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1. Introduction 

As globalisation takes place, the market is getting more and more competitive. 
Manufacturing enterprises are facing tremendous pressure to succeed in the market with 
promising market shares. This has led to enterprises seeking for competitive advantage in 
order to vie with their rivals. In manufacturing context, efforts have been put in, for 
instance, to reduce production lead times, maximise productivity and optimise resource 
utilisation. These efforts aim to reduce all types of costs incurred, as a means to achieve cost 
competitiveness. There is also a challenge for the manufacturers to be competent to 
efficiently and cost-effectively cope with dynamic changes of customer demands in the 
market. These demands are related to a wide range of product mixes with short product 
lifespan and with unpredicted demand pattern (Zhang, 2011).   

From a manufacturing perspective, the efficiency of manufacturing operations (such as 
process planning and production scheduling) are the key element for enhancing 
manufacturing competence. Process planning and production scheduling functions have 
been traditionally treated as two separate activities, and have resulted in a range of 
inefficiencies. These include infeasible process plans, non-available/overloaded resources, 
high production costs, long production lead times, and so on (Saygin & Kilic, 1999; 
Khoshnevis & Chen, 1993; Zhang, 1993). Above all, it is unlikely that the dynamic changes 
can be efficiently dealt with. Despite much research has been conducted to integrate process 
planning and production scheduling to improve manufacturing efficiency, there is still a 
gap to achieve the competence required for the current global competitive market.  

In this research, the concept of multi-agent system (MAS) is adopted as a means to address 
the aforementioned gap. A MAS consists of a collection of intelligent autonomous agents 
able to solve complex problems. These agents possess their individual objectives and 
interact with each other to fulfil a global goal. This chapter describes a novel use of an 
autonomous agent system to facilitate the integration of process planning and production 
scheduling functions to cope with unpredictable demands. This refers to the uncertainties in 
product mixes and demand patterns. The novelty lies with the currency-based iterative 
agent bidding mechanism to allow process planning options and production scheduling 
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options to be evaluated simultaneously, so as to search for an optimised and cost-effective 
solution. This agent based system aims to achieve manufacturing competence by means of 
enhancing the flexibility and agility of manufacturing enterprises.  

This chapter is organised as follows. Section 2 reviews the literature of the existing 
approaches to integrated process planning and production scheduling. The limitations of 
these approaches will also be discussed. Section 3 describes the concept of MAS and Section 
4 introduces the currency-based iterative agent bidding mechanism proposed in this study. 
A Tabu search optimisation technique to facilitate the adjustment of current values for agent 
bidding is presented in Section 5. Section 6 discusses the findings of the simulation results 
for the iterative bidding mechanism and further analyses the bidding results with three 
heuristic integrated process planning and scheduling approaches. Section 7 concludes this 
chapter.     

2. Integrated process planning and production scheduling 

In the literature, there is a vast number of research works reported contributing to the 
integration of process planning and production scheduling. These include non-linear process 
planning, flexible process planning, closed-loop process planning, dynamic process planning, 
alternative process planning, and just-in-time process planning (Cho & Lazaro, 2010; Kim et 
al., 2009; Moslehi et al. 2009; Omar & Teo, 2007; Wang et al., 2003; Saygin & Kilic, 1999; Usher 
& Fernandes, 1996; Khoshnevis & Mei, 1993). According to Larsen & Alting (1990), these 
works can be classified into three broad categories: non-linear process planning (NLPP), 
closed-loop process planning (CLPP), and distributed process planning (DTPP). 

2.1 Non-Linear Process Planning (NLPP) 

NLPP entails a planning system that generates a list of possible alternative plans for each part 
prior to actual production on the shop floor. This means that NLPP is based on a static shop 
floor condition. All these possible plans are ranked according to process planning criteria. The 
first priority plan is always used when the job is required. If the plan is not suitable, e.g. due to 
resource unavailability, the lower priority plan will be chosen. This procedure is repeated until 
a suitable plan is found. Examples of such system include FLEXPLAN that uses reactive re-
planning strategies to allow fast reaction when unexpected events occur on the shop floor 
during the execution of a schedule (Tonshoff et al., 1989), and a framework by Hou & Wang 
(1991) that firstly disaggregating the process planning problems and followed by generating 
alternative process plans for the parts to be manufactured. Other similar works include Ho & 
Moodie (1996), Hutchinson & Pflughoeft (1994), and Srihari & Greene (1988). 

Recognising the weaknesses of NLPP, some researchers proposed the idea of a two-stage 
approach to improve NLPP. In the first stage, all possible alternative process plans that do 
not take into account of operational status of the shop floor resources are generated. The 
second stage is dynamic process planning whereby the generated process plans are 
evaluated by taking into account of the availability of the shop floor resources and the 
objectives or rules are specified by the scheduler. The result of this two-stage approach is a 
set of ranked near-optimum alternative plans and schedules. The systems applying such an 
approach are PARIS (Usher & Fernandes, 1996), DYNACAPP (Ssemakula & Wesley, 1994), 
and THCAPP-G (Wang et al., 1995). 
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2.2 Closed-Loop Process Planning (CLPP) 

NLPP offers flexibility to the scheduling department with a list of alternative process plans. 
However, process planners do not take into account of the shop floor condition and an 
arbitrary set is generated based on their experience. In turn, production schedulers only use 
the alternatives that are available. To make the process planning more efficient, there is a 
need to have feedback from the shop floor with detailed information of the shop floor 
condition as well as requirements from scheduling department. With this information, no 
further effort will be spent on investigating alternatives that are of no use. Furthermore, the 
risk of overlooking important aspects (e.g. machine reliability and utilisation, bottlenecks) is 
also reduced. CLPP is an approach that could provide such feedback.  

CLPP generates plans for jobs in real time based on the status of the resources at that time. 
Production schedulers provide process planners with information in relation to resource 
availability so that every plan is feasible with respect to the current availability of 
production facilities. Real time status has become a crucial element for CLPP and therefore, 
CLPP is also referred to as real time process planning or dynamic process planning. The 
research works based on this approach include a heuristic algorithm proposed by 
Khoshnevis & Chen (1989) developing a dynamic list of available machines and a list of 
features for each part. When a match is found between the two lists, the part will be 
assigned to that machine. However, the algorithm has neglected one issue in relation to the 
allocation of producing the features to machines. For instance, the algorithm may have 
allocated a feature to a less desirable machine at a given instant, whereas had it waited for a 
short while, a more desirable machine might have become available. The authors then 
introduced the concept of time window into their improved algorithm to deal with this 
problem (Khoshnevis & Chen, 1990). Although the improved algorithm can yield better 
results, the computational complexity is increased. In a later work by Chen & Khoshnevis 
(1992), the integration problem is viewed as a scheduling problem with flexible process 
plans. The priority is given to the scheduling module. Whenever an assignment of an 
operation to a machine is made by the scheduling module, the process planning module is 
invoked to check the validity of the assignment. Other examples of using CLPP are Kiritis & 
Porchet (1996) and Iwata & Fukuda (1989).    

In NLPP, feedback information from the shop floor (i.e. information on the shop floor 
condition and requirements from scheduling department) is provided to the process 
planning department and as a result, process planning can be performed more efficiently 
and infeasible plans (i.e. due to unavailability of resources) can be eliminated. However, the 
aforementioned manufacturing competence is still not yet achieved in the proposed works. 
Despite the elimination of infeasible plans, the cost reduction through optimisation of 
utilisation of resources and minimisation of bottlenecks are not achieved in NLPP. 

2.3 Distributed Process Planning (DTPP) 

DTPP is a promising approach that performs both process planning and production 
scheduling simultaneously in a distributed manner, starting from a global level (i.e. pre-
planning) and ending at a detailed level (final planning). In DTPP process planning and 
production scheduling activities are carried out in parallel and in two phases. The first 
phase is pre-planning whereby process planning function analyses the jobs/operations to be 
carried out. The features and feature relationships are recognised and the corresponding 
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manufacturing processes are determined. The required machine capabilities are also 
estimated. The second phase is final planning, which matches the required operations with 
the operational capabilities of the available manufacturing resources. The integration occurs 
at the point when resources are available and the operation is required. In this integration, 
process planning and production scheduling are carried out simultaneously. This approach 
is sometimes also referred to as just-in-time process planning. The result of this approach is 
dynamic process and production scheduling constrained by real-time events. Such approach 
includes the early works by Mamalis et al. (1996), Zhang (1993), Mallur et al. (1992), and 
more recently by Li et al. (2010), Moon et al. (2009), and Wang et al. (2009). 

Despite the effort to integrate process planning and scheduling to find satisfactory solutions, 
further work is required for the solutions to be optimised in respond to dynamic changes in 
order to enhance the agility of manufacturing systems. To achieve overall optimality, 
rescheduling alone may not be effective (e.g. Wang et al., 2011). Process planning options 
should be taken into consideration to provide flexibility and optional scenarios in using 
alternative resources to respond constantly to dynamic changes. This means that process 
planning options and production scheduling options should be integrated and optimised 
dynamically, so that constraints from both functions can be fulfilled simultaneously and a 
near-optimum integrated plan and schedule can then be produced. Furthermore, the 
integration of process planning and production scheduling should also be able to provide 
scenarios where the production operational structures and possible reconfiguration of 
manufacturing systems can be assessed. By enhancing this manufacturing competence, the 
cost competitiveness will be achieved. In this research, a multi-agent system (MAS) is 
employed aiming to achieve this.  

3. Multi-Agent System (MAS) 

MAS is a popular research technique applied in various disciplines. A MAS is a distributed 
intelligent system consisting of a population of agents that pursue individual objectives and 
interact closely with each other to achieve a global goal. Each agent represents an entity (e.g. 
a machine or a job) and is endowed with a certain degree of autonomy and intelligence, 
which includes the ability to perceive its environment and to make decisions based on its 
knowledge (Ferber, 1999). 

In a MAS, a complex system is decomposed into autonomous and loosely-coupled 
subsystems represented by agents (Wooldridge, 1997). The term autonomous refers to the 
independency of control between the agents. Each agent determines its course of actions and 
other agents may influence an agent’s decision by means of coordination (through 
collaboration or competition/negotiation). The term loosely coupled refers to the 
dependency on information between the agents. This dependency may exist for some tasks 
and shall not oblige to overload one agent’s capability. Agents that represent the subsystems 
are able to solve problems in their domain with their own thread of control and execution. 
They carry out tasks autonomously without depending on other agents. The agent 
characteristics of intelligence and autonomous decision-making architecture have attracted 
many researchers in manufacturing domain solving complex manufacturing problems, 
including research related to process planning and production scheduling. 

In general, the agent-based process planning and production scheduling approaches found 
in the literature can be grouped into two categorises based on the interaction mechanism 
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used by the agents. They are bidding based methods and non-bidding based methods. 
Bidding based methods include the works by Robu et al. (2011), Kumar et al. (2008), Liu et 
al. (2007), Lima et al. (2006), Wong et al. (2006), and non-bidding works by Hajizadeh et al. 
(2011), Blum & Sampels (2004), Caridi & Sianesi (2000), and Ottaway & Burns (2000).  

For any MAS, the design of agents is crucial to ensure the global goal and individual 
objectives are both fulfilled. This includes the agent functions and network, agent 
interaction mechanism and its protocols for coordination. In this chapter, the authors 
proposed a novel use of an autonomous agent system to facilitate the integration of process 
planning and production scheduling functions in order to maximise the manufacturing 
competence to cope with unpredictable demands. The novelty lies with the currency-based 
iterative agent bidding mechanism to allow process planning options and production 
scheduling options to be evaluated simultaneously, so as to search for an optimised, cost-
effective solution. This agent based system aims to provide the flexibility and agility of 
manufacturing enterprises required to cope with the uncertainties in the market. The 
following section discusses this iterative agent bidding mechanism in detail. 

4. Iterative agent bidding mechanism 

In the proposed iterative agent bidding mechanism, a currency-like metric is used whereby 
each operation to be performed is assigned with a virtual currency value. These operations 
will then be announced to the agents (e.g. representing resources on the shop floor) and they 
will bid for the operations based on the currency values. These currency values are used as a 
parameter to control the bidding process between agents. Agents will only put forward the 
bids for the operation if they make a virtual profit (i.e. the difference between the given 
currency for the operation and the cost of performing the operation) that is above a virtual 
profit threshold set by that agent. This means that these parameters have a direct influence 
over the decisions of agent bidding for operations and forwarding the bids; therefore the 
adjustment of parameters will result in different bids constructed. In this mechanism, the 
virtual currency values will be adjusted iteratively, and so does the bidding process between 
agents based on the new set of currency values generated. This is to search for better and 
better bids, leading to near-optimality. The iterative bidding mechanism aims to achieve the 
lowest possible total production cost while satisfying the delivery due dates. Moreover, with 
the adjustment of currency values it is able to drive the behaviour of agents in a way that 
agents become proactive if they know they can perform the job with greater amount of 
virtual profit earned and vice versa. 

The iterative bidding mechanism is illustrated in Figure 1. Assume that machine agents 
representing the machines on the production shop floor and a job agent representing a job 
(e.g. to produce a component) to be performed which can be broken down into a number of 
operations (e.g. to produce the features of the component). The iterative bidding mechanism 
takes place between the job agent and machine agents. As depicted in Figure 1, the bidding 
process begins when the job agent announces the job to be performed to all machine agents 
to bid (Step 1). The announcement includes information related to the machining operations 
to be carried out, such as the number and type of machining operations, recommended type 
of machining processes for the operations, etc., and the virtual currency value assigned to 
each operation. Machine agents that are able to perform the first operation will come 
forward to become ‘leaders’ whose responsibility is to group other machine agents to 
perform the remaining operations (Steps 2-3). The number of leaders indicates the number of 
virtual machine groups.  
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Fig. 1. Iterative agent bidding mechanism 
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After the leaders are selected, they announce the second operation to all machine agents, 
including the leaders themselves (Step 4). Machine agents that are able to carry out the 
operation will come forward to bid for the job. They may reschedule and optimise their job 
buffer by shifting jobs if other operations’ due dates are not violated. This aims to produce 
optional and better bids BOi,x,k (BOi,x,k denotes the kth bid option from machine rx for 
operation Oi). In this way, bottlenecks can be reduced and machine utilisation can also be 
optimised. By shifting jobs in the job buffer, some bids may eliminate tool change and setup 
activities and as a result, the time needed to carry out the operation could be reduced. 
However, extra cost might be involved due to the job shifting in the job buffer, e.g. holding 
for work-in-process. Machine agents work out their bids in terms of production cost and 
lead time. The individual machine production cost is obtained as: 

 C C C C C Ci ti wi si pi ri= + + + +  (1) 

where  

 ( )/C C Dti ti d=  (2) 

 /

VremovedC Cpi pi t MRR

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (3) 

where   

tiC   = transportation cost from the location of preceding machine (unit of cost), 

/ti dC  = transportation cost / unit of distance (unit of cost),  

D = distance from the location of preceding machine (m), 

wiC  = holding cost (unit of cost), 

siC  = setup cost (unit of cost), 

removedV  = volume to be removed in order to produce the feature (mm3), 

MRR = material removal rate (mm3 / unit of time), 

piC   = processing cost (unit of cost),  

/pi tC  = processing cost / unit of time (unit of cost), 

riC  = rescheduling cost (unit of cost).  

The machine production cost function used in this study does not, however, truly reflect the 
actual production cost in real production. The cost function is developed for evaluation 
purposes and the costs such as material cost and labour cost are disregarded.  

The individual lead time is worked out as:  

 T T T T Ti ti wi si pi= + + +  (4) 

where 

 ( )/T T Dti ti d=  (5) 
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[ ]

n

j

T twi wi j= ∑  (6) 

 
VremovedTpi MRR

=  (7) 

where   

tiT   = transportation lead time from the preceding machine (unit of time),  

D = distance from the location of preceding machine (m), 

/ti dT  = transportation lead time / unit of distance (unit of cost),  

wiT   = waiting time at buffer, i.e. queuing time or bottlenecks (unit of time),  

[ ]
=1

n

wi j
j

t∑ = total waiting time of n jobs scheduled in the job buffer before the currently bidding 

job (unit of time), 

siT   = setup time (unit of time),  

piT   = processing lead time (unit of time) 

removedV  = volume to be removed in order to produce the feature (mm3), and 

MRR = material removal rate (mm3 / unit of time). 

Each machine agent decides whether to forward a bid based on the amount of virtual profit 

earned: 

 , , , ,i x k i i x kP CU C= −  (8) 

where Pi,x,k is the virtual profit that could be made by machine rx on operation Oi with bid 

option BOi,x,k , CUi is currency value assigned to operation Oi , and Ci,x,k is the production 

cost for rx to carry out Oi with bid BOi,x,k as defined by Eq. 1. If Pi,x,k is above a set threshold 

Ptx (i.e. , ,i x k txP P≥ ), the bid will be put forward to the leader. Ptx is a mark-up profit that is 

based on the production cost Ci,x,k i.e. Ptx = Ci,x,k + Ci,x,k . Mi,x,k., where Mi,x,k. is a random value 

in the range [0,N], and N is a limiting percentage value. By shifting jobs in the job buffer, a 

machine agent may put forward more than one bid as long as the virtual profits of the bids 

are above the set threshold. The threshold varies from one machine to another based on the 

cost of machine. However, if the profit is below the set threshold ( , ,i x k txP P< ), the machine 

agent will not forward the bid to the leader. In mathematical terms: 

 

( ) ( )
, , , , , , ,

, ,

,  ,   

                                                 

l l
i l i x k i x k i x ki i

i x k tx

B BO T T C C

if P P

= = =

≥
 (9) 

where Bi,l denotes the lth bid submitted for operation Oi, Ti,x,k is the lead time for rx to carry 

out Oi with bid option BOi,x,k, Ti(l) and Ci(l) are the lead time and cost for carrying out Oi with 

bid Bi,l. When the bids are received, the leader selects the best bid that provides the shortest 

lead time from all bids put forward by machine agents:   
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( )

( ) ( )
,

(1) (2) ( )( )

,   ,  

  min , ,.......,

l lwin win win
i i l i ii i

Ll
i i ii

B B T T C C

if T T T T

= = =

=
 (10) 

where Biwin represents the winning bid for Oi, Tiwin and Ciwin are the lead time and cost 
corresponding to the winning bid, L is the total number of bids submitted for Oi.  

The bid messages can be used to reflect a variety of dynamic status information (e.g. 
machine status, order condition), and therefore making the bidding mechanism suitable for 
real-time operational controls. This grouping process continues until all the operations in 
the job have been scheduled to the most appropriate machines. When the leaders have 
virtually grouped other machines to perform all operations (O1, O2, …, On), they put 
together all the individual production costs (i.e. total production cost) and lead times (i.e. 
total lead time) of the selected machines, and forward the one complete bid as a machine 
group to the job agent for evaluation (Step 5). This bid consists of the total lead time and 
total production cost denoted as follow: 

 
1 1

,   C=
n n

win win
i i

i i

T T C
= =

=∑ ∑  (11) 

The job agent evaluates the bids by means of satisfying the due date D at minimal total 
production cost 

 1

1

n

i
i

n

i
i

Min C C

T T D

=

=

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠

= ≤

∑

∑
 (12) 

If the due date is not satisfied (i.e. T > D), the virtual currency allocated to operations will be 
adjusted in the next iteration to look for a better plan (Steps 6-8). The lead time and cost of a 
plan resulting from a bidding iteration are dependent on the virtual currencies. Higher 
virtual currencies for operations increase the attractiveness of the operations to machine 
agents and encourage the agents to submit more bids for the operations (even though some 
bids may bear higher costs) and vice-versa. The iterative loop stops when a near-optimum 
plan that satisfies the due date with considered near-minimum cost is found. When the 
near-optimum plan is obtained, the job agent will award the job to the machine group that 
meets the due date and provides the minimum total production cost. The machine agents in 
the awarded machine group will then commit to the operations awarded by updating their 
loading schedules (Steps 9-11). If the product orders are large and consistent, there could be 
a need to group the machines in this virtual machine group physically (i.e. reconfiguring the 
layout of the existing manufacturing system), which may improve the system, as well as 
cost efficiency. In this way, the reconfiguration of manufacturing systems can be assessed.  

Each agent has individual objectives and a global goal to achieve. For this proposed MAS, 
the global goal is to find an optimised process plan and schedule that gives the lowest 
production cost while satisfying all requirements such as due date and product quality. As 
for individual objectives, the machine agents strive to give the best performance in order to 
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win the jobs and optimise its machine utilisation, and the job agent is responsible for 
assigning the operations to the outstanding group of machines. Via the iterative bidding 
mechanism and bid evaluation, agents with different objectives will come to a point where 
the agents’ objectives and the global goal can be satisfied. 

A Tabu search optimisation technique is employed in this study to investigate how and to 
what degree the currency values should be adjusted in each iteration in order to obtain 
better solutions (leading to near-optimality) for integrated process planning and scheduling 
problems. This technique will be discussed in the following section.   

5. Tabu search optimisation technique  

The basic form of TS approach was founded on the ideas proposed by Glover (1989, 1990). 
This approach is based on the procedures designed to cross boundaries of feasibility or local 
optimality, which are usually treated as barriers. In other words, TS is a meta-heuristic that 
guides a local heuristic search procedure to explore the solution space beyond local 
optimality. The key parameters used in TS are as follows: 

• Tabu move – a move that is forbidden because it has previously been taken in the 
search process. 

• Aspiration criterion – a criterion to remove the Tabu move that considered to be 
sufficiently attractive leading to a better solution. 

• Intensification strategy (a.k.a. short-term memory) – a rule that encourages moves 
surrounding the solution that previously found good. 

• Diversification strategy (long-term memory) – a rule that encourages the search process 
to examine unvisited regions and to generate solutions that are difference from those 
visited before. 

With the simplicity of applying the concept of TS, many researchers have adopted TS in 
production research for optimisation purposes. Baykasoglu & Ozbakir (2009) proposed a 
multiple objective TS framework to generate flexible job shop scheduling problems with 
alternative process plans in order to analyse its performance and efficiency. Demir et al. 
(2011) proposed a TS approach to optimise production buffer allocation in order to enhance 
manufacturing efficiency. Baykasoglu & Gocken (2010) used TS to solve fuzzy multi-
objective aggregate production planning system. Xu et al. (2010) used a two-layer TS 
approach to schedule jobs with controllable processing times on a single machine in order to 
meet costumer due dates.  

The TS approach proposed in this study is described in Figure 2. With an illustration of a 

component that has five features, the approach started off with initialising all the relevant 

parameters such as initial solution (i.e. a set of currency values), Tabu list size for 

intensification and diversification strategies, and stopping criteria. This approach consists of 

two main operators or moves, i.e. intensification (currency values adjustment) and 

diversification (pairwise exchange). For intensification, every currency value has an equal 

opportunity to be selected for currency adjustment. If a move j is tabu-active (i.e. Tabu [j] ≠ 

0), it is not supposed to be chosen again. However, an aspiration criterion can be applied in 

the case if the tabu-active move j creates a better solution (i.e. lower cost) than the overall 

best solution found so far. At each move, the solutions generated will be evaluated and 

compared to the overall best solution and subsequently the overall best solution will be 

updated if the new solution found outperforms the overall best solution. Eventually, after 
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the pre-determined number of intensifications to be carried out (M) or the number of moves 

when no consecutive improvement was found (K) is reached, diversification will take place 

to explore new regions (i.e. pairwise exchange of currency in the initial solution 0X ). This 

process continues until all the regions are explored. The simulation results of this approach 

will be discussed in next section.   

 

 

 

 

 
 

Fig. 2. Tabu search approach for iterative agent bidding mechanism 
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Milling 
Milling 
 
Drilling 
Drilling 
Drilling 

40 
 
 
80 
 
 
120 
 
 
160 
 
 
100 
100 
100 
 
0 
0 
0 

0 
 
 
0 
 
 
0 
 
 
0 
 
 
40 
80 
120 
 
40 
80 
120 

0.8 
 
 
0.75 
 
 
0.65 
 
 
0.9 
 
 
0.95 
0.75 
0.85 
 
0.75 
0.9 
0.85 

25 
 
 
30 
 
 
35 
 
 
28 
 
 
20 
22 
24 
 
32 
28 
29 

2.5 
 
 
2.6 
 
 
2.9 
 
 
2.6 
 
 
2.4 
2.6 
2.5 
 
3 
2.8 
2.8 

160 
 
 
160 
 
 
170 
 
 
160 
 
 
180 
180 
200 
 
200 
190 
200 

1.6 
 
 
2.0 
 
 
2.1 
 
 
1.5 
 
 
1.2 
1.4 
1.5 
 
1.8 
1.9 
1.5 

0.25 
 
 
0.25 
 
 
0.20 
 
 
0.25 
 
 
0.25 
0.25 
1.5 
 
0.4 
0.35 
0.25 

36 
 
 
40 
 
 
30 
 
 
29 
 
 
32 
32 
36 
 
37 
40 
30 

w
w

w
.in

te
c
h
o
p
e
n
.c

o
m



Achieving Cost Competitiveness with an Agent-Based  
Integrated Process Planning and Production Scheduling System 

 

197 

 

Lathe Schedule Milling Schedule Drilling Schedule 

L1 
 
 

L2 
 
 

L3 
 
 
 
 
 

L4 
 

C4(2)*
620-830^ 

 
C1(2) 

280-620 
 

C3(1) 
0-415 
C2(3) 

750-925 
 

C1(4) 
940-1265 

M1
 
 
 
 

M2 
 
 
 
 

M3 

C3(2)
500-792 
C3(3) 

792-988 
 

C2(1) 
0-380 
C4(3) 

1000-1179 
 

C4(1) 
0-432 
C1(3) 

670-878 

D1
 
 

D2 
 
 

D3 

C1(1) 
0-240 

 
C2(2) 

460-650 
 

C2(4) 
1200-1380 

*Cx(y) means job sequence y of component x 
^ in unit of time 

Table 2. Machines job schedule 

To evaluate the bidding mechanism, this test case consists of three components of which 
orders were placed at interval times. These components are ComA, ComB and ComC. Table 
3 listed the process sequence of producing the features of the components, and the 
information related to the currency values, removal volumes, and tolerance requirements of 
each feature in the components. 

The simulation process begins with the job agent announcing the jobs of producing ComA 
to all the machine agents. This process repeats for ComB and ComC. To discuss the 
implementation in details, the simulation process for ComC is predominantly discussed in 
this section. The assumptions made in the implementation are: 

• A machine only performs one process at a time 

• A component can be machined by the same machine more than once 

• All the machines are accessible by AGVs 

• The AGVs are considered to be always available 

• Each machine has infinite capacity input and output buffers 

• Auxiliary processes for surface treatment such as grinding and reaming are not 
considered 

• Material and labour costs are disregarded 

• Chip formation, cutting fluids, temperature rise, and tool wear due to cutting process 
are neglected. 

During the simulation, two test runs are carried out with the value of α (for the adjustment 
of currency values in intensification process) set at 15% and 30% respectively. In both test 
runs, the number of moves for intensification process is set to 10 and the Tabu list is 1. In the 
first test run, the simulation completed at 110th moves and the near-optimum bid obtained 
has a production cost of 3224 units and a lead time of 1374 units. Figure 3 illustrates all the 
bids obtained at each TS move. 
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Com 
ID 

Quantity Due date  
(units of time) 

Features to produce in 
sequence 

Process 
required 

Currency 
value 

Removal
volume (c

ComA 50 900 Hole (Blind, flat-bottomed) 
Hollow Cylinder (Through) 

Slot 
Hole (Centre, blind, flat-

bottomed) 

Drilling 
Turning 
Milling 
Drilling 

575 
770 
450 
500 

ComB 45 1000 Slot 
Hole (Centre, blind, flat-

bottomed) 
Slot 

Milling 
Drilling 
Milling 

780 
460 
440 

ComC 70 1400 Hollow Cylinder (Through) 
Hollow Cylinder (Through) 
Hollow Cylinder (Through) 

Slot 
Hole (Blind, flat-bottomed) 

Turning 
Turning 
Turning 
Milling 
Drilling 

850 
425 
600 
380 
600 
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Fig. 3. Bids received at each TS move (α = 15%). 

In Figure 4, the plotted line depicts the near-optimum bid recorded at each move during the 

entire simulation. This shows that lower costs of producing the components are gradually 

found as the currency values are adjusted iteratively. The first near-optimum bid was 

obtained at the 62nd move. The new job schedule for all machines is depicted in Table 4. 
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Fig. 4. Optimum bid recorded at each TS move (α = 15%). 

Figures 5 and 6 show the results obtained in second test run, the bids received at each TS 

move and the optimum bid recorded during each move respectively. When the simulation 

completed, the near-optimum bid obtained was the same as the first test run and the first 

near-optimum bid was obtained at the 58th move. These results show that in many moves 

there are no bids received from the machine agents. This happens predominantly when 

diversification takes place. As each of the currency values is particularly allocated to a 

unique job to produce a particular feature, exchanging currency values from one job with 

another is inappropriate. For instance, assume that the currency values for the first feature 

of a component is relatively large (say 1500) and for the second feature is small (e.g. 500). 
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Lathe Schedule Milling Schedule Drilling Schedule 
L1 

 
 
 
 
 

L2 
 
 
 
 
 
 

L3 
 
 
 
 

L4 
 

ComA(2)*
212-470^ 
ComC(3) 
530-788 
C4(2) 

788-988 
ComC(1) 

0-384 
ComC(2) 
384-522 
C1(2) 

522-862 
 

C3(1) 
0-415 
C2(3) 

750-925 
 

ComB(2) 
302-386 

ComA(4) 
728-844 
C1(4) 

1186-1511

M1
 
 
 
 
 
 
 
 
 
 
 
 

M2 
 
 
 
 

M3 

ComB(1)
0-242 

ComB(3) 
446-515 

ComA(3) 
520-625 
C3(2) 

625-917 
ComC(4) 
945-1080 

C3(3) 
1080-1276 

 

C2(1) 
0-380 
C4(3) 

1168-1336 
 

C4(1) 
0-432 
C1(3) 

912-1120 

D1
 
 
 
 
 
 

D2 
 
 

D3 

ComA(1) 
0-180 
C1(1) 

180-420 
ComC(5) 
1200-1374 

 
C2(2) 

460-650 
 

C2(4) 
1200-1380 

*Cx(y) means job sequence y of component x 
^ in unit of time 
Highlighted in bold = new jobs being scheduled  
Highlighted in Italic = existing jobs being rescheduled  

Table 4. New machines job schedule 

When diversification strategy (pairwise exchange) takes place, the currency value for the 
first feature is now 500 and as a result, there will not be any bids put forward by the 
machine agents throughout the entire intensification process until the next diversification 
takes place. However, the diversification strategy in TS leads to a great opportunity for the 
search process to explore new region aiming to obtain better solutions. This can be observed 
in Figure 3 during the moves from 90th to 105th that many bids have been put forward.  

To evaluate further the effectiveness of the bidding mechanism, the simulation results 
obtained were further analysed by comparing with three heuristic integrated process 
planning and scheduling approaches by Khoshnevis & Chen (1993), Usher & Fernandes 
(1996) and Saygin & Kilic (1999). Khoshnevis & Chen (1993) proposed an integrated process 
planning and scheduling system whereby the two stages of process planning and 
production scheduling are treated as a unified whole. This system uses a six-step heuristic 
approach based on opportunistic planning to generate feasible process plans through the 
creation of detailed routing, scheduling and sequencing information. Usher & Fernandes 
(1996) proposed PARIS (Process planning ARchitecture for Integration with Scheduling) – a 
two-phased architecture for process planning that supports the integration with scheduling. 
Saygin & Kilic (1999) proposed a framework that integrates predefined flexible process 
plans with off-line (predictive) scheduling in flexible manufacturing systems.  

www.intechopen.com



Achieving Cost Competitiveness with an Agent-Based  
Integrated Process Planning and Production Scheduling System 

 

201 

3000 

3100 

3200 

3300 

3400 

3500 

3600 

3700 

0 10 20 30 40 50 60 70 80 90 100 110 120 
No. of iterations 

C
o

s
t 

(u
n

it
 o

f 
c
o

s
t)
 

 

Fig. 5. Bids received at each TS move (α = 30%).  
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Fig. 6. Optimum bid recorded at each TS move (α = 30%). 

In order to make a rational comparison with the iterative bidding MAS developed in this 
study, the same test case is used to simulate the three heuristics approaches. Based on the 
simulation results obtained, Table 5 can be drawn for comparison purposes between the 
four approaches. The highlighted sections indicate the best results between these 
approaches. Based on the results, the approach by Khoshnevis & Chen (1993) is not able to 
achieve more promising result (i.e., lower lead time and production cost) than the MAS. The 
results obtained for ComA and ComC are no better than those achieved by the MAS. 
However, this approach manages to achieve the same lead time and production cost for 
ComB as the MAS. For PARIS system, the static phase involves the determination of suitable 
processes for each feature and followed by machine-group selection, to produce a list of 
alternative process plans. In the dynamic phase, all of these alternative process plans are 
scheduled based on the operational status of the machine on the shop floor. In order to 
make a relevant comparison with the MAS, the criteria used in the process of scheduling are 
the production cost and lead time (i.e., to meet the delivery due dates). The results, once 
again, show that the MAS is able to obtain better results than this approach. Furthermore, 
this approach performs poorer than Khoshnevis & Chen (1993). As for Saygin & Kilic’s 

www.intechopen.com



 
Production Scheduling 

 

202 

approach, after rescheduling the results are improved which are the same as the ones 
obtained in Khoshnevis & Chen (1993). 

These results noticeably show that the iterative bidding MAS proposed in this study 
outperforms these heuristic approaches. Not only it is capable of obtaining better solutions but 
also the way of the system performs (i.e., autonomous approach) is well suited to integrate 
process planning and production scheduling with time- and cost-efficiency. Unlike heuristics 
approaches, the MAS does not generate a list of process plans and allocate machines to these 
plans, and subsequently determine the best plan based on certain criteria. The MAS allows 
agents that represent the machines to decide what the best is for them (e.g. maximise their 
utilisation) by letting them bid for jobs based on their capability. In this way, a near-optimum 
solution can be achieved and the utilisation of manufacturing resources can also be optimised. 

 

Table 5. Comparative results between MAS and heuristic approaches 
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7. Conclusion  

In order to achieve manufacturing competence (through cost-competitiveness), this chapter 
introduced a multi-agent system (MAS) to enable process planning options and production 
scheduling options to be evaluated and optimised dynamically. The proposed MAS helps to 
enhance the agility and flexibility of manufacturing systems to cope with dynamic changes 
in the market by achieving near-optimum solutions to integrated process planning and 
scheduling problems. To achieve this, a novel currency-based iterative agent bidding 
mechanism is used as an agent coordination protocol. Agents representing the machines on 
the shop floor will bid for jobs to produce components; as iterative bidding takes place it 
aims to lead to better and better solutions to achieve cost-effectiveness.     

To facilitate the iterative bidding mechanism, a Tabu search optimisation technique was 
developed to adjust the current values. A test case was used to simulate the agent bidding 
mechanism and test runs were executed to evaluate the effectiveness of the bidding 
mechanism. The simulation results show that as the currency values were adjusted at each 
TS move, the production cost of producing the components was gradually reduced. The 
results were then compared to the results obtained based on three heuristic approaches 
(Khoshnevis & Chen, 1993; Usher & Fernandes, 1996b; Saygin & Kilic, 1999). The 
comparative results show that the MAS outperforms the heuristic approaches. The MAS 
evaluates and optimises process plans and production schedules simultaneously. It allows 
agents that representing the machines to bid for jobs based on their capability and best 
performance (e.g. to maximise their machine utilisation). Furthermore, the MAS also 
provides a platform where the possible reconfiguration of manufacturing systems can be 
assessed and the utilisation of manufacturing resources can be optimised. For future work, 
the MAS could be enhanced with machine learning capability in order to facilitate the 
iterative bidding mechanism to achieve optimised solutions more rapidly and efficiently.  
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