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1. Introduction

The development of haptic technology is allowing the introduction of Virtual Reality systems
as teaching and working tools into many fields such as engineering (Howard & Vance, 2007;
Savall et al., 2002) or surgery (Basdogan et al., 2004; Li & Liu, 2006).

Haptic devices allow users to interact with a certain environment, either remote or virtual,
through the sense of touch, considerably enhancing interactivity. A haptic device is a
mechanism that allows users to control the movements of a virtual tool or a real robot and
receive tactile and kinesthetic information from the working environment (Fig. 1).
The usability of these systems is conditioned by the quality of the haptic feedback applied
to the user. Technologically, the computation of appropriate and realistic haptic stimuli
continues to be a complicated issue. The human sensory-motor system demands a fast update
rate (at least 1 kHz) for the haptic stimuli applied to the user in order to avoid instabilities in

Virtual scenario

Virtual

tool

Haptic

device

Fig. 1. Haptic interaction with a virtual environment
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the system and to present rigid objects with reasonable stiffness (Shimoga, 1992). However,
this update rate is often difficult to reach by haptic rendering methods, especially when
working in complex environments. One possible solution is to reduce the computational cost
of calculating the haptic response by decreasing the accuracy of the method. However, this
can result in the emergence of discontinuities in the response. This leads to find a trade-off
between the accuracy of the method, which guarantees a smooth and stable haptic response,
and the computational cost.
This chapter describes a haptic rendering method to properly compute interacting forces and
torques in complex environments, ensuring improved feedback by seeking a compromise
between continuity and computational cost. In addition, the proposed method pays
particular attention to provide users with comfortable interaction. The method is valid
for applications in which the virtual environment is composed of rigid and static objects,
excluding deformable objects.
The remainder of this chapter is organized as follows: Section 2 presents an overview
of the related research on the area. Afterwards, Section 3 describes the haptic rendering

method proposed by the authors, describing in detail all algorithms necessary to render
appropriate and stable forces and torques to the user. The proposed method is then
evaluated in Section 4 within two different virtual scenarios simulating common collisions
during aeronautic maintainability tasks. Aeronautic virtual mock-ups have been selected for
algorithms testing due to their high interaction complexity. Finally, conclusions and future
directions are drawn in Section 5.

2. Related research

The process of computing and generating forces in response to user interactions with virtual
objects is known as haptic rendering (Salisbury et al., 1995). The application of haptic
rendering algorithms to complex contact scenarios becomes a challenging issue, due to the
inherent cost of collision detection that induces slow force updates. The haptic display of
virtual objects has been an active area of research throughout the last decade. Previous
research in haptic rendering can be mainly classified within two groups: penalty and
constraint-based methods.
When it comes to penalty methods, collision response is computed as a function of object
separation or penetration depth. McNeely et al. (1999) proposed point-voxel sampling, a
discretized approximation technique for contact queries that generates points on moving
objects and voxels on static geometry. This approximation algorithm offers run-time
performance independent of the environment’s input size by sampling the object geometry
at a resolution that the given processor can handle. Renz et al. (2001) adapted this method
with several modifications for smoother and more stable haptic feedback. In another research

project, Gregory et al. (2000) presented a 6-DOF haptic rendering system that combined
collision detection based on convex decomposition of polygonal models, predictive estimation
of penetration depth and force and torque interpolation. Kim et al. (2003) attempted to
increase the stability of force feedback by using contact clustering, but their algorithm for
contact queries suffers from the same computational complexity.
Otaduy and Lin (2003) have presented a sensation preserving simplification technique
for 6-DOF haptic rendering of complex polygonal models by adaptively selecting contact
resolutions. Later, they have also presented a modular algorithm for 6-DOF haptic
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rendering, that provides transparent manipulation of rigid models with a high polygon count
(Otaduy & Lin, 2006).
Unlike penalty methods, constraint-based methods do not use the interpenetration between
rigid objects to calculate collision response. These methods use virtual coupling techniques
(Colgate et al., 1995) and restrict the movement of virtual objects on the surface of obstacles.
Zilles and Salisbury (1995) proposed a constraint-based method for 3-DOF haptic rendering
of generic polygonal objects. They introduced the “god-object”, an idealized representation
of the position of the haptic device that is constrained on the surface of obstacles. At each
time step, the location of the god-object minimizes the distance to the haptic device and
the difference between the two positions provides the force direction. Ruspini et al. (1997)
extended this approach by replacing the god-object with a small sphere as well as proposing
methods to smooth the object surface and add friction. Later, Ortega (2006) extended the
3-DOF constraint-based method of Zilles and Salisbury by employing a 6-DOF god-object.
The different haptic rendering methods described above have contributed extensively to a
better representation of contact events between virtual objects. However, haptic interactions

with multiple contacts, which also include geometrical discontinuities, have not yet been
adequately accomplished computing unrealistic or unstable haptic feedback in these cases.
These type of situations are very common in real scenarios and therefore it is necessary to
compute properly a stable haptic response in order to improve the usability of these systems.
The proposed haptic rendering method overcomes limitations from previous approaches in
this type of collisions.

3. Proposed haptic rendering method

The haptic rendering method outlined in this chapter computes the force and torque that
result when a collision between two type of objects occurs: a virtual tool (mobile object)
manipulated by the user of the haptic device and any object in the simulation (static object).
Three main modules can be identified in the haptic rendering method proposed (Fig. 2):
collision detection, collision response and control module.
The complete haptic rendering sequence could be described as follows: firstly, the control
module acquires the position (Uh) and orientation (Rh) of the haptic device and sends it
to the collision detection module. With this information, the module checks for collisions
between the mobile object and the static environment. If no collisions occur, it waits for new
information from the control module. Otherwise, when a collision event occurs, the contact
information of both static and mobile objects (Cs, Cm) is sent to the collision response module
which calculates the interaction force and torque. This haptic feedback approximates the
contact force and torque that would arise during contact between real objects (Fr, Tr). Finally,
the collision response module sends this information to the control module, which applies it

to the haptic device (Fh, Th), maintaining a stable system behaviour.
A more complete description of each module can be found in the following sections.

3.1 Collision detection

The collision detection method presented in this chapter can handle non-convex objects
without modifying the original mesh. A technique based on a spatial partition (voxels) has
been chosen. Hierarchical methods like octrees have also been tested since they require less
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Collision Detection
Collision Response 

Control

1. Detect colliding triangles

2. Identify contact areas and zones

3. Compute force direction

4. Compute penetration depth

5. Compute contact point

6. Compute force and torque

7. Update collision information

8. Adequate response

Cs, Cm

Uh, Rh

Haptic Device

Fh, Th

Fr, Tr

Fig. 2. Diagram of haptic rendering algorithm

memory storage. However, their computation time is higher than that needed for direct access
voxel techniques.
It is well-known that algorithms based on voxel techniques have several disadvantages, such
as high memory storage requirements and the selection of voxel size. According to previous
experiments (Borro et al., 2004), hashing techniques can solve the first problem by reducing
memory storage up to 60 % without performance loss, and the choice of an optimal voxel size
can be solved by means of an analytical solution based on the algorithm cost function.
The method, in a pre-process, computes a voxel partition from the virtual scene and assigns
each triangle of the static environment to its corresponding voxel. This voxel partition is used
only for the static object. In addition, each voxel will have a flag identifying it as internal
(Vint), external (Vext) or boundary (Vbnd). The last ones contain the triangles that define the
surface of the static object.
Next, at runtime, the partition model is used to detect the set of voxels in collision with the
mobile object and to carry out interference checks between triangles.
Fig. 3a shows an example of colliding static triangles (CST) and colliding mobile triangles
(CMT) detected by the method in a virtual collision of a tool with an obstacle. As it can be seen

colliding triangles do not provide enough information to delimit the volume that defines the
intersection between the objects. Therefore, unlike other existing methods in the literature, the
proposed algorithm detects additional triangles in order to calculate the intersection volume
correctly (Fig. 3b). The union of the colliding triangles and these additional triangles are
referred to as contact triangles.
The additional triangles can be classified within three groups: internal mobile (IMT),
boundary mobile (BMT) and boundary static (BST). With regard to the mobile object, (IMT)
are those in contact with Vint whereas (BMT) are those in contact with Vbnd, but that do not
intersect with static triangles (CST) (Fig. 4).
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Regarding the static object, BST set of triangles are those in contact with Vbnd (Fig. 5), but that
do not intersect with mobile triangles. These triangles are usually in the centre of the contact
area surrounded by colliding static triangles.

Colliding mobile

triangles (CMT)
Colliding static

triangles (CST)

Mobile 

triangles not 

detected

Intersection 

volume

(a) (b)

Fig. 3. Colliding triangles detected (a) and additional triangles that define the intersection
volume (b)

Contact mobile 

triangles (CMT)Contact static

triangles (CST)

Internal voxels 

(Vint)

Boundary 

voxels (Vbnd)

Internal mobile 

triangles (IMT)

Boundary mobile 

triangles (BMT)

Fig. 4. Internal and boundary mobile triangles

Contact mobile 

triangles (CMT)

Contact static

triangles (CST)

Boundary static  

triangles (BST)

Fig. 5. Static boundary triangles

119Effective Haptic Rendering Method for Complex Interactions

www.intechopen.com



6 Will-be-set-by-IN-TECH

At the end, the collision detection module yields two sets of contact triangles, one belonging
to the static object (Cs) and the other to the mobile object (Cm).

Cs = {CST
⋃

BST} (1)

Cm = {CMT
⋃

BMT
⋃

IMT} (2)

3.2 Collision response

The algorithm proposed follows the well-known penalty methods based on elastic model,
thus the haptic response that users feel as a consequence of a collision in the virtual
environment is determined by a direction and a penetration value. Both factors have
substantial influence on user perception.
The force (Fr) and torque (Tr) are calculated as follows:

Fr = Kdn

Tr = (cp − gc)× Fr
(3)

where K is virtual stiffness, d is penetration depth, n force direction, cp the contact point and
gc the centre of mass of the virtual tool.
In complex scenarios, it is common to encounter multiple contacts. The lists of triangles (Cs

and Cm) obtained by the collision detection module do not give a priory information about
the number of different contacts. Therefore, the method divides these sets of triangles into
different contact areas considering their spatial proximity. The forces and torques of each area
are then added up to compute the net force and torque.
A certain amount of static triangles form a contact area when they are adjacent. In other words,
they share at least one edge. Once the different contact areas have been calculated from Cs,
it is necessary to identify the mobile triangles in contact that are associated with those areas.
To facilitate this process, a sphere is created in each contact area that covers the bounding
box defined by its triangles. Finally, each triangle of Cm is associated with the contact area
depending on the sphere which contains it. Fig. 6 shows an example of the division of contact
areas.
The difficulty in calculating an appropriate and stable haptic response increases when the
geometry has sharp edges, since haptic instabilities often appear due to abrupt force direction
or penetration depth changes. In order to detect these cases, each contact area is sub-divided
into different contact zones that provide information about the nature of the geometry in
collision.

The collision response module subdivides a collision area into different contact zones taking
surface C1 discontinuities into account. When two triangles share an edge and the angle
between their normal vectors is lower than a fixed value, the edge is designated as “smooth”.
Triangles in a contact zone must be interconnected and all the shared edges must be
smooth. There will be as many contact zones as necessary to satisfy the condition of smooth
connectivity (Fig. 7).
Once the contact areas and zones have been detected, the method computes the contact
normal vector (force direction) of each area (nc). If the contact area has a unique contact
zone, the contact normal is computed as the normalized sum of all normal vectors of the static
triangles of that zone. Otherwise, when a contact area has two or more contact zones, the
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area 1
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area 2

Bounding

boxes

Spheres

Fig. 6. Example of two contact areas

Contact

area 1

Contact

zone 2.1

Contact

zone 2.2

Contact

area 2

Fig. 7. Example of two contact areas. The second one has two contact zones

contact has occurred in an area of the static object that is not a continuous surface. In this
case, static triangles do not provide enough information to obtain a suitable force direction.
Therefore, nc is computed as the normalized sum of all normal vectors of the mobile triangles
of that area. This solution enables smoother direction transitions when interacting with sharp
edges.
After computing the force direction in each area, the following step is the calculation of the

minimum distance required to separate the two objects, known as penetration depth (d). For
that purpose, the method samples the volume of intersection measuring heights throughout
this volume to determine the penetration between two objects. These heights are determined
by tracing a ray from the centroid of each static triangle in nc direction (Fig. 8). If this
ray intersects with a mobile triangle (Möller & Trumbore, 1997), the height is defined as the
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distance between the centroid and the intersection point. The final value of penetration for
each area is computed as an average of all the computed heights.

Contact mobile 

triangles

Contact static

trianglesHeights

Fig. 8. Rays traced to compute penetration depth

The last parameter necessary to compute collision torque is the contact point (cp). Selecting

an inappropriate point such as the most penetrating one for each contact area might lead to
non-continuous changes in the haptic feedback (Hasegawa & Sato, 2004). To avoid this effect,
the proposed solution is to choose a representative contact point for each contact area. This
point is calculated as the average of the midpoints of the boundary voxels associated with
each contact area.

3.3 Control module

The control module receives the ideal interaction force and torque calculated by the collision
response method, adapts them to the device’s capabilities and applies them to the user at a
1 kHz sampling rate. Since the control loop runs faster than the collision module, several
strategies must be implemented in order to avoid abrupt changes in contact force and torque
when collision information is not available (Savall et al. (2002)).
There are two main problems that should be taken into account. The first one is the delay
that exists in the collision-related information. This information, calculated by the response
module, is valid for a previous user position, but not the actual one. The second problem
resides in the existence of some control loops without collision-related information, since the
response module is slower than the control loop. In order to deal with these problems, a

strategy based on intermediate representations (Adachi et al. (1995)) is implemented.
Let Mh=(Fh, Th) be the six-dimensional vector of the force and torque that we want to apply
to the user and Xh=(Uh, Rh) be the six-dimensional configuration of the haptic device (Uh

represents the position, and Rh the axis angle representation of the rotation). First, the control
method updates the force and torque (Mr) computed by the response module at a previous
sampling period j, to the current one i (K represents virtual stiffness):

Mh(i) = Mr(i − j)− K(Uh(i)− Uh(i − j)) (4)

These forces and torques might vary quite abruptly if they are applied to the user every time
they are updated by the collision response method. Therefore, the control module restores
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Degrees of freedom

Sensing input 3 DOF (Pitch-Yaw-Roll)

Feedback output 3 DOF (Pitch-Yaw-Roll)

Workspace

Pitch-Yaw ±70 º

Roll Unlimited

Continuous output level

Pitch-Yaw 0.7 Nm

Roll 0.2 Nm

Peak output level

Pitch-Yaw 1.6 Nm

Roll 0.9 Nm

Actuators

Pitch-Yaw
DC MaxonRE35, 90 W
+ Cable Transmissions 13.5:1

Roll
DC MaxonRE-max21, 6 W

+ Maxon Planetary GP22C 29:1

Encoders

Pitch-Yaw Quantum Devices QD145, 5000 ppr

Roll MaxonMR TypeM, 512 ppr
Cable

transmission

pitch DOF
Motor pitch DOF

Encoder pitch DOF

Motor+gearhead

Roll

Yaw

DOF axis

Roll

DOF axis

Pitch

DOF axis

Fig. 9. 3-DOF torque feedback device used for the experiments

them in n subsequent sampling periods:

∆Mh(i) =
Mr(i − j)− K(Uh(i)− Uh(i − j))− Mh(i − 1)

n

Mh(i) = Mh(i − 1) + ∆Mh(i)
(5)

In the next sampling period (i + 1), the method also takes the new movements performed by
the user into account:

Mh(i + 1) = Mh(i) + ∆Mh(i)− K(Uh(i + 1)− Uh(i)) (6)

This will continue until the collision response method updates the collision-related

information. To determine n, the optimal value should approximate the number of control
sampling periods that the collision module needs to compute the response. Since this number
can vary significantly depending on the number of triangles in collision, a conservative
number can be set. However, if n is very high, the method may excessively filter the signal.
Moreover, n can have a fixed value during the entire task or can be modified by means of the
average collision response delay in previous sampling periods.

4. Implementation and results

Two different virtual scenarios have been designed to test the effectiveness and stability of
the proposed haptic rendering algorithm on complex interactions. A 3-DOF torque feedback
device has been used for the experiments. The mechanism was designed and built at CEIT
and inspired by past research (Angerilli et al., 2001). Fig. 9 shows the device and its main
specifications.
The system is controlled by a dSPACE DS1104 board that reads encoder information, processes
the haptic control loop and outputs torque commands to the motors. Graphic rendering and
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collision detection are performed on a PC running the Windows XP operating system with a
Pentium Dual Core 6600, 2GB memory and an NVIDIA GeForce 8600 GT.

4.1 Analysis of multiple contacts and geometrical discontinuities

The first scenario is composed of two parallelepipeds, one central cylinder and a virtual tool
similar to a clamp (see top of Fig. 10). The virtual scenario consists of 25, 000 triangles while
the clamp is composed of 1, 500 triangles. The aim is to analyze the behavior of the method
when multiple contacts and geometrical discontinuities are involved. For that purpose, a
sequence of different collisions has been simulated:

1. Collision with the central cylinder in which two contact areas are involved.

2. Collision with the corners of the two parallelepipeds (C1 discontinuities).

3. Collision with four contacts simultaneously, combining the previous cases.

Fig. 10 shows the torque feedback computed in all three axis by the collision response method
during the sequence. The figure also shows the number of contact triangles detected and the
computational cost in each frame.

Notice in the figure that the torque feedback applied to the user during collision is quite
smooth and does not offer abrupt changes or discontinuities that may degrade the user’s
perception of contact. The last figure shows that the collision response method computes the
haptic feedback at an average of 2.5 ms, which is not far from the optimal computation time
(1 ms) necessary for a realisic haptic experience. This allows the control module to compute
the real forces and torques at 1 kHz using a low number of n transitions (described in Section
3.3), and thereby maintaining a stable system behaviour. Specifically, for this experiment, the
number of transitions n for the control algorithm was set to 5.

4.2 Simulation of a disassembly task

The task designed for the second experiment is similar to the extraction of a clamp from a pipe,
which frequently appears in engine disassembly tasks in aeronautics maintenance. Once the
clamp is unfastened, the exit path is established by following the spatial trajectory laid out by
the pipe itself. Along said path, the curves and bends of the pipe and other obstacles force the
clamp to rotate in space. Therefore, in order to accomplish this task properly, it is important
that the haptic feedback restored to the user is realistic. The virtual engine mock-up is defined
by 100, 000 triangles while the clamp is composed of 2, 000 triangles.

The torque feedback device used in the previous experiment does not allow any translation.
Thus, to be able to displace the clamp within the virtual environment, it is necessary to provide
the mechanism with a translational DOF. For that purpose, a linear actuator designed and built
at CEIT (Savall et al., 2008) is used. The displacement along this linear DOF is mapped into a
displacement of the clamp along the axial direction of the pipe, and forces along this DOF are
also displayed when collisions occur. Fig. 11 shows both the designed virtual environment
and the haptic device used for the experiments.
A virtual path from right to left along the route of extraction was performed. During this
process, different types of collisions occurred between the clamp and the environment. Fig. 12
shows an example of the main possible stages during the extraction:

1. Initial position.
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Fig. 10. Performance of our approach in multiple contacts and geometrical discontinuities
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Fig. 11. Haptic system used for the experiment

2. Collision of the clamp with the first obstacle. In this case, the linear actuator restores
a force in the X axis to avoid translational movement.

3. The clamp is inside the obstacle and, when rotating along the X axis, it collides with
the upper part of the obstacle.

4. Collision of the clamp with the pipe when rotating along the Z axis.

5. Collision of the clamp with the pipe resulting in complex multi-axis torque.

6. Final position. The clamp is disassembled.

Fig. 12 shows the torque applied to the user in each axis (Tr_x , Tr_y and Tr_z) and the force
exerted by the linear actuator (Fr_x) computed by the collision response method. It also
indicates the number of triangles in collision, in addition to the computational cost at each
frame. Notice that in this figure data are shown from right to left according to the movement

of the tool.
Haptic feedback obtained gives a realistic perception of collision events and allows to perform
the task properly. Unlike the previous scenario, designed to study the behavior of the method
in situations with multiple collisions, in this case the aim is to simulate a real task. For this
reason, although the complexity of the environment is higher, the number of simultaneous
contacts decreases because the user corrects trajectory when a collision is detected.
Fig. 13 is an augmentation of the third collision stage of Fig. 12 (frames 3450–3650) for torque
feedback in the x axis, with and without applying the control algorithms. It can be seen that
torque computed by the collision response is smooth and avoids abrupt changes. In addition,
control algorithms improve the continuity of the feedback signal and apply it to the user at a
sampling rate of 1 kHz. As in the previous example, in this case the number of transitions for
the control algorithms is also 5.
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Fig. 13. An augmentation of the third collision stage for torque feedback in the X axis, with
and without applying the control algorithms

5. Conclusions and future research

The real-time computation of the forces and torques in a virtual environment is a complicated
task but a key point for the effectiveness of haptic systems. It is known that non-realistic or
inappropriate haptic feedback has negative effects on the usability and leads to frustration
when manipulating haptic systems. Therefore, it is very important to guarantee smooth and

realistic haptic feedback.
This chapter outlines a haptic rendering method that computes a proper haptic response in
complex environments. It ensures improved feedback by seeking a compromise between
continuity and computational cost. The method avoids abrupt changes in the haptic force
direction and magnitude, thereby improving the overall stability of the haptic system.
In order to validate the proposed method, two different scenarios containing complex collision
examples, such as multiple contacts and geometrical discontinuities, have been used. The
yielded results validate the applicability of the method in these types of interactions.
In terms of future research, the authors plan to analyze the performance of the method from a
perceptual perspective carrying out studies of human factors to improve the responsiveness.
The authors also hope that the research included in this chapter will provide a better
understanding of the many phenomena that challenge the development of improved haptic
rendering methods able to display adequate force and torque feedback while preserving
stability, and thereby improve performance of current haptic interfaces.

6. Appendix: List of notation

• x, y, z : Reference displacement axis

• Uh : User displacement of the haptic handle

• Rh : User rotation of the haptic handle in angle-axis notation
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• Xh : User displacement and rotation of the haptic handle

• Fr : Collision force computed by the collision response method

• Tr : Collision torque computed by the collision response method

• Mr : Collision force and torque computed by the collision response method

• Fh : Force feedback applied to the user

• Th : Torque feedback applied to the user

• Mh : Force and torque feedback applied to the user

• Vint : Internal voxels

• Vext : External voxels

• Vbnd : Boundary voxels

• Cs : List of static triangles in collision

• Cm : List of mobile triangles in collision

• cp : Collision contact point

• gc : Centre of mass of the virtual tool

• K : Virtual object stiffness

• d : Penetration of the mobile tool within a static object

• n : Force direction

• nc : Force direction of each contact ares

• n : Number of transitions for the control algorithm
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