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1. Introduction

Programming robotic systems is not an easy task, even developing software for simple
systems may be difficult, or at least cumbersome and error prone. Those systems are usually
multi-threaded and multi-process, so synchronization problems associated with processes
and threads must be faced. In addition distributed systems in network environments are
also very common, and coordination between processes and threads in different machines
increases programming complexity, specially if network environments are not completely
reliable like a wireless network. Hardware abstraction is another question to take into account,
uncommon hardware for an ordinary computer user is found in robotics systems, sensors
and actuators with APIs (Applications Programming Interfaces) in occasions not very stable
from version to version, and many times not well supported on the most common operating
systems. Besides, it is not rare that even sensors or actuators with the same functionality
(i.e. range sensors, cameras, etc.) are endowed with APIs with very different semantics.
Moreover, many robotic systems must operate in hard real time conditions in order to warrant
system and operation integrity, so it is necessary that the software behaves obeying strictly
specific response times, deadlines and high frequencies of operation. Software integration
and portability are also important problems in those systems, since many times only in one
of them we may find a variety of machines, operating systems, drivers and libraries which
we have to cope to. Last but not least, we want robotic systems to behave “autonomous” and
“intelligently”, and to carry out complex tasks like mapping a building, navigating safely in a
cluttered, dynamic and crowded environment or driving a car safely in a motorway, to name
a few.

Despite there is no established standard methodology or solution to the situation described in
the previous paragraph, in the last ten years many approaches have blossomed in the robotics
community in order to tackle with it. In fact, many software engineering techniques and
experiences coming from other areas of computer science are being applied to the specific area
of robotic control software. A review of the state of the art of software engineering applied
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Canarias, Spain, and by the European Union’s FEDER funds.
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specifically to robotics can be found in [Brugali (2007)]. Many of the approaches that have
come up in these last years, albeit different, are either based completely, or follow or share
to a certain extend some of the fundamentals ideas of the CBSE (Component Based Software
Engineering) [George T. Heineman & William T. Councill (2001)] paradigm as a principle of
design for robotic software.

Some of the significant approaches freely available within the robotics community based on
the CBSE paradigm are G*oM/BIP [Mallet et al. (2010)][Basu et al. (2006)][Bensalem et al.
(2009)], Smartsoft [Schlegel et al. (2009)], OROCOS [The Orocos Project (2011)], project ORCA
[Brooks et al. (2005)], OpenRTM-aist [Ando et al. (2008)] and Willow Garage’s ROS project
[ROS: Robot Operating System (2011)]. All these approaches, in general incompatible among
them, use many similar abstractions in order to build robotic software out of a set of software
components. Each of these approaches usually solve or deal with many of the mentioned
problems faced when programming robotic systems (hard real-time operation, distributed,
multithread and multiprocess programming, hardware abstractions, portability, etc.), and
using any of them implies to get used to its own methodology, abstractions and software
tools to develop robotic software. Our group have also developed an approach to tackle
with the problem of programming robotic systems. It is some years already that we have
been using a CBSE C++ distributed framework designed and developed in our laboratory,
termed CoolBOT [Antonio C. Dominguez-Brito et al. (2007)], which is also aimed at easing
software development for robotic systems. Along several years of use acquiring experience
programming mobile robotic systems, we have ended up integrating in CoolBOT some new
developments in order to improve their use and operation. Those new improvements have
been focused mainly in two main questions, namely: transparent distributed computation,
and “deeper” interface decoupling; in next sections they will be presented more deeply. In
order to do so this paper is organized as follows. In section 2 we will introduce briefly an
overview about CoolBOT. Next, we will pass to focus on each one of the mentioned topics
respectively, in sections 4 and 5. The last section is devoted to presenting the conclusions of
this work.

2. CoolBOT. Overview

CoolBOT [Antonio C. Dominguez-Brito et al. (2007)] is a C++ component oriented
programming framework aimed to robotics, developed at our laboratory some years ago
[Dominguez-Brito et al. (2004)], which is normally used to develop the control software for
the mobile robots we have available at our institution. It is a programming framework that
follows the CBSE paradigm for software development. The key concept in the CBSE paradigm
is the concept of software component which is a unit of integration, composition and software
reuse [Brugali & Scandurra (2009)][Brugali & Shakhimardanov (2010)]. Complex systems
might be composed of several ready-to-use components. Ideally, interconnecting available
components out of a repository of components previously developed, we can program a
complete system. Thus, it should be only necessary a graphical interface or alike, to set up
a system. Hence, being CoolBOT CBSE oriented, it also makes use of this central concept to
build software systems.

Fig. 1 gives a global view of a typical system developed using CoolBOT. As we can observe,
there are five CoolBOT components and two CoolBOT views, forming all them four CoolBOT
integrations involving three different machines sharing a computer network. In addition,
hosted by one of the machines, there is a non CoolBOT application which uses a CoolBOT
probe to interact with one of the components of the system. Thus, in CoolBOT we can find
three types of software components: components, views and probes. All these three types
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Fig. 1. Diagram of the elements and interconnections of a system designed with CoolBOT.

are software components in the whole sense, since we can compose them indistinctly and
arbitrarily without changing their implementation to built up a given system. The main
difference among them is that views and probes are “light-weight” software components in
relation to CoolBOT components. Views are software components which implement graphical
control and monitoring interfaces for CoolBOT systems, which are completely decoupled
from them. On the other side, probes mainly allow to implement decoupled interfaces for
interoperation of CoolBOT systems with non CoolBOT applications, as depicted in the figure.
Both will be explained in more detail in section 5.

In CoolBOT, systems are made of CoolBOT components (components for short). A component
is an active entity, in the sense that it has its own unit of execution. It also presents a clear
separation between its external interface and its internals. Components intercommunicate
among them only through their external interfaces which are formed by input and output ports.
When connected, they form port connections, as depicted on Fig. 1. Through them, components
interchange discrete units of information termed port packets. Views and probes have a similar
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external interface of input and output ports, hence, they can also be interconnected among
them and with components using port connections. The functionality of a whole system
comes up from the interaction through port connections among all the components integrating
the system, including views and probes.

2.1 Port connections, ports and port packets

CoolBOT components interact among them using port connections. A port connection is defined
by an output port and an input port. Port connections are established dynamically in
runtime, and they are unidirectional (from output to input port), and follow a publish/subscribe
paradigm of communication [Brugali & Shakhimardanov (2010)]. In that way, we can have
multiple subscribers for the same output port, as shown in Fig. 2, and multiple publishers
feeding the same input port, illustrated in Fig. 3. Note that input and output ports are
decoupled in the sense that component publishers do not know necessarily who is receiving
what they are publishing through their output ports. The contrary is also true, component
subscribers do not necessarily know who is publishing the data which are reaching them
through their input ports. Data are sent through port connections in discrete units called port

packets.
............ - D =
component component )
S Il T —— A 2 : 2]
component component component component
—o output port ..... { { —O output port
)>— input port iea —© by B >~ input port
component component
e port e port
connection connection
Fig. 2. Port connections: one publisher, Fig. 3. Port connections: many publishers,
many subscribers. one subscriber.

To establish a port connection the ports involved should be compatible, i.e., they must have
compatible types, and should transport the same types of port packets. In particular, when
defining an output or input port we have to specify three aspects for them, namely:

1. An identifier: This is an identifier or name for the port. It has to be unique at component
(or view or probe) scope. The port identifier is what we use to refer to a specific port when
establishing /de-establishing port connections.

2. A port type: This is the type of the port. There are several typologies available for input
and output ports, and depending on how we combine them, we can establish a different
model of communication for each connection. The typologies of the input and output
ports involved in a connection determine the pattern and semantics of the communication
through it, following the same philosophy that the communications patterns of Smartsoft
[Schlegel et al. (2009)], and the interfaces for component communication available in
OROCOS [The Orocos Project (2011)]. On Tables 1 and 2 we can see all the types of
connections we have available in CoolBOT right now, we will elaborate on this later.

3. Port packet types: Those are the types of port packets accepted by the output or input
port. Most input and output port types only accept one type of port packet through them,
although we have also some of them that accept a set of different port packet types.
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Bear in mind that in CoolBOT port connections are established dynamically, but the definition
of each input and output port for each software component, whether a component, a view
or a probe, is static. Thus, for a given component we define statically its external interface
of input and output ports, each one with its identifier, port type and accepted port packet
types. In opposition, port connections are established at runtime. Only a compatible pair of
output and input ports can form a port connection, and we say that they are compatible when
two conditions fulfill: first, they have compatible port types (the compatible combinations are
shown in Tables 1 and 2); and second, the port packets the pair of port accepts also match.

As commented, Tables 1 and 2 show all the possible types and combinations of output and
input ports available in CoolBOT. As we can observe we have two groups of types of port
connections depending on the types of the output and input ports we connect, namely:

* Active Publisher/Passive Subscriber (AP/PS) connections. In this kind of connections
we say the publisher is the active part of the communication through the connection,
since it is the publisher (the sender) who invest more computational resources in the
communication. More specifically, in these connections, there is a buffer (a cache, a
memory) in the input port where incoming port packets get stored, when they get to the
subscriber (the receiver) end. We say the publisher is active, because the copy of port
packets in the input port buffers is made by the publisher’s threads of execution. Those
memories get signaled for the subscribers to access them at their own pace. Evidently, if
the output port has several subscribers, the publisher has to make a copy for all of them,
so the computational cost for copies increases and this cost is afforded by the publisher.
Table 1 enumerates all the available types of port connections following this model of
communication.

* Passive Publisher/Active Subscriber (PP/AS) connections. Those connections follow a
model of communication where the subscriber plays the active role in the communication,
in the sense that in opposition to the previous ones, the subscriber is the part of the
communication which invests more computational resources. In this type of connections,
we have buffers at both ends of the port connection. When the publisher sends (publishes)
a port packet through the connection, it gets stores in a buffer in the output port, and the
input port gets signaled, in order to notify the subscriber that there are new data on the
connection. Note that the publisher does not copy the port packet on the subscriber’s input
port buffer. It is the subscriber the one who copies the port packet on its input port buffer
when it access its input port in order to get fresh port packets, stored at the other end of
the port connection. In this way, when we have several subscribers and one publisher the
computational cost of copies is afforded by each one of the subscribers separately.

Apart from the computational cost of using AP/PS connections versus PP/AS connections,
there is another important aspect to take into account when using any of them. PP/AS
connections are persistent in the sense that, as explained in Table 2 the last data (port packet)
sent by the publisher through the output port is stored there, in the output port buffer, so
subscribers which are connected to this output port once the last port packet was sent, can
access those data posteriorly. On the contrary AP/PS connections are not persistent, because
port packets are stored on the subscriber end, so packets, once they have been sent, are not
available for new subscribers, because port packets only gets to those subscribers who are
connected to the output port right at the moment of sending them.

Other important aspect to take into account with respect to port connections is that they follow
an asynchronous model of communications. Note that they are unidirectional, port packets
go from the publisher’s output port to the subscriber’s input port, the publisher sends port
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Active Publisher/Passive Subscriber (AP/PS)
Output Port |Input Port|Port Connection Type

tick tick tick connections: those connections do not transport any port packet, they
only communicate the occurrence of an event.

generic last last connections: the input port stores always the last port packet sent through
the connection by the publisher (publishers). Only one type of port packet is
accepted through the port connection.

fifo |fifo connections: at the input port there is a circular fifo with a specific length.
Port packets sent through the port connection by publishers, get stored there.
Only one type of port packet is accepted through the port connection.

ufifo  |unbounded fifo connections: at the input port there is a fifo with a specific
length. Port packets sent through the port connection by publishers, get
stored there. When the fifo is full and port packets keep coming the fifo grows
in order to store them. Only one type of port packet is accepted through the
port connection.

multipacket |multipacket |multipacket connections: those connections accept a set of port packet types.
There is a different buffer for each accepted port packet type, the last port
packet of each type which is sent through the connection by publishers gets
stored on them.

lazymultipacket lazymultipacket connections: those connections accept a set of port packet
types. At the input port there is a different buffer for each accepted port
packet type, the last port packet of each type which is sent through the
connection by publishers gets stored on them. On the output port, port
packets get stored in a queue of port packets to send, they are really sent to
the other end when a flush operation is applied by the publisher on the output
port.

Table 1. Available port connections types: active publisher/passive subscriber (AP/PS)
connections.

Passive Publisher/Active Subscriber (PP/AS)
Output Port |Input Port|Port Connection Type

poster poster  |poster connections: there is a buffer at the output port where the last packet
send by the publisher gets stored. There is another buffer at the input port
which is “synchronized” with the output port buffer when the subscriber
accesses its input port in order to get the last port packet sent through the
connection. Therefore, the port packet gets copied to the input port only when
a new port packet has been stored at the output port end. Only one type of
port packet is accepted through the port connection.

Table 2. Available port connections types: passive publisher/ active subscriber (PP/AS)
connections.

packets and keeps doing something different, the subscriber gets packets at its own pace and
not necessarily at the right moment they get to its input ports.

As to port packets, when defining an output or input port, we have to specify which port
packet type or types (depending on the port type being defined), the port will accept. In
general, port packet types are defined by the user, as we will see in section 3, we may also use
port packets types provided by CoolBOT itself (the available ones are shown in Fig. 3), port
packet types previously developed, or third party port packet types.

www.intechopen.com



An Approach to Distributed Component-Based Software for Robotics 577

Port packet type Description

PacketUChar Transports a C++ unsigned char.
PacketInt Transports a C++ int.
PacketLong Transports a C++ long.
PacketDouble Transports a C++ double.
PacketTime Transports a CoolBOT Time value (a time-stamp).

PacketCoordinates2D|Transports a CoolBOT Coordinates2D value (stores a 2D point).

PacketFrame2D Transports a CoolBOT Frame2D value (stores a 2D frame).

PacketCoordinates3D|Transports a CoolBOT Coordinates3D value (stores a 3D point).

PacketFrame3D Transports a CoolBOT Frame3D value (stores a 3D frame).

Table 3. Available port packet types provided by CoolBOT itself.

2.2 CoolBOT components

CoolBOT components are active objects [Ellis & Gibbs (1989)], as [Brugali & Shakhimardanov
(2010)] states: “a component is a computation unit that encapsulates data structures and
operations to manipulate them”. Moreover, in CoolBOT, components can be seen as
“data-flow machines”, since they process data when they dispose of it at their input ports.
Otherwise, they stay idle, waiting for incoming port packets. On the other side, components
send processed data in form of port packets through their output ports. All in all, the model
of computation of CoolBOT systems follows the Flow Based Programming (FBP) paradigm
according to [J. Paul Morrison (2010)], so systems can be built as networks of components
interconnected by means of port connections. More formally, CoolBOT components are
modeled as port automata [Steenstrup et al. (1983)][Stewart et al. (1997)]. Fig. 4 provides a
view of the structure of a component in CoolBOT. There is a clear separation between its
external interface and its internal structure. Externally, a component can only communicate
with other components (and views and probes) through its input and output ports. Thence, a
component’s external interface comprises all its input and output ports, its types, and the port
packets it accepts through them. As we can see on the figure there are two special ports in any
component: the control port and the monitoring port, the rest of the ports are user defined. The
control port allows to modify component’s controllable variables. Through the monitoring port
components publish their observable variables. Both ports allows an external supervisor (i.e.
another component, a view or a probe) to observe and modify the execution and configuration
of a given component.

Internally a component is organized as an automaton, as illustrated in Fig. 4. All components
follow the same automaton structure. The part of this automaton which is common to all
components is called the default automaton, and comprises several states, namely: starting,
ready, suspended, end, and four states for component exception handling. This structure allows
for an external supervisor to control the execution of any component in a system using
an standard protocol, likewise in an operating system where threads and processes transit
among different states during their lifetime. To complete the automaton of a component
the user defines the user automaton which is specific for each component and implements its
functionality. This is represented in Fig. 4 with a dotted circle as the meta-state running.
Transitions among component’s automaton states are triggered by incoming port packets
through any of its input ports, and also by internal events (timers, empty transition, a control
variable that has been modified by an external supervisor, entering or exiting a state, etc.). The
user can associate C++ callbacks to transitions, much like the codels for G’ oM [Mallet et al.
(2010)] modules.
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Fig. 4. CoolBOT. Component structure.

A key design principle for CoolBOT components is to take advantage of multithreaded and
multicore capacities of mainstream operating systems, and the infrastructure they provide for
multithreaded programming. Another key principle of design for components was to separate
functional logic from thread synchronization logic. The user should be only worried about the
functional logic, synchronization issues should be completely transparent to the developer.
CoolBOT should be responsible for them behind the scenes. As active objects, CoolBOT
components can organize its execution using multiple threads of execution as depicted on
Fig. 4. Those threads are mapped on the underlying operating system (see Fig. 5). Thus,
when developing a component the user assigns disjointly threads to automaton states, and to
input ports and internal events provoking transitions. Those transitions, i.e. their associated
callbacks, will be executed by the specific threads being assigned. The synchronization
among them is guaranteed by the underlying framework infrastructure. All components are
endowed at least with one thread of execution; the rest, if any, are user defined.

As depicted in Fig. 1, CoolBOT provides means for distributed computation. A given
system can be mapped on a set formed by different machines sharing a computer network.
Port connections among components, views and probes are transparently multiplexed using
TCP/IP connections (see section 4). Furthermore, each machine can host one or several
CoolBOT integrations. A CoolBOT integration is an application (a process) which integrates
instances of CoolBOT components, views and probes. Integrations can be instantiated in any
machine, and are user defined using a description language as we will see in next section.

3. CoolBOT development tools

CoolBOT provides several tools for helping developers. Fig. 6 shows the main ones,
namely: coolbot-ske and coolbot-c. The former one, coolbot-ske, is used to create a
directory structure for development of CoolBOT components, probes, port packets, views and
integrations. It also generates CMake [Kitware, Inc. (2010)] template files for compiling them,
description language template files for coolbot-c, and test programs for components. The
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latter tool, the CoolBOT compiler coolbot-c, generates C++ skeletons for components, port
packets, views and integrations, and for each component it also generates its corresponding
probe. All, the probe and the skeletons are C++ classes, and CoolBOT uses a description
language as source code to generate those C++ classes. Except for probes, which are complete
functional C++ classes, coolbot-c generates incomplete C++ classes which constitute the
mentioned C++ skeletons. They are incomplete in the sense that they lack functionality, the
user is responsible for completing them. Once completed, and using the CMake templates
provided by coolbot-ske, they can be compiled. Components, probes, port packets, and
views compile yielding dynamic libraries, integrations compile yielding executable programs.
Moreover, the coolbot-c compiler preserves information when recompiling description files
which have been modified, in such a way that, all C++ code introduced by the user into the
skeletons is preserved.

4. Transparent distributed computation

Transparent distributed computation is the first development we have integrated on CoolBOT
in order to improve its use and operation. The main idea was to make network
communications as transparent as possible to developers (and components). We wanted
CoolBOT to be responsible for them on behalf of components. Thus, at system level, to connect
two component instances instantiated in different CoolBOT integrations should be as easy as
connecting them when instantiated in the same integration. In particular, we follow three
main principles related to transparent distributed computation facilities: transparent network
inter component communications, network decoupling of component’s functional logic, and
incremental design.
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Fig. 6. CoolBOT’s software development process.

4.1 Transparent network inter component communications

In order to make network communications transparent to components, we have developed a
protocol termed Distributed CoolBOT Component Communication Protocol (DC3P) to multiplex
port connections over TCP connections established among the components involved. In the
current version of CoolBOT, only the TCP protocol is supported for network connections. The
integration of the UDP protocol is under development, and it is expected for next CoolBOT
version. DC3P has been implemented using the TCP/IP socket wrappers and the marshalling
facilities provided by the ACE library [Douglas C. Schmidt (2010)], illustrated in Fig. 5. The
protocol consists of the following packets:

e Port Type Info (request & response): For asking type information about input and output
ports through network connections. This allows port connection compatibility verification
when establishing a port connection through the network.

* Connect (request & response): For establishing a port connection over TCP/IP.
* Disconnect (request & response): To disconnect a previous established port connection.

* Data Sending: Once a port connection is established over TCP/IP, port packets are sent
through it using this DC3P packet.

* Remote Connect (request & response): For establishing port connections between two
remote component instances. Permits to connect component instances remotely.

* Remote Disconnect (request & response): To disconnect port connections previously
established between two remote component instances.

* Echo Request & Response: Those DC3P packets are useful to verify that the other end in a
network communication is active and responding.

All DC3P packets and port packets sent through port connections are marshalled and
unmarshalled in order to be correctly sent through the network. We have used the
facilities ACE provides for marshalling/demarshalling based on the OMG Common Data
Representation (CDR) [Object Management Group (2002b)]. In general, port packets are
user defined. In order to make their marshalling/demarshalling as easy and transparent
as possible for developers, the description language accepted by the coolbot-c compiler
includes sentences for describing port packets (as we can observe in Fig. 6), much like CORBA
IDL [Object Management Group (2002a)]. The compiler generates a C++ skeleton class for
each port packet where the code for marshalling/demarshalling is part of the skeleton’s code
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generated automatically. In addition, we have endowed also CoolBOT with a rich set of C++
templates and classes to support marshalling and demarshalling of port packets (or any other
arbitrary C++ class).

4.2 Network decoupling of component’s functional logic

Another important aspect for network communication transparency is the decoupling of
network communication logic from the functional logic of the component. Fig. 4 illustrates
how this decoupling has been put into practice. Each component is endowed with a
pair of network threads, and output network thread, and an input network thread, which are
responsible for network communications using DC3P. CoolBOT guarantees transparently
thread synchronization between them and the functional threads of the component. The
network threads are mainly idle, waiting to have port packets to send through open network
port connections, or to receive incoming port packets that should be redirected to the
corresponding component’s input ports. At instantiation time, it is possible to deactivate
the network support for a component instance (and also for views and probes instances). In
this manner, the component is not reachable from outside the integration where it has been
instantiated, and evidently network threads and the resources they have associated are not
allocated.

4.3 Incremental design

In future versions of CoolBOT, it is very possible that the set of DC3P protocol packets grow
with new ones. In order to allow an easy integration of new DC3P packets in CoolBOT,
we have applied the composite and prototype patterns [Gamma et al. (1995)] to their design.
Those design patterns, jointly with the C++ templates and classes to support marshalling and
demarshalling provide a systematic and easy manner of integrating new DC3P packets in
future versions of the framework.

5. Deeper interface decoupling: Views and probes

Inspired by one of the “good practices” proposed by the authors of Carnegie Mellon’s
Navigation Toolkit CARMEN [Montemerlo et al. (2003)]: “one important design principle
of CARMEN is the separation of robot control from graphical displays”, we have introduced
in CoolBOT the concept of view as an integrable, composite and reusable graphical interface
available for CoolBOT system integrators and developers. Thus, CoolBOT views are graphical
interfaces which, as software components, may be interconnected with any other component,
view or probe in a CoolBOT system. In Fig. 7 is depicted the structure of a view in
CoolBOT. As shown, CoolBOT views are also endowed with an external interface of input
and output ports. Through this interface the view can communicate with other components,
views and probes present in a given system. Identically to components, views are provided
with the same network thread support which allows transparent and decoupled network
communications through port connections. Internally, a view is a graphical interface, in fact,
the current views already developed and operational which are available in CoolBOT have
been implemented using the GTK graphical library [The GTK+ Project (2010)]. As shown in
Fig. 6, C++ skeletons for views are generated using the coolbot-c compiler. The part which
should be completed by the user is precisely the graphical implementation, which can be
done using directly the GTK library or a GUI graphical programming software for designing
window-based interfaces like Glade [Glade - A User Interface Designer (2010)].

As depicted in Fig. 7 a CoolBOT probe is provided with an external interface of input and
output ports, and likewise component and views, as software components, this allows them to
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Fig. 7. CoolBOT. View and probe structures.

be interconnected with other components, views or probes. Equally they implement the same
network decoupled support of threads for transparent network communications. In CoolBOT,
probes are devised as interfaces for interoperability with non CoolBOT software, as illustrated
graphically in Fig. 1. A complete functional C++ class implementing a probe is generated
when a component is compiled by coolbot-c. The probe implements the complementary
external interface of their corresponding component. Those probes generated automatically
can be seen as automatic refactorings of external component interfaces in order to support
interoperability of CoolBOT components with non CoolBOT software. As mentioned in
[Makarenko et al. (2007)] this is an important factor in order to facilitate integration of different
development robotic software approaches.

6. A real integration

In its current operating version, CoolBOT has been mainly used to control mobile robotic
systems with the platforms we have available at our laboratory: Pioneer mobile robots models
3-DX, and P3-AT from Adept Mobile Robots [Adept Mobile Robots (2011)] (former Activ Media
Robotics).

In this section we will show next a real robotic system using one of our Pioneer 3-DX
mobile robots, in order to give a glimpse of a real system controlled using CoolBOT. The
system is illustrated in Fig. 8. The example shows a secure navigation system for an indoor
mobile robot. This is a real application we have usually in operation on the robots we have
at the laboratory. The system implements a secure navigation system based on the ND+
algorithm for obstacle avoidance [Minguez et al. (2004)]. It has been implemented attending
to [Montesano et al. (2006)]. In the figure, input ports, output ports, and port connections,
have been reduced for the sake of clarification. Some of them represent several connections
and ports in the real system.

The system is organized using two CoolBOT integrations, one only formed by CoolBOT
component instances, and the other one containing CoolBOT view instances. The former
one is really the integration which implements the navigation system. As we can observe,
it consists of five component instances, namely: PlayerRobot (this is a wrapper component
for hardware abstraction using the Player/Stage project framework [Vaughan et al. (2003)]),
MbICP (this is a component which implements the MbICP scan matching algorithm based on
laser range sensor data [Minguez et al. (2006)]), GridMap (this component maintains a grid
map of the surroundings of the robot built using robot range laser scans, it also generates
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Fig. 8. CoolBOT. Secure Navigation System.

periodically a 360° virtual scan for the ND+ algorithm), NDNavigation (implements the ND+
algorithm) and shortTermpPlanner (a planner which uses the grid map for planning paths in
the robot surroundings using a modification of the numerical navigation function NF2 found
in [Jean-Claude Latombe (1991)]). On other machine another integration is shown hosting four
view instances through which we can control and monitor the system remotely. In addition,
in another machine, there is a web browser hosting a Java applet using a CoolBOT probe to
connect to some of the components of the system.

In order to clarify how the integration of Fig. 8 has been built, and also to clarify the process
of development of each of its components, in next paragraphs we will have a look at the
description files used to generate some of them, including the whole integration shown in the
tigure. Thus, in Fig. 9 we can see the description file accepted by coolbot-c of one of the
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{

component PlayerRobot

bot.coolbot

iption: description file for PlayerRobot
Date: 02 June 2010

Generated by coolbot-ske

header

{
author "Antonio Carlos Dominguez Brito <adominguez@iusiani.ulpgc.es>";
description "PlayerRobot component";
institution "IUSIANI - Universidad de Las Palmas de Gran Canaria";
version "0.1"

Yi

constants

{
LASER_MAX_RANGE="LaserPacket::LASER_MAX_ RANGE";
SONAR_MAX_RANGE=5000; // millimeters

private FIFO_LENGTH=5;
private ROBOT_DATA_TINCOMING_FREQUENCY= 10; // Hz
private LASER_MIN_ANGLE= -90; // degr 5

Yi

input ports
input port Commands type fifo port packet CommandPacket length FIFO_LENGTH;
input port NavigationCommands type fifo port packet NDNavigation::CommandPacket length FIFO_LENGTH;

//output ports

output port RobotConfig type poster port packet ConfigPacket;

output port Odometry type generic port packet OdometryPacket network buffer FIFO_LENGTH;
output port OdometryReset type generic port packet PacketTime;

output port BumpersGeometry type poster port packet "BumperGeometryPacket";
output port Bumpers type generic port packet BumperPacket;

output port SonarGeometry type poster port packet "SonarGeometryPacket";
output port SonarScan type generic port packet "SonarPacket";

output port LaserGeometry type poster port packet PacketFrame3D;

output port LaserScan type generic port packet LaserPacket;

output port Power type generic port packet PacketDouble;

output port Cameralmage type poster port packet CameraImagePacket;

output port PTZJoints type generic port packet "PacketPTZJoints";

exception RobotConnection
{

description "Robot connection failed.";
Yi

exception NoPositionProxy
{
description "Position proxy not available in this robot.";

Yi

exception InternalPlayerException
{

description "A Player library exception has been thrown.";
Yi

entry state Main
{

transition on Commands,NavigationCommands, Timer;
}i

Fig. 9. player-robot.coolbot-component: PlayerRobot’s description file.
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components of Fig. 8, file player-robot.coolbot-component, corresponding to component
PlayerRobot. As to views, in Fig. 10, we can see the description file for one of the view
instances of Fig. 8, concretely for the Map view in the figure, which is an instance of view
GridGtk. As we can observe, the description file specifies mainly the view’s external interface
formed by input and output ports.

view GridGtk I
{ I
header
{
author "Antonio Carlos Dominguez-Brito <adominguez@iusiani.ulpgc.es>";
description "GridGtk View"; I
institution "IUSIANI - ULPGC (Spain)"; I

version "0.1"

Yi

constants
{
private DEFAULT_REFRESHING_PERIOD=500; milliseconds

Yy

input ports
input port ROBOT_CONFIG type poster port packet PlayerRobot::ConfigPacket;
input port GRID_MAP type poster port packet GridMap::GridMapPacket;
input port PLANNER_PATH type last port packet ShortTermPlanner::PlannerPathPacket;

output ports
output port PLANNER_COMMANDS type generic port packet ShortTermPlanner::CommandPacket;
output port ND_COMMANDS type generic port packet NDNavigation::CommandPacket;

Fig. 10. grid-gtk.coolbot-view: GridGtk’s description file.

In Fig. 11 it is shown a snapshot of the view in runtime. Once developed CoolBOT views
are graphical components we can integrate in a window-based application like the one shown
in the figure. In particular, in the application we can see, views are plugged in as “pages”
of the GTK widget notepad (a container of “pages” with “tabs”) we can observe in the
figure. In fact, the GUI application shown integrates the four view instances of Fig. 8,
whose C++ skeleton has been generated using also coolbot-c from a description file (the
.coolbot-integration file in Fig. 6). In Fig. 12 we can see part of this file. Notice
that coolbot-c generates C++ skeletons for integrations where the static instantiation and
interconnection among components and views are generated automatically. If we want to
build a dynamic integration, in terms of dynamic instantiation of components and views,
and also in terms of dynamic interconnections among them establishing port connections,
we must complete the dynamic part of the skeleton generated by coolbot-c using the C++
runtime services provided by the framework (Fig. 5).

With respect to CoolBOT probes, as of now we have used them to interoperate with Java
applets inserted in a web browser, as shown in Fig. 8. More specifically we have used
SWIG [SWIG (2011)] in order to have access to the probe C++ classes in Java with the aim
of implementing several Java GUI interfaces in Java equivalent to some of the CoolBOT views
we have already developed. In Fig. 13 we can see a snapshot of the Java equivalent of a view
to represent the range sensor information of a mobile robot.
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Fig. 11. View GridGtk’s snapshot.
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* File: mbicp-integration.coolbot-integration

* Description: description file for mbicp-integration integration.
* Date: 29 April 2011
* Generated by coolbot-ske

integration mbicp_integration
{
header
{
author "Antonio Carlos Dominguez-Brito <adominguez@iusiani.ulpgc.es>";
description "MbICP’'s views integration";
institution "IUSIANI - ULPGC (Spain)";
version "0.1"
Yi

machine addresses

{
local my_machine: "127.0.0.1";
the_other_machine: "...";

Yi

listening ports // TCP/IP ports
{
ROBOT_PORT: 1950;
MBICP_PORT: 1965;
NAVIGATION_MAP_PORT: 1970;
ND_PORT: 1980;
NAVIGATION_PLANNER_PORT: 1990;

ROBOT_VIEW_PORT: 1955;

MBICP_VIEW_PORT: 1985;

NAVIGATION_MAP_VIEW_PORT: 1975;

NAVIGATION_PLANNER_VIEW_PORT: 1995;
Yy

local instances
{

view robotView:PlayerRobotGtk listening on ROBOT_VIEW_PORT with description "Robot";

view mbicpView:MbICPGtk listening on MBICP_VIEW_PORT with description "MbICP";

view mapView:GridGtk listening on NAVIGATION_MAP_VIEW_PORT with description "Map";

view navigationPlannerView:PlannerGtk listening on NAVIGATION_PLANNER_VIEW_PORT with description "Planner";
Yi

remote instances on the_other_machine;
{
component robot:PlayerRobot listening on ROBOT_VIEW_PORT;
component mbicpInstance:MbICPCorrector listening on MBICP_PORT;
component navigationMap:GridMap listening on NAVIGATION_MAP_PORT;
component nd:NDNavigation listening om ND_PORT;
component navigationPlanner:ShortTermPlanner listening on NAVIGATION_PLANNER_VIEW_PORT;
Yi
port connections // stati inections
{
connect robot:0DOMETRY to robotView:ODOMETRY ;
connect robot:LASERGEOMETRY to robotView:LASER_GEOMETRY;
connect robot:LASERSCAN to robotView:LASER_SCAN;
connect robot:POWER to robotView:POWER;
connect robot:SONARGEOMETRY to robotView:SONAR_GEOMETRY;
connect robot:SONARSCAN to robotView:SONAR_SCAN;

connect robot:0DOMETRY to mbicpInstance:ODOMETRY;
connect robot:LASERGEOMETRY to mbicpInstance:LASER_GEOMETRY;
connect robot:LASERSCAN to mbicpInstance:LASER_SCAN;

connect robotView:COMMANDS to robot:COMMANDS;

Fig. 12. The integration containing Robot. MbICP, Map and Planner views of Fig. 8
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7. Conclusions

In this document we have presented the last developments which have been integrated in
the last operating version of CoolBOT. The developments have been aimed mainly to two
questions: transparent distributed computation, and “deeper” interface decoupling. It is
our opinion that the use and operation of CoolBOT has improved considerably. CoolBOT
is an open source initiative supported by our laboratory which is freely available via
www.coolbotproject.org, including the secure navigation system depicted in Fig. 8.
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