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1. Introduction 

Paraquat (1,1_-dimethyl-4,4_-bipyridinium dichloride), is a foliar-applied and non selective 
bipyridinium herbicides, and it is one of the most widely used herbicides in the world, 
controlling weeds in a huge variety of crops like corn, rice, soybean, wheat, potatoes; major 
fruits: apples, oranges, bananas; beverages: coffee, tea, cocoa; and processed crops: cotton, 
oil palm, sugarcane and rubber. 

For a foliar absorbed herbicide to completely kill a plant, it must be capable of accessing the 
whole plant, as growing leaves and newly emerging roots. This often means that the 
herbicide not only needs to damage at the point of its absorption, but must also be 
translocated to parts of the plant not contacted by the herbicide during application. 

Paraquat is a cation formed by two pyridine rings, each having a quaternary amine and thus 
charged 2+. Although the majority of herbicides are passively transported as noionic 
molecules, paraquat cation movement by diffusion across membrane lipid bilayer is 
unlikely. Transporter studies to explain paraquat compartment were made using several 
systems. ABC transporters, large membrane proteins which use ATP for the active transport 
of several compounds including paraquat have been described. Other groups of 
transporters are small antiporter proteins which exchange protons for some other molecules 
using the proton electrochemical potential gradient (Morymio et al., 1992, Yerushalmi, et al., 
1995).  In animal tissues it has been shown that paraquat transport occurs by carriers that 
also function as carriers of other molecules such as polyamines (Rannels et al., 1989, Jóri et 
al., 2007). Hart et al. (1992a 1992b) demonstrated that paraquat movement across plasma 
membrane root epidermal and cortical maize cells has a concentration-dependent kinetic 
and that the herbicide binds to cell wall, and its transport is facilitated by a carrier that 
normally functions in the movement of molecules that has a similar chemical structure or 
similar charge distribution such us diamines like putrescine and cadaverine. Using maize 
protoplast Hart et al. (1993) showed that paraquat uptake has similar concentration-kinetic 
to that observed in intact cells and the accumulation inside cells increase in a time-
dependent manner and is saturated after 10 min,  although 50% of uptake occurs during the 
first 10 s. The saturable Km for paraquat uptake in maize cells and protoplasts was 
determined at 90 µM and 132 µM respectively, similarly the Km in rat lung was 70 µM 
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suggesting in both animal and vegetal tissues a carrier-mediated process (Rannels et al., 
1985). 

In order to investigate paraquat uptake, compartmentation and translocation, maize 
plantlets with their root immersed in paraquat solution for several loading periods were 
used (Hart et al., 1993). The lack of chloroplasts in roots provides a system to minimize the 
short-term phototoxic effect. The paraquat accumulation in the root vacuole was linear over 
a 24 h loading period. The vacuolar paraquat content, with respect to the total accumulated 
increased from 15% to 42% after 2 h and 24 h loading period, respectively. In contrast to the 
vacuole, total cytoplasmic paraquat content appeared to approach saturation whereas 
paraquat associated with the cell wall fraction remained relatively constant, suggesting that 
this phase is rapidly saturated. Even though paraquat is considered to be relatively 
immobile, linear paraquat (PQ) translocation occurred from roots to shoots and was 
estimated that approximately 50% of the paraquat effluxing from roots started translocation 
to shoots 5 h after the beginning of loading period (Hart et al., 1993b). 

Paraquat acts as a redox cycler with a great negative reduction potential (E0 = – 0.446 V). This 

feature restricts its interaction with strong reductant compounds. When dication of paraquat 

(PQ 2+) accepts an electron from a reductant form the paraquat monocation radical (PQ +), 

which then rapidly reacts with  oxygen (O2  Eo =  0.16 V) to initially produce  superoxide 

radical (O2�−) (k 7.7 x 108 M-1 s -1) and subsequently the other reactive oxygen species (ROS) 

such as hydrogen peroxide (H2O2) and hydroxyl radical (OH). 

In plants, paraquat is principally reduced within chloroplasts, where it acts as an alternative 
electron acceptor taking electron from Fe-S proteins of photosystem I; inhibiting the 
ferredoxin reduction, the NADPH generation, and also the regeneration of ascorbic acid. In 
consequence, paraquat is a potent oxidative stress inducer, because it greatly increases the 
ROS production and inhibits the regeneration of reducing equivalents and compounds 
necessary for the activity of the antioxidant system. 

Paraquat also induces the increase of superoxide radical production in mitochondria, where 
complexes I and III are the major electron donors.  For this reason paraquat has been widely 
used to induce mitochondrial oxidative stress in many experimental systems such as 
isolated mitochondria, cultured cells, and whole organisms including plants, Saccharomyces 
cerevisiae, Caenorhabditis elegans, Drosophila melanogaster  and rodents (Cocheme & Murphy, 
2008).   

2. Generation and role of ROS 

Superoxide radical (O2
•−), singlet oxygen (1O2) hydrogen peroxide (H2O2) and hydroxyl 

radical (.OH) are highly reactive compounds that induce protein and pigment degradation, 
lipid peroxidation, nucleic acid damage, affecting key components of plant cell metabolism 
that can finally lead to cell death. These deleterious reactions triggered by ROS are known as 
oxidative stress phenomenon (Casano et al., 1994, 1997; Lascano et al., 1998, 1999). 

Even though all ROS are highly reactive compounds their effects and plant responses 
depend on the ROS in question as well as on its concentration, site of production, 
interaction with other stress molecules and on the developmental stage and plant cell 
previous history. 
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In green tissues under light, chloroplasts are the main intracellular source of ROS (Asada, 
1999) and peroxisomes, through photorespiration, are other important ROS producers (del 
Río et al., 2006).  While mitochondria, are the principal source of ROS in darkness and non 
green tissues. On the other hand, the NADPH oxidase complex, peroxidases and amino 
oxidases are major sources of apoplastic ROS (Sagi & Fluhr, 2006).  

Primarily, the chloroplasts mainly produce O2
•− at photosystem I (PSI) and 1O2 at 

photosystem II (PSII), and the mitochondria produce O2
•− at complexes I and III (Asada, 

1999). The peroxisomes produce H2O2 as byproduct of photorespiratory glycolate oxidase 
reaction, fatty acid ǃ-oxidation and reaction of flavin oxidase, and O2

•− is generated by 

xanthine oxidase and by electron transport chains in the peroxisomal membrane (del Río et 
al., 2006).  

Various interconverting reactions occur among different ROS. Superoxide is spontaneously 
or enzymatically converted to H2O2 by disproportion mechanism and H2O2 and O2

•− can 

interact to produce .OH through the Fenton reaction catalyzed by free transition metal ions 
(Fridovich, 1986).  

Different ROS have different features. Hydrogen peroxide is a non radical, apolar molecule 
and, in consequence, it is a relatively stable compound with half-life around 1 ms. In plant 
tissues, its concentration could be in the micro to millimolar range. The half-lives of the 
other ROS are very short, ranging from nano to micro second, and then they are present at 
very low concentrations (Asada, 1999).  

Reactive oxygen species also have different reactivities. Hydrogen peroxide (Eo 1.77 V), not 

a highly reactive ROS per se, mainly oxidizes thiol groups, in presence of transition metal 

ions it catalyzes .OH generation by Fenton reaction.  Superoxide radical (Eo -0.33V) oxidizes 

ascorbate and NADPH, reduces metal ions and cytochrome C and reacts with protein Fe-S 

centers. Singlet oxygen is particularly reactive with conjugated double bonds of 

polyunsaturated fatty acids. Whereas .OH (Eo 2 V), the most oxidant ROS,  reacts with all 

types of macromolecular cellular components. The differential ROS reactivity means that 

they leave different footprints in the cell in the form of different oxidatively modified 

components (Moller et al., 2007). 

Cellular membranes are the principal targets of ROS. Peroxidation of polyunsaturated fatty 

acids (PUFAs) is a common oxidative stress effect. Linoleic acid (18:2) and linolenic acid 

(18:3) are major fatty acid present in galactolips of thylakois and phospholipids of all 

membranes. PUFAs peroxidation generates mixtures of lipid hydroperoxides several 

aldehydes, e.g., 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA), hydroxyl and 

keto fatty acids and oxidative modification in membrane protein. The consequences over the 

membrane function are the fluidity and selectivity decreases (Halliwell et al.,1999; Halliwell, 

2006). Some of the PUFA peroxidation products act directly or after enzymatic modification 

as secondary messengers either, e.g. oxylipins (Muller et al., 2004). 

ROS induce mainly irreversible covalent modification on proteins. The reversible 
modifications on sulfur containing amino acid are very important in the redox or oxidative 
signaling. Cystein thiol groups are initially oxidized to disulfide and in further oxidation to 
sulfenic and sulfinic acid. The highest level of cysteine oxidation, cysteic acid seems to be 
irreversible and damaging (Ghezzi & Bonetto; 2003). Nitrosylation and glutathionylation are 
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other cystein thiol modification mediated by nitric oxide, reactive nitrogen species (RNS) 
and glutathione. RNS are generated by the interaction between nitric oxide and ROS. (Costa 
et al., 2003; Halliwell, 2006). Carbonylation, a common oxidative protein modification 
affecting particularly Arg, His, Lys, Pro, Thr, and Trp; and conjugation with peroxidation 
PUFA products, mainly with HNE,  are other oxidative protein modifications (Shacter, 2000; 
Winger et al., 2005). 

The generation of 8-Hydroxyguanine is the most common DNA modification induced by 
ROS. The nucleotide bases are attacked by. OH  and 1O2  while H2O2 and O2

•− do not react at 

all (Wiseman & Halliwell, 1996). Chloroplastic and mitochondrial DNAs are into the two 
major source of ROS where potentially high rates of modification might occur (Thorslund et 
al., 2002). Another indirect oxidative modification to DNA is the conjugation of MDA with 
guanine (Jeong, 2005). The DNA oxidative modification could induce changes in cytosines 
methylation patterns, and then in the regulation of gene expressions. ROS-induced DNA 
modification seems to be a not completely random process (Halliwell, 2006). 

Carbohydrates can be oxidatively modified by .OH, being the formic acid the main 
breakdown product of sugar oxidation (Isbell et al., 1973).  

In spite of its toxic effects, increasing evidence indicates that ROS are signaling molecules 
that participate in many processes, such as cell cycle, cell elongation, cell death, plant 
growth and development, senescence, hormone signaling, responses to biotic and abiotic 
stress and in symbiotic interaction with microorganisms (Bustos et al., 2008; Mittler et al., 
2004; Muñoz et al. 2011, submitted; Rodriguez et al., 2010). The H2O2 molecular properties 
make it a good second messenger that could cross membrane by diffusion or aquaporins. 
However, all ROS can act as signaling molecules directly or by oxidized product. NADPH 
oxidase complex, the main source of apoplastic ROS, has a key role in oxidative signaling 
(Sagi & Fhlur, 2004). 

The dual role of ROS, as toxic or signaling molecules, depends on the ratio and subcellular 
location of its generation, thus the tight regulation of the steady-state level of ROS in 
different subcellular compartments has both signaling and oxidative damage protection 
purposes. The function of ROS as signaling molecules is intrinsically related to the 
interaction with non-enzymatic antioxidants, such as ascorbate and glutathione, which are 
redox buffers and also signal molecules per se (Foyer & Noctor 2005 a, 2005b).  

The relationship among ROS, antioxidants, reducing equivalents, sugars, the redox state of 
chloroplastic and mitochondria electron transport chains are major determinants of the 
cellular redox state, which has a critical function in the environmental perception and 
modulation of defense, acclimation and tolerance responses (Foyer & Noctor, 2005 a; 2005b; 
Lascano et al., 2003; Melchiorre et al., 2009; Robert et al., 2009).   

3. Antioxidant system in plants 

Plants have evolved a complex antioxidant system composed by both non-enzymatic and 
enzymatic components, to prevent the harmful effects of ROS. 

Low-molecular-mass metabolites soluble in both aqueous and lipid phases lipid with high 
ROS reactivity such as ascorbate, glutathione tocopheroles, flavonoids, alkaloids, 
carotenoids, proline and amines, form  non-enzymatic part of the  antioxidant system (Apel 
& Hirt, 2004;  Sharma and Dietz, 2006). 
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Superoxide dismutase (SOD) (E.C.: 1.15.1.1), ascorbate peroxidase (APX) (E.C.: 1.11.1.11), 
catalase (CAT) (EC 1.11.1.6), and glutathione reductase (GR) (E.C.: 1.6.4.2) are key 
antioxidant enzymes that modulate the concentration of two of the Haber/Weiss and 
Fenton reaction substrates, O2

•- and H2O2, preventing the formation of the highly toxic .OH 

radical (Asada, 1999). Approximately, 80% of SOD, GR, and APX activity is located in the 
chloroplast (Asada, 1999). CAT activity is located in peroxisomes and mitochondria 
(Scandalios, 1994). SOD catalyses the disproportionation of O2

•-  to H2O2, and is present in 

multiple isoforms: copper/zinc (CuZn-SOD), iron (Fe-SOD) and manganese (Mn-SOD) 
(Bowler et al, 1992). In most plants, CuZn-SOD and Fe-SOD are present in the chloroplasts, 
CuZn-SOD in the cytosol and Mn-SOD in mitochondria (Casano et al., 1997; Scandalios, 
1993). Degradation of H2O2, in the chloroplasts and in the cytosol is carried out by the 
ascorbate-glutathione cycle, which involves APX and GR activities (Lascano et al., 1999, 
2003). APX has chloroplastic and cytosolic isoforms, and catalyses the conversion of H2O2 to 
water using ascorbate as electron donor (Asada, 1999).  

Reduced glutathione (GSH) and ascorbic acid are the most important soluble non-enzymatic 
antioxidants and in chloroplasts they are present at millimolar concentrations (Noctor & 
Foyer, 1998). Ascorbate acts as a ROS quencher and it is involved in the regenerations of 
tocopherol and violoxanthine depoxidase activity of xanthophylls cycle (Noctor & Foyer, 
1998). Reduced glutathione is a tripeptide -glutamylcysteinyl glycine (-Glu-Cys-Gly) 
involved in: direct reaction with ROS, the regeneration of the ascorbate pool and as electron 
donor of glutaredoxins which are linked to type II peroxiredoxin activity. Likewise, GSH 
participates in the glutathionylation, a post-transcriptional modification of protein thiols 
groups that regulates the function of proteins like glyceraldehyde-3-phosphate 
dehydrogenease and  thioredoxin activities (Michelet et al., 2005; Zaffagnini et al., 2007). The 
reduction of oxidized glutathione is NADPH-dependent and carried out by GR, a 
ubiquitous flavoenzyme with many isoforms, located in chloroplasts, cytosol, and 
mitochondria (Lascano et al., 2001; Tanaka et al., 1994).  

Other more recently identified components of enzymatic antioxidant system are 
peroxiredoxins and glutathione peroxidase, non-heme-containing peroxidase which activity 
depend on cystein residues (Bryk et al., 2000; König et al., 2003).  

4. The use of paraquat in stress response studies 

Plants as sessile organism are permanently exposed to changing environment that become 
stressful conditions affecting their growth, development and productivity. Tolerance to 
environmental stress is a major selection criterion in plant breeding. The cellular and 
molecular tolerance mechanisms of plants to different stresses have been intensively 
studied.  

Reactive oxygen species are produced as byproduct of normal aerobic metabolism and the 

life under aerobic conditions is strictly dependent on the presence of antioxidant system. 

Nowadays, it is widely accepted that the generation of ROS is enhanced under abiotic and 

biotic stress conditions. Depending on stress intensity and its associated-ROS levels the 

plant responses range from tolerance to death. 

Likewise, the positive response of the antioxidant system correlates, in part, with the 
tolerance to many different environmental stress conditions. ROS and antioxidant system 
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are central components of the cross-tolerance phenomenon which states that a tolerant 
genotype to one stress condition could be also tolerant to other kinds of stress. 

Paraquat treatments have been frequently used, as a potent oxidative stress inducer, in 
many different basic studies like: oxidative stress tolerance and cross tolerance responses 
associated with the antioxidant system responses (Lascano et al., 1998, 2001, 2003), forward 
and reverse genetic approaches to study the function of different antioxidant system 
components  (Melchiorre et al., 2009 and references therein,) ROS  signaling (Robert et al., 
2009), ROS and NO-induced cell death (Tarantino et al., 2005), and to mimic the drought 
effect on carbon and nitrogen metabolism of nodules (Marino et al., 2006).  

Several attempts made to enhance tolerance photooxidative stress conditions have been 
tested with paraquat treatments. These have involved the overexpression of enzymes 
associated with the Asada-Halliwell pathway including SOD (Arisi et al., 1998; Bowler et al, 
1991; McKersie et al., 1999; Melchiorre et al., 2009; Perl et al., 1993; Pitcher et al, 1991; Sen 
Gupta et al., 1993;Tepperman et al, 1990; Van Camp et al.,1996), and GR (Aono et al., 1991, 
1993; Creissen et al., 1995; Foyer et al., 1991, 1995; Melchiorre et al., 2009). The tolerance to 
different oxidative stress conditions was dependent on the copy numbers and 
overexpression levels; the isoform overexpressed; the subcellular location where the 
overexpressions were targeted; and the induction of other antioxidant enzymes. The results 
of chloroplasts-targeted Mn-SOD or GR overexpression in wheat chloroplasts, suggest that 
antioxidant enzyme overexpression effects on tolerance response not only depend on their 
antioxidant capacities but also on their effects on the cellular redox state, which modulates 
the responses to photooxidative stress in a pathway where apoplastic superoxide generation 
could be involved (Melchiorre et al., 2009). The photooxidative activations of NADPH 
oxidase complex, the main source of apoplastic ROS, can be mimicked by paraquat 
treatment (Robert et al., 2009). 

Paraquat has also been used as an efficient inducer of cell death in both animal and plant 
cells (Dodge, 1971; Suntres, 2002). The cell death processes in plants are major regulatory 
mechanism of growth, development, and responses to biotic and abiotic stresses (Lam et al., 
2001; Pennel & Lamb, 1997). Environmental or developmental conditions where cellular 
redox balance is disturbed and significant ROS accumulation occurred, could lead to the 
induction of cell death processes (Dat et al., 2000). In this context, two type of ROS-
associated stress intensity-dependent death can be defined: Ordered or Programmed Cell 
Death (PCD) when the cell maintains the membrane and energy generation systems, and 
Disordered or Necrosis, when these systems are overwhelmed by the oxidative burst. 
Continuous or transient light-dependent H2O2 accumulation, provoke necrosis or PCD, 
respectively indicating the existence of a ROS levels threshold below which PCD is triggered 
and above which necrotic cell death prevail (Montillet et al., 2005). 

Programmed Cell Death in plant cells shares some similarities with that of animal cells, like 
organelle degeneration, nuclear condensation, nuclear DNA fragmentation and eventually 
cell shrinkage. Interestingly, animal anti-apoptotic protein (Bcl-2, Bcl-xL, and CED-9) 
expressed in plant, prevented apoptosis-like death mediated by chloroplasts 
photooxidadative stress induced by paraquat (Chen & Dickman, 2004; Mitsuhara et al., 
1999). 

The in vivo relationship between ROS-associated to environmental stress condition like 
drought and biological nitrogen fixation (BNF) inhibition in the legume–Rhizobium 
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symbiosis were studied using different dose of paraquat to induce oxidative stress in 
nodules.  Paraquat produced cellular redox imbalance leading to an inhibition of biological 
nitrogen fixation (BNF). The low paraquat dose provoked BNF decline, preceded by a 
decrease in sucrose synthase gene expression protein content and activity, while high 
paraquat induced a faster and more pronounced BNF inhibition, coinciding  with a decline 
in sucrose synthase and also with a reduction in leghaemoglobin content. These results 
support the occurrence of two regulation pathways for BNF under oxidative stress, one of 
these involving carbon shortages and the other involving leghaemoglobin /oxygen flux 
(Marino et al., 2006, 2008). 

4.1 Paraquat resistant mutants 

To date, several mutants, ecotypes, and biotypes with paraquat resistance have been 
characterized in a few plant species. Paraquat-resistant mutants have been shown to be cross 
tolerant to other oxidative stress conditions and have been used to study the tolerance to 
other photooxidative stress condition (Tsugane et al., 1999). 

There are several paraquat-resistant Arabidopsis mutants. Photoautotrophic salt tolerate 1 
(pst1), an Arabidopsis mutant that can grow under high salt concentrations, is nearly 10 times 
more tolerant to paraquat than wild-type seedlings. This mutant, which is also tolerant to 
high light intensities exhibits higher SOD and APX activities under paraquat, salt, and high 
light intensities treatments (Tsugane et al., 1999). 

The paraquat-resistant Arabidopsis thaliana mutant, allelic to the ozone sensitive mutant  
rcd1-1( radical-induced cell death1-1) (Overmyer et al., 2000), called  rcd1-2, is also tolerant 
to UV-B and freezing. The tolerance in this mutant is also related to higher levels of the 
ROS-scavenging enzymes, particularly chloroplastic CuZn-SOD and APX, and also with an 
increased accumulation of flavonoids (Fujibe et al, 2004). Arabidopsis Cvi ecotype also shows 
a higher resistance to paraquat, which seems to be determined by a new allele of plastidic 
CuZnSOD (Abarca et al., 2001).  

Gigantea, a late-flowering Arabidopsis mutant, is resistant to paraquat (Kurepa et al., 1998), 
however, the resistance mechanism remains unknown (Huq et al., 2000). In the broadleaf 
weed Archoteca calendula (L) paraquat tolerance has been associated with increases in 
antioxidant defense. This species also exhibit cross tolerance to other stress conditions (Soar 
et al., 2003).   

Arabidopsis paraquat resistant2-1 (par2-1) mutant show an anti-cell death phenotype. Paraquat 
treatment induce similar superoxide production in par2-1 and wild-type plants, suggesting 
that PAR2 acts downstream of superoxide to regulate cell death. par2-1 encode a S-
nitrosoglutathione reductase (GSNOR) that catalyze a major biologically active nitric oxide 
species,  S-nitrosoglutathione. Compared to wild type, par2-1 mutant showed higher nitric 
oxide level, suggesting that nitric oxide level and nitrosylation protein modification 
regulates cell death in plant cells (Chen et al., 2009).   

Other paraquat-resistant genotypes have also been reported; like the grass weed Hordeum 
glaucum (Lasat et al., 1997) and Conyza bonariensis (Fuerst et al., 1985; Norman et al., 1994). 
The resistance mechanism seems to be related to a higher herbicide compartmentalization in 
root vacuoles of the resistant biotype than in the susceptible one. On the contrary, the 
amount of paraquat accumulated in the cytoplasm of the susceptible biotype was double 
that found in the resistant biotype.  
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Additionally, paraquat tolerance has been associated with the expression of transporters 
able to carry molecules with similar chemical structure or charge distribution to paraquat, 
like polyamines (Tachihara et al., 2005). Pharmacological treatments with blockers of proton 
pump ATPases, such us nitrate, carbonyl-cyanide-m-chlorophenylhydrazone (CCCP) and 
N4N1- dicyclohexylcarbodiimide (DCCD) were used in order to study their effects on 
paraquat moving into inactive compartments in C. canadiensis (Jóri et al., 2007).  Recovery 
after paraquat treatment in tolerant biotypes was strongly inhibited by nitrate, as nitrate 
selectively blocks ATPases in the vacuoles -responsible for energy supplies to vacuolar 
membranes- the results suggested that paraquat sequestration uses energy from the proton 
gradient (Jóri et al., 2007). 

Regarding the relationship between paraquat tolerance and leaf age, some studies have 
shown that young leaves are more tolerant than mature ones (Kuk et al., 2006; Ohe et al., 
2005), it is worth nothing that responses are closely related with detoxify mechanism and 
antioxidative responses as well as with morphological leaf characteristics such as 
epicuticular wax content and leaf cuticule development which is the first and most 
significant barrier for foliar-applied chemicals. Although damage originated by paraquat 
treatment in Cucurbita spp varied among cultivars, the injury provoked by herbicide 
application was lower in younger leaves than in older ones as it was observed by lesser 
conductivity values and malondialdehide production which indicate membrane damage 
with cellular leakage and membrane lipid peroxydation respectively. These responses 
correlated also with higher antioxidant activity and increases in ascorbate content as well as 
with higher epicuticular wax in young leaves (Yeol Yoon , 2011). 

5. Conclusion 

Paraquat is potent oxidative stress inducer, which beyond the widely use as desiccant 
herbicide, it has been a very useful tool in plant biology basic research. Many aspect of 
oxidative stress in plants, the toxic and signaling roles of ROS, the native and transgenic 
plant tolerance/susceptibility responses to many environmental stress conditions, the cross 
tolerance phenomenon and different cell death processes have been studied using paraquat 
treatments.  
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