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1. Introduction 

Development of humanoid robots has to address two vital aspects, namely physical 
appearance and gestures, that will allow the machines to closely resemble humans. Other 
aspects such as "social" and "emotional" will enable human-machine interaction to be as 
natural as possible. The field of robotics has long been investigating how effective 
interaction between humans and autonomous and intelligent mechanical system can be 
possible (Goodrich & Schultz., 2007). Several distinctive features have been determined 
depending on whether a robot that acts as an assistant (for example, in the course of a 
business) or as a companion is required. In the case of humanoid robots, the human 
appearance and behavior may be very closely linked and integrated if you adopt a cognitive 
architecture that can take advantage of the natural mechanisms for exchange of information 
with a human. The robot that cooperates in the execution of an activity would benefit from 
the execution of its tasks if it had a mechanism that is capable of recognizing and 
understanding human activity and intention (Kelley et al., 2010), with perhaps the 
possibility of developing imitation learning by observation mechanisms. 
On the other hand, if we consider the robot as a partner, then it plays an important role in 
sharing the emotional aspects: it is not essential to equip the robot with emotions, but it is 
important that it can "detect" human emotional states (Malatesta et al. 2009). 
The cognitive architectures allow software to deal with problems that require contributions 
from both the cognitive sciences and robotics, in order to achieve social behavior typical of 
the human being, which would otherwise be difficult to integrate into traditional systems of 
artificial intelligence. Several cognitive models of the human mind can find common ground 
and experimental validation using humanoid agents. For example, if we approach the study 
of actions and social interactions involving "embodied" agents, the concept of motor 
resonance investigated in humans may play an important role (Chaminade & Cheng, 2009) 
to achieve sophisticated, yet simple to implement, imitative behaviors, learning by 
demonstration, and understanding of the real scene. 
In recent years, there is often talk of mirror neurons, which are evidence of the physiological 
motor resonance at the cellular level with regard to action, action understanding and 
imitation. But the resonance is applicable in other contexts such as cognitive emotions, the 
sensations of physical pain, and in various components of the actions of agents interacting 
socially (Barakova & Lourens, 2009; Fogassi, 2011). 
Cognitive models proposed would make the humanoid robot capable of overcoming the so-
called "Uncanny Valley of eeriness" (Saygin et al., 2011), by allowing the humanoid is 
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perceived by human beings not as artificial machine but as a credible social interacting 
entity. In this sense, the recent experimental data have confirmed the importance of 
"natural" movements (Saygin et al., 2011) that are expected from the observation of a robot 
with human features, even if it is a process yet to fully understand, that continually generate 
predictions about the environment, and compares them with internal states and models. 
Mirror neurons are assumed to be the neural basis for understanding the goals and 
intentions (Fogassi 2011), allowing for the prediction of the actions of the individual who is 
observed, and its intentions. Various studies indicate that they are also involved in the 
system of empathy, and emotional contagion (Hatfield et al. 1994), explaining that the 
human tendency to automatically mimic and synchronize facial expressions, vocalizations, 
postures, and movements with those of another person. 
The classical approach in robotics based on the perception-reasoning-action loop has 
evolved towards models that unify perception and action, such as the various cognitive 
theories arising from the Theory of Event Coding (Hommel et al., 2001). Similarly, the 
objectives are integrated with the intentions, and emotions with reasoning and planning. 
An approach that considers the human-robot interaction based on affective computing and 
cognitive architectures, can address the analysis and reproduction of social processes (and 
not only) that normally occur between humans, so that a social structure can be created 
which includes the active presence of a humanoid. Just as a person or group influences the 
emotions and the behavior of another person or group (Barsade, 2002), the humanoid could 
play a similar role in owning their own emotional states and behavioral attitudes, and by 
understanding the affective states to humans to be in "resonance" with them. 
The purpose of this chapter is to consider the two aspects, intentions and emotions, 
simultaneously: discussing and proposing solutions based on cognitive architectures (such 
as in Infantino et al., 2008) and comparing them against recent literature including areas 
such as conversational agents (Cerezo et al., 2008). 
The structure of the chapter is as follows: firstly, an introduction on the objectives and 
purposes of the cognitive architectures in robotics will be presented; then a second part on 
the state of the art methods of detection and recognition of human actions, highlighting 
those more suitably integrated into an architecture cognitive; a third part on detecting and 
understanding emotions, and a general overview of effective computing issues; and finally 
the last part presents an example of architecture that extends on the one presented in 
(Infantino et al., 2008), and a discussion about possible future developments. 

2. Cognitive architectures 

To achieve the advanced objective of human-robot interaction, many researchers have 
developed cognitive systems that consider sensory, motor and learning aspects in a unified 
manner. Dynamic and adaptive knowledge also needs to be incorporated, basing it on the 
internal representations that are able to take into account variables contexts, complex 
actions, goals that may change over time, and capabilities that can extend or enrich 
themselves through observation and learning. The cognitive architectures represent the 
infrastructure of an intelligent system that manages, through appropriate knowledge 
representation, perception, and in general the processes of recognition and categorization, 
reasoning, planning and decision-making (Langley et al., 2009). In order for the cognitive 
architecture to be capable of generating behaviors similar to humans, it is important to 
consider the role of emotions. In this way, reasoning and planning may be influenced by 
emotional processes and representations as happens in humans. Ideally, this could be 
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thought of as a representation of emotional states that, in addition to influencing behavior, 
also helps to manage the detection and recognition of human emotions. Similarly, human 
intentions may somehow be linked to the expectations and beliefs of the intelligence system. 
In a wider perspective, the mental capabilities (Vernon et al. 2007) of artificial computational 
agents can be introduced directly into a cognitive architecture or emerge from the 
interaction of its components. The approaches presented in the literature are numerous, and 
range from cognitive testing of theoretical models of the human mind, to robotic 
architectures based on perceptual-motor components and purely reactive behaviors (see 
Comparative Table of Cognitive Architectures1). 
Currently, cognitive architectures have had little impact on real-world applications, and a 
limited influence in robotics, and the humanoid. The aim and long-term goal is the detailed 
definition of the Artificial General Intelligence (AGI) (Goertzel, 2007), i.e. the construction of 
artificial systems that have a skill level equal to that of humans in generic scenarios, or 
greater than that of the human in certain fields. To understand the potential of existing 
cognitive architectures and indicate their limits, you must first begin to classify the various 
proposals presented in the literature. For this purpose, it is useful a taxonomy of cognitive 
architectures (Vernon et al. 2007; Chong et al., 2007) that identifies three main classes, for 
example obtained by characteristics such as memory and learning (Duch et al., 2008) . In this 
classification are distinguished symbolic architectures, emerging architectures, and hybrid 
architectures. In the following, only some architectures are discussed and briefly described, 
indicating some significant issues that may affect humanoids, and affective-based 
interactions. At present, there are no cognitive architectures that are strongly oriented to the 
implementation of embodied social agents, nor even were coded mechanisms to emulate the 
so-called social intelligence. The representation of the other, the determination of the self, 
including intentions, desires, emotional states, and social interactions, have not yet had the 
necessary consideration and have not been investigated approaches that consider them in a 
unified manner. 
The symbolic architectures (referring to a cognitivist approach) are based on an analytical 
approach of high-level symbols or declarative knowledge. SOAR (State, Operator And 
Result) is a classic example of an expert rule-based cognitive architecture (Laird et al., 1987). 
The classic version of SOAR is based on a single long-term memory (storing production-
rules), and a single short-term memory (with a symbolic graph structure). In an extended 
version of the architecture (Laird 2008), in addition to changes on short and long-term 
memories, was added a module that implements a specific appraisal theory. The intensity of 
individual appraisals (express either as categorical or numeric values) becomes the intrinsic 
rewards for reinforcement learning, which significantly speeds learning. (Marinier et al., 
2009) presents a unified computational model that combines an abstract cognitive theory of 
behavior control (PEACTIDM) and a detailed theory of emotion (based on an appraisal 
theory), integrated in the SOAR cognitive architecture. Existing models that integrate 
emotion and cognition generally do not fully specify why cognition needs emotion and 
conversely why emotion needs cognition. Looking ahead, we aim to explore how emotion 
can be used productively with long-term memory, decision making module, and 
interactions. 
The interaction is a very important aspect that makes possible a direct exchange of 
information, and may be relevant both for learning to perform intelligent actions. For 

                                                 
1Biologically Inspired Cognitive Architectures Society -Toward a Comparative Repository of Cognitive 
Architectures, Models, Tasks and Data. http://bicasociety.org/cogarch/ 
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example, under the notion of embodied cognition (Anderson, 2004), an agent acquires its 
intelligence through interaction with the environment. Among the cognitive architectures, 
EPIC (Executive Process Control Interactive) focuses his attention on human-machine 
interaction, aiming to capture the activities of perception, cognition and motion. Through 
interconnected processors working in parallel are defined patterns of interaction for 
practical purposes (Kieras & Meyer, 1997). 
Finally, among the symbolic architecture, physical agents are relevant in ICARUS (Langley 
& Choy, 2006), integrated in a cognitive model that manages knowledge that specify the 
reactive abilities, reactions depending on goals and classes of problems. The architecture 
consists of several modules that bind in the direction of bottom-up concepts and percepts, 
and in a top-down manner the goals and abilities. The conceptual memory contains the 
definition of generic classes of objects and their relationships, and the skill memory stores 
how to do things. 
The emergent architectures are based on networks of processing units that exploit 
mechanisms of self-organizations and associations. The idea behind this architecture is 
based on connectionism approach, which provides elementary processing units (processing 
element PE) arranged in a network that changes its internal state as a result of an interaction. 
From these interactions, relevant properties emerge, and arise from the memory considered 
globally or locally organized. Biologically inspired cognitive architectures distribute 
processing by copying the working of the human brain, and identify functional and 
anatomical areas correspond to human ones such as the posterior cortex (PC), the frontal 
cortex (FC), hippocampus (HC). Among these types of architecture, one that is widely used 
is based on adaptive resonance theory ART (Grossberg, 1987). The ART unifies a number of 
network designs supporting a myriad of interaction based learning paradigms, and address 
problems such as pattern recognition and prediction. ART-CogEM models use cognitive-
emotional resonances to focus attention on valued goals. 
Among the emerging architectures, are also considered models of dynamic systems (Beer 
2000, van Gelder & Port, 1996) and models of enactive systems. The first might be more 
suitable for the development of high-level cognitive functions as intentionality and learning. 
These dynamic models are derived from the concept that considers the nervous system, 
body and environment as dynamic models, closely interacting and therefore to be examined 
simultaneously. This concept also inspired models of enactive systems, but emphasize the 
principle of self-production and self-development. An example is the architecture of the 
robot iCub (Sandini et al., 2007), that also includes principles Global Workspace Cognitive 
Architecture (Shanahan, 2006) and Dynamic Neural Field Architecture (Erlhagen and Bicho, 
2006). The underlying assumption is that cognitive processes are entwined with the physical 
structure of the body and its interaction with the environment, and the cognitive learning is 
an anticipative skill construction rather than knowledge acquisition. 
Hybrid architectures are approaches that combine methods of the previous two classes. The 
best known of these architectures is ACT-R (Adaptive Components of Rational-thought), 
which is based on perceptual-motor modules, memory modules, buffers, and pattern 
matchers. ACT-R (Anderson et al., 2004) process two kinds of representations: declarative and 
procedural: declarative knowledge is represented in form of chunks, i.e. vector representations 
of individual properties, each of them accessible from a labeled slot; procedural knowledge is 
represented in form of productions. Other popular hybrid architectures are: CLARION- The 
Connectionism Learning Adaptive rule Induction ON-Line (Sun, 2006), LIDA-The Learning 
Intelligent Distribution Agent (Franklin & Patterson, 2006). 
More interesting for the purposes of this chapter is the PSI model (Bartl & Dorner, 1998; Bach 
et al., 2006) and its architecture that involves explicitly the concepts of emotion and 
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motivation in cognitive processes. MicroPsi (Bach et al., 2006) is an integrative architecture 
based on PSI model, has been tested on some practical control applications, and also on 
simulating artificial agents in a simple virtual world. Similar to LIDA, MicroPsi currently 
focuses on the lower level aspects of cognitive process, not yet directly handling advanced 
capabilities like language and abstraction. A variant of MicroPsi framework is included also 
in CogPrime (Goertzel, B. 2008). This is a multi-representational system, based on a hyper-
graphs with uncertain logical relationships and associative relations operating together. 
Procedures are stored as functional programs; episodes are stored in part as “movies” in a 
simulation engine. 

3. Recognition of human activities and intentions 

In the wider context of capturing and understanding human behavior (Pantic et al., 2006), it 
is important to perceive (detect) signals such as facial expressions, body posture, and 
movements while being able to identify objects and interactions with other components of 
the environment. The techniques of computer vision and machine learning methodologies 
enable the gathering and processing of such data in an increasingly accurate and robust way 
(Kelley et al., 2010). If the system captures the temporal extent of these signals, then it can 
make predictions and create expectations of their evolution. In this sense, we speak of 
detecting human intentions, and in a simplified manner, they are related to elementary 
actions of a human agent (Kelley et al., 2008). 
Over the last few years has changed the approach pursued in the field of HCI, shifting the 
focus on human-centered design for HCI, namely the creation of systems of interaction 
made for humans and based on models of human behavior (Pantic et al., 2006). The Human-
centered design, however, requires thorough analysis and correct processing of all that 
flows into man-machine communication: the linguistic message, non-linguistic signals of 
conversation, emotions, attitudes, modes by which information are transmitted, i.e. facial 
expressions, head movements, non-linguistic vocalizations, movements of hands and body 
posture, and finally must recognize the context in which information is transmitted. In 
general, the modeling of human behavior is a challenging task and is based on the various 
behavioral signals: affective and attitudinal states (e.g. fear, joy, inattention, stress); 
manipulative behavior (actions used to act on objects environment or self-manipulative 
actions like biting lips), culture-specific symbols (conventional signs as a wink or a thumbs-
up); illustrators actions accompanying the speech, regulators and conversational mediators 
as who nods the head and smiles. 
Systems for the automatic analysis of human behavior should treat all human interaction 

channels (audio, visual, and tactile), and should analyze both verbal and non verbal signals 

(words, body gestures, facial expressions and voice, and also physiological reactions). In 

fact, the human behavioral signals are closely related to affective states, which are 

conducted by both physiological and using expressions. Due to physiological mechanisms, 

emotional arousal affects somatic properties such as the size of the pupil, heart rate, 

sweating, body temperature, respiration rate. These parameters can be easily detected and 

are objective measures, but often require that the person wearing specific sensors. Such 

devices in future may be low-cost and miniaturized, distributed in clothing and 

environment, but which are now unusable on a large scale and in non structured situations. 

The visual channel that takes into account facial expressions and gestures of the body seems 
to be relatively more important to human judgment that recognizes and classifies behavioral 
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states. The human judgment on the observed behavior seems to be more accurate if you 
consider the face and body as elements of analysis. 
A given set of behavioral signals usually does not transmit only one type of message, but 
can transmit different depending on the context. The context can be completely defined if 
you find the answers to the following questions: Who, Where, What, How, When and Why 
(Pantic et al., 2006). These responses disambiguating the situation in which there are both 
artificial agent that observes and the human being observed. 
In the case of human-robot interaction, one of the most important aspects to be explored in 
the detection of human behavior is the recognition of the intent (Kelley et al., 2008): the 
problem is to predict the intentions of a person by direct observation of his actions and 
behaviors. In practice we try to infer the result of a goal-directed mental activity that is not 
observable, and characterizing precisely the intent. Humans recognize, or otherwise seek to 
predict the intentions of others, using the result of an innate mechanism to represent, 
interpret and predict the actions of the other. This mechanism probably is based on taking 
the perspective of others (Gopnick & Moore, 1994), allowing you to watch and think with 
eyes and mind of the other. 
The interpretation of intentions can anticipate the evolution of the action, and thus capture 
its temporal dynamic evolution. An approach widely used in statistical classification of 
systems that evolve over time, is what uses Hidden Markov Model (Duda et al., 2000). The 
use of HMM in the recognition of intent (emphasizing the prediction) has been suggested in 
(Tavakkoli et al., 2007), that draws a link between the HMM approach and the theory of the 
mind. 
The recognition of the intent intersects with the recognition of human activity and human 
behavior. It differs from the recognition of the activity as a predictive component: 
determining the intentions of an agent, we can actually give an opinion on what we believe 
are the most likely actions that the agent will perform in the immediate future. The intent 
can also be clarified or better defined if we recognize the behavior. Again the context is 
important and how it may serve to disambiguate (Kelley et al., 2008). There are a pairs of 
actions that may appear identical in every aspect but have different explanations depending 
on their underlying intentions and the context in which they occur. 
Both to understand the behaviors and the intentions, some of the tools necessary to address 
these problems are developed for the analysis of video sequences and images (Turaga et al., 
2008). The aspects of security, monitoring, indexing of archives, led the development of 
algorithms oriented to the recognition of human activities that can form the basis for the 
recognition of intentions and behaviors. Starting from the bottom level of processing, the 
first step is to identify the movements in the scene, to distinguish the background from the 
rest, to limit the objects of interest, and to monitor changes in time and space. We use then, 
techniques based on optical flow, segmentation, blob detection, and application of space-
time filters on certain features extracted from the scene. 
When viewing a scene, the man is able to distinguish the background from the rest, that is, 
instant by instant, automatically rejects unnecessary information. In this context, a model of 
attention is necessary to select the relevant parts of the scene correctly. One problem may be, 
however, that in these regions labeled as background is contained the information that 
allows for example the recognition of context that allows the disambiguation. Moreover, 
considering a temporal evolution, what is considered as background in a given instant, may 
be at the center of attention in successive time instants. 
Identified objects in the scene, as well as being associated with a certain spatial location 
(either 2D, 2D and 1/2, or 3D) and an area or volume of interest, have relations between 
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them and with the background. So the analysis of the temporal evolution of the scene, 
should be accompanied with a recognition of relationships (spatial, and semantic) between 
the various entities involved (the robot itself, humans, actions, objects of interest, 
components of the background) for the correct interpretation of the context of action. But 
defining the context in this way, how can we bind the contexts and intentions? There are 
two possible approaches: the intentions are aware of the contexts, or vice versa the 
intentions are aware of the contexts (Kelley et al., 2008). In the first case, we ranked every 
intention carries with it all possible contexts in which it applies, and real-time scenario is not 
applicable. The second approach, given a context, we should define all the intentions that it 
may have held (or in a deterministic or probabilistic way). The same kind of reasoning can 
be done with the behaviors and habits, so think of binding (in the sense of action or 
sequence of actions to be carried out prototype) with the behaviors. 
A model of intention should be composed of two parts (Kelley et al, 2008): a model of 
activity, which is given for example by a particular HMM, and an associated label. This is 
the minimum amount of information required to enable a robot to perform disambiguation 
of context. One could better define the intent, noting a particular sequence of hidden states 
from the model of activity, and specifying an action to be taken in response. A context 
model, at a minimum, shall consist of a name or other identifier to distinguish it from other 
possible contexts in the system, as well as a method to discriminate between intentions. This 
method may take the form of a set of deterministic rules, or may be a discrete probability 
distribution defined on the intentions which the context is aware. 
There are many sources of contextual information that may be useful to infer the intentions, 
and perhaps one of the most attractive is to consider the so-called affordances of the object, 
indicating the actions you can perform on it. It is possible then builds a representation from 
probabilities of all actions that can be performed on that object. For example, you can use an 
approach based on natural language (Kelley et al., 2008), building a graph whose vertices 
are words and a label is the weighed connecting arc indicating the existence of some kind of 
grammatical relationship. The label indicates the nature of the relationship, and the weight 
can be proportional to the frequency with which the pair of words exists in that particular 
relationship. From such a graph, we can calculate the probability to determine the necessary 
context to interpret an activity. Natural language is a very effective vehicle for expressing 
the facts of the world, including the affordances of the objects. 
If the scene is complex, performance and accuracy can be very poor when you consider all 
the entities involved. then, can be introduced for example the abstraction of the interaction 
space, where each agent or object in the scene is represented as a point in a space with a 
defined distance on it related to the degree of interaction (Kelley et al, 2008). In this case, 
then consider the physical artificial agent (in our case the humanoid) and its relationship 
with the space around it, giving more importance to neighboring entities to it and ignore 
those far away. 

4. Detection of human emotions 

Detection of human emotions plays many important roles in facilitating healthy and normal 
human behavior, such as in planning and deciding what further actions to take, both in 
interpersonal and social interactions. Currently in the field of human-machine interfaces, 
systems and devices are now being designed that can recognize, process, or even generate 
emotions (Cerezo et al., 2008). The “affect recognition” often requires a multidisciplinary 
and multimodal approach (Zeng et al., 2009), but an important channel that is rich with 
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information is facial expressiveness (Malatesta et al., 2009). In this context, the problem of 
expression detection is supported by robust artificial vision techniques. Recognition has 
proven critical in several aspects: such as in defining basic emotions and expressions, the 
subjective and cultural variability, and so on. 
Consideration must be given the more general context of affect, for which research in 
psychology has identified three possible models: categorical, dimensional and appraisal-
based approach (Grandjean et al., 2008). The first approach is based on the definition of a 
reduced set of basic emotions, innate and universally recognized. This model is widely used 
in automatic recognition of emotions, but as well as for human actions and intentions, can 
be considered more complex models that address a continuous range of affective and 
emotional states (Gunes et al., 2011). Dimensional models are described by geometric spaces 
that can use the basic emotions, but represented by a continuous dynamic dimensions such 
as arousal, valence, expectation, intensity. The appraisal-based approach requires that the 
emotions are generated by a continuous and recursive evaluation and comparison of an 
internal state and the state of the outside world (in terms of concerns, needs, and so on). Of 
course this model is the most complex to achieve the recognition, but is used for the 
synthesis of virtual agents (Cerezo et al., 2008). 
As mentioned previously, most research efforts on the recognition and classification of 
human emotions (Pantic et al., 2006) focused on a small set of prototype expressions of basic 
emotions related to analyzing images or video, and analyzing speech. Results reported in 
the literature indicate that typically performances reach an accuracy from 64% to 98%, but 
detecting a limited number of basic emotions and involving small groups of human subjects. 
It is appropriate to identify the limitations of this simplification. For example, if we consider 
the dimensional models, it becomes important to distinguish the behavior of the various 
channels of communication of emotion: the visual channel is used to interpret the valence, 
and arousal seems to be better defined by analyzing audio signals. By introducing a multi-
sensory evaluation of emotion, you may have problems of consistency and masking, i.e. that 
the various communication channels indicate different emotions (Gunes et al., 2011). 
Often the emotion recognition systems have aimed to the classification of emotional 
expressions deduced from static and deliberate, while a challenge is on the recognition of 
spontaneous emotional expressions (Bartlett, et al. 2005; Bartlett, et. Al. 2006 ; Valstar et al., 
2006), i.e. those found in normal social interactions in a continuous manner (surely 
dependent on context and past history), capable of giving more accurate information about 
affective state of human involved in a real communication (Zeng et al., 2009). 
While the automatic detection of the six basic emotions (including happiness, sadness, fear, 
anger, disgust and surprise) can be done with reasonably high accuracy, as they are based 
on universal characteristics which transcend languages and cultures (Ekman, 1994), 
spontaneous expressions are extremely variable and are produced - by mechanisms not yet 
fully known - by the person who manifests a behavior (emotional, but also social and 
cultural), and underlies intentions (conscious or not). 
If you look at human communication, some information is related to affective speech, and in 
particular to the content. Some affective mechanisms of transmission are clear and directly 
related to linguistics, and other implicit (paralinguistic) signals that may affect especially the 
way in which words are spoken. You can then use some of the dictionaries that can link the 
word to the affective content and provide the lexical affinity (Whissell, 1989). In addition, 
you can analyze the semantic context of the speech to determine more emotional content, or 
endorse those already detected. The affective messages transmitted through paralinguistic 
signals, are primarily affected by prosody (Juslin & Scherer, 2005), which may be indicative 
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of complex states such as anxiety, boredom, and so on. Finally, are also relevant non-
linguistic vocalizations such as laughing, crying, sighing, and yawning (Russell et al., 2003). 
Considering instead the channel visual, emotions arise from the following aspects: facial 

expressions, movements (actions) facial movements and postures of the body (which may be 

less susceptible to masking and inconsistency). 

Most of the work on the analysis and recognition of emotions is based on the detection of 

facial expressions, addressing two main approaches (Cohn, 2006; Pantic & Bartlett, 2007): the 

recognition based on elementary units of facial muscles action (AU), that are part of the 

coding system of facial expression called the Facial Action coding - FACS (Ekman & Friesen 

1977), and recognition based on spatial and temporal characteristics of the face.  
FACS is a system used for measuring all visually distinguishable facial movements in terms 
of atomic actions called Facial Action Unit (AU). The AU is independent of the 
interpretation, and can be used for any high-level decision-making process, including the 
recognition of basic emotions (Emotional FACS - EMFACS2), the recognition of various 
emotional states (FACSAID - Facial Action Coding System Affect Interpretation 
Dictionary2), and the recognition of complex psychological states such as pain, depression, 
etc.. The fact of having a coding, has originated a growing number of studies on 
spontaneous behavior of the human face based on AU (e.g., Valstar et al., 2006). 
The facial expression can also be detected using various pattern recognition approaches 
based on spatial and temporal characteristics of the face. The features extracted from the 
face can be geometric shapes such as parts of the face (eyes, mouth, etc.), or location of 
salient points (the corners of the eyes, mouth, etc.), or facial characteristics based on global 
appearance and some particular structures, such as wrinkles, bulges, and furrows. Typical 
examples of geometric feature-based methods are those that face models described as set of 
reference points (Chang et al., 2006), or characteristic points of the face around the mouth, 
eyes, eyebrows, nose and chin (Pantic & Patras, 2006), or grids that cover the whole region 
of the face (Kotsia & Pitas, 2007). The combination of approaches based on geometric 
features and appearance is likely (eg Tian et al., 2005) the best solution for the design of 
systems for automatic recognition of facial expressions (Pantic & Patras, 2006). The 
approaches based on 2D images of course suffer from the problem of the point of view, 
which can be overcome by considering 3D models of the human face (eg, Hao & Huang, 
2008; Soyel & Demirel, 2008, Tsalakanidou & Malassiotis, 2010). 

5. Integration of a humanoid vision agent in PSI cognitive architecture 

SeARCH-In (Sensing-Acting-Reasoning: Computer understands Human Intentions) is an 

intentional vision framework scheme oriented towards human-humanoid interactions (see 

figure 1). It extends on the system presented in the previous work (Infantino et al., 2008), 

improving vision agent and expressiveness of the ontology. Such a system will be able to 

recognize user faces, to recognize and track human postures by visual perception. The 

described framework is organized on two modules mapped on the corresponding outputs 

to obtain intentional perception of faces and intentional perception of human body 

movements. Moreover a possible integration of an intentional vision agent in the PSI (Bart & 

Dorner, 1998; Bach et al., 2006) cognitive architecture is proposed, and knowledge 

management and reasoning is allowed by a suitable OWL-DL ontology. 

                                                 
2http://face-and-emotion.com/dataface/general/homepage.jsp 
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Fig. 1. Cognitive-emotional-motivational schema of the PSI cognitive architecture3.  

In particular, the ontological knowledge approach is employed for human behavior and 
expression comprehension, while stored user habits are used for building a semantically 
meaningful structure for perceiving human wills. A semantic description of user wills is 
formulated in terms of the symbolic features produced by the intentional vision system. The 
sequences of symbolic features belonging to a domain specific ontology are employed to 
infer human wills and to perform suitable actions. 
Considering the architecture of PSI (see Figure 1) and the intentional vision agent created by 
the SEARCH-In framework, you can make some considerations on the perception of the 
intentions of a human being, the recognition of his identity, the mechanism that triggers of 
sociality, how memory is used, the symbolic representation of actions and habits, and finally 
the relationship of the robot’s inner emotions and those observed. 
The perception that regards the agent is generated from the observation of a human being 
who acts in an unstructured environment: human face, body, actions, and appearance are 
the object of humanoid in order to interact with him. The interaction is intended to be based 
on emotional and affective aspects, on the prediction of intents recalled from the memory 
and observed previously. Furthermore, the perception concerns, in a secondary way for the 
moment, the voice and the objects involved in the observed action. 
The face and body are the elements analyzed to infer the affective state of the human, and 
for the recognition of identity. The face is identified in the scene observed by the cameras of 
the robot using the algorithm of Viola-Jones (Viola & Jones, 2004), and its OpenCV4 
implementation. The implementation of this algorithm is widely used in commercial devices 
since it is robust, efficient, and allows real-time use. The human body is detected by the 
Microsoft Kinect device, which is at the moment is external to humanoid, but the data are 
accessible via the network. From humanoid point of view, the Kinect5 device is in effect one 

                                                 
3Figure available at the link www.macs.hw.ac.uk/~ruth/psi-refs.html (author: Ruth Aylett) 
4http://opencv.willowgarage.com/wiki/  
5http://en.wikipedia.org/wiki/Kinect 
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of its sensor, and the software architecture integrated it as the other sensors. Again, you are 
using a device that is widely used, and that ensures accurate perceptive results in real time. 
This sensor produces both a color image of the scene, and a depth map, and the two 
representations are aligned (registered), allowing you to associate each pixel with the depth 
estimated by IR laser emitter-detector pair. Through software libraries, it is possible to 
reconstruct the human posture, through a reconstructed skeleton defined as a set of points 
in three dimensional space corresponding to the major joints of the human body. 
In the region of the image containing the detected face, are run simultaneously two sets of 
algorithms. The first group is used to capture the facial expression, identifying the position 
and shape of the main characteristic features of the face: eyes, eyebrows, mouth, and so on. 
The recognition of the expression is done using the 3D reconstruction (Hao Tang & Huang, 
2008), and identifying the differences from a prototype of a neutral expression (see figure 3). 
The second group, allows the recognition, looking for a match in a database of faces, and 
using the implementation (API NaoQi, ALFaceDetection module) already available to the 
NAO humanoid robot (see figure 2). 
The PSI model requires that the internal emotional states modulate the perception of the 
robot, and are conceived as intrinsic aspects of the cognitive model. The emotions of the 
robots are seen as an emergent property of the process of modulation of the perceptions, 
behavior, and global cognitive process. In particular, emotions are encoded as configuration 
settings of cognitive modulators, which influence the pleasure/distress dimension, and on 
the assessment of the cognitive urges. 
The idea of social interaction based on affect recognition and intentions, that is the main 
theme of this chapter, simply leads to a first practical application of cognitive theory PSI. 
The detection and recognition of a face meets the need for social interaction that drives the 
humanoid robot, consistent with the reference theory which deals with social urges or 
drives, or affiliation. The designed agent includes discrete levels of pleasure/distress: the 
greatest pleasure is associated with the fact that the robot has recognized an individual, and 
has in memory the patterns of habitual action (through representations of measured 
movement parameters, normalized in time and in space, and associated with a label); the 
lowest level when it detects a not identified face, showing a negative affective state, and a 
lack of recognition and classification of the observed action. It is possible to implement a 
simple mechanism of emotional contagion, which executes the recognition of human 
affective state (limited to an identified human), and tends to set the humanoid on the same 
mood (positive, neutral, negative). The Nao may indicate his emotional state through the 
coloring of some leds placed in eyes and ears, and communicates its mood changes by 
default vocal messages to make the human aware of its status (red is associated with a state 
of stress, green with neutral state, yellow with euphoria, blue with calm). 
The symbolic explicit representation provided by the PSI model requires that the objects, 
situations, plans are described by a formalism of executable semantic networks, i.e. semantic 
networks that can change their behaviors via messages, procedures, or changes to the graph. 
In previous work (Infantino et al., 2008), it has been defined a reference ontology (see figure 
3) for the intentional vision agent which together with the semantic network allows for two 
levels of knowledge representation, increasing the communicative and expressive 
capabilities. 
The working memory, in our example of emotional interaction, simply looks for and 
identifies human faces, and contains actions for random walk and head movements to allow 
it to explore space in its vicinity until it finds a human agent to interact with. There is not a 
world model to compare with the one perceived, even if the reconstructed 3D scene by 
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depth sensor could be used, and compare it with a similar internal model in order to plane 
exploration through anticipation in the cognitive architecture. The long-term memory is 
represented by the collection of usual actions (habits), associated with a certain identity and 
emotional state, and in relation to certain objects. Again, you might think to introduce 
simple mechanisms affordances of objects, or introduce a motivational relevance related to 
the recognition of actions and intentions. 
 

 

Fig. 2. NAO robot is the humanoid employed to test the agent that integrates SeARCH-In 
framework and PSI cognitive model.  

 

 

 

 

Fig. 3. Example of face and features extraction, 3D reconstruction for expression recognition 
(on the left), and 3D skeleton of human (on the right).  
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Fig. 4. SearchIn Ontology (see Infantino et al., 2008). Gray areas indicate Intentional 
Perception of Faces module (IPF) and Intentional Perception of Body module (IPB). 
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the development and usage of future humanoid robots. The editor of the book has extensive R&D experience,

patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the

content of the book.
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