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1. Introduction

One of the central issues in robotics and animal motor control is the problem of trajectory
generation and modulation. Since in many cases trajectories have to be modified on-line
when goals are changed, obstacles are encountered, or when external perturbations occur,
the notions of trajectory generation and trajectory modulation are tightly coupled.
This chapter addresses some of the issues related to trajectory generation and modulation,
including the supervised learning of periodic trajectories, and with an emphasis on the
learning of the frequency and achieving and maintaining synchronization to external signals.
Other addressed issues include robust movement execution despite external perturbations,
modulation of the trajectory to reuse it under modified conditions and adaptation of the
learned trajectory based on measured force information. Different experimental scenarios on
various robotic platforms are described.
For the learning of a periodic trajectory without specifying the period and without using
traditional off-line signal processing methods, our approach suggests splitting the task into
two sub-tasks: (1) frequency extraction, and (2) the supervised learning of the waveform.
This is done using two ingredients: nonlinear oscillators, also combined with an adaptive
Fourier waveform for the frequency adaptation, and nonparametric regression 1 techniques
for shaping the attractor landscapes according to the demonstrated trajectories. The systems
are designed such that after having learned the trajectory, simple changes of parameters
allow modulations in terms of, for instance, frequency, amplitude and oscillation offset, while
keeping the general features of the original trajectory, or maintaining synchronization with an
external signal.
The system we propose in this paper is based on the motion imitation approach described
in (Ijspeert et al., 2002; Schaal et al., 2007). That approach uses two dynamical systems like
the system presented here, but with a simple nonlinear oscillator to generate the phase and
the amplitude of the periodic movements. A major drawback of that approach is that it
requires the frequency of the demonstration signal to be explicitly specified. This means
that the frequency has to be either known or extracted from the recorded signal by signal

1 The term “nonparametric” is to indicate that the data to be modeled stem from very large families of
distributions which cannot be indexed by a finite dimensional parameter vector in a natural way. It
does not mean that there are no parameters.
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processing methods, e.g. Fourier analysis. The main difference of our new approach is
that we use an adaptive frequency oscillator (Buchli & Ijspeert, 2004; Righetti & Ijspeert,
2006), which has the process of frequency extraction and adaptation totally embedded into
its dynamics. The frequency does not need to be known or extracted, nor do we need to
perform any transformations (Righetti et al., 2006). This simplifies the process of teaching
a new task/trajectory to the robot. Additionally, the system can work incrementally in
on-line settings. We use two different approaches. One uses several frequency oscillators
to approximate the input signal, and thus demands a logical algorithm to extract the basic
frequency of the input signal. The other uses only one oscillator and higher harmonics of the
extracted frequency. It also includes an adaptive fourier series.
Our approach is loosely inspired from dynamical systems observed in vertebrate central
nervous systems, in particular central pattern generators (Ijspeert, 2008a). Additionally, our
work fits in the view that biological movements are constructed out of the combination of
“motor primitives” (Mataric, 1998; Schaal, 1999), and the system we develop could be used as
blocks or motor primitives for generating more complex trajectories.

1.1 Overview of the research field

One of the most notable advantages of the proposed system is the ability to synchronize with
an external signal, which can effectively be used in control of rhythmic periodic task where the
dynamic behavior and response of the actuated device are critical. Such robotic tasks include
swinging of different pendulums (Furuta, 2003; Spong, 1995), playing with different toys, i.e.
the yo-yo (Hashimoto & Noritsugu, 1996; Jin et al., 2009; Jin & Zacksenhouse, 2003; Žlajpah,
2006) or a gyroscopic device called the Powerball (Cafuta & Curk, 2008; Gams et al., 2007;
Heyda, 2002; Petrič et al., 2010), juggling (Buehler et al., 1994; Ronsse et al., 2007; Schaal &
Atkeson, 1993; Williamson, 1999) and locomotion (Ijspeert, 2008b; Ilg et al., 1999; Morimoto
et al., 2008). Rhythmic tasks are also handshaking (Jindai & Watanabe, 2007; Kasuga &
Hashimoto, 2005; Sato et al., 2007) and even handwriting (Gangadhar et al., 2007; Hollerbach,
1981). Performing these tasks with robots requires appropriate trajectory generation and
foremost precise frequency tuning by determining the basic frequency. We denote the lowest
frequency relevant for performing a given task, with the term "basic frequency".
Different approaches that adjust the rhythm and behavior of the robot, in order to achieve
synchronization, have been proposed in the past. For example, a feedback loop that locks
onto the phase of the incoming signal. Closed-loop model-based control (An et al., 1988), as a
very common control of robotic systems, was applied for juggling (Buehler et al., 1994; Schaal
& Atkeson, 1993), playing the yo-yo (Jin & Zackenhouse, 2002; Žlajpah, 2006) and also for the
control of quadruped (Fukuoka et al., 2003) and in biped locomotion (Sentis et al., 2010; Spong
& Bullo, 2005). Here the basic strategy is to plan a reference trajectory for the robot, which
is based on the dynamic behavior of the actuated device. Standard methods for reference
trajectory tracking often assume that a correct and exhaustive dynamic model of the object is
available (Jin & Zackenhouse, 2002), and their performance may degrade substantially if the
accuracy of the model is poor.
An alternative approach to controlling rhythmic tasks is with the use of nonlinear
oscillators. Oscillators and systems of coupled oscillators are known as powerful modeling
tools (Pikovsky et al., 2002) and are widely used in physics and biology to model
phenomena as diverse as neuronal signalling, circadian rhythms (Strogatz, 1986), inter-limb
coordination (Haken et al., 1985), heart beating (Mirollo et al., 1990), etc. Their properties,
which include robust limit cycle behavior, online frequency adaptation (Williamson, 1998)
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and self-sustained limit cycle generation on the absence of cyclic input (Bailey, 2004), to name
just a few, make them suitable for controlling rhythmic tasks.
Different kinds of oscillators exist and have been used for control of robotic tasks. The van der
Pol non-linear oscillator (van der Pol, 1934) has successfully been used for skill entrainment on
a swinging robot (Veskos & Demiris, 2005) or gait generation using coupled oscillator circuits,
e.g. (Jalics et al., 1997; Liu et al., 2009; Tsuda et al., 2007). Gait generation has also been studied
using the Rayleigh oscillator (Filho et al., 2005). Among the extensively used oscillators is
also the Matsuoka neural oscillator (Matsuoka, 1985), which models two mutually inhibiting
neurons. Publications by Williamson (Williamson, 1999; 1998) show the use of the Matsuoka
oscillator for different rhythmic tasks, such as resonance tuning, crank turning and playing
the slinky toy. Other robotic tasks using the Matsuoka oscillator include control of giant
swing problem (Matsuoka et al., 2005), dish spinning (Matsuoka & Ooshima, 2007) and
gait generation in combination with central pattern generators (CPGs) and phase-locked
loops (Inoue et al., 2004; Kimura et al., 1999; Kun & Miller, 1996).
On-line frequency adaptation, as one of the properties of non-linear oscillators (Williamson,
1998) is a viable alternative to signal processing methods, such as fast Fourier transform (FFT),
for determining the basic frequency of the task. On the other hand, when there is no input
into the oscillator, it will oscillate at its own frequency (Bailey, 2004). Righetti et al. have
introduced adaptive frequency oscillators (Righetti et al., 2006), which preserve the learned
frequency even if the input signal has been cut. The authors modify non-linear oscillators
or pseudo-oscillators with a learning rule, which allows the modified oscillators to learn the
frequency of the input signal. The approach works for different oscillators, from a simple
phase oscillator (Gams et al., 2009), the Hopf oscillator, the Fitzhugh-Nagumo oscillator,
etc. (Righetti et al., 2006). Combining several adaptive frequency oscillators in a feedback
loop allows extraction of several frequency components (Buchli et al., 2008; Gams et al., 2009).
Applications vary from bipedal walking (Righetti & Ijspeert, 2006) to frequency tuning of a
hopping robot (Buchli et al., 2005). Such feedback structures can be used as a whole imitation
system that both extracts the frequency and learns the waveform of the input signal.
Not many approaches exist that combine both frequency extraction and waveform learning
in imitation systems (Gams et al., 2009; Ijspeert, 2008b). One of them is a two-layered
imitation system, which can be used for extracting the frequency of the input signal in the
first layer and learning its waveform in the second layer, which is the basis for this chapter.
Separate frequency extraction and waveform learning have advantages, since it is possible to
independently modulate temporal and spatial features, e.g. phase modulation, amplitude
modulation, etc. Additionally a complex waveform can be anchored to the input signal.
Compact waveform encoding, such as splines (Miyamoto et al., 1996; Thompson & Patel,
1987; Ude et al., 2000), dynamic movement primitives (DMP) (Schaal et al., 2007), or Gaussian
mixture models (GMM) (Calinon et al., 2007), reduce computational complexity of the process.
In the next sections we first give details on the two-layered movement imitation system and
then give the properties. Finally, we propose possible applications.

2. Two-layered movement imitation system

In this chapter we give details and properties of both sub-systems that make the two-layered
movement imitation system . We also give alternative possibilities for the canonical dynamical
system.

5
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Fig. 1. Proposed structure of the system. The two-layered system is composed of the
Canonical Dynamical System as the first layer for the frequency adaptation, and the Output
Dynamical System for the learning as the second layer. The input signal ydemo(t) is an
arbitrary Q-dimensional periodic signal. The Canonical Dynamical System outputs the
fundamental frequency Ω and phase of the oscillator at that frequency, Φ, for each of the Q
DOF, and the Output Dynamical System learns the waveform.

Figure 1 shows the structure of the proposed system for the learning of the frequency and
the waveform of the input signal. The input into the system ydemo(t) is an arbitrary periodic
signal of one or more degrees of freedom (DOF).
The task of frequency and waveform learning is split into two separate tasks, each performed
by a separate dynamical system. The frequency adaptation is performed by the Canonical
Dynamical System, which either consists of several adaptive frequency oscillators in a feedback
structure, or a single oscillator with an adaptive Fourier series. Its purpose is to extract
the basic frequency Ω of the input signal, and to provide the phase Φ of the signal at this
frequency.
These quantities are fed into the Output Dynamical System, whose goal is to adapt the shape
of the limit cycle of the Canonical Dynamical System, and to learn the waveform of the input
signal. The resulting output signal of the Output Dynamical System is not explicitly encoded
but generated during the time evolution of the Canonical Dynamical System, by using a set
of weights learned by Incremental Locally Weighted Regression (ILWR) (Schaal & Atkeson,
1998).
Both frequency adaptation and waveform learning work in parallel, thus accelerating the
process. The output of the combined system can be, for example, joint coordinates of the robot,
position in task space, joint torques, etc., depending on what the input signal represents.
In the next section we first explain the second layer of the system - the output dynamical
system - which learns the waveform of the input periodic signal once the frequency is
determined.

2.1 Output dynamical system

The output dynamical system is used to learn the waveform of the input signal. The
explanation is for a 1 DOF signal. For multiple DOF, the algorithm works in parallel for all the
degrees of freedom.
The following dynamics specify the attractor landscape of a trajectory y towards the anchor
point g, with the Canonical Dynamical System providing the phase Φ to the function Ψi of the
control policy:

6 The Future of Humanoid Robots – Research and Applications
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ż = Ω

(

αz (βz (g − y)− z) +
∑

N
i=1 Ψiwir

∑
N

i=1 Ψi

)

(1)

ẏ = Ωz (2)

Ψi = exp (h (cos (Φ − ci)− 1)) (3)

Here Ω (chosen amongst the ωi) is the frequency given by canonical dynamical system, Eq.
(10), αZ and βz are positive constants, set to αz = 8 and βz = 2 for all the results; the ratio 4:1
ensures critical damping so that the system monotonically varies to the trajectory oscillating
around g - an anchor point for the oscillatory trajectory. N is the number of Gaussian-like
periodic kernel functions Ψi, which are given by Eq. (3). wi is the learned weight parameter
and r is the amplitude control parameter, maintaining the amplitude of the demonstration
signal with r = 1. The system given by Eq. (1) without the nonlinear term is a second-order
linear system with a unique globally stable point attractor (Ijspeert et al., 2002). But, because of
the periodic nonlinear term, this system produces stable periodic trajectories whose frequency
is Ω and whose waveform is determined by the weight parameters wi.
In Eq. (3), which determines the Gaussian-like kernel functions Ψi, h determines their width,
which is set to h = 2.5N for all the results presented in the paper unless stated otherwise, and
ci are equally spaced between 0 and 2π in N steps.
As the input into the learning algorithm we use triplets of position, velocity and acceleration
ydemo(t), ẏdemo(t), and ÿdemo(t) with demo marking the input or demonstration trajectory we
are trying to learn. With this Eq. (1) can be rewritten as

1
Ω

ż − αz (βz (g − y)− z) =
∑

N
i=1 Ψiwir

∑
N

i=1 Ψi

(4)

and formulated as a supervised learning problem with on the right hand side a set of local
models wir that are weighted by the kernel functions Ψi, and on the left hand side the target

function ftarg given by ftarg = 1
Ω

2 ÿdemo − αz

(

βz (g − ydemo)−
1
Ω

ẏdemo

)

, which is obtained by

matching y to ydemo, z to ẏdemo

Ω
, and ż to ÿdemo

Ω
.

Locally weighted regression corresponds to finding, for each kernel function Ψi, the weight
vector wi, which minimizes the quadratic error criterion 2

Ji =

P

∑
t=1

Ψi(t)
(

ftarg(t)− wir(t)
)2

(5)

where t is an index corresponding to discrete time steps (of the integration). The regression
can be performed as a batch regression, or alternatively, we can perform the minimization of
the Ji cost function incrementally, while the target data points ftarg(t) arrive. As we want
continuous learning of the demonstration signal, we use the latter. Incremental regression is
done with the use of recursive least squares with a forgetting factor of λ, to determine the
parameters (or weights) wi. Given the target data ftarg(t) and r(t), wi is updated by

wi(t + 1) = wi(t) + ΨiPi(t + 1)r(t)er(t) (6)

2 LWR is derived from a piecewise linear function approximation approach (Schaal & Atkeson, 1998),
which decouples a nonlinear least-squares learning problem into several locally linear learning
problems, each characterized by the local cost function Ji . These local problems can be solved with
standard weighted least squares approaches.
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Fig. 2. Left: The result of Output Dynamical System with a constant frequency input and with
continuous learning of the weights. In all the plots the input signal is the dash-dot line while
the learned signal is the solid line. In the middle-right plot we can see the evolution of the
kernel functions. The kernel functions are a function of Φ and do not necessarily change
uniformly (see also Fig. 7). In the bottom right plot the phase of the oscillator is shown. The
amplitude is here r = 1, as shown bottom-left. Right: The error of learning decreases with the
increase of the number of Gaussian-like kernel functions. The error, which is quite small, is
mainly due to a very slight (one or two sample times) delay of the learned signal.

Pi(t + 1) =
1
λ

(

Pi(t)−
Pi(t)

2r(t)2

λ
Ψi

+ Pi(t)r(t)2

)

(7)

er(t) = ftarg(t)− wi(t)r(t). (8)

P, in general, is the inverse covariance matrix (Ljung & Söderström, 1986). The recursion is
started with wi = 0 and Pi = 1. Batch and incremental learning regressions provide identical
weights wi for the same training sets when the forgetting factor λ is set to one. Differences
appear when the forgetting factor is less than one, in which case the incremental regression
gives more weight to recent data (i.e. tends to forget older ones). The error of weight learning
er (Eq. (8)) is not “related” to e when extracting frequency components (Eq. (11)). This allows
for complete separation of frequency adaptation and waveform learning.
Figure 2 left shows the time evolution of the Output Dynamical System anchored to a
Canonical Dynamical System with the frequency set at Ω = 2π rad/s, and the weight
parameters wi adjusted to fit the trajectory ydemo(t) = sin (2πt) + cos (4πt) + 0.4sin(6πt). As
we can see in the top-left plot, the input signal and the reconstructed signal match closely. The
matching between the reconstructed signal and the input signal can be improved by increasing
the number of Gaussian-like functions.

Parameters of the Output Dynamical System
When tuning the parameters of the Output Dynamical System, we have to determine the
number of Gaussian-like Kernel functions N, and specially the forgetting factor λ. The number
N of Gaussian-like kernel functions could be set automatically if we used the locally weighted
learning (Schaal & Atkeson, 1998), but for simplicity it was here set by hand. Increasing the
number increases the accuracy of the reconstructed signal, but at the same time also increases
the computational cost. Note that LWR does not suffer from problems of overfitting when the

8 The Future of Humanoid Robots – Research and Applications
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number of kernel functions is increased.3 Figure 2 right shows the error of learning er when
using N = 10, N = 25, and N = 50 on a signal ydemo(t) = 0.65sin (2πt) + 1.5cos (4πt) +
0.3sin (6πt). Throughout the paper, unless specified otherwise, N = 25.
The forgetting factor λ ∈ [0, 1] plays a key role in the behavior of the system. If it is set
high, the system never forgets any input values and learns an average of the waveform over
multiple periods. If it is set too low, it forgets all, basically training all the weights to the last
value. We set it to λ = 0.995.

2.2 Canonical dynamical system

The task of the Canonical Dynamical System is two-fold. Firstly, it has to extract the
fundamental frequency Ω of the input signal, and secondly, it has to exhibit stable limit cycle
behavior in order to provide a phase signal Φ, that is used to anchor the waveform of the
output signal. Two approaches are possible, either with a pool of oscillators (PO), or with an
adaptive Fourier Series (AF).

2.2.1 Using a pool of oscillators

As the basis of our canonical dynamical system we use a set of phase oscillators, see e.g.
(Buchli et al., 2006), to which we apply the adaptive frequency learning rule as introduced
in (Buchli & Ijspeert, 2004) and (Righetti & Ijspeert, 2006), and combine it with a feedback
structure (Righetti et al., 2006) shown in Figure 3. The basic idea of the structure is that each of
the oscillators will adapt its frequency to one of the frequency components of the input signal,
essentially “populating” the frequency spectrum.
We use several oscillators, but are interested only in the fundamental or lowest non-zero
frequency of the input signal, denoted by Ω, and the phase of the oscillator at this frequency,
denoted by Φ. Therefore the feedback structure is followed by a small logical block, which
chooses the correct, lowest non-zero, frequency. Determining Ω and Φ is important because
with them we can formulate a supervised learning problem in the second stage - the Output
Dynamical System, and learn the waveform of the full period of the input signal.

ydemo e
Σαi icos( )ɸ

-
+

ω1 1( ),t ɸ

ω2 2( ),t ɸ

ω3 3( ),t ɸ

ωM M( ),t ɸ

lowest

non-zero

Ω,Φ

y^

Fig. 3. Feedback structure of a network of adaptive frequency phase oscillators, that form the
Canonical Dynamical System. All oscillators receive the same input and have to be at
different starting frequencies to converge to different final frequencies. Refer also to text and
Eqs. (9-13).

The feedback structure of M adaptive frequency phase oscillators is governed by the following
equations:

3 This property is due to solving the bias-variance dilemma of function approximation locally with a
closed form solution to leave-one-out cross-validation (Schaal & Atkeson, 1998).
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φ̇i = ωi − Ke sin(φi) (9)

ω̇i = −Ke sin(φi) (10)

e = ydemo − ŷ (11)

ŷ =

M

∑
i=1

αi cos(φi) (12)

α̇i = η cos(φi)e (13)

where K is the coupling strength, φi is the phase of oscillator i, e is the input into the oscillators,
ydemo is the input signal, ŷ is the weighted sum of the oscillators’ outputs, M is the number of
oscillators, αi is the amplitude associated to the i-th oscillator, and η is a learning constant. In
the experiments we use K = 20 and η = 1, unless specified otherwise.
Eq. (9) and (10) present the core of the Canonical Dynamical System – the adaptive frequency
phase oscillator. Several (M) such oscillators are used in a feedback loop to extract separate
frequency components. Eq. (11) and (12) specify the feedback loop, which needs also
amplitude adaptation for each of the frequency components (Eq. (13)).
As we can see in Figure 3, each of the oscillators of the structure receives the same input signal,
which is the difference between the signal to be learned and the signal already learned by the
feedback loop, as in Eq. (11). Since a negative feedback loop is used, this difference approaches
zero as the weighted sum of separate frequency components, Eq. (12), approaches the learned
signal, and therefore the frequencies of the oscillators stabilize. Eq. (13) ensures amplitude
adaptation and thus the stabilization of the learned frequency. Such a feedback structure
performs a kind of dynamic Fourier analysis. It can learn several frequency components of the
input signal (Righetti et al., 2006) and enables the frequency of a given oscillator to converge
as t → ∞, because once the frequency of a separate oscillator is set, it is deducted from the
demonstration signal ydemo, and disappears from e (due to the negative feedback loop). Other
oscillators can thus adapt to other remaining frequency components. The populating of the
frequency spectrum is therefore done without any signal processing, as the whole process of
frequency extraction and adaptation is totally embedded into the dynamics of the adaptive
frequency oscillators.
Frequency adaptation results for a time-varying signal are illustrated in Figure 4, left. The
top plot shows the input signal ydemo, the middle plot the extracted frequencies, and the
bottom plot the error of frequency adaptation. The figure shows results for both approaches,
using a pool of oscillators (PO) and for using one oscillator and an adaptive Fourier series
(AF), explained in the next section. The signal itself is of three parts, a non-stationary signal
(presented by a chirp signal), followed by a step change in the frequency of the signal, and
in the end a stationary signal. We can see that the output frequency stabilizes very quickly at
the (changing) target frequency. In general the speed of convergence depends on the coupling
strength K (Righetti et al., 2006). Besides the use for non-stationary signals, such as chirp
signals, coping with the change in frequency of the input signal proves especially useful
when adapting to the frequency of hand-generated signals, which are never stationary. In
this particular example, a single adaptive frequency oscillator in a feedback loop was enough,
because the input signal was purely sinusoidal.
The number of adaptive frequency oscillators in a feedback loop is therefore a matter of
design. There should be enough oscillators to avoid missing the fundamental frequency
and to limit the variation of frequencies described below when the input signal has many

10 The Future of Humanoid Robots – Research and Applications

www.intechopen.com



Performing Periodic Tasks: On-Line Learning, Adaptation and Synchronization with External Signals 9

−1

0

1

y
d
e
m
o

5

10

15

20

Ω
[r
a
d
]

ωt ΩAF ΩPO

0 10 20 30 40 50 60
0

200

E
rr
o
r

t [s]

0

20

40

Ω
P
O

[r
a
d
]

0 100 200 300 400 500

6

8

Ω
A
F

[r
a
d
]

−0.5

0

0.5

y

20 20.5 21
0

0.04

er
ro
r

150 150.5 151
t [s]

350 350.5 351

Fig. 4. Left: Typical convergence of an adaptive frequency oscillator combined with an
adaptive Fourier series (-) compared to a system with a poll of i oscillators (-.-). One oscillator
is used in both cases. The input is a periodic signal (y = sin(ωtt), with ωt = (6π − π/5t)
rad/s for t < 20 s, followed by ωt = 2π rad/s for t < 30 s, followed again by ωt = 5π rad/s
for t < 45 s and finally ωt = 3π rad/s). Frequency adaptation is presented in the middle
plot, starting at Ω0 = π rad/s, where ωt is given by the dashed line and Ω by the solid line.
The square error between the target and the extracted frequency is shown in the bottom plot.
We can see that the adaptation is successful for non-stationary signals, step changes and
stationary signals. Right: Comparison between using the PO and the AF approaches for the
canonical dynamical system. The first plot shows the evolution of frequency distribution
using a pool of 10 oscillators. The second plot shows the extracted frequency using the AF
approach. The comparison of the target and the approximated signals is presented in the
third plot. The thin solid line presents the input signal ydemo, the thick solid line presents the
AF approach ŷ and the dotted line presents the PO approach ŷo. The square difference
between the input and the approximated signals is presented in the bottom plot.

frequencies components. A high number of oscillators can be used. Beside the almost
negligible computational costs, using too many oscillators does not affect the solution. A
practical problem that arises is that the oscillators’ frequencies might come too close together,
and then lock onto the same frequency component. To solve this we separate their initial
frequencies ω0 in a manner that suggests that (preferably only) one oscillator will go for the
offset, one will go for the highest frequency, and the others will "stay between".
With a high number of oscillators, many of them want to lock to the offset (0 Hz). With the
target frequency under 1 rad/s the oscillations of the estimated frequency tend to be higher,
which results in longer adaptation times. This makes choosing the fundamental frequency
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without introducing complex decision-making logic difficult. Results of frequency adaptation
for a complex waveform are presented in Fig. 4, where results for both PO and AF approach
are presented.
Besides learning, we can also use the system to repeat already learned signals. It this case, we
cut feedback to the adaptive frequency oscillators by setting e(t) = 0. This way the oscillators
continue to oscillate at the frequency to which they adapted. We are only interested in the
fundamental frequency, determined by

Φ̇ = Ω (14)

Ω̇ = 0 (15)

which is derived from Eqs. (9 and 10). This is also the equation of a normal phase oscillator.

2.3 Using an adaptive Fourier series

In this section an alternative, novel architecture for the canonical dynamical system is
presented. As the basis of the canonical dynamical system one single adaptive frequency
phase oscillator is used. It is combined with a feedback structure based on an adaptive Fourier
series (AF). The feedback structure is shown in Fig. 5. The feedback structure of an adaptive
frequency phase oscillator is governed by

φ̇ = Ω − Ke sin Φ, (16)

Ω̇ = −Ke sin Φ, (17)

e = ydemo − ŷ, (18)

where K is the coupling strength, Φ is the phase of the oscillator, e is the input into the
oscillator and ydemo is the input signal. If we compare Eqs. (9, 10) and Eqs. (16, 17), we
can see that the basic frequency Ω and the phase Φ are in Eqs. (16, 17) clearly defined and no
additional algorithm is required to determine the basic frequency. The feedback loop signal ŷ
in (18) is given by the Fourier series

ŷ =

M

∑
i=0

(αi cos(iφ) + βi sin(iφ)), (19)

and not by the sum of separate frequency components as in Eq. (12). In Eq. (19) M is the
number of components of the Fourier series and αi, βi are the amplitudes associated with the
Fourier series governed by

α̇i = η cos(iφ)e, (20)

β̇i = η sin(iφ)e, (21)

ydemo

�
AF

�
AF

���e y

Fig. 5. Feedback structure of an adaptive frequency oscillator combined with a dynamic
Fourier series. Note that no logical algorithm is needed.
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where η is the learning constant and i = 0...M. As shown in Fig. 5, the oscillator input
is the difference between the input signal ydemo and the Fourier series ŷ. Since a negative
feedback loop is used, the difference approaches zero when the Fourier series representation ŷ
approaches the input signal y. Such a feedback structure performs a kind of adaptive Fourier
analysis. Formally, it performs only a Fourier series approximation, because input signals
may drift in frequency and phase. General convergence remains an open issue. The number
of harmonic frequency components it can extract depends on how many terms of the Fourier
series are used.
As it is able to learn different periodic signals, the new architecture of the canonical dynamical
system can also be used as an imitation system by itself. Once e is stable (zero), the periodic
signal stays encoded in the Fourier series, with an accuracy that depends on the number of
elements used in Fourier series. The learning process is embedded and is done in real-time.
There is no need for any external optimization process or other learning algorithm.
It is important to point out that the convergence of the frequency adaptation (i.e. the behavior
of Ω) should not be confused with locking behavior (Buchli et al., 2008) (i.e. the classic
phase locking behavior, or synchronization, as documented in the literature (Pikovsky et al.,
2002)). The frequency adaptation process is an extension of the common oscillator with a fixed
intrinsic frequency. First, the adaptation process changes the intrinsic frequency and not only
the resulting frequency. Second, the adaptation has an infinite basin of attraction (see (Buchli
et al., 2008)), third the frequency stays encoded in the system when the input is removed (e.g.
set to zero or e ≈ 0). Our purpose is to show how to apply the approach for control of rhythmic
robotic task. For details on analyzing interaction of multiple oscillators see e.g. (Kralemann
et al., 2008).
Augmenting the system with an output dynamical system makes it possible to synchronize
the movement of the robot to a measurable periodic quantity of the desired task. Namely,
the waveform and the frequency of the measured signal are encoded in the Fourier series and
the desired robot trajectory is encoded in the output dynamical system. Since the adaptation
of the frequency and learning of the desired trajectory can be done simultaneously, all of
the system time-delays, e.g. delays in communication, sensor measurements delays, etc., are
automatically included. Furthermore, when a predefined motion pattern for the trajectory is
used, the phase between the input signal and output signal can be adjusted with a phase lag
parameter φl (see Fig. 9). This enables us to either predefine the desired motion or to teach the
robot how to preform the desired rhythmic task online.
Even though the canonical dynamical system by itself can reproduce the demonstration
signal, using the output dynamical system allows for easier modulation in both amplitude
and frequency, learning of complex patterns without extracting all frequency components
and acts as a sort of a filter. Moreover, when multiple output signals are needed, only one
canonical system can be used with several output systems which assure that the waveforms
of the different degrees-of-freedom are realized appropriately.

3. On-line learning and modulation

3.1 On-line modulations

The output dynamical system allows easy modulation of amplitude, frequency and center of
oscillations. Once the robot is performing the learned trajectory, we can change all of these by
changing just one parameter for each. The system is designed to permit on-line modulations
of the originally learned trajectories. This is one of the important motivations behind the use
of dynamical systems to encode trajectories.
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Changing the parameter g corresponds to a modulation of the baseline of the rhythmic
movement. This will smoothly shift the oscillation without modifying the signal shape. The
results are presented in the second plot in Figure 6 left. Modifying Ω and r corresponds
to the changing of the frequency and the amplitude of the oscillations, respectively. Since
our differential equations are of second order, these abrupt changes of parameters result in
smooth variations of the trajectory y. This is particularly useful when controlling articulated
robots, which require trajectories with limited jerks. Changing of the parameter Ω only comes
into consideration when one wants to repeat the learned signal at a desired frequency that
is different from the one we adapted to with our Canonical Dynamical System. Results of
changing the frequency Ω are presented in the third plot of Figure 6 left. Results of modulating
the amplitude parameter r are presented in the bottom plot of Figure 6 left.

3.2 Perturbations and modified feedback

3.2.1 Dealing with perturbations

The Output Dynamical System is inherently robust against perturbations. Figure 6 right
illustrates the time evolution of the system repeating a learned trajectory at the frequency
of 1 Hz, when the state variables y, z and Φ are randomly changed at time t = 30 s. From the
results we can see that the output of the system reverts smoothly to the learned trajectory. This
is an important feature of the approach: the system essentially represents a whole landscape
in the space of state variables which not only encode the learned trajectory but also determine
how the states return to it after a perturbation.

3.2.2 Slow-down feedback

When controlling the robot, we have to take into account perturbations due to the interaction
with the environment. Our system provides desired states to the robot, i.e. desired joint angles
or torques, and its state variables are therefore not affected by the actual states of the robot,
unless feedback terms are added to the control scheme. For instance, it might happen that, due
to external forces, significant differences arise between the actual position ỹ and the desired
position y. Depending on the task, this error can be fed back to the system in order to modify
on-line the generated trajectories.
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Fig. 6. Left: Modulations of the learned signal. The learned signal (top), modulating the
baseline for oscillations g (second from top), doubling the frequency Ω (third from top),
doubling the amplitude r (bottom). Right: Dealing with perturbations – reacting to a random
perturbation of the state variables y, z and Φ at t = 30 s.
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One type of such feedback is the “slow-down-feedback” that can be applied to the Output
Dynamical System. This type of feedback affects both the Canonical and the Output
Dynamical System. The following explanation is for the replay of a learned trajectory as
perturbing the robot while learning the trajectory is not practical.
For the process of repeating the signal, for which we use a phase oscillator, we modify Eqs. (2
and 14) to:

ẏ = Ω
(

z + αpy (ỹ − y)
)

(22)

Φ̇ =
Ω

1 + αpΦ|ỹ − y|
(23)

where αpy and αpΦ are positive constants.
With this type of feedback, the time evolution of the states is gradually halted during the
perturbation. The desired position y is modified to remain close to the actual position ỹ,
and as soon as the perturbation stops, rapidly resumes performing the time-delayed planned
trajectory. Results are presented in Figure 7 left. As we can see, the desired position y and
the actual position ỹ are the same except for the short interval between t = 22.2 s and
t = 23.9 s. The dotted line corresponds to the original unperturbed trajectory. The desired
trajectory continues from the point of perturbation and does not jump to the unperturbed
desired trajectory.

3.2.3 Virtual repulsive force

Another example of a perturbation can be the presence of boundaries or obstacles, such as
joint angle limits. In that case we can modify the Eq. (2) to include a repulsive force l(y) at the
limit by:

ẏ = Ω (z + l(y)) (24)

For instance, a simple repulsive force to avoid hitting joint limits or going beyond a position
in task space can be

l(y) = −γ
1

(yL − y)3 (25)

where yL is the value of the limit. Figure 7 right illustrates the effect of such a repulsive force.
Such on-line modifications are one of the most interesting properties of using autonomous
differential equations for control policies. These are just examples of possible feedback loops,
and they should be adjusted depending on the task at hand.

21 22 23 24 25 26
−2

−1

0

1

2

y

21 22 23 24 25 26
0

0.5

1

Ψ
i

21 22 23 24 25 26
0

1

2

3

4

5

|ỹ
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Fig. 7. Left: Reacting to a perturbation with a slow-down feedback. The desired position y
and the actual position ỹ are the same except for the short interval between t = 22.2 s and
t = 23.9 s. The dotted line corresponds to the original unperturbed trajectory. Right: Output
of the system with the limits set to yl = [−1, 1] for the input signal
ydemo(t) = cos (2πt) + sin (4πt).
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3.3 Two-handed drumming

We applied the system for two-handed drumming on a full-sized humanoid robot called
CB-i, shown in Fig. 8. The robot learns the waveform and the frequency of the
demonstrated movement on-line, and continues drumming with the extracted frequency after
the demonstration. The system allows the robot to synchronize to the extracted frequency of
music, and thus drum-along in real-time.
CB-i robot is a 51 DOF full-sized humanoid robot, developed by Sarcos. For the task of
drumming we used 8 DOF in the upper arms of the robot, 4 per arm. Fig. 8 shows the CB-i
robot in the experimental setup.

Fig. 8. Two-handed drumming using the Sarcos CB-i humanoid robot.

The control scheme was implemented in Matlab/Simulik and is presented in Fig. 9. The
imitation system provides the desired task space trajectory for the robot’s arms. The waveform
was defined in advance. Since the sound signal consists usually of several different tones,
e.g. drums, guitar, singer, noise etc., it was necessary to pre-process the signal in order to
get the periodic signal which represents the drumming. The input signal was modified into
short pulses. This pre-processing only modifies the waveform and does not determine the
frequency and the phase.

ydemo

CDS ODSwi

r
Music

�
AF

�
AF

�
l

xl,r

Fig. 9. Proposed two-layered structure of the control system for synchronizing robotic
drumming to the music.

Fig. 10 shows the results of frequency adaptation to music. The waveforms for both hands
were predefined. The frequency of the imitated motion quickly adapted to the drumming
tones. The drumming sounds are presented with a real-time power spectrum. With this
particular experiment we show the possibility of using our proposed system for synchronizing
robot’s motion with an arbitrary periodic signal, e.g. music. Due to the complexity of the
audio signal this experiment does require some modification of the measured (audio) signal,
but is not pre-processed in the sense of determining the frequency. The drumming experiment
shows that the proposed two-layered system is able to synchronize the motion of the robot to
the drumming tones of the music.
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Fig. 10. Extracted frequency Ω of the drumming tones from the music in the top plot.
Comparison between the power spectrum of the audio signal (drumming tones) y and robot
trajectories for the left (xl) and the right hand motions (xr).

3.4 Table wiping

In this section we show how we can use the proposed two-layered system to modify already
learned movement trajectories according to the measured force. ARMAR-IIIb humanoid
robot, which is kinematically equal to the ARMAR-IIIa (Asfour et al., 2006) was used in the
experiment.
From the kinematics point of view, the robot consists of seven subsystems: head, left arm,
right arm, left hand, right hand, torso, and a mobile platform. The head has seven DOF and
is equipped with two eyes, which have a common tilt and can pan independently. Each arm
has 7 DOF and each hand additional 8DOF. The locomotion of the robot is realized using a
wheel-based holonomic platform.
In order to obtain reliable motion data of a human wiping demonstration through observation
by the robot, we exploited the color features of the sponge to track its motion. Using the
stereo camera setup of the robot, the implemented blob tracking algorithm based on color
segmentation and a particle filter framework provides a robust location estimation of the
sponge in 3D. The resulting trajectories were captured with a frame rate of 30 Hz.
For learning of movements we first define the area of demonstration by measuring the
lower-left and the upper-right position within a given time-frame, as is presented in Fig. 11.
All tracked sponge-movement is then normalized and given as offset to the central position
of this area.
For measuring the contact forces between the object in the hand and the surface of the plane a
6D-force/torque sensor is used, which is mounted at the wrist of the robot.

3.5 Adaptation of the learned trajectory using force feedback

Learning of a movement that brings the robot into contact with the environment must be
based on force control, otherwise there can be damage to the robot or the object to which the
robot applies its force. In the task of wiping a table, or any other object of arbitrary shape,
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Fig. 11. Area for movement demonstration is determined by measuring the bottom-left most
and the top-right most positions within a given time frame. These coordinates make a
rectangular area (marked with dashed lines) where the robot tracks the demonstrated
movements.

constant contact with the object is required. To teach the robot the necessary movement, we
decoupled the learning of the movement from the learning of the shape of the object. We first
apply the described two-layered movement imitation system to learn the desired trajectories
by means of visual feedback. We then use force-feedback to adapt the motion to the shape of
the object that the robot acts upon.
Periodic movements can be of any shape, yet wiping can be effective with simple one
dimensional left-right movement, or circular movement. Once we are satisfied with the
learned movement, we can reduce the frequency of the movement by modifying the Ω

value. The low frequency of movement and consequentially low movement speed reduce
the possibility of any damage to the robot. When performing playback we modify the
learned movement with an active compliance algorithm. The algorithm is based on the
velocity-resolved approach (Villani & J., 2008). The end-effector velocity is calculated by

vr = Svvv + KFSF(Fm − F0). (26)

Here vr stands for the resolved velocities vector, Sv for the velocity selection matrix, vv for the
desired velocities vector, KF for the force gain matrix, SF for the force selection matrix, and
Fm for the measured force. F0 denotes the force offset which determines the behavior of the
robot when not in contact with the environment. To get the desired positions we use

Y = Yr + SF

∫

vrdt. (27)

Here Yr is the desired initial position and Y = (yj), j = 1, ..., 6 is the actual
position/orientation. Using this approach we can modify the trajectory of the learned periodic
movement as described below.
Equations (26 – 27) become simpler for the specific case of wiping a flat surface. By using a
null matrix for Sv, KF = diag(0, 0, kF, 0, 0, 0), SF = diag(0, 0, 1, 0, 0, 0), the desired end-effector
height z in each discrete time step ∆t becomes

ż(t) = kF(Fz(t)− F0), (28)

z(t) = z0 + ż(t)∆t. (29)

Here z0 is the starting height, kF is the force gain (of units kg/s), Fz is the measured force in
the z direction and F0 is the force with which we want the robot to press on the object. Such
formulation of the movement ensures constant movement in the −z direction, or constant
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contact when an object is encountered. Another simplification is to use the length of the force

vector F =
√

F2
x + F2

y + F2
z for the feedback instead of Fz in (28). This way the robot can move

upwards every time it hits something, for example the side of a sink. No contact should be
made from above, as this will make the robot press up harder and harder.
The learning of the force profile is done by modifying the weighs wi for the selected degree
of freedom yj in every time-step by incremental locally weighted regression (Atkeson et al.,
1997), see also Section 2.1.
The KF matrix controls the behavior of the movement. The correcting movement has to be
fast enough to move away from the object if the robot hand encounters sufficient force, and
at the same time not too fast so that it does not produce instabilities due to the discrete-time
sampling when in contact with an object. A dead-zone of response has to be included, for
example |F| < 1 N, to take into account the noise. We empirically set kF = 20, and limited the
force feedback to allow maximum linear velocity of 120 mm/s.
Feedback from a force-torque sensor is often noisy due to the sensor itself and mainly due
to vibrations of the robot. A noisy signal is not the best solution for the learning algorithm
because we also need time-discrete first and second derivatives. The described active
compliance algorithm uses the position of the end-effector as input, which is the integrated
desired velocity and therefore has no difficulties with the noisy measured signal.
Having adapted the trajectory to the new surface enables very fast movement with a constant
force profile at the contact of the robot/sponge and the object, without any time-sampling
and instability problems that may arise when using compliance control only. Furthermore,
we can still use the compliant control once we have learned the shape of the object. Active
compliance, combined with a passive compliance of a sponge, and the modulation and
perturbation properties of DMPs, such as slow-down feedback, allow fast and safe execution
of periodic movement while maintaining a sliding contact with the environment.

3.5.1 The learning scenario

Our kitchen scenario includes the ARMAR-IIIb humanoid robot wiping a kitchen table.
First the robot attempts to learn wiping movement from human demonstration. During
the demonstration of the desired wiping movement the robot tracks the movement of the
sponge in the demonstrator’s hand with his eyes. The robot only reads the coordinates of the
movement in a horizontal plane, and learns the frequency and waveform of the movement.
The waveform can be arbitrary, but for wiping it can be simple circular or one-dimensional
left-right movement. The learned movement is encoded in the task space of the robot, and an
inverse kinematics algorithm controls the movement of separate joints of the 7-DOF arm. The
robot starts mimicking the movement already during the demonstration, so the demonstrator
can stop learning once he/she is satisfied with the learned movement. Once the basic learning
of periodic movement is stopped, we use force-feedback to modify the learned trajectory. The
term F − F0 in (28) provides velocity in the direction of −z axis, and the hand holding the
sponge moves towards the kitchen table or any other surface under the arm. As the hand
makes contact with the surface of an object, the vertical velocity adapts. The force profile is
learned in a few periods of the movement. The operator can afterwards stop force profile
learning and execute the adjusted trajectory at an arbitrary frequency.
Fig. 12 on the left shows the results of learning the force-profile for a flat surface. As the
robot grasps the sponge, its orientation and location are unknown to the robot, and the tool
center point (TCP) changes. Should the robot simply perform a planar trajectory it would
not ensure constant contact with the table. As we can see from the results, the hand initially
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Fig. 12. Results of learning the force profile on a flat surface on the left and on a bowl-shaped
surface on the right. For the flat surface we can see that the height of the movement changes
for approx. 5 cm during one period to maintain contact with the surface. The values were
attained trough robot kinematics. For the bowl shaped surface we can see that the trajectory
assumes a bowl-shape with an additional change of direction, which is the result of the
compliance of the wiping sponge and the zero-velocity dead-zone. A dashed vertical line
marks the end of learning of the force profile. Increase in frequency can be observed in the
end of the plot. The increase was added manually.

Fig. 13. A sequence of still photos showing the adaptation of wiping movement via
force-feedback to a flat surface, as of a kitchen table, in the top row, and adaptation to a
bowl-shaped surface in the bottom row.

moves down until it makes contact with the surface. The force profile later changes the desired
height by approx. 5 cm within one period. After the learning (stopped manually, marked with
a vertical dashed line) the robot maintains such a profile. A manual increase in frequency
was introduced to demonstrate the ability to perform the task at an arbitrary frequency. The
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Fig. 14. Experimental setup for cooperative human-robot rope turning.

bottom plot shows the measured length of the force vector |F|. As we can see the force vector
keeps the same force profile, even though the frequency is increased. No increase in the force
profile proves that the robot has learned the required trajectory. Fig. 13 shows a sequence of
photos showing the adaptation to the flat and bowl-shaped surfaces.
Fig. 12 on the right shows the results for a bowl-shaped object. As we can see from the
results the height of the movement changes for more than 6 cm within a period. The learned
shape (after the vertical dashed lined) maintains the shape of a bowl, but has an added local
minimum. This is the result of the dead-zone within the active compliance, which comes into
effect when going up one side, and down the other side of the bowl. No significant change
in the force profile can be observed in the bottom plot after a manual increase in frequency.
Some drift, as the consequence of an error of the sensor and of wrist control on the robot, can
be observed.

4. Synchronization with external signals

Once the movement is learned we can change its frequency. The new frequency can be
determined from an external signal using the canonical dynamical system. This allows
easy synchronization to external measured signals, such as drumming, already presented in
Section 3.3. In this section we show how we applied the system to a rope turning task, which
is task that requires continuous cooperation of a human and a robot. We also show how we
can synchronize to an EMG signal, which is inherently very noisy.

4.1 Robotic rope turning

We performed the rope-turning experiment on a Mitsubishi PA-10 robot with a JR-3
force/torque sensor attached to the top of the robot to measure the torques and forces in
the string. Additionally, an optical system (Optotrak Certus) was used for validation, i.e. for
measuring the motion of a human hand. The two-layered control system was implemented
in Matlab/Simulink. The imitation system provides a pre-defined desired circular trajectory
for the robot. The motion of a robot is constrained to up-down and left-right motion using
inverse kinematics. Figure 14 shows the experimental setup.
Determining the frequency is done using the canonical dynamical system. Fig. 15 left shows
the results of frequency extraction (top plot) from the measured torque signal (second plot).
The frequency of the imitated motion quickly adapts to the measured periodic signal. When
the rotation of the rope is stable, the human stops swinging the rope and maintains the hand
in a fixed position. The movement of the human hand is shown in the third plot. In the last
plot we show the movement of the robot. By comparing the last two plots in Fig. 15 left, we
can see that after 3 s the energy transition to the rope is done only by the motion of the robot.
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The frequency of the task depends on the parameters of the rope, i.e. weight, length, flexibility
etc., and the energy which is transmitted in to the rope. The rotating frequency of the rope
can be influenced by the amplitude of the motion, i.e. how much energy is transmitted to the
rope. The amplitude can be easily modified with the amplitude parameter r.
Fig. 15 right shows the behavior of the system, when the distance between the human hand
and the top end of the robot (second plot) is changing, while the length of the rope remains
the same, consequently the rotation frequency changes. The frequency adaptation is shown in
the top plot. As we can see, the robot was able to rotate the rope and maintain synchronized
even if disturbances like changing the distance between the human hand and the robot occur.
This shows that the system is adaptable and robust.

4.2 EMG based human-robot synchronization

In this section we show the results of synchronizing robot movement to an EMG signal
measured from the human biceps muscle. More details can be found at (Petrič et al., 2011).
The purpose of this experiment is to show frequency extraction from a signal with a low
signal-to-noise ratio. This type of applications can be used for control of periodic movements
of limb prosthesis (Castellini & Smagt, 2009) or exoskeletons.
In our experimental setup we attached an array of 3 electrodes (Motion Control Inc.) over the
biceps muscle of a subject and asked the subject to flex his arm when he hears a beep. The
frequency of beeping was 1 Hz from the start of the experiment, then changed to 0.5 Hz after
30 s, and then back to 1 Hz after additional 30 s. Fig. 16 left shows the results of frequency
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Fig. 15. Left: the initial frequency adaptation process (top plot) of the cooperative
human-robot rope turning. The second plot shows the measured torque signal. The third
plot shows the movement of a human hand, and the bottom plot shows the movement of a
robot. Right: the behavior of our proposed system when human changes the distance
between human hand and top end of the robot. Frequency adaptation is shown in the top
plot, and the second plot shows the measured torque signal. The third plot shows the
movement of a human hand, and the bottom plot shows the movement of a robot.
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extraction (third plot) from the envelope (second plot) of the measured EMG signal (top plot).
The bottom plots show the power spectrums of the input signal from 0 s to 30 s, from 30 s to
60 s and from 60 s to 90 s, respectively. The power spectrums were determined off-line.
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Fig. 16. Proposed two-layered structure of the control system for synchronizing the robotic
motion to the EMG signal.
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Fig. 17. Left:Raw EMG signal in the top plot and envelope of the EMG signal, which is the
input into the proposed system, in the second plot. The third plot shows the extracted
frequency Ω. The bottom plots show the power spectrum of the signal at different times
(determined off-line). Right: Extracted frequency in the top plot. Comparison between the
envelope of the rectified EMG signal (y), which is used as the input into the
frequency-extraction system, and the generated output trajectory for the robot arm (x) is
shown in the middle and bottom plots.

Fig. 17 right show the comparison between the envelope of the measured and rectified EMG
signal (y), and the generated movement signal (x). As we can see the proposed system
matches the desired movement of the robot with the measured movement.
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5. Conclusion

We have shown the properties and the possible use of the proposed two-layered movement
imitation system. The system can be used for both waveform learning and frequency
extraction. Each of these has preferable properties for learning and controlling of robots by
imitation. On-line waveform learning can be used for effective and natural learning of robotic
movement, with the demonstrator in the loop. During learning the demonstrator can observe
the learned behavior of the robot and if necessary adapt his movement to achieve better robot
performance. The table wiping task is an example of such on-line learning, where not only
is the operator in the loop for the initial trajectory, but online learning adapts the trajectory
based on the measured force signal.
Online frequency extraction, essential for waveform learning, can additionally be used for
synchronization to external signals. Examples of such tasks are drumming, cooperative
rope turning and synchronization to a measured EMG signal. Specially the synchronization
to an EMG signal shows at great robustness of the system. Furthermore, the process of
synchronizing the movement of the robot and the actuated device can be applied in a similar
manner to different tasks and can be used as a common generic algorithm for controlling
periodic tasks. It is also easy to implement, with hardly any parameter tuning at all.
The overall structure of the system, based on nonlinear oscillators and dynamic movement
primitives is, besides computationally extremely light, also inherently robust. The properties
of dynamic movement primitives, which allow on-line modulation, and return smoothly to
the desired trajectory after perturbation, allow learning of whole families of movement with
one demonstrated trajectory. An example of such is learning of circular movement, which can
be increased in amplitude, or we can change the center of the circular movement. Additional
modifications, such as slow-down feedback and virtual repulsive forces even expand these
properties into a coherent and complete block for control of periodic robotic movements.
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