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1. Introduction 

X-ray fluorescence spectrometry (XRF) is a versatile tool in many analytical problems. 

Major, minor and trace elements can be qualitatively and quantitatively determined in 

various kinds of samples: metals, alloys, glasses, cements, minerals, rocks, ores, polymers 

as well as environmental and biological materials. Elements from Na to U are routinely 

determined using energy-dispersive X-ray fluorescence spectrometry (EDXRF) whereas 

application of wavelength-dispersive spectrometers (WDXRF) allows efficient 

determination of low-Z elements down to even Be. Although the samples can be analyzed 

without treatment, high quality results can be ensured if appropriate sample preparation 

is applied. This may vary from simple cleaning and polishing of the sample (metals, 

alloys), powdering and pelletizing with or without binder (ceramics, minerals, ores, soils, 

etc.), fusing the sample with appropriate flux (ceramics, rocks, ores, etc.) to digestion with 

acids (metals, alloys). This way errors resulting from surface roughness, particle size 

effect or inhomogeneity of the material can be eliminated or minimized. Due to the 

nondestructive character of X-ray measurement, the XRF spectrometry is widely applied 

in analysis of art, museum and archeological objects such as manuscripts, paintings, icons, 

pottery, ancient glasses, ceramics, coins. Moreover, XRF spectrometry is utilized for 

simultaneous determination of thickness and composition of various materials such as 

semiconductors, electrooptic and solar cell devices, etc., in electronic industry and other 

branches of technology. Typical detection limits for medium- and high-Z elements are in 

the ppm range, which is satisfactory for several applications. However, in some cases, the 

elemental concentrations are too low for a direct analysis. Then, the analytes must be 

preconcentrated prior to analysis using physical or chemical preconcentration or 

separation methods. 

Quantitative analysis of all types of aforementioned samples requires applying adequate 

empirical or theoretical methods. In quantitative XRF analysis, the measured fluorescent 

intensities are converted into the concentration of the analytes. This issue is rather 

complicated because the measured intensities depend not only on the analyte concentration 

but also on accompanying elements (matrix), sample type (solid, liquid or powder sample, 

etc.), method of sample preparation, shape and thickness of the analyzed sample and 

measurement conditions such as geometrical setup of the spectrometer, irradiated size, flux 
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and spectral distribution of the exciting radiation and the efficiency of detection systems. 

The simplest equation relating radiation intensity Ii to weight fraction of analyte Wi can be 

expressed as follows: 

 i i iI k W  (1) 

Where ki is a constant.  The radiation intensity Ii in Eq. (1) is corrected for background, line 

overlap, and so forth. In practice, the subtraction of background is not perfectly performed. 

Thus, Eq. (1) can be expressed in a more general form: 

 i i i iI k W b   (2) 

Where bi is the radiation intensity when analyte concentration equals zero. The constant ki is 

called the sensitivity and is expressed in counts per second per unit of concentration. The 

constants ki and bi are determined by least-squares fit on the basis of measured reference 

samples from the following formulas: 
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Where n is the number of standard samples used for analyte i, Wij is the weight fraction of 

analyte i in standard j, Iij is the radiation intensity of analyte i in standard j. 

In practice, the concentrations of the standard samples have to cover the concentration in 

unknown sample. Moreover, the calculated concentration is more accurate at the center of 

the calibration line than at the extremities. The Eq. (2) can be rewritten as follows: 

 i i i iW K I B   (4) 

If the calibration based on Eq. (2) or Eq. (4) and standard samples similar to the unknown 
are carefully applied, several parameters such as sample type, method of sample 
preparation, and measurement conditions, i.e. the geometrical setup of the spectrometer, 
irradiated size, flux and the efficiency of detection systems are included in the slope Ki and 
can be omitted in further stages of quantification. However, a simple linear calibration is not 
the rule in the XRF analysis. In general, applying the linear Eq. (2) or Eq. (4) requires not 
only that all standards are similar to the unknown and but also the set of standards with a 
very limited range of concentrations must be applied for calibration. Only then, the matrix 
effects in all samples are similar and linear relationship between radiation intensity and 
analyte concentration can be obtained. On the other hand, the use of standards with a very 
limited range of concentrations will lead to a calibration graph with large uncertainty on the 
slope and intercept. Because the matrix effects play an important role in XRF analysis, a 
more general equation should be applied: 

 i i i i iW K I M B   (5) 
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Where Mi is the total matrix effects term. The Mi differs from one if matrix effects cannot be 
neglected. When the analyte radiation is absorbed by the matrix or when the absorption 
effects are dominating over enhancement effects, Mi is larger than 1. On the other hand, 
when enhancement effects are dominant over absorption, Mi is smaller than 1.  
In matrix correction methods, the radiation intensity Ii is usually replaced with relative 
radiation intensity Ri defined as fluorescent radiation intensity of analyte in binary, ternary 
or in multielement specimen Ispecimen,i to fluorescent radiation intensity of pure element or 
compound Ipure-element,i, e.g. oxide: 

 
,

,

specimen i
i

pure element i

I
R

I 
  (6) 

If matrix effects can be neglected, the relative radiation intensity equals weight fraction of 

analyte: 

 i iW R  (7) 

In practice, the matrix effects play an important role in XRF analysis. Therefore, the relative 

radiation intensity has to be corrected using total matrix effects term: 

 i i iW R M  (8) 

Because the matrix effects are the major source of errors in X-ray fluorescence analysis, this 

chapter is devoted to matrix correction methods applied in quantitative XRF analysis. The 

matrix effects (absorption and secondary fluorescence) and necessary background 

information on theoretical relationship between radiation intensity and sample composition 

will be provided first. In the next part of the chapter, the quantification methods applied in 

XRF will be discussed. 

2. General relationship between radiation intensity and concentration 

In 1955, Sherman proposed a mathematical formula to calculate radiation intensity of 
analyte in a specimen of a known composition (Sherman, 1955). Later, Shiraiwa and Fujino 
corrected the enhancement part of this formula by introducing a missing factor of ½ 
(Shiraiwa and Fujino, 1966). The general equation to calculate X-ray fluorescence intensity Ii 
emitted by an analyte in the specimen of thickness t when it is irradiated by a polychromatic 
X-ray beam can be expressed as follows: 
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Where d is the differential solid angle for the characteristic radiation; i, j are the subscripts 

for the analyte and matrix element, respectively; Qi is the sensitivity of the spectrometer for 

characteristic radiation of analyte i;  Wi, Wj are weight fractions of the analyte i and matrix 

element j, respectively; λmin and λedge are short-wavelength limit and wavelength of analyte 

absorption edge, respectively; i() is the photoelectric absorption coefficient for analyte i 

and primary radiation of wavelength ; I0() is intensity of the primary radiation,  is the 
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density of the sample; t is the sample thickness; qi is sensitivity of the analyte i (if the K line 

is chosen then qi=ωK,ifi,Kα(1−1/Ji,K), where ωK,i is fluorescence yield of K radiation; fi,Kα is 

weight of K line within K series; Ji,K is absorption edge jump ratio. If the L or Lǃ is chosen 

as the analytical line, then the Cöster–Kronig transition probabilities have to be additionally 

taken into consideration;); χ(,i) is total mass-attenuation coefficient of the sample for the 

incident and fluorescent radiation: 
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Where () and (i) are the total mass-attenuation coefficients of the specimen for the 

incident radiation  and characteristic radiation i, respectively; 1 and 2 are the incidence 

and take-off angles, respectively; i(), i(i), j(), j(i) are the mass-attenuation coefficients 

of the analyte i and matrix element j present in the specimen for the incident radiation  and 

characteristic radiation i. The Sij (in Eq. 9) is the enhancement term for the matrix element j, 

which can enhance the analyte i (if analyte is not enhanced by matrix element j then Sij = 0): 
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It is beyond the scope of this chapter to derive the Eq. (9). Details on the derivation of this 

equation can be found elsewhere (Mantler, 1986; Van Dyck et al., 1986; He and Van Espen, 

1991; Węgrzynek et al. 1993). As seen from Eq. (9), the intensity of characteristic radiation is 

the complex function of sample composition and sample thickness. The primary and 

fluorescent radiation are attenuated by atoms of the analyte and by any other atoms present 

in the matrix (see Eq. (10)). If matrix element emits a characteristic line that has sufficient 
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energy to excite the analyte, the fluorescent intensity is higher than expected from primary 

excitation only (the enhancement term Sij in Eq. (9)). The so-called matrix effects (absorption 

and enhancement) will be discussed in the next section of this chapter.  

It should be emphasized that the enhancement term Sij in Eq. (9) cannot be expressed as 
analytical function and numerical integration is required. Therefore, the matrix correction 
methods require complex mathematical treatment. Nevertheless, if the thickness of the 

sample is greater than the so-called saturation thickness (t → ), Eq. (9) simplifies to: 

 0

1 min

( ) ( )
1

4 sin ( , )

edge

i
i i i i j ij

i j

Id
I Q q W W S d





   
    

    
 
 

   

 1 2

1 2

( ) ( )1 ( ) sin sin
( ) ln 1 ln 1

2 ( ) ( )sin ( ) ( )sin ( )

i j i
ij j j

i j j i

S q
       
           

    
       

        
 

(12)

 

Eq. (12) is applied in analysis of the so-called infinitely thick specimens. In practice, the 
sample should satisfy Eq. (13). Then, the relative error resulting from applying Eq. (10) 
instead of Eq. (7) does not exceed 1%. 
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As seen from Eq. (12), the intensity of characteristic radiation of analyte present in infinitely 
thick sample depends not only on analyte concentration but also on full matrix composition. 
Because sample thickness is greater than the saturation thickness, the intensity of 
characteristic radiation of analyte does not depend on sample thickness, which considerably 
simplifies mathematical treatment. 
If the sample is infinitely thin (t → 0), then the enhancement effects can be neglected (Sij → 

0) and the approximation exp(-x)  1-x can be applied and the Eq. (9) simplifies to: 
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In practice, the sample is not infinitely thin, therefore it should satisfy Eq. (15). Then, the 
relative error resulting from applying Eq. (14) instead of Eq. (9) does not exceed 0.5 %. 
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For thin samples, the intensity of characteristic radiation of analyte does not depend on 
matrix composition – matrix effects can be neglected. In consequence, the linear relationship 
between radiation intensity and mass per unit area of the analyte is observed (mass per unit 

area of the sample: m = t [g cm-2], mass per unit area of the analyte: Wim). 
The samples of less than critical thickness for which matrix effects cannot be neglected are 
called intermediate-thickness samples. Review of quantitative analysis of these samples 
including many references can be found in Ref. (Markowicz and Van Grieken, 2002; Sitko, 
2009). The general division of the sample in X-ray fluorescence analysis is presented in Fig. 1. 
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Fig. 1. The general division of the sample in XRF analysis. 

3. Matrix effects in XRF analysis 

Matrix effects in XRF spectrometry are caused by absorption and enhancement of X-ray 
radiation in the specimen. The primary and secondary absorption occur as the elements in 
the specimen absorb the primary and characteristic radiation, respectively. The strong 
absorption is observed if the specimen contains an element with absorption edge of slightly 
lower energy than the energy of the characteristic line of the analyte. When matrix elements 
emit characteristic radiation of slightly higher energy than the energy of analyte absorption 
edge, the analyte is excited to emit characteristic radiation in addition to that excited directly 
by the X-ray source. This is called secondary fluorescence or enhancement. The absorption 
and enhancement effects are shown in Fig. 2 using binaries (FeMn, FeCr and FeNi) as 
examples. When matrix effects are either negligible or constant, the linear relationship  
 

 

Fig. 2. Relationship between radiation intensity of Fe and weight fraction of Fe: Curve A – 
matrix effects are negligible, Curve B – FeCr, Curve C – FeNi, Curve D – FeMn.  
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between radiation intensity and weight fraction of analyte is obtained (Curve A). Curve B is 
obtained when the absorption by the matrix elements in the specimen is greater than the 
absorption by the analyte alone (the so-called positive absorption, e.g. determination of Fe in 
FeCr binaries). Curve C illustrates an enhancement effect, e.g. in the case of determination of 
Fe in FeNi binaries. Curve D is observed when the matrix element in the specimen absorbs 
the analyte radiation to a lesser degree than the analyte alone (the so-called negative 
absorption, e.g. determination of Fe in FeMn binaries). 

4. Quantification in XRF analysis 

Numerous methods, both empirical and theoretical, have been proposed for quantitative 
XRF analysis. They are divided into two major groups: compensation and matrix correction 
methods (Fig. 3). Moreover, only one method allows minimizing matrix effects. This method 
is based on preparation of thin samples. For these samples, matrix effects are not observed 
under measurement conditions and linear relationship between radiation intensity and 
analyte concentration is observed. In other quantitative methods, the matrix effects are still 
present but they are corrected or compensated. 
 

 

Fig. 3. General division of methods applied in quantitative XRF analysis. 

The compensation methods (variations in matrix effects resulting from various specimen 
compositions are minimized), except Compton scatter, are all well-known in other analytical 
techniques, e.g. atomic absorption or emission spectrometry. In these methods, special 
sample preparation is required and only one or few elements can be quantitatively 
determined. Therefore, the compensation methods are less popular than matrix correction 
methods. It should be emphasized that radiation intensity of analyte can be calculated from 
theory. This feature is unique to X-ray spectrometry techniques. No other analytical 
technique allows such a combination of theoretical calculations and experimental results. 
Due to the increasing power of computers during the past few years, the theoretical 
methods, both fundamental parameters and theoretical influence coefficients, became the 
most popular in routine XRF analysis. Therefore, these methods are discussed in this 
chapter. Review of the compensation methods including many references can be found in 
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“Handbook of X-Ray Spectrometry,” edited by Van Grieken and Markowicz (de Vries and 
Vrebos, 2002) and “Handbook of Practical X-Ray Fluorescence Analysis” edited by Beckhoff, 
Kanngieǃer, Langhoff, Wedell and Wolff (Vrebos, 2006). 

5. Fundamental parameter methods 

The fundamental parameter methods are based on Sherman equation (Eq. (9)) considering 
both primary and secondary fluorescence. The tertiary fluorescence and the effects caused 
by scattered radiation are usually neglected. Eq. (9) enables to calculate the intensity of 
fluorescent radiation of analyte in the specimen of known composition. It is possible if all 
physical constants are known: photoelectric absorption coefficients, mass-attenuation 
coefficients, Cöster–Kronig transition probabilities, fluorescence yields, weight of analytical 
line within the series, absorption jump ratios, whose values can be found in updated 
databases (Elam et al., 2001; Ebel et al., 2003). X-ray tube spectrum, required in calculation, 
can be obtained from published experimental data. Nevertheless, the experimental spectral 
distributions are published only for selected voltages and types of X-ray tube (take-off angle 
and thickness of the Be window although absorption in Be window can be easily corrected). 
Therefore, X-ray tube spectrum (both characteristic line intensities and continuum intensity) 
can be calculated from theoretical or semi-empirical algorithms (Ebel, 1999; Pella et al., 1985 
and 1991; Finkelshtein and Pavlova, 1999). 
In practice, the application of fundamental parameter method consists of two steps: 
calibration and analysis of unknown sample. 
Calibration is a crucial issue in assuring high quality results of quantitative analysis. In 
fundamental parameter methods, calibration can be performed in different ways: 
1. Calibration can be performed using pure-element standards (thin or bulk) for each 

element or multielement standard similar to unknown sample. Then, the calibration 

constant (d/4sin1)Qiqi in Eq. (9) is calculated from the measured intensity and 
theoretical intensity of analyte is calculated for a given composition of standard 
specimen. If multi-element standards similar to unknown sample are applied, then the 
best analysis results can be expected.  

2. The product (d/4sin1)Qi can be determined for a few pure-element standards, the 
element sensitivity qi is calculated from theory. Then, the relationship between 

(d/4sin1)Qi and wavelength can be established. This procedure allows the 
determination of all elements using only a few pure-element standards. The 

determination of the relationship between (d/4sin1)Qi and wavelength of analyte in 
WDXRF is described in Ref. (Sitko and Zawisza, 2005). 

3. The fundamental parameter method allows performing standardless analysis. Both Qi and 
qi are calculated from theory. Nevertheless, the element concentrations have to be 
normalized because absolute radiation intensity of X-ray tube is very difficult to calculate 
from theory. Such a procedure can be strictly performed in EDXRF spectrometry where Qi 
depends on the applied semiconductor detector, filters and measurement atmosphere. In 
the WDXRF spectrometry, Qi is a complex function of detection efficiency of proportional 
and scintillation detectors, measurement atmosphere, as well as the reflectivity of the 
analyzing crystal (very difficult or even impossible to calculate from theory with efficient 
accuracy). Therefore, standardless methods included in commercial software packages are 
not strictly standardless because they are based on spectrometer sensitivities determined 
experimentally by manufacturer.  
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Sherman equation enables to calculate radiation intensity of analyte in a sample of known 
composition. In practice, the aim of the analysis is to calculate analyte concentration from 
the actual measurements. Unfortunately, the Sherman equation cannot be transformed in 
order to calculate analyte concentration directly (analyte concentration is included in total 

mass-attenuation coefficient χ(,i) and in enhancement term Sij). Therefore, the analysis of 
unknown sample is performed using iteration. At the beginning, the first estimate of the 
composition is made, which can be done in several ways. For example, in this step, the 
matrix effects are neglected and weight fraction of analyte Wi equals relative intensity Ri 
determined using the calibration data. In the next step, the theoretical intensity Ri’ is 
calculated for the first estimate of composition. Then, the next estimate of composition can 
be calculated from the difference between measured and theoretical intensities e.g. using 
linear interpolation. For example, if measured intensity Ri is 10% higher than theoretical 
intensity Ri’, the weight fraction of analyte is increased by 10%. The process is repeated until 
convergence is obtained, i.e. the weight fraction element does not change from one step to 
another by more than a present proportion e.g. 0.0001. In the analysis of specimen 
containing n elements (or stoichiometric compounds, e.g. oxides), a set of n Eq. (9) has to be 
solved for the unknown weight fractions by iteration. 
The fundamental parameter methods have several advantages. First of all, these methods 
can be applied in analysis of thick samples, thin films and multilayers (simultaneous 
determination of composition and thickness is possible). The comprehensive algorithms 
dedicated to analysis of multiple layer films assume such effects as primary fluorescence, 
secondary fluorescence within the same layer, secondary enhancement between different 
layers and also secondary enhancement from the bulk substrate (Mantler, 1986; Willis, 1989; 
De Boer, 1990). A serious advantage of fundamental parameter methods is the possibility of 
using any standard specimen for calibration: pure-element thick or thin standard, one 
standard similar to unknown sample, series of standards similar to unknown sample, etc. 
Moreover, standardless analysis can be performed. The overview of fundamental parameter 
methods applied in analysis of thin films and multilayers can be found in Ref. (Sitko, 2009). 
The fundamental parameter methods have some limitations. They do not usually consider 
all physical processes in the sample such as: tertiary fluorescence, scatter of both the 
primary and fluorescence radiation and photoelectrons (important in the case of low-Z 
elements). Moreover, the accuracy of fundamental parameters methods strongly depends on 
uncertainty of atomic parameters (mass-attenuation coefficients, fluorescent yield, etc.), 
measurement geometry and spectral distribution of X-ray tube. Nevertheless, the use of 
standards similar to unknown will compensate these effects and will lead to more accurate 
results. The accuracy of fundamental parameter methods is discussed in previously 
published papers (Mantler and Kawahara, 2004; De Boer et al., 1993; Elam et al., 2004; Sitko, 
2007 and 2008a). The “classical” fundamental parameters method can be applied only if all 
elements in the specimen are detectable. Then, the total mass-attenuation coefficient χ(,i) 
and enhancement term Sij can be calculated during iteration. The quantitative analysis is 
hampered when undetectable low-Z elements (e.g. H, C, N, O) are present in the material, 
e.g. geological, environmental and biological samples. Then, the methods utilizing scattered 
primary radiation or emission-transmission method can be successfully applied. 

6. Methods based on scattered radiation 

The intensity of the Compton scattered radiation can be used to obtain estimate of the 
attenuation coefficient of the specimen at the wavelength of the scattered photons. Because 
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the intensity of the scattered radiation is inversely proportional to the mass attenuation 
coefficient, the Compton scattered radiation IComp can be used as internal standard: 

 
i

i i i
Comp

I
W K B

I
   (16) 

The most common application of Eq. (16) is in the determination of trace elements, e.g. Sr, in 
geological samples. The method is limited to those cases where only trace elements have 
absorption edges between the wavelength of the analyte characteristic radiation and the 
wavelength of scattered radiation. Otherwise, the characteristic radiation of a major matrix 
element, e.g. Fe, can be used for matrix correction together with scattered radiation (Nesbitt, 
1976).  If matrix diversification is significant or heavy absorbers are present in large 
amounts, the Compton scattered radiation is preferred using a power function rather than a 
simple inverse proportion (Bao, 1997). 
The scattered primary radiation is also used in more sophisticated strategies, i.e. in 
backscattered fundamental parameter methods. Then, scattered primary radiation is applied 
for the evaluation of the so-called “dark matrix” which consists of undetectable low-Z 
elements (e.g. H, C, N, O). Nielson (Nielson, 1977) proposed the backscattered fundamental 
parameter method which utilizes incoherently and coherently scattered radiations to choose 
and determine quantities of two light elements representative of the ‘dark matrix.’ To improve 
the accuracy of the analysis, Węgrzynek et al. applied differential scattering cross sections 
instead of total scattering cross sections (Węgrzynek et al., 2003a). Another strategy is the use 
of average atomic number (e.g. Szalóki et al., 1999). Theory and experiment show that the 
coherent/incoherent scatter ratio is sensitive to average atomic number of the sample ZM:     
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Where Icoh is coherent (Rayleigh) scattered radiation intensity, a and n are constants. Average 
atomic number is defined as follows: 

 M i i j j
j
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Where Zi and Zj are atomic numbers of analyte i and matrix element j, respectively. The 
summation in Eq. (18) is over all elements present in the specimen. Because the detectable 
elements can be distinguished from undetectable elements, the average atomic number of 
the ‘dark matrix’ Zlow-Z can be calculated from the Eq. (19). 

 

1

M k k
k

low Z
k

k

Z W Z

Z
W









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 (19) 

Where Wk and ZK are weight fraction and atomic number of detectable element, 
respectively. If Zlow-Z is known, then the mass-attenuation coefficient of the ‘dark matrix’ for 

given radiation energy E can be calculated from the empirical Eq. (20). 

 
( )( ) ( ) c E

low Z low ZE b E Z     (20) 
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Where b(E) and c(E) are calculated from the least-squares fits applied to the published 
values of mass-attenuation coefficients.  
The backscattered fundamental parameter methods allow calculating contribution of 
undetectable elements to absorption effects. Therefore, they are usually applied in 
determination of heavy elements in light matrix samples, e.g. environmental samples 
(plants, soils, etc.), biological samples and plastics. A strong advantage of the backscattered 
fundamental parameter methods is the fact that full matrix composition of the sample does 
not need to be known. Unfortunately, additional calibration has to be performed with the 
use of the standard samples of known ZM (determination of constants a and n). It should be 
noted that the scattered radiation can also be applied to estimate the sample thickness 
(Araujo et al., 1990; Giauque et al., 1994). 
An empirical algorithm for correction of matrix effects in light matrix samples was proposed 
in Ref. (Sitko, 2006 a). The algorithm was derived for the analysis of samples collected onto 
membrane filters: 

 1

b

coh
i i i i i

Comp

I
W m K I a m B

I

      
  
   

 (21) 

Where Ki, Bi and ai are the constants calculated by the least-squares fit on the basis of 
experimental results for standard samples, m is the mass per unit area of the sample. The 
coefficient b depends on the filter applied and the mass per unit area of the collected sample. 
This coefficient can be described by least-squares fit polynomials of second order in ln–ln scale: 

 
2

0 1 2exp ln (ln )b p p m p m      (22) 

Where p0, p1, p2 are the constants determined on the basis of experimental results for 
standard samples. If diversification of sample thickness is limited, this coefficient can be also 
treated as constant. 

7. Emission–Transmission method 

The emission–transmission (E–T) method is one of the most popular methods based on 
transmission measurement (Fig. 4). The method is frequently applied for correction of 
absorption effects in light matrix samples pressed into pellets or collected onto filters. 
Nevertheless, applicability of E-T method is limited to the samples that are partially 
transparent for X-ray beams, i.e. intermediate-thickness samples. The method consists of 
measuring the X-ray fluorescent radiation from the specimen alone Ii,S, from specimen with 
a target located at a position adjacent to the back of the specimen Ii,S+T and from the target 
alone Ii,T. Taking into account these measurements, the total mass-attenuation coefficient 
χ(,i) can be calculated from the following relationship: 

   , ,

,

exp ( , ) i S T i S
i

i T

I I
t

I
     

   (23) 

The most important advantage of the E–T method is the possibility of determining χ(,i) 
without the knowledge of the sample composition. In consequence, the absorption 
correction can be performed very easily and enhancement term Sij can be calculated without 

www.intechopen.com



 
X-Ray Spectroscopy 

 

148 

using iterative approach (Węgrzynek et al., 1993). In multielement analysis, the measurements 
are usually performed for a few elements and then relationship between χ(,i) and 
wavelength is established. If minor and/or major elements are present in a sample, 

discontinuities in the relationship between χ(,i) and wavelength resulting from absorption 
edges are observed. Then, at least two measurements for each wavelength region are 
performed or appropriate iteration procedure can be applied (Markowicz and Haselberger, 
1992). Quantification based on E-T method, including accuracy and calibration can be found in 
Ref. (Markowicz et al., 1992; Markowicz and Van Grieken, 2002; Węgrzynek et al., 2003b). 
 

 

Fig. 4. Measurements in emission-transmission method. 

8. Influence coefficient algorithms 

Many influence coefficient algorithms have been developed. They were reviewed and 
discussed in one chapter of “Handbook of X-Ray Spectrometry,” edited by Van Grieken and 
Markowicz (de Vries and Vrebos, 2002) and numerous papers (Rousseau, 2001, 2002, 2004, 
2006), (Willis and Lachance, 2000, 2004). The algorithms can be divided in different ways. 
The influence coefficients can be calculated from theory (using Sherman equation) or from 
the measurements, therefore the algorithms are generally divided into two groups: 
theoretical and empirical influence coefficients algorithms (Fig. 5). The algorithms can use a 
single or more than one coefficient per matrix element. Moreover, the influence coefficients 
can be constant or can vary with composition of the sample.  
 

 

Fig. 5. General division of influence coefficient algorithms. 
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In general, the total matrix correction term Mi is expressed as a linear combination of weight 

fractions of matrix elements Wj:  

 1i ij j
j

M W   (24) 

Where ij is influence coefficient describing the matrix effect of the interfering element j on 

the analyte i. Combining Eq. (8) with Eq. (24) leads to the general form of concentration 

based algorithm:  

 1i i ij j
j

W R W
 

  
  

  (25) 

Eq. (25) is usually applied if influence coefficients are determined using Ri calculated from 

theory. The total matrix correction term expressed by Eq. (24) can also be combined with Eq. 

(5). Then, we obtain the general equation that can be used during calibration if the matrix 

correction term is calculated from theory for each standard specimen: 

 1i i i ij j i
j

W K I W B
 

   
  

  (26) 

Eq. (26) is also used in empirical algorithms if influence coefficients ij, slope Ki and 

intercept Bi are determined from multiple-regression analysis on a large suite of standards. 

One of the simplest algorithms was proposed by Lachance and Traill in 1966 (Lachance 
and Traill, 1966). The algorithm can be easily derived from the Sherman equation if the 
following assumptions are made: the sample is infinitely thick, the monochromatic 
excitation is applied and enhancement effects are negligible. Then, the Sherman equation 
simplifies to: 

 0
1

1
( ) ( )

4 sin ( , )
i i i i i

i

d
I Q q W I  

    


  (27) 

The total mass-attenuation coefficient can be expressed as follows:  

 ( , ) ( , ) ( , )i i i i j j i
j

W W           (28) 

Where: 
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  

 
   

(29)

 

The total mass attenuation coefficient χ(,i) depends on both matrix elements j and analyte 
element i. Assuming that the sum of the element weight fractions in the specimen equals 
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one (then Wi = 1 - Wj), the weight fraction of analyte element i can be eliminated from Eq. 

(28) and then χ(,i) is given by: 

 ( , ) ( , ) 1i i i ij j
j

W      
 

  
  

  (30) 

Where: 

 
( , )

1
( , )

j i
ij

i i

  


  
   (31) 

Finally, if the absolute intensity Ii is replaced by the relative radiation intensity Ri the 
Lachance-Traill equation can be obtained from the simplified Sherman formula (Eq. (27)): 

 1i i ij j
j

W R W
 

  
  

  (32) 

In Lachance-Traill algorithm, the influence coefficient ij corrects for the absorption effects 
of the matrix element j on the analyte i in the case of monochromatic excitation of 
wavelength . The coefficient can be positive or negative. If the analyte is determined in 
presence of a heavier matrix element, then χi(,i)< χj(,i) and ij is positive. If the analyte is 
determined in presence of a lighter matrix element, then χi(,i)> χj(,i) and ij is negative. 
The influence coefficients can be calculated in different ways: 

 It can be calculated directly from the Eq. (31). 

 It can be determined from multiple-regression analysis on a large suite of standards. 

 It can be calculated from the relative radiation intensity Ri. 
The influence coefficients can be calculated directly from the Eq. (31) only if monochromatic 
excitation is applied (or the effective wavelength is used although it is composition dependent) 
and there are no enhancement effects.  The determination of Ni in ternary system FeNiCr is 

shown here as an example. The analyte is excited by molybdenum radiation (Mo K) and 

following measurement geometry is assumed: 1 = 60° and 2 = 40°. In this case, the influence 

coefficient NiFe describing influence of Fe on Ni is calculated from the following equation:  

 
1 2

1 2

( ) ( ) 37.4 363.3
sin sin 0.87 0.641 1 3.21

( ) ( ) 44.6 59.8
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NiFe
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   
     
 

 
    


 (33) 

The influence coefficient NiCr describing influence of Cr on Ni is calculated in the same way. 
Finally, the following equation is obtained for determination of Ni in FeNiCr using 
aforementioned measurement conditions: 

  1 3.21 2.47Ni Ni Fe CrW R W W      (34) 

The influence coefficients can also be calculated from relative radiation intensity of the 

analyte. In this case, the influence coefficient ij is calculated for binary systems. Then Eq. 
(32) simplifies to: 
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 1i i ij jW R W     (35) 

Eq. (35) can be rewritten to obtain ij: 

 
1i i

ij
j

W R

W



  (36) 

For example, to determine influence coefficient describing influence of Cr on Ni in FeNiCr, 

the binary system NiCr is taken into account, and RNi for this system has to be determined. 

The relative intensity can be determined based on actual measurements. In this case, the 

pure element specimens and suitable binary specimens must be available. Therefore, Ri is 

usually calculated from theory using fundamental parameter method. In the first step, the 

composition of hypothetical binary specimen is assumed. In next step, Ri is calculated from 

theory for actual measurement conditions (voltage of X-ray tube, incident and take-off 

angles, medium: air, helium or vacuum). Finally, ij is calculated from Eq. (36). The 

influence coefficients can be determined for any quantitative composition of binary systems. 

Table 1 shows influence coefficients calculated for various compositions of binary systems. 

The example is given for determination of Ni in ternary system FeNiCr. Thus, in this case 

the secondary fluorescence does not exist. As can be observed, if monochromatic excitation 

is applied, the coefficients are constants, i.e. they do not vary with composition. A different 

situation is observed for polychromatic excitation, where both NiFe and NiCr vary with 

composition of the specimen.  

 

WNi WFe WCr 

Monochromatic excitation, 

Mo K 

Polychromatic excitation, Mo 
target X-ray tube operated at 

45kV 

RNi NiFe NiCr RNi NiFe NiCr 

0.2 0.8  0.0561 3.21  0.0740 2.13  

0.5 0.5  0.1920 3.21  0.2396 2.17  

0.8 0.2  0.4873 3.21  0.5510 2.26  

0.2  0.8 0.0672  2.47 0.0883  1.58 

0.5  0.5 0.2238  2.47 0.2759  1.63 

0.8  0.2 0.5355  2.47 0.5972  1.70 

Table 1. Influence coefficient calculated from Ri for determination of Ni in ternary system 
FeNiCr using monochromatic and polychromatic excitation. 

A similar situation is observed in determination of Fe in FeNiCr if polychromatic excitation 

is applied (Table 2). Both FeCr and FeNi are variable. The coefficient describing influence of 

Cr on Fe is positive because only absorption effect is observed in this case. The coefficient 

describing influence of Ni on Fe is negative because the enhancement effect dominates. 

Moreover, it strongly depends on specimen composition. 

Summarizing, the influence coefficients can be treated as constants only if monochromatic 

excitation is applied and there are no enhancement effects. Fig. 6 presents results for 

determination of Cr in stainless steel before and after matrix correction using constant 
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coefficients (e.g. Lachance-Traill algorithm) and variable linear coefficients (e.g. Claisse-

Quintin algorithm). Before matrix correction, the mean error of Cr determination equals 1.11 

% Cr. Considerable improvement is obtained after matrix correction with constant 

coefficient - the mean error is equal to 0.35 % Cr. Even better results are obtained for linear 

coefficients - the mean error equals 0.14 % Cr. 

 

WFe WCr WNi RFe FeCr FeNi 

0.2 0.8 0.0717 2.24  

0.5 0.5  0.2329 2.29  

0.8 0.2  0.5405 2.40  

0.2  0.8 0.3017  -0.42 

0.5  0.5 0.5985  -0.33 

0.8  0.2 0.8431  -0.26 

Table 2. Influence coefficient calculated from Ri for determination of Fe in ternary system 
FeNiCr using polychromatic excitation: Mo target X-ray tube operated at 45kV. 

 

 

 

Fig. 6. Determination of Cr in stainless steel before and after matrix correction using (a) 
Lachance-Traill algorithm and (b) Claisse-Quintin algorithm (see subchapters 8.1 and 8.2). 

The coefficients calculated from Ri for binaries are the so-called binary coefficients, i.e. they 

describe influence of matrix element on analyte but they do not take into account other 
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matrix elements. Therefore, applying binary coefficients to multielement samples leads to an 

incomplete matrix correction. It can be explained using simple example: the enhancement of 

Fe by Ni in two different matrices - Al and Cr matrix. In Cr matrix, Ni radiation is strongly 

absorbed by Cr. Therefore, Ni excites Fe to a lesser extent in Cr matrix than in Al matrix. In 

both cases, the same influence coefficient FeNi is used if binary coefficient algorithm is 

applied. Therefore, a better solution is the use of multielement coefficient algorithms, e.g. 

Lachance-Claisse, Broll-Tertain or Rousseau algorithm.  

In general, the constant coefficient algorithms (e.g. Lachance-Traill algorithm) give 

satisfactory results but concentration range should be limited (0-10%). The algorithms using 

binary variable coefficients (e.g. Claisse-Quintin algorithm) give excellent results over 

medium concentration range of 0-40%. Multielement coefficient algorithms can be used in a 

full concentration range between 0 and 100%.  

A number of influence coefficient algorithms have been proposed for correction of matrix 

effects. They can be divided in several ways: by the way of calculating influence coefficients 

(theoretical or empirical), by the variables used in matrix correction term (concentration or 

intensity based) or by the analytical context of determination of coefficients (constant or 

variable, binary or multielement). The general scheme of division and sub-divisions of 

influence coefficient algorithms is presented in Fig. 5. 

In the next part of the chapter, various influence coefficient algorithms will be reviewed. The 

application of these algorithms for calibration and analysis of unknown specimen discussed 

here is valid for any of the algorithms. Some differences are observed in the use of 

theoretical and empirical algorithms during the calibration stage.  

In the case of theoretical influence coefficient algorithms, the coefficients are determined 

from theory e.g. using Ri calculated from Sherman equation for given measurement 

conditions. In the next stage, the matrix correction term (Eq. (24)) is calculated for all 

standard specimens and for a given analyte. Then, the calibration graph is plotted: the 

measured radiation intensity of the analyte multiplied by the corresponding matrix 

correction versus weight fraction of analyte. Then, slope Ki and intercept Bi are determined 

by least-squares fit using set of standard specimens. 

In the case of empirical algorithms, the influence coefficients, slope Ki and intercept Bi are 

determined from multiple-regression analysis on a large suite of standards. If there are n 

matrix elements, n+2 coefficients have to be determined (n influence coefficients, slope Ki 

and intercept Bi). For the calculation of n+2 coefficients, n+2 standards are required. In 

practice, a much larger number of standards is used: 2n or even 3n. It should be noted, that 

the matrix element can be included in matrix correction term only if its influence on the 

analyte is significant. Otherwise, the matrix element should be omitted in matrix correction 

term to obtain correct values of other influence coefficients. Moreover, the concentration of 

all elements in the reference specimens should cover composition of unknown sample. Only 

then, accurate results can be obtained. 

Analysis of unknown sample is similar for both theoretical and empirical algorithms. In 
this step, a set of equations has to be solved for the unknowns: Wi, Wj, … Wn. If there are n 
linear equations with n unknowns, the set of equations can be solved algebraically. 
However, an iterative procedure is usually applied, especially in the case of a set of non-
linear equations. General scheme of using theoretical influence algorithm is presented in 
Fig. 7. 
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Fig. 7. General scheme of using theoretical influence algorithm. 

8.1 Constant coefficient algorithms 

The previous section shows that influence coefficients can be treated as constants only if: 
monochromatic excitation is applied and there are no enhancement effects. However, the 
monochromatic excitation is rarely used in practice and enhancement effects are usually 
observed in multielement specimens. Therefore, to obtain accurate results with constant 
coefficients, the concentration ranges of analyte and matrix elements should be limited. The 
constant coefficients are calculated for a given composition range or a series of reference 
samples that cover composition of unknown sample. If composition range is wide, then the 
sample can be diluted by pelletizing with a binder or by fusion. 

The Lachance-Traill algorithm (1966) 

 1i i ij j
j

W R W
 

  
  

  (37) 
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The algorithm was discussed in detail in the previous section. The influence coefficients can 

be determined from the relative radiation intensity or from multiple-regression analysis on a 

large suite of standards. They can also be calculated directly from the Eq. (31) if 

monochromatic excitation is applied and enhancement effects are not observed. If 

polychromatic beam is applied, then the effective wavelength can be used, however it is also 

composition dependent.  

The de Jongh algorithm (1973) 

 1i i i ij j
j
j e

W E R W



 
 

  
 
 

  (38) 

Where Ei is a constant determined during calibration. The algorithm proposed by de Jongh 

(de Jongh, 1973) uses theoretical coefficients calculated from fundamental parameters. This 

algorithm looks similar to the Lachance-Traill equation but the eliminated element e is the 

same for all equations (in Lachance-Traill algorithm, the analyte is eliminated from each 

equation, i.e. ii = 0). The influence coefficients are calculated by a Taylor series expansion 

around an average composition. They are multielement coefficients rather than binary 

coefficients, i.e. the influence coefficient describes influence of matrix element j on analyte i 

in the presence of all matrix elements. The advantage of the de Jongh algorithm is that one 

element can be arbitrarily eliminated from the correction procedure, so there is no need to 

measure it. For example, in ferrous alloys, iron is often the major element and it is usually 

determined by difference, and therefore, can be eliminated from the correction procedure. 

The Rasberry-Heinrich algorithm (1974) 

 1
1

ik
i i ij j k

ij k

b
W R a W W

W

 
   

  
   (39) 

In this algorithm, two different coefficients are used for correction of absorption effect 

(coefficient aij) and enhancement effect (coefficient bij) and only one coefficient is used for 

each matrix element. The coefficient aij is used if absorption is the dominant effect (then bik = 

0). The coefficients bik are used if enhancement is the dominant effect (then aij = 0). The 

coefficients are determined experimentally on the basis of measured reference samples. The 

serious disadvantage of the algorithm is the fact that it is not clear which matrix element 

should be assigned an aij and which one a bik. Therefore, the Rasberry-Heinrich algorithm is 

not considered to be generally applicable, but it gives satisfactory results for FeNiCr alloys. 

It is for this system that the algorithm was originally developed. 

The Lucas-Tooth and Price algorithm (1964) 

 i i i ij j i
j

W I k a I B
 

   
  

  (40) 

Where ki and aij are the correction coefficients, Bi is a background term. The coefficients are 
determined by a least-squares fit on the basis of measured reference samples. The correction 
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is done using intensities rather than concentrations. The algorithm assumes that the matrix 
effect of an element j on the analyte i is proportional to its intensity. Because this 
approximation is unreliable (the measured intensities are modified by matrix effects and are 
not directly proportional to concentrations), the algorithm has a limited range of 
applicability. However, determination of a single element is possible using Lucas-Tooth and 
Price algorithm. 

8.2 Variable binary coefficient algorithms 

The Claisse-Quintin algorithm (1967) 

 ,1i i lin ij j ijk j k
j j k

W R W W W 
 

   
  

    

 ,lin ij ij ijj MW     

(41)
 

In 1967, Claisse and Quintin proposed an improved version of Lachance-Traill algorithm 

(Claisse and Quintin, 1967). The algorithm uses linear coefficients lin,ij instead of constant 

coefficients and can be applied for polychromatic excitation in a medium range of 

concentration. The cross-product coefficient ijk included in matrix correction term corrects 

for the simultaneous presence of both j and k and compensates for the fact that the total 

matrix effect correction cannot be represented as a sum of binary matrix effect corrections. 

WM is matrix concentration (WM = 1 – Wi) proposed by Tertian instead of Wj in the original 

equation in order to obtain high quality results (Tertian, 1976). Equations for calculating 

accurate and valid theoretical binary influence coefficients in the Claisse–Quintin algorithm 

were first proposed by Rousseau and Claisse (1974) and later improved by Rousseau (1984 

b). The influence coefficients are calculated from Ri using fundamental parameters at two 

binaries (Wi = 0.2 and 0.8). The algorithm introduces a theoretical mean relative error of 

0.04% on the calculated concentrations in the case of cement samples prepared as pressed 

powder pellets (medium concentration range of 0 - 40%). For a large concentration range (0–

100%), e.g. in the case of alloy analysis, the Claisse–Quintin algorithm introduces 0.3% 

relative error (Rousseau, 2001). 

The COLA algorithm (1981) 

 ,1i i hyp ij j ijk j k
j j k

W R W W W 
 

   
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(42)

 

In 1981, Lachance proposed an algorithm called COLA (comprehensive Lachance) with a 
new approximation to the binary influence coefficients (Lachance, 1981). This time, 
hyperbolic influence coefficients were applied. The influence coefficients are calculated from 
Ri using fundamental parameters at three binaries (Wi = 0.001, 0.5 and 0.999). Similarly to 
the Claisse-Quintin algorithm, the cross-product coefficients are calculated from a ternary 

www.intechopen.com



 
Quantification in X-Ray Fluorescence Spectrometry 

 

157 

system (Wi = 0.30, Wj = 0.35, Wk = 0.35). The applicability of COLA algorithm is similar to 
the Claisse-Quintin algorithm. The algorithm corrects for both absorption and enhancement 
effects over a broad range of concentration. 

8.3 Variable multielement coefficient algorithms 

Binary influence coefficients are based on an approximation: the total matrix effect on the 
analyte i equals the sum of the effects of each matrix element j and each effect is calculated 
independently of each other. The binary coefficient algorithms give accurate results if 
composition range is limited, i.e. 0-10% for the constant coefficient algorithms and 0-40% for 
binary variable coefficient algorithms. The coefficients are calculated for a given 
composition range rather than for a given sample composition. The multielement 
coefficients are exact and are calculated for each individual reference and unknown 
specimens. Therefore, the multielement coefficient algorithms are applicable in full 
composition range from 0 to 100%. The most important algorithms were proposed by Broll 
and Tertian (1983), Rousseau (1984), and Lachance and Claisse (1995). 

The Broll-Tertain algorithm (1983) 

 1 i
i i ij ij j

ij

W
W R W

R
 

  
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  (43) 

The Rousseau algorithm (1984) 
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The Lachance-Claisse algorithm (1995) 
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Where ij and ij are influence coefficients correcting for absorption and enhancement 
effects, respectively. The multielement influence coefficients can be easily calculated for 
reference specimens of known composition. In the case of unknown specimens, the iteration 
is used. In Rousseau algorithm, a first estimate of the composition of the unknown specimen 
is calculated using the Claisse-Quintin algorithm, then the influence coefficients are 
calculated for this composition. An exact estimate of composition is finally obtained by 
applying the iterative process to Eq. (44). Willis and Lachance (2004) showed that the 
aforementioned multielement coefficient algorithms give the same high-quality results and 
no algorithm can outperform any of the others. 

8.4 Influence coefficient algorithms for intermediate-thickness samples 

The influence coefficients algorithms are widely applied for quantitative analysis of 
infinitely thick samples. Influence coefficients algorithms can be deduced from the Sherman 
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equation because exponential term equals zero for thick samples. In consequence, the matrix 
correction term can be expressed as a linear combination of matrix elements concentrations. 
The analysis of intermediate-thickness samples is much more complicated because the 
exponential term in Eq. (9) cannot be neglected. However, Sitko (2005) proposed a certain 
approximation to eliminate the exponential term: 

  
1 0

1
1 exp x

k k x
  


 (46) 

Where k1 and k0 are constants, x = χ(,i)t. The proposed approximation allows not only for 
eliminating the exponential term but also transforming Sherman equation to a form in 
which the matrix correction term is expressed as a linear combination of all matrix elements 
concentrations. Thus, the proposed approximation was a base for the first empirical 
influence coefficient algorithm dedicated for the analysis of intermediate-thickness samples 
(Sitko, 2005): 

 i i i i ij j i
j

W m I a c m W m B
 

    
  

  (47) 

Where Wim and Wjm are the masses per unit area of the analyte i and the matrix element j, 

respectively; ij is the influence coefficient; ai and ci are the coefficients dependent on the 

range of thickness of calibration samples. The coefficients ai, ci, ij and Bi are calculated by 
the least-squares fit on the basis of reference samples of various thickness and composition. 
The influence coefficients in this algorithm are treated as constants. Therefore, to obtain 
accurate results, sample thickness and composition range should be limited. To overcome 
this inconvenience, the theoretical influence coefficient algorithm for intermediate-thickness 
samples was proposed (Sitko, 2006 b): 

 i i i i i ij j i
j

W m K I a c m W m B
 

    
  

   

 
 

1

ij i ij i i
ij

ij j
j

c S a m c

S W




 



 

(48)

 

Where Ki, Bi are the calibration constants calculated by the least-squares fit on the basis of 
experimental results for reference samples; ai and ci are the coefficients dependent on the 

thickness and total mass-attenuation coefficient of the sample; ij is the absorption influence 

coefficient; Sij is the enhancement term. The coefficients ai, ci, ij and Sij are multielement 
coefficients and are calculated directly from theory. The proposed theoretical influence 
algorithm can be applied in analysis of samples of any thickness and is more general in its 
form than algorithms for thick samples. It is worth emphasizing that the algorithm takes the 
well-known form for thick samples, e.g. the Lachance-Claisse algorithm (if sample thickness 
→ ∞ then ai → 0 and ci → 1). The theoretical influence algorithm is more flexible than the 
previously proposed empirical algorithm and can be applied for a wide range of thickness 
and composition.  
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In the next paper (Sitko, 2008b), two algorithms of constant and linear coefficients for 
simultaneous determination of composition and thickness of thin films were proposed. This 
time, the coefficients are not calculated directly from theory but from the relative radiation 
intensity (calculated from theory) of hypothetical pure element films and binary films. The 
potential of the algorithms was demonstrated with hypothetical ternary and binary systems: 
FeCrNi, FeCr, FeNi, CrNi and experimental data of FeNi and Cu films. 

9. Conclusions 

Many methods, both empirical and theoretical, have been proposed for quantitative XRF 
analysis. Method selection usually depends on sample type (thin or bulk, alloys or rocks, 
etc.), method of sample preparation (without treatment, fusion, etc.), expected results 
(quantitative or semi-quantitative analysis, determination of a single element or 
multielement analysis) and availability of standard samples. If the compensation methods 
are applied, then complicated sample preparation is required, only one or few elements can 
be quantitatively determined (standard addition, internal standard, Compton scatter) and 
additional matrix correction may be required (dilution). In influence coefficient algorithm, 
the matrix correction and calibration is clear, therefore, interpretation of data is very easy. 
The fundamental parameter methods are like “a black box”. Nevertheless, the serious 
advantage is their versatility: the analysis of bulk, thin samples and multilayers is possible. 
Fundamental parameter methods are usually considered to be less accurate than the 
influence coefficient algorithms. This results from the fact that the fundamental parameter 
methods are usually used with only a few standards. The accuracy of fundamental 
parameter methods is very similar to that of influence coefficient algorithms when the same 
standards (many standards similar to the unknown) are used in both cases. 
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