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Design of Oscillatory Neural Network for 
Locomotion Control of Humanoid Robots 

Riadh Zaier 
Department of Mechanical and Industrial Engineering, Sultan Qaboos University 

Sultanate of Oman 

1. Introduction 

Standing and walking are very important activities for daily living, so that their absence or any 

abnormality in their performance causes difficulties in doing regular task independently. 

Analysis of human motion has traditionally been accomplished by subjectively through visual 

observations. By combining advanced measurement technology and biomechanical modeling, 

the human gait is today objectively quantified in what is known as Gait analysis. Gait analysis 

research and development is an ongoing activity. New models and methods continue to 

evolve. Recently, humanoid robotics becomes widely developing world-wide technology and 

currently represents one of the main tools not only to investigate and study human gaits but 

also to acquire knowledge on how to assist paraplegic walking of patient (Acosta-M´arquez 

and Bradley, 2000). Towards a better control of humanoid locomotion, much work can be 

found in the literature that has been focused on the dynamics of the robot using the Zero 

Moment Point (ZMP) approach (Vukobratovic and Borovac, 2004). More recently, biologically 

inspired control strategies such as Central Pattern Generators (CPG) have been proposed to 

generate autonomously adaptable rhythmic movement (Grillner, 1975, 1985; Taga, 1995; Taga 

et. al, 1991). Despite the extensive research focus in this area, suitable autonomous control 

system that can adapt and interact safely with the surrounding environment while delivering 

high robustness are yet to be discovered. 

In this chapter, we deal with the design of oscillatory neural network for bipedal motion 

pattern generator and locomotion controller. The learning part of the system will be built 

based on the combination of simplified models of the system with an extensive and efficient 

use of sensory feedback (sensor fusion) as the main engine to stabilize and adapt the system 

against parameters changes. All motions including reflexes will be generated by a neural 

network (NN) that represents the lower layer of the system. Indeed, we believe that the NN 

would be the most appropriate code when dealing, to a certain limit, with the system 

behavior, which can be described by a set of ordinary differential equations (ODEs) (Zaier 

and Nagashima, 2002, 2004). The neural network will be augmented by neural controllers 

with sensory connections to maintain the stability of the system. Hence, the proposed 

learning method is expected to be much faster than the conventional ones. To validate the 

theoretical results, we used the humanoid robot “HOAP-3” of Fujitsu. 

The structure of the chapter is as follows: the first section will present an introduction on the 
conventional CPG based locomotion control as well as the Van der Pol Based Oscillator; 
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then the Piecewise Linear Function Based Oscillator as our proposed approach will be 
detailed. The fourth section will present the Experiment Results and Discussion, and finally 
the conclusion will highlight the possible of future developments of the method. 

2. CPG based locomotion controller 

Animal produces may periodic movements such as walking and running, which are called 
gaits. It was found (Grillner, 1985) that those undirected movements are produced by 
Central Pattern Generators (CPGs). CPG is a neural network that can produce rhythmic 
patterned outputs without any input, and they underlie the production of most rhythmic 
motor patterns. Many researchers developed mathematical CPG models to generate motion 
in biped robots (Takeshi Mori et. al, 2004), snake robots (Crespi and Ijspeert, 2006), and 
quadruped robot (Cappelletto et. al, 2007). Those biological inspired controllers insure the 
production of more natural and simple motion. Also, those oscillators can entrain and adapt 
the dynamic of the system. For example, Matsuoka, Van-der-pol, Hopf and Rayleigh are 
oscillators used in robotics control. 
Basically, a single neuron is the basic unit of a CPG network. Two neurons when coupled 
can produce a rhythmic output and this is called a Neural Oscillators (NO). The rhythmic 
output requires two or more neurons that interact with each other to oscillate and therefore 
passes by its starting condition (Hooper SL., 2000). Unlike linear systems, nonlinear 
oscillators can produce stable limit cycles without an oscillatory input of the same 
frequency, and thus they are very suited to model some parts of the nervous system. 
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Fig. 1. Matsuoka neural oscillator model. Black dots corresponds to inhibitory connections 
and the white dots to excitery. Using the notation in (Zaier and Nagashima, 2002), the 
symbol “>0“ reprents a switcher that take the positive part of the input, for example the 
input from x1 becomes [x1]+ 
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2.1 Matsuoka based oscillator 

Matsuoka proposed the neural oscillator shown in Figure 1 that consists of a flexor and 

extensor neuron (Matsuoka, 1985, 1987). Each neuron is presented by a nonlinear differential 

equation. Each neuron produces a periodic signal to inhabit the other neuron to control the 

limbs motion (i.e. extending and flexing the elbow). Compared to other models, Matsuoka 

model uses significantly less computational resources, has less parameters requiring tuning, 

and has no need for post-processing of the neural output signals (i.e., filtering of the spikes).  
The mathematical model of the Matsuoka neural oscillator can be expressed by equations (2-
7) and as quoted from Williamson (Williamson, 1999) and illustrated in Fig. 1 using the 
neuron model of equation 1 and as decribed in (Zaier and Nagashima, 2002): 

 

1
1

dx
x inputs

dt
  

 (1) 
where ǆ is the time delay of the neuron. 

 
 1
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dt
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 (2) 
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dx
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dt
  

        
 (4) 

 
 2

2 2a

dv
v x

dt
  

 (5) 

   max(0, )i i iy x x
   (6) 

    1 2 1 2outy x x y y
      (7) 

   max(0, )i ix x
   (8) 

The extensor neuron 1 in Fig. 1 is governed by equations (2) and (3) and flexor neuron 2 by 

equations (4) and (5). The variable xi is the neuron potential or firing rate of the ith neuron, vi 

is the variable that represents the degree of adaptation or self-inhibition, c is the external 

tonic input with a constant rate, β specify the time constant for the adaptation, τa and τr are 

the adaptation and rising rates of the neuron potential, μij is the weight that represents the 

strength of inhibition connection between neurons, and gj is an external input which is 

usually the sensory feedback weighted by gain hj. Where the positive part of the input [gj ]+ 

is applied to one neuron and the negative part [gj]-=-min(gj,0) is applied to the other neuron. 

The positive part of the output of each neuron is denoted by yi=[x1 ]+ and the final output of 

the oscillator yout is the difference between the two neurons’ outputs. However, the 

parameters should be adjusted correctly to suite the application the oscillator will be used 
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for. This can be done by experiments or by specifying the constraints. According to 

Williamson (Williamson, 1999), for stable oscillations, /r aτ τ should be in the range 0.1-0.5. 

Keeping the ratio /r aτ τ  constant makes the natural frequency of the oscillator nω  (the 

frequency of the oscillator without an input) proportional to r 1 / τ . According to Matsuoka 

(Matsuoka, 1987), the parameters should be selected based on the following criteria to  

ensure a stable rhythm 1
(1 )




jiμ
β

 and 12 21. 1  r

a

τμ μ
τ

. Some researchers used Genetic 

Algorithm (GA) technique to find and optimize the oscillator’s parameters (Inada, 2004). 

2.2 Van der Pol based oscillator 
The Van der Pol Oscillator, described by second order nonlinear differential equation (13), 
can be regraded as a mass-spring-damper system. The circuit of this oscillator is shown in 
Figure 2, where the neuron notation in (Zaier and Nagashima, 2002) is used. It has been 
adopted by Van de Pol in 1920th to study the oscillations in vacum tube circuits. Recently 
researchers built CPG model based on Van der Pol oscillator (Senda K, Tanaka T, 2000). 
Equation (10) is for the forced oscillotor where the right hand side term is the periodic 
forcing term. The unforced Van der Pol oscillator is investigated using MATLAB/Simulink© 
block diagram as shown in Figure 3. 
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Fig. 2. Van der Pol oscillator model. Black dots corresponds to inhibitory connections. 

  2 1 0x x x x     (9) 

 
 2 1  sin(2 )x x x x a v      

 (10) 

Where x  and x  are the states of the system and μ  is a control parameter that represents 
the degree of nonlinearity of the system or its damping strength.  

www.intechopen.com



 
Design of Oscillatory Neural Network for Locomotion Control of Humanoid Robots 

 

45 

The equation 9 has a periodic solution that attracts other solutions except the trivial one at 
the unique equlibrum point (origin of the phase plote).  

In the case of   0μ , the system will be unstable, oscillate forever and the phase plot will 

never converge to an equilibrium point, as shown in Figure 4 (a) and (b). While in the case 

of  μ 0 , the system will converge to an equilibrium point as shown in Figure 4 (c) and (d). 

In this case, the decaying is directly proportional to the negative value of μ , where the 

oscillation dies faster as the constant goes larger in the negative direction. However, if μ  is 

set to zero, then the system has no damping and will oscillate sinusoidally forever as shown 

in Figure 4 (e). The phase plot draws an exact circle in this case. In conclusion, the Van der 

Pol oscillator has the ability to produce a periodic behavior which can represent a periodic 

locomotion pattern of robots (Veskos P., 2005). 
 

 

Fig. 3. Simulation of Van der Pol Oscillator Behavior.  

3. Piecewise linear function based oscillator 

The control strategy here is based on piecewise linear oscillators and inspired by the 
solution of the Van der Pol system in Figure 4b, and with few parameters that can be easily 
obtained. Moreover, the motivation is to provide much flexibility to the design of the motion 
pattern generator so that modulation of the output by other circuits such as circuits 
generating reflexes can be realized without complexity or re-design of the motion pattern 
generator (Zaier and Kanda, 2007). The method requires not to satisfy constraints on robot’s 
foot or ZMP stability margin, it simply uses piecewise-linear functions and a first order low-
pass filter generated by an original recurrent neural network (RNN), where the “integrate 
and fire” neuron model (Gerstner, 1995) has been used. Indeed, the piecewise linear control 
is much easier to analyze than the control based directly on non-linear equations. Moreover, 
this type of control provides much intuition about the system behavior. Also, our method 
for generating walking motion, although inspired by the inverted pendulum, it considers 
not strictly the system dynamics. The stability of the system is assured by a gyro feedback 
loop, while terrain irregularities are compensated by adjusting the pitching motion using a 
virtual spring-damper systems. The proposed method is straightforward with respect to 
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three design parameters namely, the slope of the piecewise function, the time delay of the 
neuron, and the rolling amplitude of the hip and ankle joints. In this section, we investigate 
the stability of the system simplified as an inverted pendulum, the robustness of the 
locomotion controller against terrain irregularities. 
 

 

Fig. 4. Van der Pol States over Time (left) and Phase Plot (right) with the (a) µ=2.5, (b) µ=1.0, 
(c) µ= -1.0, (d) µ= -0.25, and (e) µ= 0.0.  
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3.1 Motivation 

To control the robot locomotion, we consider the general form of neural network as; 

 
( )

dx
Dx Tg x S

dt
y Cx

   


 (11) 

where x∈Rn is the neurons’ outputs vector, y∈Rm depicts the motors’ commands vector, D is 
an nxn diagonal matrix with strictly positive real numbers, T is an nxn neurons’ 
interconnection matrix, g(x): RnRn is the nonlinear vector activation function, C is an mxn 
output matrix, v∈Rm is a sensory input vector, and S is an nxm matrix. Note that the right 
side of equation (11) can be considered as decomposition into linear part “Sv” and a 
nonlinear one “Tg(x)”. To investigate the stability of equation (11), we consider the behavior 
of a linearized model of system at the equilibrium points with Tg(x)=0. Indeed, a motion can 
be described topologically as a homotopy mapping at each equilibrium point as well as 
switching, or jump mapping between these points (Forti, 1996). In this research framework 
we consider locomotion control of a humanoid robot simplified as an inverted pendulum 
when standing on one leg. Notice that, while the inverted pendulum model considerably 
simplifies the control of the humanoid robot, the inertia effect of distributed masses such as 
the arms presents a limitation to that approach. 

3.2 Problem formulation 

The proposed control strategy is illustrated in figures 5 and 6, where the neural network 

modeled by equation (11) has to control the humanoid robot locomotion as a continuous  
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Fig. 5. System state switching between equilibrium points 
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Fig. 6. Relay with hysteresis property. 
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Fig. 7. Lateral component of the COM 

commutation between the two equilibrium points defined at single support phases. Then, 
using the output of the switched system, we decide the rolling motion profile. The stability 
of the equilibrium points during locomotion is maintained using gyro feedback, while the 
pitching motion is adjusted by virtual dumper-spring system. To begin with, we investigate 
the stability of the robot simplified as an inverted pendulum when standing at one leg that 
can be expressed by; 

 
2

2
2 ( )

d d
u

dtdt

       (12) 

where θ∈R is the counterclockwise angle of the inverted pendulum from the vertical, Ǉ∈R is 
damping ratio, μ=g/l∈R, and u ∈R is the control input to the system. Let θ = α–αs, where α is 
the angular position of the hip joint and αs is its value when the projected center of mass 
(COM) is inside the support polygon. Then, equation (12) can be rewritten as follows; 
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Fig. 8. Phase space and Poincare map. 

 
2

2
2 ( )

d d
u

dtdt

       (13) 

Moreover, according to figure 7, the relationship between α and the COM is 

( ) sin ( )L sx t L t . Since αs is very small (practically it is between –0.14 and 0.14rad), the 

relationship can be approximated as; 

 ( ) ( )L sx t L t  (14) 
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Hence we can write αs =D/L in [rad], where D is the lateral component of the distance 
between the COM and the hip joint. On the other hand, to control the inverted pendulum as 
illustrated in figures 1 and 2, we propose the control input as follows; 

 ( ) ( ) ( )g swu u u     (15) 

where ug(α) is the gyro feedback signal stabilizing the inverted pendulum around α=αs, and 
usw(α) is a relay type feedback signal with a hysteresis property defined by; 

  
1 ( )

( ) 1 ( )

{ 1,1} ( )
sw

if y t r

u y t if y t r

if t k and if y t r





  
  
    

 (16) 

where t- is the time just before commutation. Notice that the switching law of equation (16) 

depends not only on the output y(t) but also on the switching time constant τ. In our design 

we choose a fixed switching time, which reduces the impact map to a linear one as detailed 

in (Goncalves et al., 2000). 

The control system of equation (15) can be written in the state space form as; 

 
x Ax Bu

y Cx

 
 


 (17) 

where x= (  )T, A and B are matrices with compatible dimensions, and C=[r 0].  

Let’s further illustrate the stability of the control system by considering the phase space 
diagram in figure 8, where the x1-axis represents the lateral component of the COM position, 
and which divides the phase space into two regions S0 and S1. The axis x2 represents the 
velocity. The state space trajectory in each region is defined by a different linear differential 
equation according to the state of relay feedback of equation (16). It will be possible to 
define Poincare sections where the switching takes place. The origin “O” corresponds to the 
state of the robot at the double support phase. The motion starts by switching the state of 
the robot to section M0, i.e., standing on the left leg (figure 5). The periodic motion is defined 
as a continuous switching of state between M0 and M1, in other words, the state that starts 
from section M0 at xk reaches section M1 at xk+1 following a trajectory described by the linear 
differential equation defined for region S1. It can be shown that the system of equation (17) 
with the feedback control of equation (16) can produce limit cycles (Goncalves et al., 2000). 
The stability analysis of the system can be conducted by considering the manifolds of its 

equilibrium points x* as follows 

 * 1
swx A Bu  , with 1swu    (18) 

With the feedback signal of equation (15), the trajectories of the system will follow the 

invariant manifolds of only two equilibrium points of equation (17). To investigate the 

stability of equation (13) for α close to αs, reconsider the system in the absence of control 

input. Then, at each equilibrium point the system will have the same eigenvalues as follows; 

 2
1,2        (19) 
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Since Ǉ<<μ, the equilibrium points of equation (18) are saddle ones. To generate periodic 
movement as explained in figure 5 using equation (16), we first stabilize the equilibrium 
points by a feedback control ug(α) = k1α + 2k2d(α)/dt using the angular velocity of the 
inverted pendulum measured by the gyro sensor. Therefore, combining equations (13) and 
(16) we can get; 

 
2

2 12
2( ) ( ) ( )sw

d d
k k u

dtdt

          (20) 

which can be rewrite as 

 
2

2

( ) ( )
2 ' ' ( ) ( )sw

d t d t
t u

dtdt

        (21) 

where 2' k  , and   1' k . The equilibrium points becomes stable if 2k and 

1k . Besides, if the feedback controller’s parameters satisfy the following inequalities: 

 2k   and 2
1 2( )k k     (22) 

then the eigenvalues will be complex conjugate with a negative real part. Now, consider the 

trajectories in both regions S0 and S1 defined by 1)( swu , which are governed by the 

invariant manifolds of stable virtual equilibrium points. The state space trajectory will 

follow the invariant manifold of a stable equilibrium point but a switching will occurs 

before reaching this point, then the trajectory will be governed by the invariant manifold of 

the other stable virtual equilibrium point and so on. This consecutive switching will result in 

a limit cycle in the phase space. Without loss of generality we assume that the time origin is 

when the state space is at M0. The trajectory of the state space of system is given by 

 
 

'
1 2 1

'
2 1 1 2

( cos sin ) ( )
( )

( ' )cos ( ' )sin

t
sw

t

e c t c t u x
x t

e c c t c c t





 

     





   
   

 (23) 

where 2' '    and the constants c1 and c2 depend on the initial conditions x(0)=(-1,V0). 

The switching sections are defined by, 

  0 | ( 1,0M x x     1 | (1,0)M x x   (24) 

and equation (23) can be re-written as follows, 

 

'0
1

' 0
0

sin ( )

( )

( cos ' sin )

t
sw

t

V
e t u x

x t
V

e V t t








  






  
 


 (25) 

where the position x1(t) for [0, /2]t  is shown in figure 9. Let T be the period of time the 

state space required to return to the same section M0, the behavior of a point of the state 

trajectory at M0 with initial velocity 0
2 0x V  hits the same section according to the Poincare 

map given by, 
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where 

 
0 '

2 2( )i i TP x x e 
 (27) 

Also, when 2
1 2( )k k      , the eigenvalues of equation (13) become pure negative real 

numbers ( 1 and 2 ), and instead of (27) we will have the following 

 1 2

0
2

2 1 2
1 2

( ) ( )T Ti ix
P x e e  

 
 


 and 1 2   (28) 

It is clear from equations (27) and (28) that for any ug(α) with given parameters k1 and k2 

stabilizing the system at the switching point, the Poincare map of equation (26) is a 

contracting one. Moreover, it can be noticed that when there is no switching, the state 

trajectory obviously will converge to one of the equilibrium points of equation (18). 

Moreover, if the switching occurs outside the attraction region of equation (18), the robot 

will have an unstable walking behavior and will fall down after few steps. Therefore, the 

choice of the switching time is crucial for the stability of the system. In this paper we 

approximate the angular position solution of equation (25) for Ǆt∈[0,π/2] (during the 

commutation from M0 to M1) as a piecewise linear function modulated by a decaying 

exponential instead of sine function modulated by a decaying exponential as will be 

explained later on. The smallest time   the state trajectory may take when the robot is 

commutating from one leg to another is such that Ǆτ =π/2 and we will have; 

 0.5 /    (29) 

where 2' '    , Ǉ’ and μ’ are parameters of the inverted pendulum with the feedback 

controller as defined in equation (21). Due to the symmetry between the left and right sides 
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of the robot, the walking cycle time is assumed to be 2τ. Moreover, for given commutation 
duration τ calculated by equation (29) with the feedback controller parameters in equation 
(22), the initial linear velocity can be expressed from equation (25) by; 

 '/
0 2 /sin( )V e    (30) 

 

 

Time [s] 

A
n
g
u
la

r 
p
o
si

ti
o
n
 (

d
eg

) 

  

  

k2  

)12( k  

 

Fig. 10. Hip position command 

3.3 Approximate solution of rolling 
According to equation (25), the position command to the hip is shown in figure 10, and the 
control law at switching times can be expressed as; 

 

1
max

1
max

( ) ( 1) , 0

( ) ( 1) , ( 1)

i

t t

i i

t t

t d dt

t d dt

  

   





 


 


   


   
1,2,3i    (31) 

where i is the number of half walking cycle τ, the t- and t+ are the times just before and after 

commutation, respectively. For it   the state trajectory will follow the desired limit cycle 
as described in figure 9, where the stability of the equilibrium points is guaranteed by the 
gyro feedback added to the system. Since the position command to the hip is the same as 
that to the ankle joint with opposed sign, the robot upper body orientation in the absence of 
disturbance remains unchanged, in other words the angular velocity around the rolling axis 
during locomotion is zero. Notice that the control law described by equation (31) is explicit 

of time. Instead, the state commutation can be constrained by angular velocity 0/ dtd , 
and the control law becomes independent of the cycle time as a pure feedback law. 
However, the condition of having a fixed commutation time (Goncalves et al., 2000) will be 
no longer satisfied. For the sake of reducing the computing cost and ease the 
implementation of the controller, instead of considering the exact solution of the state 
trajectory of equation (25), we propose an approximate solution α(t) as shown in figures 11 
and 12, using a unit piecewise linear function as follows; 

  ( , ) ( ) ( ) ( 1 / ) ( 1 / )i i i i s i s i i s i iu t t t u t t u t t u t t             (32) 

where us(.) is the unit step function, ωi >0 is the slope of the function u(.) between ti and 
(ti+1/ωi). The approximate solution α(t) can be formulated, therefore, as a function of time 
delay ǆ, joint angular velocity ω, walking period T, and the rolling amplitude αs. 

 ( , , , )sf T     (33) 
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Using equation (32), the trajectory in figure 9 for Ǆt∈[0,π/2] can be approximated 

as ( ) ( ) 2( (0, ) 1rt t u      , with α(0)= -1 and ǆ=Ǉ’. Therefore, the rolling motion can be 

expressed as, 

 0 0 1

0 2

( )
( ) [ ( ,2 ) 2 ( ( ) , )

2 ( ( ) , )) ( ,2 )],

s r r r r

r r f r

d t
t u t u t n f T

dt
u t n f T u t

    

 

     

  
 (34) 

where tr0, tf are the times at the start and the end of the rolling motion, respectivel. n is 

number of walking steps. f1 and f2 are the relative times with respect to the gait. Let 

rrr ttp /101   be the time duration when the robot stays at the maximum rolling, where 

tr1 is the first switching time at the single support phase, then we can write Tpf r /)/1(1    

and )/(12 12 Tff r . The commands )(tr
am and )(tr

hm  to be sent respectively to the 

hip and ankle joints are given by, 

 ( ) ( ) ( ) ( )r r r
am hm fbt t t t        (35) 

 

where )(tr

fb  is the PD controller’s output stabilizing the system of equation (17).  

Numerical Example 

Consider the inverted pendulum with the control law of equation (20) as follows; 

 
2

1 22
0.5 2 ( )sw

d d d
k k u

dt dtdt

           (36) 

where we choose an arbitrary high gain controller satisfying equation (22) with k1 = 32 and 
k2 = 0.9, and does not trigger mechanical resonance. We consider the rolling profile equation 

(34) with ǆ = 0.15, and αs =6 deg. The phase portrait of the output signal is shown in figure 
13, where case (a) is for non perturbed system, while case (b) is in the presence of 
perturbation. This result shows that the state trajectory is bounded, and therefore it is stable. 
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Fig. 11. Rolling motion pattern and design parameters 
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Fig. 13. Phase portrait of the velocity versus position (Simulation); case (a) without 
perturbation, case (b) with perturbation. 
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3.4 Swing and stepping motion 

The dynamic of the swing leg can be considered the same as that of a pendulum, and hence 

it is inherently stable without any compensator. Due to the switching control that we 

already adopted in generating the rolling motion, the swing motion can be generated in a 

similar fashion and as illustrated in figure 11, which can be expressed as; 

 0 1 2

( )
( ) [ ( , ) ( , ) ( , ) ( , )],l

l l l l l l l l lf l

d t
t A u t u t nT u t nT u t

dt

             (37) 

where l  is the lifting motion, Al is the amplitude of lifting, and tl0 and tl2 are the switching 

time for the first and second lifting, tl1 and tlf are the switching times for the first and the last 

landing, and ωl is the joints’ angular velocity generating the lifting motion. 

To control the motion along the pitching direction, besides the gyro feedback control we 

consider the robustness against rough ground (ground with some surface irregularity) 

by controlling the time-varying parameters of the virtual spring damper system bs(t) and 

ks(t) in equation (38) during the gait as described in figure 14. That is, to minimize the force 

of collision at the landing time t1, the damping coefficient bs(t1) is set at its maximum value 

while ks(t1) is at its minimum value. At the lifting time t2, we inject spring energy into the 

system by setting bs(t2) at its minimum while ks(t2) is at its maximum. We consider linear 

time-parameter changes between lower/upper limits. 

 
2

2

( ) ( )
( ) ( ) ( ) ( , )c c

s s c y

d y t dy t
m b t k t y t g t F

dtdt
    (38) 

where yc(t)is the displacement of the mass m along the vertical axis, and g(t, Fy) is a 

piecewise function in t and locally Lipschitz in Fy that depicts the external force acting on 

the supporting leg. We choose g as a saturation function.  

If we let yc =x1, and dyc/dt = x2, equation (38) can be re-written in the state space form as; 

 /dx dt x u A B  (39) 

where 
0 1

/ /s s

A
k m b m

 
    

 and
0

1 /
B

m

 
  
 

. 

Writing the index form of equation (39) yields, 

 
1

N
i

ij j i
j

dx
a x b u

dt 
   (40) 

where N is the number of state space, and using the neuron model given by (1), (40) can be 

arranged as follows; 

 
1,

(1 )
N

i iji i i i
i i i j

ii ii iij j i

adx b
x x x u

a dt a a

 
 

      (41) 

where ).( iii asign  As a result, the right side of (41) represents the inputs to the neuron xi. 

The neural controller reflecting (41) is shown in figure 15 for N=2, ki =1+ǅi, ǆi =ǅi /aii, 
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,/ iiii abid  and ;/ iiijii aaf   ji  . The initial parameters ǆ1 and ǆ2 of the neural 

controller in figure 15 are set such that there will be no vibrations at the robot landing leg. 

An inappropriate choice of these parameters may cause large vibrations of the robot 

mechanism, which in turn degrades the walking performance. 
 

ε1 

ε2 

0.01

d2 

d1 c1 

c2 

w

k1 

IN f1 f2 

x2

x1

k2 

yc 
u 

 

Fig. 15. Neural controller, using the notation in (Zaier and Nagashima, 2002). 

The angular positions of pitching motion are as follows; 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) 2 ( ) 2 ( )

( ) ( ) ( ) ( ) ( )

p yl
am l fb s zmp c

km l c

p l
l fb s chm

t t t t t t

t t t

t t t t t

     

  

    

     
   


   

 (42) 

where p

am , km , and p

hm are the pitching motor commands to the ankle, the knee and the 

hip, respectively. θs is the angular position that generates the stride, ( ) arcsin( ( ) / )c c tt y t L   

is the angular position induced by the virtual damper spring system in equation (22). The Lt 

is the length of the thigh. The )(tl

fb  is the feedback signal satisfying the stability of inverted 

pendulum in the sagittal plane.  
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Fig. 16. Phase portrait of the ZMP in the lateral plane (Experiment) 
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Fig. 17. Hip rolling joint output and sole reaction force acting on the left leg; the robot uses 
spring energy for lifting and gravity for landing 

4. Experiment results and discussion 

In the experiment Fujitsu’s humanoid HOAP-3 (Murase et al., 2001) is used. First, a gyro 

feedback loop is implemented to stabilize the robot at the single support phase. Second, the 

rolling motion parameters ),,,( sT  are calculated using equation (14), (29), and (30), 

where V0 = ω. Moreover, the dynamics of the robot during stepping motion is investigated 

using the phase portrait of the ZMP position in the lateral plane that is shown in figure 16, 

which is similar to the simulation result in figure 13. Notice that the more we increase the 

derivative gain the better convergence we obtain. However, we are limited by the high 

frequencies resonance that could be triggered at high feedback gain. Figure 17 demonstrates 

the effect of the virtual damper-spring system of equation (38), which is implemented to 

work as illustrated in figure 14. Hence, it demonstrates how the robot uses gravity for 

landing and the spring energy for lifting. Figure 17a shows that the lifting phase starts when 

the angular position of the rolling joints is almost zero. In other words, the actuators of the 

hip and ankle rolling joints do not contribute in moving the ZMP to the supporting leg. 

These joints, therefore, can be considered as locked joints. Figure 18 shows the rolling of the 

hip and the pitching motions of the knee, hip, and ankle. It demonstrates also how smooth 

the approximate solution is using the proposed pattern generator with sensory feedback.  

This figure shows also how the robot posture is controlled by changing the ankle position at 

the single support phase according to equation (42). To demonstrate the robustness against 
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plant perturbations and disturbances, we conducted two experiments; one consists of 

making the robot walks on hard floor, which can be regarded as walking in the presence of 

small disturbance. The phase portrait in figure 18 demonstrates that the system exhibits 

stable limit cycle with three periods. The second experiment consists of locomotion in the 

presence of larger disturbance and plant perturbation by letting the robot walks on a carpet 

with surface irregularities. In this case, despite the high damping coefficient of the carpet, 

the proposed locomotion controller could robustly maintain the stability of the system as 

shown in figure 19. This result also demonstrates the efficiency of the proposed approach in 

designing a robust locomotion controller, which is simply based on few parameters, which 

are the robot mass, COG height, and the distance between hip pitching joints. 
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5. Conclusion 

In this chapter, we first introduced the Matsuoka and Van der Pol Oscillators. Then we 
presented our proposed oscillator, which was inspired by the solution of the Van der Pol 
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that leads to stable limit cycle. The oscillator was designed using linear piecewise linear 
functions and the design parameters were obtained based on the equation of motion of 
inverted pendulum. Moreover, sensory feedback namely gyro and force sensors feedbacks 
were considered by adding neural controller to the oscillator’s neural network. Therefore, 
the neural network was augmented by neural controllers with sensory connections to 
maintain the stability of the system. In addition, the rolling profile parameters were 
analytically obtained and the approximate solution was implemented giving much 
modularity to the motion pattern generator to include cuircuts of reflexes and task planning. 
The locomotion controller became so adaptive that the robot is enabled to walk on floor, 
carpet, and slope. In order to demonstrate the effectiveness of the proposed system, we 
conducted experiment using Fujitsu’s humanoid robot HOAP-3. It was shown that the 
proposed pattern generator is robust in the presence of disturbance. 
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