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1. Introduction 

A fundamental property of all living organisms is related to the continuous gathering of 
environmental information and the expression of physiological responses aimed to optimize 
its performance under new environmental conditions. In order to keep homeostasis, plants 
need to continuously gather information about its environment and to react physiologically, 
in order to synchronize its normal biological functions. Plant cells become bio - 
electrochemically excited under the influence of environmental changes and the conduction 
of these electric potential modifications to distant plant organs have been widely reported. 
Electrochemical phenomena in plants have attracted researchers since the eighteenth 
century (Bertholon, 1783; Burdon-Sanderson, 1873; Darwin, 1875; Lemström, 1904; Bose, 
1926); however, only in the last decade numerous papers related to plant electrophysiology 
have been published (for a comprehensive review on the subject see Volkov´s book “Plant 
Electrophysiology, Theory and Methods”, 2006). Detection of electrical potentials in plants 
indicates that electrical signaling is a major system to transmit information over long 
distances throughout its organs. The reason why plants have developed pathways for 
electrical signal transmission is probably related to its need to respond rapidly to 
environmental stress factors (Fromm & Lautner, 2007). Electrophysiological studies of long-
distance signals in plants and animals contribute to our knowledge of the living world by 
revealing important similarities and crucial differences between plants and animals, in an 
area that might be directly related to their different capacities to respond to environmental 
change. 

The existence of electrophysiological mechanisms for information perception, transmission 

and processing between different plant organs and tissues, allowing the expression of fast 

and accurate physiological reactions to specific biotic or abiotic stimuli, is expressed by 

means of real-time detectable action (APs) and variation (VPs) potentials (Datta & Palit, 2004; 

Gil et al., 2008; Lautner et al., 2005; Oyarce & Gurovich, 2010; Volkov et al., 2009; Wang et 

al., 2009). An additional type of electric potential in plants has been proposed by 

Zimmermann et al. (2009), to be called system potential. In addition to APs that occur also in 

animals and lower plants (Trebacz et al., 2005) higher plants feature an additional, unique, 

hydraulically propagated type of electric signals VPs, called also slow wave potentials 

(Stahlberg et al., 2005). 

Several models have been proposed to explain the onset of plant cell electric excitation, 
resulting from external stimuli (Wayne, 1993; Fromm & Lautner, 2007). All plant cells are 
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surrounded by a plasma membrane (Murphy et al., 2010), composed of a lipid bilayer, with 
a variety of molecular structures embedded in it, known generically as ion channels and 
electrogenic pumps (Hedrich & Schroeder, 1989). Electrochemical excitation is caused by ionic 
fluxes through the cell plasma membrane (Knudsen, 2002; Blatt, 2008), creating an electric 
charge modification in the membrane itself, as well as a differential charge on either side. 
This trans - membrane potential is the difference in voltage (or electrical potential 
difference) between the interior and exterior of a cell (Vinterior − Vexterior). Plant plasma 
membranes always maintain a potential, the cell interior being more negative than the 
exterior, arising mainly from the activity of electrogenic pumps. As an example, H+-
transporting ATPases (Sze et al., 1999) pump protons out of the cell, thus maintaining a pH 
gradient across the plasma membrane. This process is involved in the simultaneous symport 
of carbohydrates and amino acids into the cell, which are produced at different plant tissues 
as photosynthetic derivatives. Other electrogenic ion pumps described for plant cell plasma 
membranes are related to ion and solute fluxes, underpinning inorganic mineral nutrient 
uptake; they trigger rapid changes in secondary messengers such as cytosolic-free 
Ca+2 concentrations, and also power the osmotic gradients that drive cell expansion 
(Schroeder & Thuleau 1991; Gelli & Blumwald, 1997; Zimmermann et al., 1997; Bonza et al., 
2001; Sanders, 2002; Blatt, 2008; Lautner & Fromm, 2010). The K+1-transporting ATPase, also 
embedded in the cell plasma membrane, enables the onset of different ion concentrations 
(and therefore electrical charge) on the intracellular and extracellular sides of the membrane 
(Maathuis & Sanders, 1997).  

Ion channels, when active, partially discharge the plasma membrane potential, while the 

electrogenic pumps restore and maintain it (Fromm & Spanswick, 1993; Neuhaus & Wagner, 

2000). The plasma membrane potential has two basic functions. First, it allows a cell to 

function as a battery, providing power to operate the variety of electrogenic pumps 

embedded in its lipid bilayer. Second, in electrically excitable cells, it is used for transmitting 

signals between different parts of a cell or to other plant cells, tissues or organs. Opening or 

closing of ion channels at one point in the membrane produces a local and transient change 

in the membrane potential, which causes an electric current to flow rapidly to other points 

in the membrane and eventually, to the plasma membrane of surrounding cells. In non-

excitable cells, and in excitable cells in their baseline state, the membrane potential is held at 

a relatively stable value, called the resting potential, characterized by its absence of 

fluctuations; the resting potential varies from −20 mV to −200 mV according to cell type. 

Opening and closing of ion channels can induce a departure from the resting potential, 

called a depolarization if the interior voltage rises, or a hyperpolarization if the interior voltage 

becomes more negative. In excitable cells, a sufficiently large depolarization can evoke an 

action potential (AP), in which the membrane potential very rapidly undergoes a significant, 

measurable change, often briefly reversing its sign; AP are short-lasting, all-or-nothing 

events. 

Change in trans – plasma membrane potential creates a wave of depolarization, which affects 

the adjoining resting plasma membranes, thus generating an impulse. Once initiated, these 

impulses can propagate to adjacent excitable cells. Electrical signals can propagate along the 

plasma membrane (Van Bel & Ehlers, 2005; Volkov et al., 2011) on short distances through 

plasmodesmata and on long distances in plant phloematic tissue (Ksenzhek & Volkov, 1998; 

Volkov, 2000; Volkov, 2006; Volkov et al., 2011). 
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Research on the subject of electrochemical phenomena in plants is generically known as 
plant electrophysiology (Volkov, 2006); this knowledge is the basis of a newly developed 
discipline in the field of plant physiology: plant neurobiology (Brenner et al, 2006; Stahlberg, 
2006; Baluška & Mancuso, 2008; Barlow, 2008). Plant neurobiology is aimed at establishing 
the structure of information networks that exist within the plant, which is expressed as 
responses to environmental stimuli by means of electrochemical signals (Baluška et al., 2004; 
Trewavas, 2005). These signals seem to complement other plant signals: hydraulic, 
mechanical, volatile and hormonal, already well documented in plant science (Fromm & 
Lautner, 2007; Gil et al., 2009; Dziubinska et al., 2003). 

Research on plant electrophysiology specifically focused on woody plants like poplar and 
willow trees, have been seldom reported (Fromm & Spanswick, 1993; Lautner et al, 2005; 
Gibert et al., 2006). In fruit bearing deciduous and perennial plant species, electrophysiology 
studies are very limited as well, although it is in such plants that the need for rapid and 
efficient signals other than chemical and hydraulic signaling becomes more obvious (Gil et 
al., 2008; Nadler et al. 2008; Gurovich & Hermosilla, 2009; Oyarce & Gurovich, 2011). These 
studies have associated the effect of water stress, deficit irrigation, light cycles and 
mechanical or heat injury with electrical signaling in several fruit bearing tree species. 
Electrical signaling has been also associated to conditions of differential soil water 
availability; the use of real-time information on tree electrochemical behavior, as early 
indicator of biotic or abiotic induced water stress conditions, can provide a strategy to 
quantitatively relate plant physiological reactions to environmental changes and eventually, 
for the auto-programmed operation of pressurized irrigation systems, aimed to prevent 
water stress conditions in irrigated trees (Oyarce and Gurovich, 2010). 

Additional applications of electrical signals in plants have been postulated, including its 

eventual use as environmental biosensors (Davies, 2004; Volkov & Brown, 2006)  as well as 

to correlate sap flow based ET measurements with plant electrical behavior has been 

proposed (Gibert et al., 2006). Artificially applied electric potential differentials between 

plant organs under field conditions may enhance water use efficiency in woody plants, 

through its controlled influence on stomata conductance and plant internal water flux (Gil et 

al., 2008; Jia & Zhang, 2008; Gil et al., 2009; Gurovich, 2009).  

2. History of plant electrophysiology 

For a long time, plants were thought to be living organisms whose limited ability to move 

and respond was related to its relative limited abilities of sensing (Trewawas, 2003), with the 

exception only for plants with rapid and/or purposeful movements such as Mimosa pudica 

(also called the sensitive plant), Drosera (sundews), Dionea muscipula (flytraps) and tendrils of 

climbing plants. These sensitive plants attracted the attention of outstanding pioneer 

researchers such as Burdon-Sanderson (1873, 1899), Pfeffer (1873), Haberlandt (1914), 

Darwin (1896) and Bose (1926). They found plants not only to be equipped with various 

mechano-receptors that exceeded the sensitivity of a human finger, but also its ability to 

trigger action potentials (APs) that implemented these movements. 

The discovery that common plants had propagating APs just as the “sensitive” plants 
(Gunar & Sinykhin 1962, 1963; Karmanov et al., 1972) was a scientific breakthrough with 
important consequences, correcting the long-held belief that normal plants are less sensitive 
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and responsive as compared to the so-called “sensitive plants.” Also, it led to studies aimed 
to understand the meaning of the widely distributed electrical signals in different plant 
tissues (Pickard, 1973), which carry important messages with a broader relevance than the 
established induction of organ movements in “sensitive plants”.  

The first known recording of a plant AP was done on leaves of the Venus flytrap (Dionea 
muscipula Ellis) in 1873 by Burdon-Sanderson, measuring the voltage difference between 
adaxial and abaxial surfaces of a Dionea leaf half, while stimulating the other half 
mechanically by touching the hairs (Burdon-Sanderson 1873, 1899). The trap closure in 
Dionea has been considered as a model case, showing comparable roles of APs in plants and 
nerve–muscle preparations of animals (Simons, 1992). Bose (1926) proposed that vascular 
bundles act analogous to nerves, by enabling the propagation of an excitation that moved 
from cell to cell. A comprehensive review of the early development of plant 
electrophysiology is provided by Stahlberg (2006). 

For many years, the application of external electrodes to the surface of plant and animal 
organs was the only available technique for measuring potentials. The introduction of 
microelectrodes, like KCl-filled glass micropipettes with a tip diameter small enough to be 
inserted into living cells (Montenegro et al., 1991), enabled to record intracellular, i.e. real, 
membrane potentials (Vm). This technique was first adopted for giant cells from 
charophytic algae such as Chara and Nitella. Later on, it was complemented with precise 
electronic amplifiers and voltage clamp circuits, monitoring the activity of ion channels by 
direct measurement of ion currents instead of voltages. Parallel voltage (V) and current (I) 
measurements allowed I-V-curves, used to differentiate between the action of an ion 
channel (ohmic or parallel changes in I and V) or ion pump (non-ohmic relation between V 
and I changes) (Higinbotham, 1973).  

As a next step to improve recording possibilities, the patch clamp technique was developed; 
by going from single cells to isolated membrane patches, one can record the current of as 
small a unit as a single ionic channel. Initially developed for animal cells, this technique was 
rapidly adopted for plant cell studies (Hedrich & Schroeder 1989). Voltage clamp techniques 
were introduced to demonstrate the contribution of various ion currents involved in the AP 
in Chara cells (Lunevsky et al. 1983; Wayne 1994). To this day, charophytic algae have served 
as important research models for higher plant cells electric behavior studies. 

Additional studies made considerable progress in linking electrical signals with respiration 
and photosynthesis (Lautner et al, 2005; Koziolek et al. 2003), phloem transport (Fromm & 
Eschrich, 1988; Fromm & Bauer, 1994) and the rapid, plant-wide deployment of plant 
defenses (Wildon et al. 1992; Malone et al. 1994; Herde et al. 1995, 1996; Volkov & Haak 
1995; Stankovic & Davies, 1996, 1998; Volkov, 2000). The significant development of plant 
neurobiology in the last decade is mostly related to electrophysiology based research, as an 
integrated view of plant signaling and behavior (Brenner et al., 2006; Baluška & Mancuso 
2008; Barlow, 2008).  

3. Hormonal and hydraulic physiological signals in woody plants 

Hydraulic and hormonal signals in woody plants complement signaling electrophysiology 
in plants, playing a significant role in the dynamics of information processes integrating the 
plant responses to the environment.  

www.intechopen.com



 
Electrophysiology of Woody Plants 

 

5 

Hydraulic pressure signals are propagating changes in water pressure inside plant tissues 
(Malone, 1996); plant tissues have plenty of hydraulic connections (mainly xylematic 
vessels) which provide a pathway for long-distance transmission of hydraulic signals. 
Pressure waves can be relatively quick and fast, as they can diffuse through the plant at the 
speed of sound (~1500 m s−1 in water), but, to be physiologically important, a hydraulic 
signal must cause a significant change in turgor pressure inside a cell. As plant cells can be 
elastic, their turgor will change only when a significant influx (or efflux) of water occurs: the 
needed flux is strictly linked with the hydraulic capacitance of the cell, a widely variable 
property related to plant water potential and plant cell wall elasticity. Thus, hydraulic 
signals must involve massive water mass flow; for example, to increase the turgor pressure 
in leaf cells by 1 bar, a net water influx equivalent to 1–5% of the total volume of a leaf must 
occur (Malone 1996). For a detailed review on plant hydraulic signaling, see Mancuso & 
Mugnai (2006). 

Many chemicals are critical for plant growth and development and play an important role in 
integrating various stress signals and controlling downstream stress responses, by 
modulating gene expression machinery and regulating various transporters/pumps and 
biochemical reactions. These chemicals include calcium (Ca+2), cyclic nucleotides, 
polyphosphoinositides, nitric oxide (NO), sugars, abscisic acid (ABA), jasmonates (JA), 
salicylic acid (SA) and polyamines. Significant research in chemical signaling in plants has 
been aimed to understand the ability of plants respond to abscisic acid (ABA), often called 
the stress hormone. This hormone controls many of the adaptive responses that plants have 
evolved to conserve water when they perceive a reduced supply of this commodity. Stomata 
closure, reduced canopy area, and increased root biomass are three of the major adaptive 
processes regulated by ABA that can potentially be manipulated to improve crop water use 
efficiency (Wilkinson & Hartung, 2009; Jiang & Hartung, 2008). A comprehensive review on 
chemical signaling under abiotic stress environment in plants has been recently published 
by Tuteja & Sopory (2008). 

4. Facts and hypothesis about electrical signals in woody plants 

Rapid plant and animal responses to environmental changes are associated to electrical 
excitability and signaling, using the same electrochemical pathways to drive physiological 
responses, characterized in animals by movement (physical displacement) and in plants by 
continuous growth. In plants and animals, signal transmission can occur over long and short 
distances and correspond to intra and intercellular communication mechanisms, which 
determine the physiological behavior of the organism. Electrical pulses can be monitored in 
plants as signals, which are transmitted through excitable phloematic cell membranes, 
enabling the propagation of electrical pulses in the form of a depolarization wave or “action 
potential” AP. (Dziubinska et al., 2001; Fromm & Spanswick, 2007). At the onset of a change 
in the environmental conditions, plants respond to these stimuli at the site of occurrence and 
bioelectrical pulses are distributed throughout the entire plant, from roots to shoots and vice 
versa. A working model (Figure 1) to define plant behavior has been adapted from work 
published by Volkov & Ranatunga, 2006 and Gibert et al., 2006. 

Two different types of electrical signals have been reported in plants: AP (Fromm, 2006), 
which is a rapid propagating electrical pulse, travelling at a constant velocity and 
maintaining a constant amplitude, and VP (slow wave or “variation potential”), 
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corresponding to a long range of a variation pulse (Stahlberg et al., 2006), which varies with 
the intensity of the stimulus, and its amplitude and speed decrease with increasing distance 
from its generation site (Davies, 2004, 2006). AP is an all-or-none depolarization that spreads 
passively from the excited cellular membrane region to the neighboring non-excited region. 
Excitation in plant cells depends on Ca+2 depolarization and Cl- and K+ repolarization, that 
spreads passively from the excited cellular membrane region to the neighboring non-excited 
region (Brenner et al., 2006). A similitude on electrical signal transmission between animal 
and plant organs has been postulated by Volkov & Ranatunga (2006), using the model 
presented in Figure 2. 

 

Fig. 1. Proposed mechanism of electric potential signals in plants (Adapted from Volkov & 
Ranatunga, 2006 and Gibert et al., 2006). 

 

Fig. 2. The Hodgkin-Huxley (HH, 1952) equivalent circuit for an axon (A) and the modified 
HH circuit for sieve tubes in phloem (B) (Volkov & Ranatunga, 2006). 

Electrical conduction rate of most of the plant action potentials studied so far is in the range 
of 0.01-0.2 m s-1 , i.e. much slower than the conduction velocity of action potentials in animal 
nerves, which is between 0.4 and 42 m s-1 (van Bel & Ehlers 2005). Usually, the receptor 
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potential lasts as long as the stimulus is present, being an electrical replica of the initial 
stimulus. If the stimulus is sufficiently large to cause the membrane potential to depolarize 
below a certain threshold, this will cause an action potential to be generated. It shows a 
large transient depolarization which is self perpetuating and therefore allows the rapid 
transmission of information over long distances. 

Action potentials can propagate over short distances through plasmodesmata, and after it 
has reached the sieve element/companion cell (SE/CC) complex (Figure 3), it can travel 
over long distances along the SE plasma membrane in both directions. 

 

Fig. 3. Action and variation potentials in plants. (After Lautner et al. 2005; Fromm & Lautner, 
2007). 

In contrast, a VP is generated at the plasma membrane of parenchyma cells (PAs) adjacent to 
xylem vessels (VEs) (Figure 3) by a hydraulic wave or a wounding substance. Because VPs 
were measured in SEs, it is suggested that they also can pass through the plasmodesmal 
network and can reach the phloem pathway. However, in contrast to APs, their amplitude 
will be reduced with increasing distance from the site of generation. 

 

Fig. 4. An action potential recorded in Aloe vera spp. (After Volkov et al., 2007). 

Action potentials (AP) induced in leaves of an Aloe vera spp. plant by thermal shock (flame) 
are described by Volkov et al., 2007 (Figure 4). Measurements were recorded at 500,000 
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scans/second and 2,000,000 scans/sample. Channel 1 is located on the leaf treated by 
thermal shock and channel 2 is located on a different leaf of the same plant. Distance 
between Ag/AgCl electrodes for each channel was 1 cm. 

Stankovic et al. (1998) provide data on APs and VPs measured in Helianthus annuus stems by 
extracellular electrodes (Figure 5). The AP was elicited by electrical stimulation (±), and the 
VP by wounding (W). 

 

Fig. 5. Action potentials (APs) and variation potentials (VPs) recorded in the stem of 
Helianthus annuus by extracellular electrodes, E1–E4. Vertical arrows indicate the moment of 
stimulation. Arrowheads point to the direction of propagation. (After Stankovic et al., 1998). 

After a transient change in the membrane potential of plant cells (depolarization and 
subsequent repolarization), VPs and APs make use of the vascular bundles to achieve a 
potentially systemic spread through the entire plant. The principal difference used to 
differentiate VPs from APs is that VPs show longer, delayed repolarizations, as shown in 
Figure 6.  

 

Fig. 6. APs (a to e) and VP (f to h) in plants (After Stahlberg et al., 2006). 

VPs repolarizations show a large range of variation that makes a clear distinction to APs 
difficult; however, VPs and APs do differ more clearly in two aspects: a. the causal factors 
stimulating their appearance - the ionic mechanisms of their depolarization and 
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repolarization phases – and b. the mechanisms and pathways of signal propagation. The 
generation of APs occurs under different environmental and internal influences, like touch, 
light changes, cold treatment or cell expansion that trigger a voltage-dependent 
depolarization spike in an all-or-nothing manner. The depolarizations of a VP arise with an 
increase in turgor pressure cells experience as a result of a hydraulic pressure wave, that 
spreads through the xylem conduits after rain, embolism, bending, local wounds, organ 
excision or local burning. While APs and VPs can be triggered in excised organs, VPs 
depend on the pressure difference between the atmosphere and an intact plant interior. 
High humidity and prolonged darkness will also suppress VP signaling.  

The ionic mechanism of the VP is thought to involve a transient shutdown of a P-type H+-
ATPase in the plasma membrane and differs from the mechanism underlying APs. Another 
defining characteristic of VPs is the hydraulic mode of propagation, that enables them — 
but not APs — to pass through killed or poisoned areas. Unlike APs they can easily 
communicate between leaf and stem. VPs can move in both directions of the plant axis, 
while their amplitudes show a decrement of about 2.5% cm−1 and move with speeds that can 
be slower than APs in darkness and faster in bright light. The VPs move with a rapid 
pressure increase, establishing an axial pressure gradient in the xylem. This gradient 
translates distance (perhaps via changing kinetics in the rise of turgor pressure) into 
increasing lag phases for the pressure-induced depolarizations in the epidermis cells. VPs 
are not only ubiquitous among higher plants but represent a unique, defining characteristic 
without parallels in lower plants or animals (Stahlberg et al., 2005; Baluska, 2010). 

Electric signals in different fruit bearing trees and other plants species are evaluated at the 

present, and the effects of different environmental stimuli on its magnitudes and 

interpretation is a major subject of research. Also, the large number of experiences, yet to be 

published and now on the peer review referral process in several scientific journals is 

indicative of a major breakthrough in our knowledge of plant electrical physiology. As an 

example, data on the effects of tipping and shoot removal in apple trees (Gurovich, Rivera & 

García, 2011, Figure 7), and dark – light cycles in olive trees (Gurovich and Cano, 2011, 

Figure 8) are presented below. 

 

      

Fig. 7. Apple tree (Malus domestica Borkh), cv. Granny Schmidt electric behavior after tipping 
(A) and basal shoot removal (B). Electrodes are separated by 35 cm. (After Gurovich, Rivera & 
García, 2011, unpublished data). 
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In Figure 7A an electrical pulse is transmitted from the tree distal upper tipped point down 
to the microelectrode located 50 cm in the trunk, within the canopy, with a 3 s delay, and  
led to a maximal EP reduction of 6.93 ± 1.2 mV in 15 s, with an almost complete EP recovery 
in 90 s; however, no changes in the EP were measured at the base of the trunk. Elimination 
of a basal shoot from the rootstock (Figure 7 B) resulted in a EP 15.76 mV reduction, 
measured with a microelectrode located 5 cm above the rootstock – tree grafting area and a 
slight increase of 3.88 mV measured at the canopy. 

Olive plants kept for 48 hr in total darkness were cyclically illuminated every 5 min for 1000 
s periods and EP was measured at the root, rootstock, grafted tree and 2 shoots (Figure 8). A 
sharp reduction in EP values (on average 50 mV, with a polarity change) take place 3 to 5 s 
after each illumination cycle, with a slow EP recovery when dark conditions are restored. 
This behavior is much intense in shoots than in roots, grafted tree and rootstock, and each 
electric impulse travels throughout the whole plant with similar patterns and velocities. 

5. Plant electrophysiology research technology and applications 

Two techniques for the measurement of electrical currents in plant studies have been 
developed: a. non invasive surface recording and b. measurements using inserted thin metal 
electrodes (Fromm & Lautner, 2007). At different positions of the plant, from roots to fruits, 
electrodes are connected by insulated cables to a high – input impedance multichannel 
electrometer and a reference electrode is inserted in the soil. When all channels are stabilized 
electrically, the effect of many treatments on plant electric behavior can be evaluated, such 
as electrical stimulation at different organs in the symplastic continuum, to study its 
transmission dynamics within the plant, resulting from environmental stimuli like light – 
darkness sequences, drought - irrigation cycles, heat pulses at a specific leaf, localized 
chemical product applications, variable wind speed and air relative humidity conditions, or 
plant organ mechanical wounding, like trunk girdling, pruning, leaf and fruit thinning or 
root excision by underground tillage. 

 

Fig. 8. Electrical behavior of Olive (Olea europea) trees) in alternate dark – light cycles 
(average values from 10 plants) (After Gurovich & Cano, 2011, unpublished data). L = light 
period at constant 45 watt m-2, at the canopy top). 
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Several micro-electrodes have been used for electrophysiological studies in plants. In most 
of our publications, electrical potentials are monitored continuously using own designed 
nonpolarizable Ag/AgCl microelectrodes inserted into different positions along the trunk; 
microelectrode characteristics have been reported by Gurovich & Hermosilla (2009), Gil et 
al. (2009), Oyarce & Gurovich (2011), and consist on a 0.35 mm-diameter silver wire (99.99% 
Ag), chlorated in a solution of HCl 0.1N for 30 s using a differential voltage of 2.5 V, to 
obtain an Ag/AgCl coating, which is inserted in a stainless steel hypodermic needle, 0.5 mm 
in diameter, filled with a KCl 3M solution; both needle ends are heat-sealed with 
polyethylene. Electrodes were inserted into the trunk using a low velocity electric 
microdriller, with a barbed microreel, penetrating the phloematic and cambium tissue; 
needle tip was further inserted into the xylematic tissue, 0.5–0.75 cm, by mechanical 
pressure. Each Ag/AgCl microelectrode was referenced to an identical microelectrode 
installed in the sand media, within the root system (Figure 9). 

In our work on electrophysiology, EP real time measurements are implemented using a 

multi channel voltmeter (Model 2701, Keithley Instruments, including a 20 channel switch 

module Keithley, model 7700), measuring DC and AC voltage in the range from 100 mV to 

1000 V, in testing intervals from 1 to 100 ms. Signals obtained are analyzed with the 

software ExceLINX-1, an utility provided by Microsoftc Excel. All EP measurements are 

made by keeping the trees within a Faraday-type electromagnetic insulation cage, installed 

in the laboratory to control constant light and temperature conditions (Figure 10). 

 

Fig. 9. The Ag/AgCl microelectrode construction. 

6. Research on plant electrophysiology of woody plants 

Trees live in a continuously changing environment and although not all parts of the tree are 

exposed to the same stimuli at the same time, tree organs respond in a coordinated fashion, 

for example, by fast stomata closing under even mild water stress buildup, demonstrating 

the existence of communication between various regions of the tree. For years, researchers 

have concentrated their efforts on the study of chemical (hormonal) signals in trees, and 

very seldom considering that plants simultaneously show distinct electrical and hydraulic 

signals, which correlate to water stress conditions and other physiological stimuli as well. 

Considering the large leaf area of a tree, very large amounts of chemicals would need to be 

synthesized, transported and be perceived at the canopy, in order to respond to a signal 

coming from the roots.  

 

1 cm 
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Fig. 10. Schematic diagram of the digital acquisition system for recording voltage differences 
between the base of the trunk and the canopy. (After Gurovich and Hermosilla, 2009). 

Limited reaearch has been reported on signaling in woody trees (Tilia and Prunus, Boari & 
Malone 1993; Salix, Fromm & Spanswick 1993; Grindl et al., 1999; Oak, Morat et al., 1994; 
Koppan et al., 2000, 2002; Vitis, Mancuso,1999; Poplar, Gibert et al., 2006) although it is in 
such plants that the need for rapid and efficient signals other than chemicals becomes more 
obvious. 

Gibert  et al., 2006 present relevant information on the electric long term (2 year) behavior of 
a single poplar tree, focused on the spatial and temporal variations of the electric potential 
distribution (Figure 11), with its correlation to air temperature, concluding that seasonal 
fluctuations of EP trends may be correlated to sap flow patterns, largely influenced by 
seasonal sap constituents and concentrations. 

 

Fig. 11. Top: potential signals for the December 2003–April 2004 period, expressed as 
relative potential values (see Gibert et al., 2006, Fig. 1 for electrode location). Bottom: outdoor 
temperature measured near the tree. Tick marks fall at midday. 
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Recent studies have associated the effect of water stress build-up, irrigation and light with 
electrical signaling in fruit bearing tree species including avocado (Persea americana Mill.), 
blueberry (Vaccinium spp.), lemon (Citrus limon (L.) Buró) and olive (Olea europaea L.) (Gil et 
al., 2008; Gurovich & Hermosilla, 2009; Oyarce & Gurovich, 2010, 2011). Some results are 
included below as examples on this research line, aimed to develop new real – time plant 
stress sensors based on tree electric behavior, for the automation of irrigation systems 
operation, optimizing water and energy efficiency in fruit production. 

Electric potential (EP) differences have been detected between the base of the stem and leaf 
petiole and between the base of the stem and the leaf area, located in the upper half of the 
tree canopy, in response to drought, irrigation and diurnal light and dark cycles (Figure 12). 
Orders of magnitude of the observed EP variation in those studies were similar to values 
observed by other authors (Fromm, 2006; Davies, 2006). Electric potential variations 
observed in avocado trees in response to decreased soil water content have been associated 
with a decrease in stomata conductance (gs) (Gil et al., 2009), indicating that stomata closure 
might be induced or at least associated with an electrical signal that travels through the 
phloem at a speed of 2.4 cm min-1. Larger changes in electric potential behavior have been 
detected in response to drought compared to watering. Thus, an extra-cellular electrical 
signal appears to be involved in root to leaf communication, initiating stomata closure at a 
very early stage of drought stress. These drought-induced electrical signals were also related 
to changes in gs, in concordance to other studies published by Fromm & Fei (1998). 

 

Fig. 12. Electrical potential responses of avocado plants to light and dark and irrigation. (A) 
EP responses according to the day time. (B) Effect of irrigation on EP behavior (Adapted from 
Gurovich & Hermosilla 2009).  
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According to Gurovich & Hermosilla (2009) effects of sunset, daybreak and water 
application are clearly reflected as fast changes in the EP between the base and leaf area 
electrode locations on the trunk or stem (Figure 12). Electrical potential fluctuations during 
light and dark periods may be due to differential sap flow velocity at different times of the 
day as a result of stomata closure during the night. Electrical potential values were reduced 
during the initial hours after daybreak, and started to increase after midday, as a result of 
transient water stress conditions; the first dark hours after sunset resulted in rapid increases 
of voltages and after midnight these increases tended to slow down. Also, a small but 
consistent increase in voltage was detected about 1–2 hours before daybreak. Explanations 
for this behavior may also be related to circadian rhythms detected in plants, but need 
further study to be fully understood (Dodd et al, 2005: Horta et al., 2007).   

The effects of irrigation and day – night cycles on the electric behavior of avocado trees has 
been reported also by Oyarce & Gurovich (2010) under controlled conditions (Figure 13) EP 
vary in daily cycles throughout the measurement period: during the morning (2:00 to 7:59 
AM), the mean 4-day EP average is in the range -89.991 ± 0, 46 mV at 25 cm and -121.53± 0.5 
mV at 85 cm above the ground, respectively. During the afternoon (14:00 at 19:59 PM), EP 
values rise, reaching mean values of -79.71 ± 2.16 mV at 25 cm and -104.05 ± 1.21 mV at 85 
cm above the ground, respectively, and maximum values of -76.16 ± 20 mV at 17:10 PM (25 
cm) and -101.35 ± 5.05 mV at 18:30 PM (85 cm). These values indicate the existence of 
significant differences in EP between the periods compared (see Oyarce & Gurovich, 2010, 
Table 2). The effect of irrigation applied every day at 11:00 AM is clearly expressed by a 
significant decrease in EP, of the order of 7.10 ± 1.56 mV and 7.53 ± 1.39 mV, for micro 
electrodes inserted in the tree trunk at 25 and 85 cm above the soil surface respectively, 
representing specific characteristics of an action potential (AP). The recovery of EP values 
measured before irrigation requires an average period of 16 minutes. On the fourth day, 
irrigation applied at 15:35 PM did not induce changes in the electrical potential probably 
due to a low atmospheric demand at that time. 

Oyarce & Gurovich (2011) examined the nature and specific characteristics of the electrical 

response to wounding in the woody plant Persea americana (avocado) cv. Hass. Under field 

conditions, wounds can be the result of insect activity, strong winds or handling injury 

during fruit harvest. Evidence for extracellular EP signaling in avocado trees after 

mechanical injury is expressed in the form of variation potentials. For tipping and pruning, 

signal velocities of 8.7 and 20.9 cm/s-1, respectively, are calculated, based on data measured 

with Ag/AgCl microelectrodes inserted at different positions of the trunk (Figure 14 a to d). 

EP signal intensity decreased with increasing distance between the tipping and pruning 

point and the electrode. Recovery time to pre-tipping or pre-pruning EP values was also 

affected by the distance and signal intensity from the tipping or pruning point to the specific 

electrode position.  

A significant EP signal, corresponding to a variation potential, is generated as a response of 
tipping or pruning avocado plants (Figure 14 a to d); the signal was transmitted along the 
tree trunk at a specific velocity, which is dependent on the distance to the mechanical injury. 
Mancuso (1999) reported a propagation velocity of the front of the main negative-going 
signal(VP) of 2.7 mm s−1, while an AP propagated along the shoot with a velocity of about 
100 mm s−1. The EP signal intensity also decreases with distance between the mechanical 
injury sites to the electrode position in the trunk. Several physiological explanations for this 
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Fig. 13. Electric potentials (EP) in avocado trees during 4 irrigated days. (Average values for 
7 trees). Micro electrodes inserted at 25 (A) and 85 (B) cm above the soil surface. (Adapted 
from Oyarce & Gurovich, 2010).  

behavior have been proposed by Trewavas & Malho (1997), Zimmermann et al. (1997), 
Stankovic et al. (1998), Volkov & Brown (2006), Volkov et al. (2008), Baluska et al. (2004); 
Brenner et al. (2006). All these authors agree with the idea that a certain stimuli receptor 
must be present at the cell membrane, and that a transient polarization, induced by specific 
ion fluxes through this membrane, is the ultimate agent of the EP signal generation. 

Results presented in these papers indicate a clear and rapid mechanism of electrical signal 
generation and transmission in woody plants, positively correlated to the intensity and 
duration of stimuli, such as light intensity, water availability and mechanical injury. The 
electrical signal is generated in a specific organ or tissue and is transmitted rapidly in the 
form of AP or VP to other tissues or organs of the plant. The measurement of electrical 
potentials can be used as a tool for real-time measurement of plant physiological responses, 
opening the possibility of using this technology as a tool for early detection of stress and for 
the operation of automatic high frequency irrigation systems. 

7. Electrophysiology of some plant tropisms 

Sedimenting amyloplasts act as statoliths in root and shoot cells specialized for 
gravisensing; also different auxins are involved in the gravi - stimulated differential growth 
known a gravitropism. However, no comprehensive explanation is available related to 
gravity signal perception and its transduction pathways in plants from the sedimenting 
statoliths to the motoric response of organ bending (Baluska et al., 2006). 
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   (a)                (b) 

 
            (c)                (d) 

Fig. 14. a) Average EP speed of transmission along the trunk, as a result of tipping (n = 5 
plants), t (s) = time at which the electrode detected the electric signal, ξ (cm) = distance of 
electrodes from the tipping point. Error bars represents ±1 std. dev. b) Relative intensity of 
EP as a result of tipping (n = 5 plants). ɸ ex = relative intensity of the signal (%), ξ (cm) = 
distance from the electrode to the tipping point. Error bars represents ±1 std. dev.  
c) Average EP speed of transmission along the trunk after pruning, measured above and 
below the pruned branch (n = 5 plants), t (s) = time at which the electrode detected the 
electric signal, ξ (cm) = distance of electrodes from the pruning point. Error bars represents 
+1 std. dev. d) Recovery time of the pre-tipping EP potential (n = 5 plants), τ = recovery time 
signal, ξ (cm) = distance from the electrode to the tipping point. Error bars represents ±1 std. 
dev (after Oyarce & Gurovich, 2011). 

Bioelectrochemical signaling in green plants induced by photosensory systems have been 
reported by Volkov et al., (2004). The generation of electrophysiological responses induced 
by blue and red photosensory systems was observed in soybean plants. A phototropic 
response is a sequence of the following four processes: reception of a directional light signal, 
signal transduction, transformation of the signal into a physiological response, and the 
production of a directional growth response. It was found that the irradiation of soybean 
plants at 450±50, 670, and 730 nm induces APs with duration times and amplitudes of 
approximately 0.3 ms and 60 mV. Plants respond to light ranging from ultraviolet to far-red 
using specific photoreceptors and natural radiation simultaneously activates more than one 
photoreceptor in higher plants; these receptors initiate distinct signaling pathways leading 
to wavelength-specific light responses. Three types of plant photoreceptors that have been 
identified at the molecular level are phototropins, cryptochromes, and phytochromes 
respectively. 
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8. Plant electrophysiology modulated by neurotransmitters, neuroregulators 
and neurotoxins 

Plants produce a wide range of phytochemicals that mediate cell functions and translate 
environmental cues for survival; many of these molecules are also found as neuro - 
regulatory molecules in animals, including humans. For example, the human 
neurotransmitter melatonin (N-acetyl-5-methoxytryptamine) is a common molecule 
associated with timing of circadian rhythms in many organisms, including higher plants. Its 
major concentrations are located within the phloem conducting vessels and it has been 
suggested that its action is centered in the electrochemical processes involved in 
plasmodesmata synaptic – like contacts. Plant synapse has been proposed, since actin 
cytoskeleton-based adhesive contacts between plant cells resemble the neuronal and 
immune synapses found in animals (Baluska et al., 2005). A comprehensive review of 
neurotransmitters in plants is provided by V. V. Roschina in the book “Neurotransmitters in 
plant life” (2001). 

Whereas glutamate and glycine were shown to gate Ca+2-permeable channels in plants, 
glutamate was reported to rapidly depolarize the plant cell plasma membrane in a process 
mediated by glutamate receptors (Baluška, 2010; Felle & Zimmermann, 2007); plant 
glutamate receptors have all the features of animal neuronal glutamate receptors, inducing 
plant APs (Stolarz et al., 2010) . These publications strongly suggest that glutamate serves as 
a neurotransmitter-like in cell-to-cell communication in plants too. Whereas glutamate 
might represent a plant excitatory transmitter, gamma-aminobutyric acid (GABA) seems to 
act as an inhibitory transmitter in plants, as it does similarly in animal neurons. For instance, 
it is well documented that GABA is rapidly produced under diverse stress situations and 
also that GABA can be transported from cell-to-cell across plant tissues (Bouche et al., 2003). 

Many fascinating questions in future research will define the role of neurotransmitters, 
neuroregulators and neurotoxins in the growth and development of plants. As newer 
technologies emerge, it will become possible to understand more about the role of 
neurological compounds in the inner workings of plant metabolism, plant environment 
interactions and plant electrophysiology. However, signaling molecules, by their nature, are 
short lived, unstable, difficult to detect and quantify, because they are highly reactive, and 
present in small concentrations within plant tissues.  

9. Electrophysiological control of cyclical oscillations in plants.  

Sanchez et al. (2011) reviewed the interaction between the circadian clock of higher plants to 
that of metabolic and physiological processes that coordinate growth and performance 
under a predictable, albeit changing environment. The circadian clock of plants and abiotic-
stress tolerance appear to be firmly interconnected processes, by means of 
electrophysiological signaling (Volkov et al., 2011). Time oscillations (circadian clocks) in 
plant membrane transport, including model predictions, experimental validation, and 
physiological implications has been reported by Mancuso & Shabala (2006) and Shabala et 
al., (2008). 

10. Conclusions 

Plants have evolved sophisticated systems to sense environmental abiotic and biotic stimuli 
for adaptation and to produce signals to other cells for coordinated actions, synchronizing 
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their normal biological functions and their responses to the environment. The 
synchronization of internal functions based on external events is linked with the 
phenomenon of excitability in plant cells. The generation of electric gradients is a 
fundamental aspect of long-distance signal transduction, which is a major process to 
account for tree physiology. Outstanding similarities exist between AP in plants and 
animals and the knowledge about AP and VP/SWP mechanisms in plants, its physiological 
consequences and its technological applications is accumulating, but there is still a broad 
margin for questions and speculations to further elucidate the concepts described in this 
review; thus, an interesting challenge to understand the complex regulatory network of 
electric signaling and responses is still an open question. Future improvements in research 
methods and instruments will reveal more aspects of the signal complexity, and its 
physiological responses in plants. 

Our future knowledge on the subject will help us considering electrical signals in plants as 
normal phenomena, to be used as a real – time communication mechanism between the 
plant physiologist and the plant, for example, for the early detection of plant stress, to 
enable proper and automatic modulation of the tree microenvironment, in order to optimize 
the agronomic performance of fruit bearing or wood producing trees. Also, highly 
modulated external electric impulses, to be applied on trees at specific intensities, durations 
and phenology timings, to modify water use efficiency or photosynthetic efficiency, could 
be developed from this knowledge. 
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