system 
ultimately selects for tumour cells with reduced immunogenicity that subsequently prevail  
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over the host immune system. Therefore, whereas the immune system may initially be 
protective against tumour development, its efficacy may diminish over time and it may 
ultimately facilitate tumour progression. Indeed, the mechanisms by which the tumour can 
evade immune system control are manifold. Despite immune-cells have for long been 
known for their roles primarily in immune cancer surveillance, many tumour cell types 
secrete immunosuppressive cytokines such as transforming growth factor-beta, IL-6, IL-10 
and IL-13, and chemokines that can also recruit cells that negatively regulate immunity such 
as T-regulatory cells, myeloid suppressor cells, NK cells and macrophage subsets (Robinson-
Smith et al., 2007). Jeannin P et al. in a very recent work (Jeannin et al., 2011) reported that 
ovarian cancer ascites switched monocyte differentiation into tumour-associated 
macrophages (TAM)-like cells, that exhibit most phenotypic and functional characteristics of 
TAMs, suggesting that soluble mediators are involved in the differentiation of monocytes 
into TAM-like cells. TAMs, the most abundant immunosuppressive myeloid cells in the 
tumour microenvironment, exhibit an IL-10 (high) and IL-12 (low) profile called M2, 
opposite to the immunostimulatory M1. The same authors observed that the leukaemia-
inhibitory factor and IL-6, present at high concentrations in ovarian cancer ascites, skew 
monocyte differentiation into TAM-like cells by increasing macrophage colony-stimulating 
factor consumption. These data reveal a new tumour-escape mechanism associated with 
TAMs generation through an IL-6 mediated effect. An interesting published study by 
Nowak et al. confirmed that in the presence of autologous ovarian cancer cells, peripheral 
blood mononuclear cells from patients with advanced EOC produced higher amount of 
immunosuppressive (Il-10, TGF-beta) and proinflammatory (IL-6) cytokines with 
downregulation of T cells response (Nowak et al., 2010b). In the context of EOC, two specific 
leukocyte subsets have been demonstrated to significantly promote tumour growth: 
regulatory T cells (Tregs) and pro-angiogenic/immunosuppressive myeloid cells, the latter 
exhibiting the phenotypic attributed of macrophages (Cubillos-Ruiz et al., 2010). Globally, 
all ovarian cancer-associated myeloid cell subsets impair the function of anti-tumour T cells, 
(Scarlett et al., 2009) the only element in the ovarian cancer microenvironment known to 
exert clinically relevant spontaneous immune pressure against tumour progression. The 
accumulation of tumour Tregs predicts poor survival in EOC patients. Curiel and colleagues 
(Curiel et al., 2004) first demonstrated a crucial role for Tregs in ovarian cancer-mediated 
immunosuppression. They showed that solid tumour masses and malignant ascites of 
human ovarian cancer accumulate variable levels of Tregs (CD3+CD4+CD25+ GITR+CTLA-
4+CCR7+FoxP3hi), while non-malignant ascites or normal ovaries did not contain a 
significant proportion of these cells. Interestingly, Tregs were found to be specifically 
recruited to tumour locations via CCL22, a cytokine expressed by tumour cells and 
microenvironmental myeloid cells. Ovarian tumours and tumour microenvironment 
macrophages are major sources of CCL22. Tregs isolated from ovarian cancer ascites were 
functionally active, as they inhibited the proliferation of autologous T cells stimulated in 
vitro with DCs pulsed with tumour antigens, and also prevented the anti-tumour activity of 
adoptively transferred T cells. Giuntoli et al. reported that a high CD4+/CD8+ ratio in 
ascites, which may indicate the presence of Tregs, is associated with poor outcome (Giuntoli 
et al., 2009). Other studies investigating the significance of the role of intratumoral infiltrates 
(TIL) or tumour associated lymphocytes (TAL) in these events have been reported. By 
contrast, there is accumulating evidence that the presence both of TIL or TAL, such as those 
found in neoplastic effusions, is quantitatively related with improved clinical outcome in 
ovarian cancer (Kim et al., 2009). In fact, recent studies report  
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on the infiltration of ovarian cancer by both CD4+ and CD8+ TILs and show a positive 

correlation between T-cell infiltration and prognosis (Yigit et al. 2010). Napoletano et al. 

demonstrated that primary debulking in ovarian cancer is associated with a reduction of 

circulating Tregs and an increase in CD8+ T-cell function (Napoletano et al., 2010). Leffers at 

al. reported that a high TIL/Treg ratio independently predicts increased survival and 

suggest that it is not so much the presence of Treg as the presence of TIL in general to be 

responsible for the observed survival effect (Leffers et al. 2009).  

A central mechanism whereby both TIL and/or TAL contribute to invasive proliferation of 

tumour cells is through the production of the cytokines and chemokines that increase both 

the migration and survival of tumour cells. These cytokines present in the blood and in large 

quantities in neoplastic effusions can also be produced by cancer cells and have been 

associated with prognosis in EOC (Gavalas et al., 2010).  

In conclusion the development of EOC is associated with changes in the peritoneal cavity 

microenvironment. Immune cells in the ovarian stromal microenvironment play an 

important role in ovarian tumorigenesis and progression (Wertel et al., 2011). In turn, 

tumour cells develop several mechanisms to evade anti-tumour immunity by developing 

an immunosuppressive microenvironment by the production of different factors 

(cytokines), which impairs differentiation, maturation, and function of antigen-presenting 

cells. Once transformed ovarian epithelial cells develop an immunoediting process occurs 

in which immune cells and their mediators dictate the growth and progression of EOC 

(Thompson & Mok, 2009). Then, as described above chronic inflammation is associated 

with initiation and/or progression of the most common EOC types and the balance 

between pro- and anti-inflammatory cytokines is critical for host immune response to 

tumours. 

4. Proinflammatory cytokines and prognosis 

Several studies, including some from our group (Macciò et al., 1998, 2009), demonstrated 

the correlation existing between the severity of chronic inflammation, advanced stage and 

poor outcome in patients with epithelial ovarian cancer. Epithelial ovarian cancer is an 

immunogenic tumour and exploits many suppressive ways to escape immune eradication. 

High circulating levels of proinflammatory cytokines, such as IL-1, Il-6, and TNF- have 

been found in EOC patients with advanced stage of disease and an unfavourable 

prognosis. The prognostic role of various cytokines has been studied, but no absolutely 

firm conclusions can be drawn so far. It is likely that cytokines involved in Th1 response 

predict for better prognosis, while the opposite is expected in those associated with Th2 

response. Moreover, proinflammatory cytokines play an important role in the 

mechanisms inducing the complex clinical condition known as cancer-related 

anorexia/cachexia (CACS). One of the metabolic changes present in this syndrome is the 

hepatic synthesis of C-reactive protein (CRP). High serum levels of CRP are associated 

with a poor prognosis in EOC patients and can negatively influence the therapeutic 

response to HurIL-2. This is extremely important since IL-2 initiates the activation of T 

and NK cells and it is also essential for the maintenance of self-tolerance through 

generation and maintenance of Tregs or by activation-induced cell death to eliminate self 

reactive T cells. Interestingly, IL-6 is a potent inducer of CRP exerting its regulatory effect 
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on CRP synthesis at the pretranslational level. IL-6 levels have been shown to be increased 

in advanced ovarian cancer patients' serum and to correlate with poor prognosis and 

reduced overall survival (Scambia et al., 1995). Elevated levels are also present in 

malignant ascites from EOC patients (Plante et al., 1994) and a positive correlation has 

been found between IL-6 concentration in ascites and residual disease after debulking. 

Additionally, IL-6 levels are remarkably higher at recurrence compared to primary 

advanced disease, thus opening an opportunity for inhibition of IL-6 expression in the 

prevention of recurrence. EOC is known to spread primarily by tumour cell implantations 

in peritoneal cavity. Therefore, ascites may be an ideal fluid compartment to unravel the 

immune status of the peritoneal cavity (Mantovani et al, 1999, 1997). Recently, Yigit R et 

al. (Yigit et al., 2011) observed high expression of pro-inflammatory cytokines IL-6, IL-8 

and immune suppressive cytokines IL-10, CCL22 and TGF-ǃ in most samples of ovarian 

cancer ascites whereas Th1 (IL-12p70, IFN-Ǆ) and Th2 (IL-4, IL-5) cytokines were only 

detectable in few samples. TGF-ǃ was only detected in latent form, questioning its 

immune suppressive role. At advanced stage, they also observed a negative correlation 

with CCL22 levels and Th1/2 cytokine expression. A cytokine that seems to be heavily 

involved in tumour immunosuppression is the transforming growth factor beta (TGF-ǃ), a 

protein that affects proliferation, activation, and differentiation of immune cells and 

inhibits antitumor immune response. In cancer cells, the production of TGF-ǃ is increased 

and, in turn, raises their proteolytic activity and binding to cell adhesion molecules in the 

extracellular matrix. TGF-ǃ can also convert effector T cells into Tregs. It has been 

reported that it can also promote angiogenesis and that this process can be blocked by 

anti-TGF-ǃ antibodies. TGF-ǃ blockade almost completely eradicate ascites formation and 

significantly inhibit the expression of VEGF, which is the major contributor to ascites 

formation. At the same time, TGF-ǃ blockade prevent 'abnormalization' of diaphragm 

lymphatic vessels and improve ascites drainage (Liao et al., 2011). Also TNF-ǂ is 

produced  by tumour cells and can induce autocrine proliferation and disease progression 

in ovarian cancer. The autocrine action of TNFǂ may have direct effects on tumour cell 

spread via acting on the chemokine receptor CXCR4 and stimulating new blood vessel 

formation in the peritoneum by inducing expression of VEGF and CXCL12. In contrast, 

TNF-ǂ levels have also been inversely correlated with the presence of CD4+ CD25+ cells, 

and have been shown to directly downregulate Tregs. This might indicate a favourable 

effect of this cytokine on prognosis and underlines the complexity of the functions that 

each of these factors may possess. Then, reports on whether TNF- is a signature of poor 

or better prognosis vary. Another cytokine that was shown to be associated with the 

growth of cancer cells and tumour proliferation is IL-1. A family of proteins called 

chemokines (CC) may also be influencing cellular composition in biological fluids. Recent 

studies have demonstrated the presence of mRNA for CCL2, CCL3, CCL4, and CCL5 in 

EOC by in situ hybridization. Moreover, CCL5 has been shown to be secreted by CD4+ T 

cells, recruits CCR5+ dendritic cells to the tumour location, and activates them through 

CD40-CD40L interactions. The newly matured dendritic cells prime tumour-specific CD8+ 

cells thus providing with long-term protection. Also in the protein-rich ascitic fluid, 

different chemokine molecules are expressed, with CCL2 being the predominant one. In 

addition, chemokine stromal-derived factor-1 (CXCL-1) induced the migration of 

plasmacytoid dendritic cells (PDC) into the tumour microenvironment in cases of ovarian 

www.intechopen.com



 
Inflammation and Ovarian Cancer 

 

29 

cancer and induced delivery of survival signals to PDC. In turn, the tumour 

microenvironmental PDC induced IL-10 expressing Tregs, which are correlated to poor 

prognosis and shorter progression-free survival. In the case of Tregs it has been exhibited 

that CCL22 plays a central role in inducing influx of these cells into tumour sites by 

binding to CCR4 that is expressed on Treg surface. Interferon gamma (IFN-Ǆ) plays a 

stimulatory role for macrophages turning them from immunosuppressive to 

immunostimulatory cells. It also skewed monocyte differentiation from associated-

associated macrophages (TAM) like cells to M1-polarized immunostimulatory 

macrophages. Taken together these data show that IFN-Ǆ overcomes TAM-induced 

immunosuppression by preventing TAM generation and functions. Furthermore, 

cytokines such as IL-18 and stroma derived factor 1 (SDF-1) have been shown to be 

correlated with poor prognosis in ovarian cancer patients, but further studies are required 

to fully evaluate them in the tumour microenvironment and the periphery. 

4.1 Inflammation and metabolic changes 

In the course of its evolution cancer induces in the host changes of the immune system and 

energy metabolism that affect its clinical conditions so deeply that in some cases they are 

responsible for patient’s death. Several symptoms are associated to these events and involve 

various organs and systems: 

- Anorexia 

- Nausea 

- Weight loss (with reduction of lean mass and adipose tissue) 

- increase of resting energy expenditure (with changes of the glucose, lipid and protein 

metabolism) 

- Immunodepression  

- Anaemia  

- Fatigue 

It is difficult to establish the exact moment when such changes actually start, but it could be 

hypothesized that they are the consequence of the interactions between the tumour and the 

host. The hypothesis that the presence of the tumour and its continuous growth are 

responsible for the increased energy expenditure and for the progressive weight loss has 

been considered the most reliable so far. Indeed, the presence in the host of continuously 

growing neoplastic tissue justifies by itself the increased energy needs; moreover, it is 

accompanied by enhanced energy expenditure associated with the chronic activation of the 

immune system, trying to counteract the tumour, which is energetically very costly (25-30% 

of the basal metabolic rate, i.e. 1750-2080 kJ/day) (Straub et al., 2010). The resulting 

metabolic scenario is that of two systems that require a continuous supply of energy 

substrates, particularly glucose. Glucose oxidation to CO2 and H2O is the main energy 

source produced as ATP, NADH and FADH. A further glucose amount is also involved for 

the synthesis, through the phosphate pentose pathway, of compounds with high reducing 

power as NADPH and reduced glutathione (GSH), essential for the neutralisation of 

reactive oxygen species (ROS) produced during the various steps of the energy metabolism. 

ROS are intermediate compounds derived from the univalent reduction of molecular 

oxygen by electrons and protons, characterized by the presence of an unpaired electron in 

the farthest external orbital, which makes them particularly unstable (hydrogen peroxide: 
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H2O2, superoxide anione: O2-; hydroxyl radical: OH°). As they are partly useful, but 

potentially toxic, compounds the body has a number of control mechanisms that limit their 

activity once they have been used for the scheduled objective. In particular superoxide 

dismutase (SOD) metabolises O2- to H2O2, whereas catalase and various glutathione 

peroxidase (GPx) metabolise it to H2O and alcohol. ROS which have not been eliminated for 

the lack of these antioxidants, have a negative oxidative action on polyunsaturated fatty 

acids circulating proteins, membrane rich of disulphur bridge, enzymes and DNA, 

determining irreversible damage both to cell architecture and function. Under such 

conditions, detoxification systems, sustained by reducing compounds, should be 

adequately present. These reducing compounds, which are called natural detoxificants, 

are thus essential for a normal cell activity. 

The energy metabolism in cancer patients is affected by the presence, during the disease 

evolution, of symptoms such as anorexia, nausea and vomiting, which prevent a normal 

nutrition and thus a regular supply of glucose, lipids, proteins and vitamins. Antiblastic 

treatments and the same molecules (cytokines), which regulate both the tumour 

development and the immune system functions, are responsible for these symptoms 

(Bennani-Baiti & Davis, 2008). In this context, the finding that neoplastic patients in 

advanced stages show a severe impairment of immunologic functions characterized by 

impaired cell-mediated immunity and elevated serum levels of macrophage cytokines (IL-1, 

IL-6, TNF-a) and inflammation acute phase proteins (fibrinogen and CRP) is of great 

importance (Macciò et al., 1998). Evidence that high serum concentrations of cytokines and 

inflammatory proteins are associated with high levels of ROS and low levels of SOD and 

GPx is also of particular interest (Mantovani et al., 2002). 

Thus, in neoplastic patients tumour growth and immune system activation determine an 

overall metabolic picture characterized by: 

 Increased glucose, lipid and protein requirements; 

 Difficulty to introduce these substances with food because of anorexia, nausea and 

vomiting; 

 Resorting to glucogenesis with depletion of protein and lipid stores and thus loss of 

weight; 

 Difficult to use the newly formed glucose because of hypoinsulinemia and/or 

peripheral resistance to insulin; 

 Oxidative damage induced by ROS on DNA, membrane lipoprotein, and enzymes and 

coenzymes that play a major role in the regulation of the main cell anabolic and 

catabolic pathways. 

Therefore, the metabolic changes described in the neoplastic patients are to be attributed to 

the chronic action of some cytokines (in particular IL-1, IL-6 and TNF-) produced both by 

activated immune system and tumour cells (Argiles & Lopez-Soriano, 1999; Delano & 

Moldawer, 2006). It may be hypothesised that, during the initial phases of neoplastic 

disease, the synthesis of proinflammatory cytokines leads to an efficient antineoplastic 

effect. However, the inability of the immune system to definitively counteract tumour 

growth (Hagemann et al., 2006) determines the chronicisation of cytokine activity with 

deleterious effects on cell metabolism, body composition, nutritional status and immune 

system efficiency. Indeed, the chronic action of cytokines is the main cause of the metabolic 

abnormalities characterising advanced ovarian cancer patient (Figure 2).  
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In detail, IL-1 exerts a specific effect on reducing food intake and influences meal size and 

duration: IL-1 has an anorectic action by directly decreasing neuropeptide Y (NPY) 

neurotransmission and secondarily by increasing corticotrophin-releasing factor (CRF), 

which in turn acts on the satiety circuitry inhibiting food intake. IL-1 has also been 

demonstrated to inhibit serum levels of growth hormone (GH) by increasing CRF and 

somatostatin levels. The decreased synthesis of GH leads to reduced synthesis of the insulin-

like growth factors (IGFs), which in turn influences the muscle protein turnover and the 

autocrine and paracrine regulation of muscle mass proliferation. TNF-ǂ has been shown to 

promote lipolysis and inhibit lipogenesis and plays a key role in the depletion of adipose 

tissue mass seen in cachexia. It has been proposed that an elevation in plasma levels of TNF-

ǂ is responsible for the metabolic alterations in adipose tissue seen in advanced cancer 

patients. Lipid metabolism is a complex sequence of events that determine whether the 

triglyceride pool within the adipocyte increases, due to the processes of free fatty acid (FFA) 

uptake and lipogenesis, or decreases, due to the process of lipolysis. Circulating lipoproteins 

and triglycerides are first converted into FFA by the action of lipoprotein lipase (LPL), 

which is secreted by the adipocyte. FFA can then enter the adipocyte via a fatty acid 

transporter and, once inside the adipocyte, they are converted into the triglyceride by a 

multi-step-regulated enzymatic reaction, which involves acyl-CoA synthetase. In addition, 

triglyceride can be formed from the uptake of glucose, via glucose transporters (GLUT) 1 

and 4, into the adipocyte. The glucose can then be converted into triglyceride by the actions 

of a series of enzymes, which include acetyl-CoA carboxylase and fatty acid synthase. A 

large body of evidence now supports a role for TNF-ǂ in modulating these processes. TNF-ǂ 

inhibits LPL activity by down-regulating its protein expression. In addition, TNF-ǂ has been 

shown to reduce the expression of FFA transporters in adipose tissue. TNF-ǂ could thus 

hinder the synthesis and entry of FFA into the adipocyte, curtailing an increase in the 

intracellular triglyceride pool size. Studies have also suggested that TNF-ǂ may decrease the 

expression of enzymes involved in lipogenesis. Specifically, it has been suggested that 

acetyl-CoA carboxylase and fatty acid synthase are down regulated. Acyl-CoA synthase 

expression and activity have also been suggested to be down regulated by TNF-ǂ. TNF-ǂ 

has been found to promote lipolysis. TNF-ǂ has been implicated as a factor associated with 

the development of insulin resistance. A positive association between plasma insulin levels 

and TNF-ǂ mRNA from subcutaneous adipose tissue has been found in women, finding 

which is supported by a further study showing increased adipose TNF-ǂ secretion in obese 

patients with insulin resistance. Extensive research has highlighted several potential 

mechanisms by which TNF-ǂ induces insulin resistance. These include: accelerated 

lipolysis and a concomitant increase in circulating FFA concentrations, down regulation of 

GLUT4 synthesis, down-regulation of insulin receptor, insulin receptor substrate-1 (IRS-1) 

synthesis and increased Ser/Thr phosphorylation of IRS-1. Interleukin-6 is another 

proinflammatory cytokine with cachectic effects. The presence of tumour in mouse 

models was associated with early CACS and production of IL-6, whom serum levels 

correlated with the severity of CACS. Vice versa, the administration of anti-IL-6 antibody 

inhibits the comparison of CACS symptoms thus demonstrating the central pathogenetic 

role of this cytokine in cachectic syndrome. In vitro studies have demonstrated that IL-6 

induces, similarly to IL-1, the hypothalamic release of CRF. Moreover, IL-6 acts on ǃ 

pancreatic cells similarly to IL-1 (Mantovani et al., 2001).  
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Fig. 2. Role of proinflammatory cytokines in inducing metabolic changes of advanced 
epithelial ovarian cancer patients. Abbreviations: IL, Interelukin; TNF, Tumour Necrosis 
Factor, CRH, corticotrophin releasing hormone; GH, growth hormone; IGF, Insulin growth 
factor. 

Findings from our group demonstrated a relationship between serum levels of IL-6 and 
leptin, one of the most important parameters of the body energy metabolism (Macciò et al., 
2008) in advanced EOC patients leptin levels were significantly lower in comparison to 
controls and were inversely correlated with weight, BMI, stage, PS, circulating cytokines, 
CRP and fibrinogen. Furthermore, multivariate regression analysis demonstrated that IL-6, 
besides stage of disease, was an independent predictive factor of leptin levels. These results 
are in accordance with those of other important studies performed on a wide population of 
newly diagnosed EOC patients (Mor et al., 2005; Visintin et al., 2008). Leptin, released from 
adipocytes into the systemic circulation proportionally to fat mass, acts as a master hormone 
controlling energy metabolism and weight balance. Additionally, this adipokine controls 
several other critical systems, including endocrine axis, bone metabolism, as well as the 
immune/inflammatory response. Noteworthy, our study showed that serum leptin levels 
evaluated in 104 ovarian cancer patients at different stage of disease (stage I-IV) were 
dependent both from stage of disease and serum IL-6 levels, independently of patient BMI. 
This finding was in contrast to the great majority of studies in cancer patients that have 
concluded that BMI and weight are the most important determinants of circulating leptin 
levels; however, it is to be noted that in the majority of these papers the impact of weight 
loss and the pattern of serum leptin concentration before diagnosis or study enrolment are 
unknown. Indeed, experimental and clinical studies have clarified that leptin production is 
not only strictly related to body weight and fat but it is also influenced by glucose utilization 
ability (Havel, 2004). Acute caloric deprivation and increased energy expenditure result in a 
large decrease of leptin synthesis, before major changes in body weight or fat mass have 
actually occurred (Chan et al., 2003). Consistently with this evidence and the findings  
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obtained by some authors in tuberculosis patients (van Crevel et al., 2002), it can be 
suggested that the prolonged severe inflammatory response associated to the most 
advanced stages of EOC is responsible for the energy metabolism impairment thus down-
regulating and exhausting leptin production. Indeed, the stimulation of leptin synthesis by 
aerobic glucose metabolism is mediated through the production of ATP and through the 
effect of glucose oxidation on cellular redox status and pyruvate cycling. Therefore, 
oxidative stress, in advanced cancer patients, consequent to the low energy reserves and the 
inability to utilize efficiently the energy substrates, particularly glucose, may be considered 
the direct evidence of the metabolic impairment of which leptin is the most important 
parameter. Accordingly, our results demonstrated that in advanced EOC patients the lowest 
leptin levels and the highest IL-6 levels correlated with the highest levels of ROS and the 
lowest levels of GPx, the most sensitive among antioxidants to nutritional status being a 
selenium-dependent enzyme. In keeping with these hypotheses, our prospective study, 
which analyzed the changes of the above reported parameters during the course of disease 
in advanced EOC patients, showed that in patients who achieved objective complete 
response after the primary antineoplastic treatment, IL-6 levels fell to normal values and 
leptin increased significantly. Then, patients who achieved progression of disease (PD) 
showed a significant increase of IL-6 accompanied by a significant decrease of leptin. The 
patients with further PD had a progressive increase of IL-6, which reached the highest 
concentrations in the terminal phases of disease, associated with a significant increase of 
CRP and fibrinogen and a further decrease of leptin. Importantly, when PD occurred leptin 
did not decreased proportionally to body weight that fell significantly only in the terminal 
phases of disease. Leptin changes strictly reflected changes of IL-6 in accordance to tumour 
response or disease progression (Maccio et al., 2009). It may be suggested that leptin 
variation reflected the changes of energy metabolism, induced by cytokines released from 
the tumour itself or by the aspecific activation of the immune system, even before they 
caused a significant body weight loss due to anorexia and muscle and fat wasting. In light of 
these results we can hypothesize that in EOC patients the reduced leptin production 
functions as a signal of increased energy expenditure and low energy reserves during the 
progression of the neoplastic disease. Leptin decrease in advanced EOC patients should 
induce an adaptative reduction of energy expenditure and an increase of appetite and food 
intake in response to the metabolic impairment induced by tumour growth and cancer-
related inflammation. The signal activated by the drop of leptin levels might therefore 
constitute the evidence of the metabolic hyperactivity of the tumour and the host immune 
system and the subsequent defence attempt of the host to reduce energy expenditure when 
energy is scarce. Leptin levels fell together with a significant weight loss, probably induced 
by the prolonged action of inflammatory mediators, only in the last phases of the neoplastic 
disease. Indeed, chronic inflammation results in severe alterations of cell metabolism, with 
deleterious effects on body composition, nutritional status and immune system efficiency. 
Therefore, IL-6 and leptin play a central role as early markers of the main metabolic alterations 
associated to the progression of advanced EOC, and therefore their assessment should be 
included in monitoring the disease outcome, especially when cancer is no longer curable with 
standard antineoplastic treatments and quality of life becomes the primary endpoint.  

4.2 Inflammation-related symptoms 

As widely written on, several studies have shown that inflammatory cytokines, and in 
particular IL-6, play a central role in the evolution of EOC and the mechanisms by which IL-
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6 may influence disease progression and outcome are extremely complex and multifactorial. 
In fact IL-6, as well as IL-1 and TNF-ǂ, is responsible for symptoms such as anorexia, nausea 
and vomiting, weight loss and altered energy metabolism. Furthermore, high IL-6 levels are 
associated with an impaired efficiency of immune cells both in terms of PBMC reduced 
blastic response and membrane-bound IL-2 receptor expression (Macciò et al., 1998). In the 
same way, recent data shown that IL-6 exerts a central role in the pathogenesis of cancer-
related anaemia. Additionally, elevated serum IL-6 levels account for its endocrine activity 
leading to severe impairment of physical, functional and psychosocial well-being 
(depression, anxiety, reduced social interaction) and fatigue.  

4.2.1 Cancer-related anaemia 

Anaemia is present in more than 30% of patients with EOC at the time of initial presentation. 
The severity of this particular form of anaemia called cancer-related anaemia (CRA) has been 
associated with more aggressive tumour hystotypes and is able to influence the response to 
treatment and the patients’ performance status (PS). The biologic and hematologic 
characteristics of CRA are similar to those observed in anaemia occurring in chronic 
inflammatory diseases. Several in vitro and in vivo studies demonstrated that high levels of 
proinflammatory cytokines and increased oxidative stress contribute both to the development 
of anaemia and to the resistance to human recombinant erythropoietin (HurEPO) (Figure 3).  
 

 

Fig. 3. Pathogenetic mechanisms of cancer-related anaemia. Abbreviations: ROS, Reactive 
Oxygen Species; IL, Interleukin; TNF, Tumor Necrosis Factor; IFN, Interferon; CRP, C-
reactive protein; EPO, erythropoietin. 
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CRA is typically normochromic, normocytic with a low reticulocyte count. Bone marrow 
iron stores are adequate or increased, but iron reutilization is impaired,  as shown by normal 
or increased ferritin levels and low serum iron levels and iron-binding capacity. In CRA, 
erythroid progenitor cells  respond normally to erythropoietin (EPO),  but EPO production 
is often not optimal for the level of anaemia. EOC patients and in particulary those in 
advanced stages of disease, suffer of anaemia similar to anaemia of inflammation. In these 
patients the lowest hemoglobin (Hb) levels are linked with the highest concentrations of 
markers of inflammation, such as proinflammatory cytokines (IL-6, IL-1, TNF-a), CRP, and 
Fibrinogen, and with the lowest leptin levels. Statistical analysis confirmed that Hb 
inversely correlates with stage and ECOG PS, proinflammatory cytokines, CRP, Fibrinogen, 
and ROS but positively correlated with leptin and GPx. By multivariate regression analysis, 
only stage of disease and IL-6 levels are independent factors in determining Hb levels. In 
accordance with these data, Van der Zee et al (van der Zee et al., 1995) demonstrated that 
higher levels of IL-6 in cystic fluids from patients with malignant versus benign ovarian 
tumors correlate with decreased Hb levels and increased platelet counts as marker of 
inflammatory status. Several researchers have also demonstrated that IL-6 is both necessary 
and sufficient for the induction of hepcidin, an iron regulatory hormone responsible for 
inflammation-induced iron disutilization resulting in the anaemia associated with acute and 
chronic infections,  chronic kidney disease, and neoplastic disease. Of note, in an our study 
(Macciò et al., 2005) we demonstrated a significant positive correlation between IL-6 and 
other markers of inflammation and oxidative stress. Thus, high serum level of IL-6 may be 
considered an indicator of the inflammatory and pro-oxidative status of patients with EOC 
and they could be linked also with a specific production of IL-6 by ovarian cancer cells. 
Although, it is not completely clear the mechanism through which the high levels of 
inflammatory mediators could induce CRA, several studies showed that proinflammatory 
cytokines blunt HUrEPO response to anaemia and impair erythroid colony formation in 
response to HUrEPO. Additionally, proinflammatory cytokines and the acute-phase 
proteins impair iron metabolism, inhibiting the reticuloendothelial iron stores with low iron 
circulating levels. Furthermore, the presence of proinflammatory cytokines in patients with 
EOC is associated with increased production of ROS either as a reflection of inflammation or 
as a consequence of their metabolic effects. Several studies demonstrated that ROSs are 
capable of inhibiting the production of EPO from kidney tissue. Takeda et al. (Takeda et al., 
2002) hypothesized that also nutritional status, probably through leptin action, may affect 
erythropoiesis and demonstrated that BMI and leptin were inversely correlated with 
rHuEPO dose required in patients receiving hemodialysis. Indeed, in vitro studies have 
suggested that leptin plays a role in enhancing erythropoiesis but, certainly, this hypothesis 
needs more definitive analysis. Therefore, the results we have reported suggest that anaemia 
in patients with EOC is, at least in part, the consequence of cancer-related chronic 
inflammation. Cancer-related anaemia must be recognized as a constitutional feature of 
patients with advanced neoplasms and not necessarily as just a consequence of 
antineoplastic treatments. Indeed, it has been widely demonstrated that CRA is associated 
with poor response to treatment and decreased survival, and with a decline in energy and 
activity levels, quality of life, and cognitive functions. An increased understanding of the 
pathogenesis of CRA may help identify the most appropriate treatment strategies.  

4.2.2 Inflammation and depression 

EOC patients, who have the poorest survival rate among gynaecologic cancer patients show 
high rates of depression. Depression among cancer patients has frequently been attributed 
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to the stress of a potentially life-threatening diagnosis and the difficulties of cancer 
treatment. However, several recent studies among cancer patients have found associations 
between depression, elevated levels of the proinflammatory cytokine and/or dysregulation 
of the neuroendocrine hormone cortisol (Costanzo et al., 2005). Inflammation has been 
implicated in the pathogenesis of depression and it has been proposed that inflammatory 
cytokines such as IL-6 may contribute to depression in cancer patients. Also in healthy 
adults, elevated IL-6 has been associated with depressive symptoms and clinical depression. 
In particularly IL-6 has profound effects on the CNS, inducing a syndrome of “sickness 
behaviors” characterized by anhaedonia and vegetative symptoms including fatigue, 
malaise, anorexia, difficulty concentrating, reduced activity, sleep impairments, and 
disinterest in activities. Proinflammatory cytokines exert differential effects on affective and 
vegetative depression, with more prominent effects on vegetative symptoms. Affective and 
vegetative depressive symptoms are thought to occur via distinct mechanisms, with 
vegetative symptoms occurring significantly earlier than mood disturbance. Depressive 
symptoms are also associated with hypercortisolemia, downregulated glucocorticoid 
receptors, and general dysregulation of the hypothalamic pituitary adrenocortical (HPA) 
axis. With chronic stress and depression, the negative feedback system regulating cortisol 
may become impaired and diurnal cortisol rhythms altered, particularly with respect to 
evening cortisol. There is a well-characterized feedback loop whereby IL-6 stimulates HPA 
secretion of cortisol which, in turn, exerts negative feedback on IL-6 for inflammatory 
control. Persistent inflammation is associated with HPA abnormalities and may contribute 
to the hypercortisolemia seen in depression. In particular, in advanced-stage EOC patients, 
assessed prior to surgery, elevations of IL-6 associated with both affective and vegetative 
depressive symptoms have been documented (Lutgendorf et al., 2008). Early-stage patients 
had levels of IL-6 and depressive symptoms that were greater than those observed in LMP 
patients but lower than those in patients with advanced disease. Elevated IL-6 was also 
related to greater disturbances in the diurnal cortisol rhythm among advanced patients, 
with the elevated plasma and ascites levels of IL-6 related to higher evening cortisol as well 
as higher afternoon cortisol and cortisol AUC. These results are consistent with the 
“proinflammatory cytokine theory of depression” in suggesting that pathophysiologic 
elevations in circulating inflammatory mediators may lead to the appearance of depressive 
symptomatology via cytokine regulation of CNS function.  
Proinflammatory cytokines influence the CNS via several direct pathways, including 

passage through permeability area of the blood-brain barrier and stimulation of afferent 

fibers in the vagus nerve. These fibers transmit information to specific brain nuclei with 

subsequent downstream effects on multiple central processes including induction of 

cytokines, neurotransmitters, stimulation of the HPA axis and development of sickness 

behaviors. Relationships between IL-6 and vegetative depression without any associations 

between affective depression and IL-6 are consistent with the possibility that inflammatory 

mechanisms may contribute specifically to vegetative symptoms, whereas other 

mechanisms may underlie affective symptoms of depression. Chronic inflammation can 

induce glucocorticoid resistance and lead to a hyperactive HPA axis. The resultant HPA 

dysregulation and high levels of cortisol may contribute to depression, providing an indirect 

pathway linking IL-6 and depression. Then, the excessive production of IL-6 by ovarian 

carcinomas may set up a chronic proinflammatory state, eliciting sickness behaviors in the 

CNS and hypersecretion and dysregulation of the HPA axis, both contributing to depressive 

symptomatology. Because of extremely high levels of tumor-secreted IL-6, particularly in 
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ascites, secreted cortisol may be inadequate to suppress IL-6. In turn, depression may 

contribute to enhanced IL-6 secretion. In fact, depression has been associated with systemic 

elevations in norepinephrine which is known to enhance IL-6 secretion by ovarian tumor 

cells in vitro, potentially setting up a positive feedback loop for IL-6 in the tumor 

microenvironment. It is also possible that all of these pathways may operate simultaneously 

(Weinrib et al., 2010). 

4.2.3 Inflammation and fatigue 

Fatigue is one of the most common and distressing side effects of cancer and its treatment 
and may persist long after successful treatment completion. Subjective and objective 
evidence suggest that a third to half of patients developing EOC report symptoms at 3 or 
more months prior to diagnosis (Lurie et al., 2009; Arriba et al., 2010). Fatigue may be part of 
these symptom complex (Smith, 2006). Cancer-related fatigue (CRF) has been defined by 
National Comprehensive Cancer Network as “a distressing persistent subjective sense of 
tiredness or exhaustion related to cancer or cancer treatment that is not proportional to 
recent activity and interferes with usual functioning”. It can adversely affect emotional, 
physical and mental well-being. CRF can also affect patients’ abilities to function in terms of 
their usual social activities, and their ability to carry on with their normal working lives. The 
two most plausible mechanism include an abnormal or prolonged inflammatory response 
and/or disruption to the HPA axis. Emerging evidence suggests that inflammatory 
processes may be involved in cancer-related fatigue both during and after treatment. 
Indeed, a wide range of different changes of the immune system has been shown in patients 
suffering from fatigue. The most common are deficit of cell-mediated immunity associated 
with high serum levels of the proinflammatory cytokines. Each of these cytokines can 
determine by themselves the symptomatology typical of patient suffering from fatigue. 
Indeed, it is well known that these cytokines play important actions both on the central 
nervous system and the endocrine system and at various sites involved in the regulation of 
energy metabolism. The same proinflammatory cytokines involved in cachexia and 
associated with chronic inflammation are potent stimulators of the HPA axis. Moreover, 
changes in the HPA axis may be caused by a number of different factors relevant to 
neoplastic disease: cancer itself and/or cancer treatment can alter the function of the HPA 
axis resulting in endocrine changes that cause or contribute to fatigue. All these findings 
highlight multiple and complex mechanisms through which the immune system function 
disorders may lead to fatigue. Moreover, the close link between fatigue and depression in 
cancer patients suggests that a common mechanism could underlie the development of both. 
Since serotonin is a principal (but not a sole) contributor to depression, the model would 
predict that serotonin-influencing interventions effective against clinical depression might 
also prove beneficial for fatigue. Furthermore, it has been proposed that patients with 
cancer, particularly those with anorexia–cachexia, have altered muscle protein metabolism, 
which may also contribute to cancer-related fatigue. 
Since the causes of fatigue are not fully understood, it is very difficult to treat it 

appropriately. The National Comprehensive Cancer Network’s clinical guidelines also 

provide further options for cancer-related fatigue management. These suggest initially 

treating any underlying reversible causes of fatigue (e.g. anaemia, poor nutrition or 

depression) and attending to general supportive measures and psychosocial support. A 

recent review (Minton et al., 2010) has examined drug treatment for fatigue as it represents 
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one of the ways this problem can be tackled. The review authors looked at trials in all types 

of cancer and at all stages of treatment. Fifty studies met the inclusion criteria but only 31 

(7104 participants) were deemed suitable for detailed analysis as they explored fatigue in 

sufficient detail. They found mixed results with some drugs showing an effect on fatigue. In 

particular the authors concluded that Methylphenidate, a stimulant drug that improves 

concentration, is effective for the management of cancer-related fatigue but the small 

samples used in the available studies mean more research is needed to confirm its role. 

Erythropoietin and darbopoetin, drugs that improve anaemia, are effective in the 

management of cancer-related fatigue. Research on inflammation and cancer-related fatigue 

helps to elucidate the biological basis for this common and troublesome symptom and may 

also promote the development of targeted therapies. In particular, use of cytokine 

antagonists may be a promising direction for intervention efforts. There is preliminary 

evidence that TNF-ǂ blockade with etanercept is safe and effective in reducing fatigue 

among patients with advanced cancer (Monk et al., 2006), but effects among patients with 

early stage cancer and cancer survivors have not been determined. Behavioural and mind–

body interventions also show considerable promise for treating fatigue and other cancer-

related symptoms, and there is preliminary evidence for their effects on immune function 

(Carlson et al., 2003; Fairey et al., 2005; Stevinson et al., 2009). These treatments may be more 

palatable to EOC patients than pharmacologic therapies and are another important avenue 

for research efforts. 

4.3 Chemoresistance 

It has been shown that increased IL-6 concentration in serum and ascites of EOC patients 

correlates with chemoresistance. In particular, the IL-6 signalling cascade in ovarian cancer 

cells has been associated with the development of cisplatin and paclitaxel resistance (Wang 

et al, 2010). The underlining mechanisms of IL-6-mediated chemoresistance in ovarian 

cancer cells are not so clear. However, some studies showed that IL-6 is associated with 

increased expression of multidrug resistance-related genes, apoptosis inhibitory proteins 

(Bcl-2, Bcl-xL and XIAP) as well as activation of Ras/MEK/Erk and PI3K/Akt signalling. 

Moreover, IL-6 signalling prevents chemotherapy-induced endothelial cells apoptosis (Lo et 

al., 2011). Thus, interference with IL-6 pathway may offer opportunities for new strategies in 

ovarian cancer therapy. Using a monoclonal antibody that specifically blocks IL-6 signalling 

(siltuximab), Guo et al. demonstrated in vitro that the combination of siltuximab with 

paclitaxel increased the sensitivity of ovarian tumour cells to paclitaxel (Guo et al., 2010).  

In vitro studies with ovarian cancer cell lines confirm that generation of paclitaxel-resistant 

sublines is often associated with increased IL-6 mRNA expression and protein secretion. As 

well known, IL-6 acts through a hexametric receptor, which contains the ligand-binding IL-

6a chain and the common cytokine receptor signal-transducing subunit gp130. The binding 

of IL-6 to gp130 activates multiple signal transduction pathways such as signal transducers 

and activators of transcription (JAK/STATs) pathway, Ras/MEK (mitogen-activated protein 

or extracellular signal-regulated kinase kinase)/ERK (extracellular signal-regulated kinase) 

pathway, and PI3K (phosphotidylinositol 3 kinase)/Akt pathway. Recently, evidence 

suggests that activation of Ras/MEK/ERK and PI3K/Akt signalling pathways play an 

important role in chemoresistance of EOC. A research by Wang et al (Wang et al., 2010) 

firstly demonstrated that autocrine production of IL-6 by ovarian cancer cell lines is 
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inversely associated with their response to cisplatin and paclitaxel. Moreover, both 

exogenous and endogenous IL-6 induce cisplatin and paclitaxel resistance in non-IL-6-

producing cells, whereas deleting of endogenous IL-6 expression in IL-6-overexpressing 

cells promotes the sensitivity of these cells to these anticancer drugs. Meanwhile, IL-6-

mediated resistance of EOC cells exhibits decreased proteolytic activation of caspase-3 and a 

number of studies have shown that the anti-apoptotic ability of IL-6 was associated with 

expression of the Bcl-2 family proteins that are typically associated with resistance to 

chemotherapy. Then, the main mechanism of drug resistance induced by IL-6 is exerted in a 

dose dependent manner by the increased expression of Bcl-2 family proteins. Other lines of 

evidence suggest that also the activation of Ras/MEK/ERK and PI3K/Akt, the most 

important cell survival signalling, protects EOC cells from chemotherapy. It has been shown 

that cisplatin treatment modulates ERK and that activation of ERK protects ovarian cancer 

cells from cisplatin-induced death. The inhibition in vitro of ERK signalling by a MEK1/2 

inhibitor blocked ERK activation and increased cisplatin sensitivity in specific EOC cell 

lines. Also, the inactivation of Akt and its downstream targets sensitizes human ovarian 

cancer cells to cisplatin and paclitaxel. Worthy of note, it is specifically IL-6 to be able to 

induce activation of ERK and Akt in ovarian cancer cells and that the use of specific 

inhibitors of these two signal transducers, inhibits IL-6-induced cisplatin and paclitaxel 

resistance. Taken together, these data suggest that IL-6 promotes chemoresistance of ovarian 

cancer cells via activation of multiple signal transduction pathways including ERK cascade 

and PI3K/Akt pathway. These results provide support for these signal transduction 

pathways as a strategy for reversing drug resistance.  

Another major downstream component of the IL-6 signalling pathway is STAT3. Duan et al. 
(Duan et al., 2006) has reported that inhibition of STAT3 expression increases the sensitivity 
of ovarian cancer cell lines to paclitaxel treatment in vitro, suggesting that the STAT3 
pathway may also be involved in chemoresistance of ovarian cancer cells. They found that 
IL-6 induced phosphorylation of STAT3 in several, but not all, of the examined ovarian 
cancer cell lines. However, it is possible that STAT3 could be activated also through IL-6-
independent mechanisms such as Src, epidermal growth factor receptor, or other cytokines 
like oncostatin in different cancer cells. 
In conclusion, IL-6 secreted by ovarian cancer and/or immune cells may contribute to the 
refractoriness of these cells to conventional chemotherapy through down-regulation of 
various signalling step. IL-6-induced chemoresistance may be associated with increase of 
both multidrug resistance-related genes (MDR1 and GSTpi) and apoptosis inhibitory 
proteins (Bcl-2, BclxL and XIAP), as well as activation of Ras/MEK/ERK and PI3K/Akt. 
Then, modulation of IL-6 expression or its related signalling pathways may be a promising 
strategy of treatment for drug-resistant EOC. 
Also COX-2 could represent a possible new marker of sensitivity to platinum-based 
chemotherapy in ovarian cancer. In a study by Ferrandina et al in a population of advanced 
ovarian cancer patients, COX-2 positivity was found in a statistically significant higher 
percentage of unresponsive cases than in patients responding to chemotherapy (Ferrandina 
et al., 2002b). The association between COX-2 positivity and poor chance of response to 
treatment was retained in multivariate analysis. The ability of COX-2 to predict tumour 
sensitivity to chemotherapy is not dependent on EGFR or Her-2/neu status and could be 
independently associated with prognosis. Therefore, in this context, the availability of 
agents able to specifically interfere with COX-2 is of potential interest. 
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5. Inflammation and possible therapeutic implications 

Our knowledge on ovarian cancer-related inflammation offers innovative therapeutic 
strategies. For many years, all efforts to treat cancer have concentrated on the 
destruction/inhibition of tumour cells. Strategies to modulate the host microenvironment 
offer a complementary perspective. Primary proinflammatory cytokines represent the main 
targets and ongoing results in this direction justify continuing efforts (Colotta et al., 2009). 
In particular, IL-6, as described above, plays a central role in EOC in promoting tumour 
growth and progression and influencing its prognosis and related symptoms. Collectively, 
all data available in the literature and reported in the previous sections of this chapter lead 
to hypothesize that IL-6 antagonists may have therapeutic activity in patients with ovarian 
cancer via inhibition of a tumour-promoting cytokine network. Accordingly to this 
evidence, Coward et al. (Coward et al., 2011) carried out an experimental study to assess the 
activity of the anti-human-IL-6 antibody siltuximab (CNTO328) in tissue culture of EOC and 
human ovarian cancer xenografts. The authors demonstrated that IL-6 is expressed both in 
malignant cells and infiltrating leukocytes, endothelial cells and stromal fibroblast. In 
addition, they found that high IL-6 expression in EOC cells was associated with poor 
prognosis. Vice versa, IL-6 inhibition prevents the constitutive production of IL-6 and other 
inflammatory and angiogenic mediators by EOC cells. Additionally, siltuximab had also a 
significant inhibitory effect on tumour cell proliferation, macrophage infiltration and 
angiogenesis. In the same paper Coward et al presented the results of a single arm phase II 
clinical trial of the anti-human IL-6 monoclonal antibody siltuximab in women with 
recurrent ovarian cancer. Interestingly, they showed that siltuximab, given as a single agent, 
has some clinical activity in recurrent, platinum-resistant ovarian cancer. A total of eight 
patients achieved radiological disease stabilisation, which lasted six months or more in four 
cases. One of these eight also had normalisation of CA125 that lasted for 12 weeks, giving an 
overall partial response by combined RECIST/CA125 criteria. Noteworthy, partial response 
was accompanied by a reduction in 18F FDG uptake as detected by PET/TC imaging. 
Moreover, siltuximab treatment induced a decline in plasma levels of CRP, CCL2, CXCL12, 
VEGF and IL-8. Also a significant increase in Hb levels occurred in the majority of patients. 
The study by Coward et al is the first clinical study of anti-IL-6 therapy carried out in a 
population of EOC patients. Several experimental studies support the rationale for using 
this anti-IL-6 mAb in EOC. In fact, it has been demonstrated that siltuximab specifically 
suppress IL-6-induced STAT3 phosphorylation and STAT3 nuclear translocation, as well as 
the levels of Stat3 downstream proteins such as MCL-1, Bcl-X (L), and surviving, thus 
targeting the main intracellular mediator of the effects of cytokines on EOC cells growth 
(Guo et al., 2010). 
Indeed, as well described above, STAT3 is constitutively active in EOC and leads to 

increased expression of genes regulating survival and proliferation, and drives the 

malignant behaviour of these cells. Therefore, the identification of novel compounds that 

selectively inhibit STAT3 activity may lead to additional useful tools to reduce cancer-

associated cell proliferation, inflammation, and chemotherapeutic resistance. A potent 

and selective STAT3 inhibitor has been identified through the use of high throughput 

screening, synthetic medicinal chemistry, and molecular assays. Due to the central role of 

aberrant STAT3 signalling in ovarian cancer pathogenesis, this compound may provide a 

useful starting point for the development of chemical scaffolds to block STAT3 signalling 

for cancer therapy (Madoux et al., 2010). In particular, STAT3 dimerization inhibitors 
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could play a significant role in the future of cancer and adjuvant cancer therapies 

(Lavecchia et al., 2011). 

STAT3 activation is also induced by hypoxia that is commonly observed in many solid 

tumours and represents a major obstacle to chemo- or radiation therapy. In an experimental 

animal model it has been shown that exposure of mice containing human ovarian cancer 

xenograft tumour to hyperbaric oxygen (HBO) obtained a significant reduction in tumour 

volume, associated with a significant decrease of STAT3 (Tyr 705) activation and cyclin-D1 

protein/mRNA levels. Interestingly, HBO exposure, in combination with weekly 

administration of cisplatin, also significantly reduced the tumour volume. Therefore, 

therapeutic strategies able to increase tumour oxygenation may be able to inhibit key steps, 

such as STAT3 activation, involved in the ovarian tumour progression. (Selvendiran et al., 

2010). Moreover, the reduced effectiveness of conventional chemotherapeutic drugs 

cisplatin and taxol in eliminating the hypoxic ovarian cancer cells suggests a role for 

pSTAT3 in cellular resistance to chemotherapy. It has been shown that inhibition of 

STAT3 followed by treatment with cisplatin or taxol resulted in a significant increase in 

apoptosis supporting the hypothesis that hypoxia-induced STAT3 activation is 

responsible for chemoresistance (Selvendiran et al., 2009). According to this evidence the 

correction of anaemia and the maintenance of adequate Hb levels during cancer 

chemotherapy should be addressed as a fundamental outcome in the therapeutic 

strategies of EOC. 

Disruption of STAT3 could also be therefore an effective approach to control EOC 

tumorigenesis. Among the several compounds tested for chemoprevention of EOC 

curcumin is one of the most interesting and studied. Curcumin is a dihydroxyphenolic 

compound, whose anti-tumour mechanisms involve regulation of STAT-3 and the negative 

regulators of STAT-3, including suppressors of cytokine signalling proteins (SOCS-1 and 

SOCS-3), protein inhibitors of activated STAT (PIAS-1 and PIAS-3), and SH2 domain-

containing phosphatases (SHP-1 and SHP-2). Treatment of ovarian cancer cells with 

curcumin induced a dose- and time-dependent decrease of constitutive IL-6 expression and 

IL-6-induced STAT-3 phosphorylation, which is associated with decreased cell viability and 

increased cleavage of caspase-3. Moreover, curcumin suppresses JAK-STAT signalling also 

via activation of PIAS-3, thus attenuating STAT-3 phosphorylation and tumour cell growth 

(Saydmohammed et al., 2010). The activity of curcumin on STAT3 is also mediated by its 

ability to inhibit lysophosphatidic acid (LPA) which is a biolipid that stimulates tumour cell 

invasion and metastasis by inducing phosphorylation of STAT3 as well as IL-6 and IL-8 

secretion, which in turn results in STAT3 phosphorylation. Treatment of the cells with 

curcumin inhibited LPA-induced IL-6 and IL-8 secretion and STAT3 phosphorylation, 

leading to blocked ovarian cancer cell motility (Seo et al., 2010). 

Since the same inflammatory mediators that promote tumour growth also are responsible 

for cancer-related symptoms, i.e., cachexia/anorexia, anaemia, fatigue, pain, debilitation and 

shortened survival, a concerted effort should be made to attack inflammation alongside with 

other anticancer measures at initial diagnosis with the consequent probability of improving 

both patient quality of life and survival (MacDonald, 2007). Therefore, counteracting cancer-

related inflammation is certainly a key target in the therapeutic approach of symptoms 

associated to advanced cancer, especially in EOC patients who are diagnosed at advanced 

stage and suffer of severe distressing symptoms. A suggestive example of how the 
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modulation of inflammation may be useful in the care of EOC patients is represented by the 

efficacy of lactoferrin in association to rHuEPO in the treatment of chemotherapy-induced 

anaemia. In fact, lactoferrin is a specific protein involved in iron transport mechanisms, 

which has also an important role in host defence against infection and excessive 

inflammation. Results from a recent open label randomised phase III study of our group 

(Macciò et al., 2010), including EOC patients (20% in each arm), demonstrated that 

lactoferrin plus rHuEPO was able to increase Hb levels with a efficacy similar to iron i.v. in 

term of haematopoietic response but with a better capacity to modulate iron homeostasis 

and inflammation (as demonstrated by decrease of ferritin and CRP levels in patients 

treated with lactoferrin).  

Specific inhibition of proinflammatory cytokines, and particularly IL-6, has also been tested 

in the therapeutic approach of cancer-related cachexia. Preliminary results form a phase I 

study showed that i.v. infusion of a specific anti-IL-6 MoAb was able to reverse fatigue, 

increase haemoglobin and albumin, and improve muscle strength (Clarke et al., 2009). 

However, according to the most recent findings, the best management of cancer-related 

symptoms, such as weight loss, muscle wasting, anorexia, anaemia, fatigue, which globally 

define the clinical picture of cachexia, requires a multimodal approach by a multi-

disciplinary team and is best commenced earlier rather than later (Bosaeus, 2008). 

Intervention should include dietary counselling, nutritional and vitamin supplementation, 

exercise concordant with the patient's physical condition, anti-inflammatory agents, 

anabolic drugs and the most adequate symptom managements. 

In the context of such combined approaches, one of the most intriguing ones was an open 

phase II trial published by our group (Mantovani et al., 2006) which aimed to test the safety 

and efficacy of an integrated treatment based on diet, pharmaconutritional support 

administered orally, and drugs in a population of cachectic patients with advanced cancer at 

different sites, including also a significant percentage of EOC patients. The treatment consisted 

of diet with high polyphenols content (400 mg), antioxidant treatment (300 mg/day alpha 

lipoic acid+2.7 g/day carbocysteine lysine salt+400 mg/day vitamin E+30,000 IU/day vitamin 

A+500 mg/day vitamin C), and pharmaconutritional support enriched with two cans per day 

(n−3)-PUFA (eicosapentaenoic acid and docosahexaenoic acid), 500 mg/day MPA and 200 

mg/day selective cyclooxygenase-2 inhibitor celecoxib. The treatment duration was 4 months. 

Body weight increased significantly from baseline, as did LBM and appetite. There was an 

important decrease of proinflammatory cytokines IL-6 and TNF-ǂ, and a negative relationship 

worthy of note was found between LBM and IL-6 changes. As for quality of life, there was a 

significant improvement in the European Organization for Research and Treatment of Cancer 

(EORTC) QLQ-C30, Euro QL-5D and fatigue assessed by Multidimensional Fatigue Symptom 

Inventory-Short Form (MFSI-SF) scores. The results overall showed the treatment to be both 

safe (without significant adverse events) and effective as for increase of body weight, increase 

of LMB, decrease of proinflammatory cytokines, improvement of quality of life parameters, 

amelioration of fatigue symptom. On the basis of these results, we started a phase III 

randomized clinical trial (Mantovani et al., 2010) to establish which was the most effective and 

safest treatment of CACS and oxidative stress in improving selected key variables as 

primary endpoints: increase of LBM, decrease of REE, increase of total daily physical 

activity, decrease of IL-6 and TNF-ǂ, and improvement of fatigue. Three hundred thirty-two 

assessable patients with cancer-related anorexia/cachexia syndrome, including a significant 
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proportion of advanced EOC patients, were enrolled. All patients were given as basic 

treatment polyphenols plus antioxidant agents alpha-lipoic acid, carbocysteine, and 

vitamins A, C, and E, all orally administered. Then patients were randomly assigned to one 

of five treatment arms: arm 1, MPA (500 mg/day) or MA (320 mg/day); arm 2, oral 

supplementation with EPA; arm 3, L-carnitine (4 g/day); arm 4, thalidomide (200 mg/day); 

and arm 5, a combination of the above (Figure 4).  

Treatment duration was 4 months. Analysis of variance showed a significant difference 

between treatment arms. A post hoc analysis showed the superiority of arm 5 over the 

others for all primary endpoints. An analysis of changes from baseline showed that LBM (by 

dual-energy X-ray absorptiometry and by L3 computed tomography) significantly increased 

in arm 5. REE decreased significantly and fatigue improved significantly in arm 5. Appetite 

increased significantly in arm 5; IL-6 decreased significantly in arm 5 and arm 4; Glasgow 

Prognostic Score (GPS) and Eastern Cooperative Oncology Group (ECOG) performance 

status (PS) score decreased significantly in arm 5, arm 4, and arm 3. Toxicity was quite 

negligible, and was comparable between arms. In conclusion, the most effective treatment in 

terms of all three primary efficacy endpoints and the secondary endpoints appetite, IL-6, 

GPS, and ECOG PS score was the combination regimen that included all selected agents. 

 

 

Fig. 4. Phase III randomised clinical trial of five different arms of treatment for cancer 
cachexia: treatment plan. 

6. Conclusion 

Proinflammatory cytokines, and in particular IL-6, as demonstrated in the present chapter, 
are involved in the development and progression of EOC. They are also associated with 
fatigue, depression, anaemia, pain and cachexia that impact significantly quality of life. 
Strategies to inhibit the effect of inflammation and such cytokines might therefore have a 
profound effect on quality of life and survival. In particular, IL-6 antagonism seems to have 
the most promising therapeutic activity in EOC patients but further clinical trials testing it 
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both alone and in a multimodal approach are warranted. Certainly, from the body of 
evidence described in this chapter, it is clear that the assessment of inflammation markers, 
and especially IL-6, should be included in monitoring EOC during its course, from diagnosis 
to terminal stages, in order to develop the most appropriate care of EOC patients and allow 
the best supportive therapy considered as the irreplaceable therapeutic approach concurring 
to patients global well-being. 
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