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1. Introduction  

Due to advent of Very Large Scale Integration (VLSI), mainly due to rapid advances in 
integration technologies the electronics industry has achieved a phenomenal growth over 
the last two decades. Various applications of VLSI circuits in high-performance computing, 
telecommunications, and consumer electronics has been expanding progressively, and at a 
very hasty pace. Steady advances in semi-conductor technology and in the integration level 
of Integrated circuits (ICs) have enhanced many features, increased the performance, 
improved reliability of electronic equipment, and at the same time reduce the cost, power 
consumption and the system size.  With the increase in the size and the complexity of the 
digital system, Computer Aided Design (CAD) tools are introduced into the hardware 
design process.  The early paper and pencil design methods have given way to sophisticated 
design entry, verification and automatic hardware generation tools.  The use of interactive 
and automatic design tools significantly increased the designer productivity with an 
efficient management of the design project and by automatically performing a huge amount 
of time extensive tasks.  The designer heavily relies on software tools for every aspect of 
development cycle starting from circuit specification and design entry to the performance 
analysis, layout generation and verification. Partitioning is a method which is widely used 
for solving large complex problems.  The partitioning methodology proved to be very useful 
in solving the VLSI design automation problems occurring in every stage of the IC design 
process.  But the size and the complexity of the VLSI design has increased over time, hence 
some of the problems can be solved using partitioning techniques.  Graphs and hyper-
graphs are the natural representation of the circuits, so many problems in VLSI design can 
be solved effectively either by graph or hyper-graph partitioning.  VLSI circuit partitioning 
is a vital part of the physical design stage.  The essence of the circuit partitioning is to divide 
a circuit into number of sub-circuits with minimum interconnection between them.  Which 
can be accomplished recursively partitioning the circuits into two parts until the desired 
level of complexity is reached.  Partitioning is a critical area of VLSI CAD. In order to build 
complex digital logic circuits it is often essential to sub-divide multi –million transistor 
design into manageable pieces. The presence of hierarchy gives rise to natural clusters of 
cells. Most of the widely used algorithms tend to ignore this clustering and divide the net 
list in a balanced partitioning and frequently the resulting partitions are not optimal.  

The demand for high-speed field-programmable gate array (FPGA) compilation tools has 
escalated in the deep-sub micron era. Tree partitioning problem is a special case of graph 
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partitioning. A general graph partitioning though fast, is inefficient while partitioning a tree 
structure. An algorithm for tree partitioning that can handle large trees with less 
memory/run time requirement will be a modification of Luke’s algorithm. Dynamic 
program mining based tree partition, which works well for small trees, but because of its 
high memory and run time complexity, it cannot be used for large trees. In order to optimize 
above mentioned issues this chapter concentrates on different methodologies starting with 
Memetic Approach in comparison with genetic concept, Neuro-Memetic approach in 
comparison with Memetic approach, then deviated the chapter to  Neuro EM model with 
clustering concept. After that the topic concentration is on Fuzzy ARTMAP DBSCAN 
technique and finally there is a section on  Data mining concept using two novel  Clustering 
algorithms achieving the optimality of the  partition algorithm in minimizing the number of 
inter-connections between the cells, which is the required criteria of the partitioning 
technique in VLSI  circuit design. Memetic algorithm (MA) is population based heuristic 
search approach for combinatorial optimization problems based on cultural evolution. They 
are designed to search in the space of locally optimal solutions instead of searching in the 
space of all candidate solutions. This is achieved by applying local search after each of the 
genetic operators. Crossover and mutation operators are applied to randomly chosen 
individuals for a predefined number of times. To maintain local optimality, the local search 
procedure is applied to the newly created individuals.  

Neuro-memetic model makes it possible to predict the sub-circuit from circuit with 
minimum interconnections between them. The system consists of three parts, each dealing 
with data extraction, learning stage and result stage. In data extraction, a circuit is bipartite 
and chromosomes are represented for each sub circuit. Extracted sequences are fed to 
Neuro-memetic model that would recognize sub-circuits with lowest amount of 
interconnections between them. 

Next method focuses on the use of clustering k-means (J. B. MacQueen, 1967) and Expectation-
Maximization (EM) methodology (Kaban & Girolami, 2000), which divides the circuit into a 
number of sub-circuits with minimum interconnections between them, and partition it into 10 
clusters, by using k-means and EM methodology. In recognition stage the parameters, centroid 
and probability are fed into generalized delta rule algorithm separately.   

Further, a new model for partitioning a circuit is explored using DBSCAN and fuzzy 
ARTMAP neural network. The first step is concerned with feature extraction, where it uses 
DBSCAN algorithm. The second step is classification and is composed of a fuzzy ARTMAP 
neural network.  

Finally, two clustering algorithms Nearest Neighbor (NNA) and Partitioning Around 
Medoids (PAM) clustering algorithms are considered for dividing the circuits into sub 
circuits. Clustering is alternatively referred to as unsupervised learning segmentation. The 
clusters are formed by finding the similarities between data according to characteristics 
found in the actual data. NNA is a serial algorithm in which the items are iteratively merged 
into the existing clusters that are closest. PAM represents a cluster by a medoid.  

2. Circuit partitioning concept 

VLSI circuit partitioning is a vital part of physical design stage. The essence of circuit 
partitioning is to divide the circuit into a number of sub-circuits with minimum 
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interconnections between them. This can be accomplished by recursively partitioning a 
circuit into two parts until we reach desired level of complexity. Thus two way partitioning 
is basic problem in circuit partitioning, which can be described as (Dutt& Deng, 1996). 

Logic netlist can be represented as a hypergraph H (V,Eh) where 

 Each node vV in hypergraph represents a logic cell of the netlist, and 

 Each hyperedge e Eh represents a net connecting various logic cells 

 Various weights representing different attributes are attached to all nodes and edges of 
the hypergraph H, these are: On nodes: area estimates, On edges: length (after global 
placement) 

The problem is: 

 To partition the set V of all nodes vV into a set of disjoint subsets, of V, such that each 
node v is present in exactly one of these subsets. These subsets are referred to as blocks 
of the partition. 

 The partition on V induces a cut of the set of all hyper edges, that is, Eh. A cut is subset 
of Eh, such that for every hyper edge h present in the cut there are at least two nodes 
adjacent to h, which belong to separate blocks of the partition. 

 The objective function of partitioning approach has to address the following issues: 

 It should be able to handle multi-million node graphs in a reasonable amount of 
computation time 

 It should attempt to balance the area attribute of all the blocks of the partition with the 
additional constraint that there is an area penalty associated with every hyperedge that 
get cut. 

 It should try to minimize interconnections between different clusters so as to satisfy the 
technological limit on the maximum number of interconnects allowed. 

3. Memetic approach in VLSI circuit partitioning 

A new approach Memetic Algorithm is described in this section to solve problem of circuit 
partitioning pertaining to VLSI.  

3.1 A model to solve circuit partitioning 

The circuit partitioning problem can be formally represented in graph theoretic notation as a 

weighted graph, with the components represented as nodes, and the wires connecting them 

as edges, the weights of the node represent the sizes of the corresponding components, and 

the weights of the edges represent the number of wires connecting the components. In its 

general form, the partitioning problem consists of dividing the nodes of the graph into two 

or more disjoint subsets such that the sum of weights of the nodes in each subset does not 

exceed a given capacity, and the sum of weights of edges connecting nodes in different 

subsets is minimized. But generally the circuits are represented as bipartite graphs 

consisting of two sets of nodes, the cells and the nets/ Edges connect each cell to several 

nets, and each net to several cells as shown in Fig1.Let G= (M, N, E), mi  is a cell, niN is a 

net, and eij=(mi,nj) E is an edge which represents that mi and nj are connected electrically. 

For any nj for all I for which eij exists, we say that the cells mi are connected by net nj. 
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Conversely, for any mi for all j for which eij exists, we say that the nets nj are connected of 

cell mi. Each cell mi has an area ai, and each net nj has a cost cj. The edges of the bipartite 

graph are un weighted. In this case, the partitioning problem is to divide the set of cells into 

disjoint subsets, M1, M2,…….Mk, such that the sum of cell areas in each subset Mi is less 

than a given capacity Ai, and the sum of costs of nets connected to cells in different subsets 

is minimized. That is, 

 
1

k

n
M

    n = M, (1) 

Mn, miMnai    An 

and  nj, if nj is connected to cells in p different partitions, then, 

 C = (p-1)cj is minimized (2) 

 

Fig. 1. Bipartite graph model for partitioning 

3.2 Memetic algorithms applied to circuit partitioning 

i. Chromosome Representation 

1 bit in the chromosome represents each cell, the value of which determines the partition in 

which the cell is assigned (Krasnogor & Smith, 2008). The chromosome is sorted as an array 

of 32 bit packed binary words. The net list is traversed in a breadth-first search order, and 

the cells are assigned to the chromosome in this order. Thus, if two cells are directly 

connected to each other, there is a high probability that their partition bits are close to each 

other in the chromosome. An example is the breadth-first search sequence and the 

corresponding chromosome as shown in Fig. 2. 

M1

M2

M3

M4
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Fig. 2. Breadth-first search sequence and the corresponding chromosome 

ii. Fitness Scaling 

Fitness scaling is used to scale the raw fitness values of the chromosomes so that the GA 

sees a reasonable amount of difference in the scaled fitness values of the best versus the 

worst individuals. 

The following fitness algorithm applies to evaluation functions that determine the cost, 

rather than the fitness, of each individual (Univesity of New Mexico, 1995). From this cost, 

the fitness of each individual is determined by scaling as follows. 

A referenced worst cost is determined by  

 Cw=C+S  (3) 

Where C is the average cost of the population, S is the user defined sigma-scaling factor, and 

 is the standard deviation of the cost of the population. In case Cw is less than the real 

worst cost in the population, they only the individuals with cost lower than Cw are allowed 

to participate in the crossover. 

Then, the fitness of each individual is determined by 
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Cw-C if Cw>0

F=0 otherwise





 (4) 

This scales the fitness such that, if the cost is k standard deviations from the population 
average, the fitness is 

 F=(S K)  (5) 

This means that may individuals worse than S standard deviation from the population 
mean (k=s) are not selected at all. If S is small, the ratio of the lowest to the highest fitness in 
the population increases, and then the algorithm becomes more selective in choosing 
parents. On the other hand, if S is large, then Cw is large, and the fitness values of the 
members of the population are relatively close to each other. This causes the difference in 
selection probabilities to decrease and the algorithm to be less selective in choosing parents. 

iii. Evaluation 

The cut cost is calculated as the number of nets cuts. If the net is present in both partitions, 
or if the net is present in the partition opposite to its I/O pad, then it is said to have a cut 
(Merz & Freisleben, 2000). 

Counting number of 1’s in the chromosome does partition imbalance evaluation.  A 
quadratic penalty has been used for imbalance, so that large imbalance is penalized more 
than a small imbalance. The user specifies the relative weights for cut and imbalance Wc and 
Wb. 

Thus the total cost is: 

    C  Wc cut   Wb imbalance 2   (6) 

iv. Incorporation and Duplicate Check 

The two new offspring formed in each generation are incorporated into the population only 
if they are better than the worst individuals of the existing population. Before entering a 
new offspring into the population, it is checked against all other members of the population 
having the same cost, in order to see whether it is duplicate.  Duplicates can result due to the 
same crossover operation (T. Jones, 1995). 

Duplicates have two disadvantages: 

 First they occupy storage space that could otherwise be used to store a population with 
more diverse feature. 

 Second whenever crossover occurs between two duplicates, the offspring is identical to 
the parents, regardless of the cut point, and this tends to fill the population with even 
more duplicates. 

v. Mutation 

After crossover and incorporation, mutation is performed on each bit of the population with 
a very small probability Pm. We go through the entire population once (Krasnogor et al., 
1998a). For each mutation the location in bits is determined from previous location and a 
random number as follows, 
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Log(rand[0,1])

Next=Prev+
Log(1.0-PM)

 
 
 

 (7) 

Where PM is the mutation probability. 

Each mutation is evaluated and accepted separately, and this process is continued until end 

of population is reached. The mutated version replaces the unmutated version of the same 

individual in the population. The acceptance of mutation operation has some probabilistic 

characteristics similar to simulated annealing. If the change in the cost C is negative, 

signifying that the fitness has increased, the mutation is always accepted, as in simulated 

annealing. If change in the cost is positive, then mutations are accepted probabilistically. 

4. Evolutionary time series model for partitioning using Neuro-Memetic 
approach 

An evolutionary time-series model for partitioning a circuit is discussed using Neuro 

Memetic algorithm owing to its local search capability. 

Sample Data Set  

A sample example and the corresponding chromosome representation is shown in Fig 3 and  

Fig 4.  

 

 

Fig. 3. Sample Circuit    Fig. 4. Bipartition Circuit 
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Sub circuit 1   A, B, C    total edges = 7 

Sub circuit 2   D, E, F     total edges =10  

Cell   No of edges  Bipartition  

A 2  1  

B 2  1 

C 3  1 

D 3  0 

E 3  0 

F 4  0 

Chromosomes representation: Sub circuit1 (A, B, C) 0010 0010 0011, Sub circuit2 (D, E, F) 
0011 0011 0100   

 Neuro-Memetic Model: Neuro-memetic model makes it possible to predict the sub 
circuit from circuit with minimum interconnections between them.  

 Training Procedure: The purpose of the training process is to adjust the input and 
output parameters of the NN (Neural Network) model, so that the MAPE (Mean 
Absolute Percentage Error) measure is minimized. Training of the feed-forward neural 
network models is usually performed using back propagation learning algorithms. 
Most often, the error surface becomes trapped to local minima, usually not meeting the 
desired convergence criterion. The termination at a local minimum is a serious problem 
while the neural network is learning. In other words, such a neural network is not 
completely trained (Oxford Univ Press, 1995). Another issue where care must be taken 
is "the receptiveness to over-fitting". But, memetic algorithms offer competent search 
method for intricate (that is, possessing many local optima) spaces to find nearly local 
optima. Thus, its ability to find a better suboptimal solution or have a higher probability 
to obtain the local optimal solution makes it one of the preferred candidates to solve the 
learning problem.  

 Training with MA: The parameters of the neural network are tuned by a memetic 
algorithm (Krasnogor et al., 1998b) with arithmetic crossover and non uniform 
mutation. A population (P) with 200 genotypes is considered. They are randomly 
initialized, with maximum number of iterations fixed at 200 and MA is run for 100 
generations with the same population size. The best model was found after 63 
generations. In this method, the probability of crossover is 0.6 and the probability of 
mutation is 0.2. These probabilities are chosen by trial and error through experiments 
for good performance. The new population thus generated replaces the current 
population. The above procedures are repeated until a certain termination condition is 
satisfied. The number of the iterations required to train the MA-based neural network is 
2000. The range of the fitness function of neural network is (0, 1). 

 Evaluate individuals using the fitness function: The objective of the fitness function is to 
minimize the prediction error. In order to prevent over-fitting and to give more 
exploration to the system, the fitness evaluation framework is changed and use the 
weight imbalance to calculate the fitness of a chromosome. The fitness of a chromosome 
for the normal class is evaluated as shown    in the example   below.  
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Take the testing samples 

 

Now take the sub circuit 1 with data set (d1)  

 

For sub circuit 2  data set d2 

              

Calculate the sum of (+) credit & (-) debit for each sample data d1 & d2 

For d1=+2+2+3=7 

d2=+3+3+2=8 so it is found that sample fitness of data d1 is best sample.   

4.1 Design of the system to recognize sub circuit with minimum interconnection  

The present task involves the development of Neural Network, which can train to recognize 
sub circuit with minimum interconnection between them, from a large circuit given. 
Following are the steps involved in design of the system 

1. Create a input data file which consists of training pairs. 
2. In data extraction, a circuit is bipartite and chromosomes are represented for each sub 

circuit.  
3. Design the neural network based upon the requirement and availability. 
4. Simulate the software for network. 
5. Initialize count=0, fitness=0, number of cycles. 
6. Generation of Initial Population. The chromosome of an individual is formulated as a 

sequence of consecutive genes, each one coding an input parameter.  
7. Initialize the weight for network. Each weight should be set to a random value between 

–0.1 to 1. 
8. Calculates activation of hidden nodes.  

 1
xJh=

1 ( ) xpne wjkh  
 (8) 

9. Calculate the output from output layers 

 1
xio=

1 ( ) xjhe wijo  
 (9) 
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Fig. 5. Recognize Sub Circuit with Minimum Interconnection 
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10. Compares the actual output with the desired outputs and find a measure of error. The 
genotypes are evaluated on the basis of the fitness function.  

11. If (previous fitness < current fitness value) then store current weights.  
12. Count = Count + 1  
13. Selection: Two parents are selected by using the Roulette wheel mechanism.  
14. Genetic Operations: Crossover, Mutation and Reproduction to generate new weights 

(Apply new weights to each link).  
15. If (number of cycles> count) Go to Step 7  
16. training set is reduced to an acceptable value. 
17. Verify the capability of neural network in recognition of sub circuit with minimum 

interconnection between them.   
18. End.  

 Development of Neural Network: In the context of recognition of sub circuit with   
minimum interconnection, the 3-layer neural network is employed to learn the input-
output relationship using the MA. The layers of input neuron are responsible for 
inputting. The number of neurons in this output layer is determined by the size of set of 
desired output, with each possible output being represented by separate neuron. 
Neural network contains 12 input nodes, 20 neurons in the first hidden layer, 14 
neurons in the second hidden layer and the output layer has 2 neurons. It results in a 
12-14-2 Back propagation neural network. Sigmoid function is used as the activation 
function. Memetic Algorithm is employed for learning (Holstein & Moscato, 1999). For 
the back-propagation with momentum and adaptive learning rate, the learning rate is 
0.2, the momentum constant is 0.9. During the training process the performance of 
0.00156323 was obtained at 2000 epochs.   

5. Neuro–EM and neuro-k mean clustering approach for VLSI design 
partitioning 

This section is focused in use of clustering methods k-means (J. B. MacQueen, 1967) and 

Expectation-Maximization (EM) methodology (Kaban & Girolami, 2000).  

5.1 Neuro-EM model  

The system consists of three parts each dealing with data extraction, Learning stage and 

recognition stage. In data extraction, a circuit is bipartite and partitions it into 10 clusters, a 

user-defined value, by using K-means (J. B. MacQueen, 1967) and EM methodology (Kaban 

& Girolami, 2000), respectively. In recognition stage the parameters, that is, centroid and 

probability are fed into generalized delta rule algorithm separately and train the network to 

recognize sub-circuits with lowest amount of interconnections between them. Block diagram 

of model to recognize sub-circuits with lowest amount of interconnections between them 

using two techniques K-means and EM methodology with neural network are shown in 

Fig.6 and Fig.7. 

In recognition stage the parameters, that is, centroid and probability are fed into generalized 

delta rule algorithm separately and train the network to recognize sub circuit with 

minimum interconnection between them. Block diagram of model for Partitioning a Circuit 

are depicted in Fig. 8. 
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Fig. 6. Block diagram of K-means with neural network 

 

Fig. 7. Block diagram of EM methodology with neural network 

 
1. Circuit is bipartite and data represented 
2. Applying K-means    
3. Applying EM methodology    
4. centroid and probability   
5. Neural network 
6. Recognition Result 

Fig. 8. Block Diagram of Model for Partitioning a Circuit 

5.2 Sample data set 

A sample example representation is shown in Fig.9 and  Fig 10 

 

Fig. 9. Sample Circuit 

 

Classifier Neural 
Network 

Centroid extracted 
by K-means 

clustering method

 

A circuit is 
bipartite 

Recognition 
Result 

Probability 
extracted by EM 

clustering 
method 

 

A circuit is 
bipartite 

 

Recognition 
Result 

Classifier 
Neural 

Network 
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Fig. 10. Bipartition Circuit 
Sub circuit 1   A, B, C    total edges = 7,   Sub circuit 2   D, E, F     total edges =10  

Cell No of edges Bipartition 

A 2 1 

B 2 1 

C 3 1 

D 3 0 

E 3 0 

F 4 0 

Table 1. Bipartation Matrix 
Data representation: Sub circuit1 (A, B, C) 0010 0010 0011, 
Sub circuit2 (D, E, F) 0011 0011 0100   

5.3 Expectation Maximization algorithms 

The EM algorithm was explained and given its name in a classic 1977 paper by Arthur 
Dempster, Nan Laird,  and Donald Rubin in the Journal of the Royal Statistical Society  
(Arthur et al.,1997). They pointed out that method had been "proposed many times in 
special circumstances" by other authors, but the 1977 paper generalized the method and 
developed the theory behind it. 
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The EM algorithm for clustering is described in detail in Witten and Frank (2001) (Witten & 
Frank, 2005). The Expectation-Maximization (EM) algorithm is part of the Weka clustering 
package. EM is a statistical model that makes use of the finite Gaussian mixtures model. The 
basic approach and logic of this clustering method is as follows. Suppose   a single 
continuous variable in a large sample of observations is measured. Further, suppose that the 
sample consists of two clusters of observations with different means (and perhaps different 
standard deviations) within each sample, the distribution of  values for the continuous 
variable follows the normal distribution. The resulting distribution of values (in the 
population) may look as shown in Fig.11.  

 

Fig. 11. Two normal distributions of EM Algorithm (Screen Shot) 

i. Mixtures of distributions. The illustration in Fig 5.12 shows two normal distributions 
with different means and different standard deviations and the sum of the two 
distributions. Only the mixture (sum) of the two normal distributions (with different 
means and standard deviations) would be observed. The goal of EM clustering is to 
estimate the means and standard deviations for each cluster so as to maximize the 
likelihood of the observed data (distribution). Put another way, the EM algorithm 
attempts to approximate the observed distributions of values based on mixtures of 
different distributions in different clusters.  
With the implementation of the EM algorithm in some computer programs, one may be 
able to select (for continuous variables) different distributions such as the normal, log-
normal, and Poisson distributions (Karlis, 2003) and can select different distributions for 
different variables, thus derive clusters for mixtures of different types of distributions.  

ii. Categorical variables. The EM algorithm can also accommodate categorical variables. 
The method will at first randomly assign different probabilities (weights, to be precise) 
to each class or category, for each cluster. In successive iterations, these probabilities are 
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refined (adjusted) to maximize the likelihood of the data given the specified number of 
clusters (Kim, 2002).   

iii. Classification probabilities instead of classifications. The results of EM clustering are 
different from those computed by k-means clustering. The latter will assign observations 
to clusters to maximize the distances between clusters. The EM algorithm does not 
compute actual assignments of observations to clusters, but classification probabilities. In 
other words, each observation belongs to each cluster with a certain probability. Of 
course, as a final result one can usually review an actual assignment of observations to 
clusters, based on the (largest) classification probability (Gyllenberg et al., 2000). 

The algorithm is similar to the K-means procedure in that a set of parameters are 
recomputed until a desired convergence value is achieved. The parameters are recomputed 
until a desired convergence value is achieved. The finite mixtures model assumes all 
attributes to be independent random variables.  

A mixture is a set of N probability distributions where each distribution represents a cluster. 
An individual instance is assigned a probability that it would have a certain set of attribute 
values given it was a member of a specific cluster. In the simplest case N=2 the probability 
distributes are assumed to be normal and data instances consist of a single real-valued 
attribute. Using the scenario, the job of the algorithm is to determine the value of five 
parameters specifically,  

1. The mean and standard deviation for cluster 1  
2. The mean and standard deviation for cluster 2  
3. The sampling probability P for cluster 1 (the probability for cluster 2 is 1-P)  

the general procedure is given below,  

1. Guess initial values for the five parameters.  
2. Use the probability density function for a normal distribution to compute the cluster 

probability for each instance. In the case of a single independent variable with mean  

and standard deviation , the formula is:  

 2

2

(? )

2

1
( )

( 2 )

f x

e




 
  (10) 

In the two-cluster case, there are two probability distribution formulae each having differing 
mean and standard deviation values.  

1. Use the probability scores to re-estimate the five parameters.  
2. Return to Step 2  

The algorithm terminates when a formula that measures cluster quality no longer shows 
significant increases. One measure of cluster quality is the likelihood that the data came 
from the dataset determined by the clustering. The likelihood computation is simply the 
multiplication of the sum of the probabilities for each of the instances. With two clusters A 
and B containing instances x1, x2, … xn  where  PA = PB = 0.5 the computation is: 

     1 1 2 2.5 ( | ) .5 ( | ) .5 ( | ) .5 ( | ) ... .5 ( | ) .5 ( | )n nP x A P x B P x A P x B P x A P x B    (11) 
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Algorithm is similar to K-mean procedure, in that sets of parameters are re-computed until 
desired convergence value is achieved.  General procedure is 

 Initialize parameters. 

 Use the probability density function for normal distribution to compute cluster 
probability for each instance. For example in the case of two-cluster one will have the 
two probability distribution formulae each having different mean and standard 
deviation values. 

 Use the probability scores to re-estimate the parameter. 

 Return to step 2. 

 The algorithm terminates when formula that measure cluster quality exists no longer. 

The tool shed output of this algorithm would be the probability for each cluster. EM assigns 
a probability distribution to each instance, which indicates the   probability of it belonging to 
each of the clusters. 

In the context of recognizing the sub circuit from circuit with minimum interconnections 
between them, artificial neurons is structured into three normal types of layers input, 
hidden and output which can create artificial neural networks. The layers of input neuron 
are responsible for inputting a feature vectors that is, centroid and probability, which are 
extracted from K-means and EM algorithms respectively. The number of neurons in this 
output layer is determined by size of set of desired output, with each possible output being 
represented by separate neuron. Between these two layers there can be many hidden layers. 
These internal layers contain many of the neuron in various interconnected structures. 

5.4 Design of the system to recognize sub circuit with minimum interconnections  

The present task involves the development of neural network, which can train to recognize 
sub circuit with minimum interconnection between them from large circuit given.  

Following are the steps involved in design of the system, 

1. Create a input data file which consists of training pairs. 
2. In data extraction, a circuit is bipartite and data are represented for each sub circuit. 
3. Centroid and probability features are extracted  from K-means and EM algorithms 
4. Design the neural network based upon the requirement and availability. 
5. Simulate the software for network. 
6. Train the network using input data files until error falls below the tolerance level. 
7. Verify the capability of neural network in recognition of test data 

Algorithm: 

The learning algorithm of back propagation network is given by “generalized delta rule”.  

Step 1. The algorithm takes input vector (features) to the back propagation network.  

Step 2. let K be number of nodes in the layer determined by length of training vectors that is 
number of feature N. Let j be number of nodes in hidden layer. Let I be number of nodes in 
output layer. Denote activation of hidden layer as xjh and in output layer is xio. Weight 
connecting input layer and hidden layer are wjkh and weight connecting hidden layer and 
output layer is wijo. 
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Step 3. Initialize the weight for network. Each weight should be set to a random value 
between –0.1 to 1. 

Step 4. Calculates activation of hidden nodes  

 
1

xJh=g( xpn)=
1 ( xpn)

wjkh
e wjkh


   

 (12) 

Step 5. Calculate the output from output layers 

 
1

xio=g( xjh)=
1 ( xjh)

wjko
e wijo


   

 (13) 

Step 6. Compares the actual output with desired outputs and finds a measure of error. 

Step 7. After comparison it finds in which direction (+ or -) to change each weight in order to 
reduce error.  

Step 8. Find the amount by which to change each weight. It applies the corrections to the 
weight and repeat all above steps with all training vectors until the error for all the vectors 
in training set is reduced to an acceptable value. 

Step 9: End.  

6. Evaluation of fuzzy ARTMAP with DBSCAN in VLSI partition application 

This section describes a new model for partitioning a circuit using DBSCAN and fuzzy 
ARTMAP neural network.  

6.1 Overview of art map 

The basic ART system is an unsupervised learning model. It typically consists of a 

comparison field and a recognition field composed of neurons, a vigilance parameter, and a 

reset module. The vigilance parameter has considerable influence on the system, higher 

vigilance produces highly detailed memories (many, fine-grained categories), while lower 

vigilance results in more general memories (fewer, more-general categories). The 

comparison field takes an input vector (a one-dimensional array of values) and transfers it 

to its best match in the recognition field. Its best match is the single neuron whose set of 

weights (weight vector) most closely matches the input vector. Each recognition field 

neuron outputs a negative signal (proportional to that neuron’s quality of match to the input 

vector) to each of the other recognition field neurons and inhibits their output accordingly. 

In this way the recognition field exhibits lateral inhibition, allowing each neuron in it, to 

represent a category to which input vectors they are classified. After the input vector is 

classified, the reset module compares the strength of the recognition match to the vigilance 

parameter. If the vigilance threshold is met, training commences. Otherwise, if the match 

level does not meet the vigilance parameter, the firing recognition neuron is inhibited until a 

new input vector is applied. The training commences only upon completion of a search 

procedure. In the search procedure, recognition neurons are disabled one by one, by the 

reset function until the vigilance parameter is satisfied by a recognition match. If no 
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committed recognition neuron’s match meets the vigilance threshold, then an uncommitted 

neuron is committed and adjusted towards matching the input vector. 

There are two basic methods of training ART-based neural networks: slow and fast. In the 
slow learning method, the degree of training of the recognition neuron’s weights towards the 
input vector is calculated to continuous values with differential equations and is thus 
dependent on the length of time the input vector is presented. The basic structure of the ART 
based neural network is shown in Fig 12 With fast learning, algebraic equations are used to 
calculate degree of weight adjustments to be made, and binary values are used. While fast 
learning is effective and efficient for a variety of tasks, the slow learning method is more 
biologically plausible and can be used with continuous-time networks (that is, when the input 
vector can vary continuously). Fig 13 shows the fast learning ART-based neural network. 

 

           1 2 3I=(i ,i ,i ,.....i )m


 

Fig. 12. Basic ART Structure 

 

Fig. 13. Fast learning ART-based neural network 
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The first  principle of Adaptive Resonance Theory (ART) was first introduced by Grossberg 
in 1976 (Carpenter,1997), whose structure resembles those of feed-forward networks. The 
simplest variety of ART networks is accepting only  binary inputs which is called as ART 

(Grossberg,1987,2003). It was then extended for network capabilities to support continuous 
inputs called as ART-2 (Carpenter & Grossberg ,1987).ARTMAP (Carpenter et al.,1987),also 
known as Predictive ART, combines two slightly modified ART-1 or ART-2 units into a 
supervised learning structure where the first unit takes the input data and the second unit 

takes the correct output data and then used to make the minimum possible adjustment of 
the vigilance parameter in the first unit in order to make the correct classification. 

6.2 Fuzzy ARTMAP 

Fuzzy logic with the combination of Adaptive Resonance Theory gives Fuzzy ARTMAP, is a 

class of neural network that perform supervised training of recognition pattern and maps in 

response to input vectors generated. Fuzzy ART (Carpenter et al.,1991) implements fuzzy 

logic into ART’s pattern recognition, thus enhancing generalizability. An optional (and very 

useful) feature of fuzzy ART is complement coding, a means of incorporating the absence of 

features into pattern classifications, which goes a long way towards preventing inefficient 

and unnecessary category proliferation. The performance of fuzzy ARTMAP depends on a 

set of user-defined hyper-parameters, and these parameters should normally be fine-tuned 

to each specific problem (Carpenter et al.,1992). The influence of hyper-parameter values is 

rarely addressed in ARTMAP literature. Moreover, the few techniques that are found in the 

literature for automated hyper-parameter optimization,example(Canuto et al., 2000; 

Dubrawski, 1997; Gamba & DellAcqua, 2003; C. Lim,1999), focus mostly on the vigilance 

parameter, even though there are four inter-dependent parameters (vigilance, learning, 

choice, and match tracking). A popular choice consists in setting hyperparameter values 

such that network resources (the number of internal category neurons, the number of 

training epochs, etc.) are minimized (Carpenter,1997). This choice of parameters may 

however lead to overtraining and significantly degrade the network. An effective 

supervised learning strategy could involve co-jointly optimizing both network (weights and 

architecture) and all its hyper-parameter values for a given problem, based on a consistent 

performance objective. Fuzzy ARTMAP neural networks are known to suffer from 

overtraining or over fitting, which is directly connected to a category proliferation problem. 

Overtraining generally occurs when a neural network has learned not only the basic 

mapping associated training subset patterns, but also the subtle nuances and even the errors 

specific to the training subset. If too much learning occurs, the network tends to memorize 

the training subset and loses its ability to generalize on unknown patterns. The impact of 

overtraining on fuzzy ARTMAP performance is two fold that is, an increase in the 

generalization error and in the resources requirements. 

6.3 DBSCAN (Density-Based Spatial Clustering Of Applications with Noise) 

DBSCAN is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg 

Sander and Xiaovei Xui in 1996(Ester, 1996). It is a density based clustering algorithm 

because it finds a number of clusters starting from the estimated density distribution of 

corresponding nodes. DBSCAN is one of the most common clustering algorithms and also 

www.intechopen.com



 
VLSI Design 148 

most cited in scientific literature. The basic DBSCAN algorithm has been used as a base for 

many other developments.  

The overall structure of model is illustrated in Fig14 and Fig 15, Fig 16 show a sample circuit 

bipartite with related data set used . The feature extractor obtains feature vector for 

subcircuit, and is sent to training or inference module. The SFAM (simplified fuzzy 

ARTMAP) (Carpenter,1997) has two modules, that is, training and inference module. The 

feature vector of training subcircuits and the categories to which they belongs are specified 

to SFAM’s training module. Once the training phase is complete, the vector represents the 

subcircuit with minimum interconnection. The test subcircuit pattern which is to be 

recognized with minimum interconnection is fed to inference module. Classifications of sub 

circuits are done by associating the feature vector with the top-down weight vectors 

(Carpenter et l., 1992;Caudell et al., 1994) in SFAM. The system can handle both symmetric 

and asymmetric circuit. In symmetric pattern, only distinct portion of circuit is trained 

whereas in asymmetric (1/2n)th portion of circuit is considered. 

 

 
 

 

 

 

 

Fig. 14. Block diagram of recognition module for partitioning in VLSI Design 
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Fig. 15. Sample Circuit 

 

Fig. 16. Sample Bi-parted Circuit with data 
Sample circuit bi parted  Sub circuit 1 A, B, C   total edges = 7     Sub circuit 2 D, E, F    
total edges =10  

Cell No of edges Bipartition 

A 2 1 

B 2 1 

C 3 1 

D 3 0 

E 3 0 

F 4 0 

Table 2. Bipartition Matrix 
Data representation: Sub circuit1 (A, B, C) 0010 0010 0011, 
Sub circuit2 (D, E, F) 0011 0011 0100   

www.intechopen.com



 
VLSI Design 150 

6.4 Overview of DBSCAN algorithm as a feature exactor 

DBSCAN and clustering algorithm is used for feature Exactor which works on the  densities 
(International Workshop on Text- Based information Retrieval (TIR 05),University  of 
Koblenz-Landau, Germany). It separates the set D into subsets of similar densities. In the 
best case they can find out the cluster number k routinely and categorize the clusters of 
random shape and size.The runtime of this algorithms is in magnitude of O(n log(n)) for 
low-dimensional data (Busch,2005). A density-based cluster algorithm is based on two 
properties given below (TIR 05,University  of Koblenz-Landau, Germany). 

1. One is to define a region C  D, which forms the basis for density analyses. 
2. Another is to propagate density information (the provisional cluster label) of C. 

In DBSCAN a region is defined as the set of points that lie in the -neighborhood of some 
point p. if |C| exceeds a given Min Points-threshold Cluster label propagates from p to the 
other points in C. The complete description of DBSCAN algorithm is provided in (Ester et 
al., 1996;Tan et al., 2004;Dagher. I et al., 1999). 

6.5 Simplified fuzzy ARTMAP module 

In context of the circuit partitining in VLSI design to recognize the subcircuit with minimum 
interconnection between them, the size of input layer is 4 and output layer is 10. Hence it 
outcomes in 2-10 layered Fuzzy ARTMAP model.  

Match and choice function for fuzzy ARTMAP in context to circuit partitioning is defined by, 

For input vector I and cluster j from DBSCAN algorithm, Choice function given by  

 
|I^Wj|

CFj(I)=
|Wj|

 (14) 

Where  is small constant about 0.0000001,Wj is top-down weight  

Winner node is one with highest activation /choice function, that is, 

 Winner=max(CFj) (15) 

Match function which is very much used to find out whether the network must adjust its 
learning parameters is given by,  

 
|I^Wj|

Fj(I)=
|I|

 (16) 

If MF j (I)  vigilance parameter () then Network is in state of resonance, where  is in 
range 0    1.   

If MF j (I)  vigilance parameter () then Network is in state of mismatch reset.  

7. A new clustering approach for VLSI circuit partitioning 

The vital problem in VLSI for physical design algorithm is circuit partitioning. In this section 

concentration is on improving the partitioning technique using data mining approach. This 
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section deals with a range of partitioning methodological aspects which predicts to divide 

the circuit into sub circuits with minimum interconnections between them. This approach 

considers two clustering algorithms proposed by ( Li & Behjat, 2006) Nearest Neighbor(NN) 

and Partitioning Around Mediods(PAM) clustering algorithm for dividing the circuits into 

sub circuits. The experimental results show that PAM clustering algorithm yields better 

subcircuits than Nearest Neighbour. The experimental results are compared using 

benchmark data provided by MCNC standard cell placement bench netlists. 

7.1 Considerations in choosing the right algorithm 

Data mining algorithms have to be adapted to work on very large databases. Data reside on 

hard disks because they are too large to fit in main memory, therefore, algorithms have to 

make as few passes as possible over the data, as secondary memory fetch cycle increases the 

computational time and therefore reduces the run time performance.   Quadratic algorithms 

are too expensive, that is the execution time of the operations in clustering algorithms is 

quadratic and so it becomes an important constraint in choosing an algorithm for the 

problem at hand. The aim in the thesis is to reduce the interconnections between the circuits 

with minimum amount of error,hence  prototype based clustering is used. The attributes in 

the data set were less important, so  the proximity matrix was  created. Since both PAM and 

NNA belong to partitional and prototype based clustering and also the intention was to get 

the partition with the minimum interconnections these two algorithms were used.  

7.2 Implementation 

The implementation consists of three stages consisting of data extraction, partitioning and 

result using VHDL (VHSIC (Very High Speed Integrated Circuit) Hardware Description 

Language) as a tool. In data extraction, a VLSI circuit represented as a bipartite graph is 

considered. The bipartite graph considered for the approach is shown in Fig 17. 

 

 

Fig. 17. Bipartition Circuit 
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Sub circuit 1   A, B, C    total edges = 7 

Sub circuit 2   D, E, F     total edges =10  

Cell   No of edges  Bipartition  

A 2  1 

B 2  1 

C 3  1 

D 3  0 

E 3  0 

F 4  0 

Table 3. Bipartition Matrix 

The block diagram to recognize sub-circuits with minimum interconnections using two 
techniques(Nearest  Neighbor , PAM ).A  new clustering algorithm is explored. 

7.3 Applying clustering techniques to VLSI circuit partitioning  

In adapting the two cluster partitioning algorithms to the area of VLSI circuit partitioning, 
the following considerations are of utmost importance. 

The two algorithms take as input an adjacency matrix, which gives an idea of the similarity 
measure in the form of distances between the various data that are to be clustered. This 
approach uses this tool to partition circuits, so the circuit to be partitioned is the effective 
data to be clustered and the basic unit on which the algorithms will act are the nodes in a 
circuit.  

Similarity between nodes in a circuit 

Here, the input is the adjacency matrix, which defines the similarity between different nodes 
in the circuit. The attributes of nodes that are to be quantified as similarity between different 
nodes are based on several characteristics of logic gates such as, 

1. Interconnections between nodes 
2. Common signals as input 
3. Functionality 
4. Physical distance 
5. Presence of the node on the maximum delay path 

For example, if two nodes are interconnected, then the similarity between them is increased 
and the distance between them is reduced compared to two nodes which are not connected 
together.  

Also, if some nodes get a common signal, such as a set of flip-flops sharing a common clock 

signal, it is desirable to have them partitioned into the same sub-circuit so as to reduce 

problems due to signal delay of synchronous control inputs. So, the distances between such 

nodes are also low.  
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The distance of a node to itself is taken as 0 and a low value of distance means the highest 

similarity. A high value of distance means maximum dissimilarity, and therefore least 

similarity, such nodes can be placed in different sub-circuits. 

This adjacency or distance matrix is acted upon by the two algorithms, to effectively divide 

the circuit into sub-circuits, with the objective that is minimum interconnection under check. 

Adapting and applying data mining tools to VLSI circuit partitioning is a new approach. 

Improvisations and optimizations to the two algorithms are necessary and is  essential to 

make them workable and viable as CAD tools.  

Circuit chosen for implementation and testing 

The circuit on which the two data mining algorithms are implemented (NNA and PAM) is 

as shown below. The circuit is a Binary Coded Decimal (BCD) code to seven segment code 

converter (Fig18). It has 4 inputs and 7 outputs. In this figure each rectangular block is 

considered as a node.  A node is one which performs a defined function (Fig 19), it may be a 

simple AND gate or it may contain many interconnected flip-flops. So, a node contains one 

or more components and performs a logical function, the level of abstraction of a node can 

be changed to suit the basic unit understandable by a CAD tool. 

 

Fig. 18. Circuit of BCD code to Seven Segment code converter 
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Fig. 19. A node (node 5) enlarged. 

This shows that a node which is part of the main circuit consists of gates, such as Nand gate 
and or gates, or one which performs a logical function. 

7.4 How to choose k and threshold value 

7.4.1 PAM Algorithm – Choosing initial medoids 

PAM  starts from an initial set of medoids, by finding representative objects, called medoids, 
in clusters and iteratively replaces one of the medoids by one of the non-medoids if it 
improves the total distance of the resulting clustering. The PAM algorithm is based on the 
search for k medoids which are representative of the sequences based on the distance 
matrix. These k values should represent the structure of the sequences. After defining the set 
of k medoids, they would be used to construct the k clusters and partition the nodes by 
assigning each observation to the nearest medoid. In doing this, the target would be to 
identify the medoids that minimize the sum of the dissimilarities in the observations. As it 
can be seen, the choice of the initial medoids is very important. Medoid is the most centrally 
located point in a cluster, as a representative point of the cluster. The initial medoids chosen 
decides the quality of the formed clusters and the computational speed. If the initial 
medoids chosen are close to the final optimal medoids, yielding the final clusters with 
reduced cost, the computational cost will be reduced. Otherwise the number of iterations to 
find the final medoids will increase, this in turn increasing the time taken to obtain results 
and computational cost. 
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The representation by k-medoids has two advantages. First, it presents no limitations on 
attributes types and second, the choice of medoids is dictated by the location of a 
predominant fraction of points inside a cluster, therefore it is less sensitive to the presence of 
outliers. Therefore, PAM is iterative optimization that combines relocation of points 
between perspective clusters with re nominating the points as potential medoids.Earlier the 
task is done to find out the optimum value of threshold “t”, which decides the cluster 
density and quality, shows that the value of threshold from 2 to 5 gives optimal 
minimization of interconnections between sub-circuits. Therefore, for the two algorithms 
NNA and PAM, the threshold value of 2 and 3 are respectively chosen based on this task. 

7.4.2 Details of the partitioned Circuits - Results on a Circuit with 8 Nodes is 
discussed 

Fig.20 is an example of a Testing Circuit 1 with 8 nodes before applying the partitioning and 
the circuits after partitioning using the NN algorithm and  applying the PAM algorithms are 
shown in  Fig. 21. and Fig. 22. respectively.  

.  

Fig. 20. Circuit before applying partitioning techniques 
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The circuit shown in Fig7.10 is a BCD to seven-segment code converter before applying the 
partitioning algorithms and it has 8 nodes as shown in Fig 7.10. This circuit is tested in 
hardware and the functionality is concluded to be correct. 

 

 

 

 

 

Partitioned circuit obtained after applying Nearest Neighbor Algorithm  

 

 

 

 

 

 

Fig. 21. NNA Partitioned circuit showing 4 sub-circuits 
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Partitioned circuit obtained after applying Partitioning Around Medoids algorithm 

 

Fig. 22. PAM Partitioned circuit showing 2 sub-circuits 

Results on a Circuit with 15 Nodes 

Example Testing Circuit 2 with 15 nodes: 

 

Fig. 23. Circuit before applying partitioning techniques (Rubin, Willy Publications) 
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Partitioned circuit obtained after applying Nearest Neighbor Algorithm 
 

 
 

 
 
 
 
 
 
 
 

Fig. 24. NNA partitioned circuit showing 5 sub-circuits 
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Partitioned circuit obtained using Partitioning Around Medoids algorithm 

 

 

Fig. 25. PAM Partitioned circuit showing 3 sub-circuits 

8. Conclusion 

This section provides observations about the various techniques explained in this chapter 
with a detailed results based explaination of the Nearest Neighbor and Partitioning Around 
Medoids Clustering Algorithms. 

8.1 Memetic approach to circuit partitioning 

Memetic algorithm (MA) are population based heuristic search approaches for 

combinatorial optimization problems based on cultural evolution. They are designed to 

search in the space of locally optimal solutions instead of searching in the space of all 

candidate solutions. This is achieved by applying local search after each of the genetic 

operators. Crossover and mutation operators are applied to randomly chosen individuals 

for a predefined number of times. To maintain local optimality, the local search procedure is 

applied to the newly created individuals.  
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Neuro-Memetic Approach to Circuit Partitioning makes it possible to predict the sub-circuit 

from circuit with minimum interconnections between them. The system consists of three 

parts, each dealing with data extraction, learning stage & result stage. In data extraction, a 

circuit is bipartite and chromosomes are represented for each sub circuit. Extracted 

sequences are fed to Neuro-memetic model that would recognize sub-circuits with lowest 

amount of interconnections between them. 

 

Fig. 26. Working procedure of Neuro-Memetic approach 

8.2 Neuro-EM model 

The system consists of three parts each dealing with data extraction, Learning stage and 

recognition   stage. In data extraction, a circuit is bipartite and partitions it into 10 clusters, a 

user-defined value, by using K-means (J. B. MacQueen, 1967) and EM methodology (Kaban 

& Girolami, 2000), respectively. In recognition stage the parameters, centroid and 

probability are fed into generalized delta rule algorithm separately and train the network to 

recognize sub-circuits with lowest amount of interconnections between them 
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Fig. 27. Block diagram of K-means with neural network 

 

Fig. 28. Block diagram of EM methodology with neural network 

In recognition stage the parameters, that is, centroid and probability are fed into generalized 

delta rule algorithm separately and train the network to recognize sub circuit with 

minimum interconnection between them 

8.3 Fuzzy ARTMAP with DBSCAN 

A new model for partitioning a circuit is proposed using DBSCAN and fuzzy ARTMAP 

neural network. The first step is concerned with feature extraction, where it uses DBSCAN 

algorithm. The second step is classification and is composed of a fuzzy ARTMAP neural 

network.  

8.4 Nearest Neighbor and Partitioning Around Medoids clustering Algorithms 

Two clustering algorithms Nearest Neighbor (NNA) and Partitoning Around Medoids 

(PAM) clustering algorithms are considered for dividing the circuits into sub circuits. 

Clustering is alternatively referred to as unsupervised learning segmentation. The clusters 

are formed by finding the similarities between data according to characteristics found in the 

actual data. NNA is a serial algorithm in which the items are iteratively merged into the 

existing clusters that are closest. PAM represents a cluster by a medoid.  

 Criteria Used: Clustering/Unsupervised learning segmentation 

 Testing: The algorithms are tested using VHDL,Xilinx xc9500 CPLD/FPGA tool and 
MATLAB simulator using a test netlist matrix . 

 Results and Observations: 

As the number of clusters increases, the time taken for PAM increases but is less than 

Nearest Neighbor algorithm. PAM performs better than Nearest Neighbor algorithm. PAM 

has been very competent, especially in the case of a large number of cells when compared 

with Nearest Neighbor. The proposed model based algorithm has achieved sub-circuits with 

minimum interconnections, for the Circuit Partitioning problem.  
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No. of 
Clusters 

Time taken(Secs) 

 PAM Nearest Neighbor 

2 0.045 0.5 

4 0.067 0.7 

6 0.075 0.8 

8 0.087 0.9 

Table 4. Comparison of time taken to partition using PAM and Nearest Neighbor 

Completion time: Graphs depict completion time increases proportionately with respect of 
number of clusters. Nearest neighbor algorithm takes more completion time as number of 
iterations increase when compared to PAM. 

 

 

 

 

 

 
Fig. 29. Graph depicting the Completion time of NNA and PAM compared with algorithm 
proposed in (Gerez, 1999) over number of clusters 

CPU Utilization: A graph depicts CPU utilization increases proportionately with respect of 
number of iterations. PAM takes less CPU utilization as number of iteration increase 
compared to NNA algorithm. 
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Fig. 30. Graph depicting CPU utilization of NNA, PAM, algorithm proposed in (Gerez, 1999) 
over number of iterations 

From the implementation of the two algorithms, Nearest Neighbor and Partitioning Around 
Medoids, some fundamental observations are made. There is a reduction of 1 
interconnection when a circuit with 8 nodes is partitioned and when a circuit with 15 nodes 
is partitioned, there is a reduction of 5 interconnections between the sub-circuits obtained 
using NNA and PAM. Therefore, it is concluded  that the number of nodes in a circuit and 
the number of interconnections are inversely proportional. That is, as the number of nodes 
in a circuit increases, the number of interconnections between sub-circuits decreases for both 
partitioning methods. This reduction is not consistent since the complexity of any circuit 
will not be known a priori. One of the future enhancements would be to analyze the 
percentage ratio of the number of nodes in a circuit to the number of interconnections that 
get reduced after the circuit is partitioned. 

9. Future enhancements 

Future enhancements envisaged are using of distance based classification data mining 

concepts  and other data mining concepts, Artificial/ Neural modeled algorithm in getting 

better optimized partitions.  
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